
On Debugging Real-Time Applications �Frank Mueller and David B. WhalleyDept. of Computer ScienceFlorida State UniversityTallahassee, FL 32306-4019e-mail: whalley@cs.fsu.edu phone: (904) 644-3506AbstractDebugging is an integral part of the software develop-ment cycle which can account for up to 50% of the de-velopment time of an application. This paper discussessome of the challenges speci�c to real-time debugging.It explains how developing real-time applications canbe supported by an environment which addresses theissues of time deadline monitoring and distortion due tothe interference of debugging. The current implemen-tation of this environment provides the elapsed timeduring debugging on request at breakpoints. This timeinformation corresponds to the elapsed execution timesince program initiation. Delays due to the interferenceof the debugger, for example input delays at break-points, are excluded from the time estimates. The en-vironment includes a modi�ed compiler and a staticcache simulator which together produce instrumentedprograms for the purpose of debugging. The instru-mented program supports source-level debugging of op-timized code and an e�cient cache simulation to pro-vide timing information at execution time. The over-head in execution time of an instrumented program isonly approximately 1 to 4 times slower than the cor-responding unoptimized program. Conventional hard-ware simulators could alternatively be used to obtainthe same information but would run much slower. Theenvironment facilitates the debugging of real-time ap-plications. It allows the monitoring of deadlines, helpsto locate the �rst task which misses a deadline, andsupports the search for code portions which accountfor most of the execution time. This facilitates hand-tuning of selected tasks to make a schedule feasible.1 IntroductionThe issue of debugging real-time applications has re-ceived little attention in the past. Yet, in the processof building real-time applications, debugging is com-monly performed just as in the development of non-real-time software and may account for up to 50% ofthe development time [16]. The debugging tools usedfor real-time applications are often ordinary debuggerswhich do not cater to speci�c needs of real-time sys-tems listed below.�This work was supported in part by the O�ce of Naval Re-search under contract # N00014-94-1-0006

Time distortion: The notion of real time is central toreal-time applications. Hardware timers are com-monly used to inquire timing information duringprogram execution to synchronize the applicationwith periodic events. Yet, during debugging thenotion of real time should be replaced by the no-tion of virtual time to compensate for time distor-tion due to the interference of debugging. Externalevents have to be simulated based on the elapsed(virtual) time of tasks. Thus, values of variablescan be related to the elapsed time which is essen-tial for debugging real-time applications.Deadline monitoring: During the implementationphase, deadlines may not always be met. A real-time debugger should display the elapsed time fora task on request. This would facilitate �nding the�rst task which fails to meet a deadline. It couldalso be used to inquire at which point during theexecution a deadline was missed. Furthermore, theelapsed time may help in tuning tasks by locatingwhere most of the execution time is spent.Uniprocessor vs. multiprocessor: Multiprocessorapplications are sometimes simulated on unipro-cessors during debugging. In this case, a virtualclock has to be kept for each processor which isshared by a set of tasks running on this processor.This work concentrates on time distortion and deadlinemonitoring.A debugging environment has been developed whichpermits the user to query the elapsed time. This timecorresponds to the virtual time from program initi-ation to the current breakpoint excluding debuggingoverhead and is calculated on demand. In contrast,time queries in current debuggers correspond to thewall-clock time and include the delay of user input atbreakpoints as well as the debugger trap overhead.The environment can be used to debug a set of real-time tasks which do not meet their deadline. It fa-cilitates the analyses of the tasks and helps to �ndout where a task spends most of it's execution timeor which portion of a task completed execution beforemissing the deadline. This knowledge can then be uti-lized to �ne-tune the task which is missing its deadlinesor any of the previous tasks in the schedule. Thus, thisdebugging environment assists the process of designinga feasible schedule in a step-by-step fashion.In ACM SIGPLAN Workshop on Language, Compiler and Tool Support for Real-Time Systems, June 1994 1



The elapsed time of a task is estimated based on thecaching behavior of the task. The caching informationis updated during execution and provides an estimateof the number of elapsed processor cycles.The dynamic simulation of cache performance neces-sitates the tracking of events and their ordering to de-termine a cache miss vs. a cache hit. It can be quite achallenge to perform order-dependent events e�ciently.This paper describes the design and implementation ofsuch an environment within the framework of a com-piler, a static cache simulator [12], and an arbitrarysource-level debugger. The compiler translates a pro-gram into assembly code and provides control-ow in-formation to the static cache simulator. The staticcache simulator analyzes the caching behavior of theprogram and produces instrumentation code which ismerged into the assembly code. The source programcorresponding to the resulting assembly code can thenbe debugged and the elapsed time can be requested atbreakpoints.The elapsed time is calculated based on the cachesimulation up to the current breakpoint, i.e. the num-ber of cache hits and misses are multiplied by the accesstime for hits and misses respectively. This provides anestimate of the executed numbers of processor cyclescorresponding to the elapsed (virtual) time since pro-gram initiation.It may be argued that the virtual execution time canbe provided by the operating system. Notice thoughthat the debugging process a�ects the execution of thereal-time task, e.g. the caching behavior. The cachesimulation discussed here estimates the timing of thetask in an actual real-time environment disregardingthe interference of debugging.Another problem is posed by the debugging of op-timized code. Conventional compilers only supportsource-level debugging of unoptimized code. Clearly,unoptimized code causes further time distortion whichcannot be accepted for real-time systems. Thus, a com-piler has been modi�ed to support source-level debug-ging of optimized code with certain restrictions, whichare discussed later in the paper.2 Related WorkConventional debugging tools, whether at theassembly-level or at the source-level, do not address thespeci�c demands of real-time debugging. The amountof work in the area of real-time debugging has beenlimited with a few exceptions.The Remedy debugging tool [14] addresses the cus-tomization of the debugging interface for real-time pur-poses and synchronizes on breakpoints by suspendingthe execution on all processors. DCT [5] is a toolthat allows practically non-intrusive monitoring but re-quires special hardware for bus access. Both RED [8]and ART [17] provide monitoring and debugging fa-cilities at the price of software instrumentation. RED

dedicates a co-processor to collect trace data and sendit to the host system. The instrumentation is removedfor production code. In ART, a special reporting tasksends trace data to a host system for further process-ing. The instrumentation code is a permanent part ofthe application. It will never removed to prevent al-teration of the timing. Debugging is limited to forcedsuspension and resumption of entities, viewing and al-teration of variables, and monitoring of communicationmessages.The DARTS system [16] approaches the debuggingproblem in two stages. It �rst generates a programtrace and then allows for debugging based on the tracedata which is time-stamped to address the time distor-tion problem. The debugging is limited to a restrictedset of events which is extracted from the control ow.This tool only supports a subset of the functionality ofcommon debuggers, e.g. excluding data queries. Thehigh volume of trace information and the associatedoverhead of trace generation may also limit its applica-tion to programs with short execution times. None ofthe systems make use of the compiler to enhance thedebugging process.In the absence of real-time debuggers, hardware sim-ulators are often used which run considerably slowerthan the actual application and, consequently, allowonly selective and not very extensive testing. In addi-tion, changing the simulated architecture of hardwaresimulators is typically complicated.3 A Real-Time Debugging EnvironmentThe current work concentrates on monitoring deadlinesbased on the cache analysis of a task and the corre-sponding estimate of the elapsed (virtual) executiontime. This facility can be used in conjunction with aconventional debugger. The debugger does not need tobe modi�ed.The cache simulation overhead at run time is reducedby analyzing the cache behavior statically. A largenumber of cache hits and misses can be determinedprior to execution time by considering the control owof each function and the call graph of the program. Theremaining references are simulated at execution time.Figure 1 depicts an overview of the environment. Aset of source �les of a program are translated by a com-piler. The compiler generates object code and passesinformation about the control ow of each source �leto the static cache simulator. The static cache simula-tor performs the task of determining which instructionreferences can be predicted prior to execution time.It constructs the call graph of the program and thecontrol-ow graph of each function based on the infor-mation provided by the compiler. The cache behavioris then simulated for a given cache con�guration. Fur-thermore, the static simulator produces instruction an-notations and passes them to the linker which modi�esthe object code according to the annotations and cre-In ACM SIGPLAN Workshop on Language, Compiler and Tool Support for Real-Time Systems, June 1994 2



source

files

cache

static

cache configuration

program

object

files
linkercompiler

time estimation routines

control

flow

debugger

source-

level
executable

simulatorinformation

instruction

annotationFigure 1: Overview of the Environmentates an executable program including library routinesfor the time estimation. The executable may then berun within a source-level debugger. The elapsed timecan be inquired at any breakpoint by calling the libraryroutine which estimates the number of processor cyclesexecuted based on the number of cache hits and missesup to that point.3.1 Static Cache SimulationThe task of static cache simulation is to determinewhether each instruction reference will result in a cachehit or miss during program execution.1 This is accom-plished by analyzing the call graph and the control owfor each function. Since it is not always possible to de-termine if a reference is a hit or miss, instructions areclassi�ed to be in the categories of always-hit, always-miss, �rst-miss, or conict. If an instruction is always(never) in cache, then it is denoted as an always-hit(always-miss). If an access to an instruction results ina miss on the �rst access and in hits for any subsequentaccesses, then it is classi�ed as a �rst-miss. If an ac-cess to a program line results in either a hit or a missdepending on the ow of control, then it is referred toas a conict.The categorization of instruction references will bediscussed briey. A more formal description andthe corresponding algorithms can be found elsewhere[12, 11]. An abstract cache state of a basic block inthe control-ow graph denotes the subset of programlines which can potentially be cached before executingthe block, i.e. there exists an execution path for eachprogram line of the subset such that the program lineis cached at the beginning of the block.A program line reference results in an always-missif the program line is not in the abstract cache state.An always hit occurs if the line is in the abstract cachestate and no other program line mapping into the samecache line is in the abstract cache state. A �rst missoccurs if the line is in the abstract cache state, andall other lines in the abstract cache state (mappinginto the same cache line) cannot be reached anymore1The current implementation is limited to direct-mapped in-struction caches. The work is being extended to include set-associative caches and to also handle data caches.

through the control ow. The remaining instructionsare classi�ed as conicts.The calculation of the abstract cache states is per-formed by an iterative algorithm similar to the data-ow analysis performed in optimizing compilers. Thecategorization amounts to a traversal of the programlines, i.e. a traversal of the program lines for each basicblock within the combination of the call graph and thecontrol-ow graphs of each function.Based on the category of a program line, the staticsimulator emits instruction annotations, placed at thebeginning of basic blocks, which provide frequencycounts and simulate the \conicts" using simple statetransitions at execution time. The additional code af-fects the run time of the program but not the calcula-tion of the elapsed time since the latter is based on thecache simulation performed on the original, uninstru-mented program.3.2 Querying the Elapsed TimeThe elapsed execution time can be queried at anybreakpoint while debugging a program without modi-fying the debugger. The time is calculated based on thecache analysis. The number of cache hits and missescan be calculated on the y from the frequency coun-ters. The elapsed time is then calculated astelapsed = hits�hit penalty+misses�miss penalty [cycles]where the hit penalty is typically one cycle while themiss penalty is ten cycles [9] or even more, dependingon the clock rate and the access time of main memory.This time estimate can be converted into seconds bymultiplying it by the cycle time. The calculation of hitsand misses takes only a short time and can thereforebe repeated whenever the program stops at a break-point without much overhead. The code performingthe calculation is hidden in linked-in library code.The debugged program has been compiled with fulloptimizations to avoid time distortion. The compilerwas modi�ed to emit debugging information for unop-timized code as well as optimized code. Emitting accu-rate debugging information for optimized code is a non-trivial task and subject to ongoing research [1, 6, 10].Contrary to debugging unoptimized code, debuggingoptimized code typically restricts the scope of break-points and the displaying of data structures. In the de-bugging environment described in this paper, a break-point set on a source line is approximated as a break-point at the beginning of the corresponding basic blockwhen code is optimized. In addition, the value of vari-ables assigned to a register will only be displayed ifall live ranges are assigned to the same register [2].Register-mapped values may still be inconsistent attimes due to global optimizations, such as commonsubexpression elimination which is a common problemwhen debugging optimized code.The fact that optimized code is executed during de-bugging speeds up the execution over conventional de-In ACM SIGPLAN Workshop on Language, Compiler and Tool Support for Real-Time Systems, June 1994 3



> dbx fftReading symbolic information...Read 396 symbols(dbx) stop at 43 /* set breakpoint on line 43 */(2) stop at 43(dbx) stop at 114 /* set breakpoint on line 114 */(3) stop at 114(dbx) stop at 123 if elapsed_cycles() > 4000000 /* set cond. breakpoint */(4) stop at 123 if elapsed_cycles() > 4000000(dbx) display elapsed_cycles() /* display function return value on breakpoint */elapsed_cycles() = 0 /* 0 cycles since program has not started */(dbx) run /* start program execution */Running: fftstopped in main at line 114 /* execution stopped on first breakpoint */114 printf("Objective: measure exec. time of 128 FFT.\n");elapsed_cycles() = 22 /* 22 cycles executed before first breakpoint */(dbx) cont /* resume execution until next breakpoint */Objective: measure exec. time of 128 FFT. /* program output */stopped in four at line 4343 mmax=2;elapsed_cycles() = 29413(dbx) next /* single step to next source line statement */stopped in four at line 4444 while(n>mmax) {elapsed_cycles() = 29428(dbx) print mmax /* print out value of variable */mmax = 2(dbx) contstopped in four at line 4343 mmax=2;elapsed_cycles() = 70547(dbx) clear /* clear current breakpoint (line 43) */(dbx) nextstopped in four at line 4444 while(n>mmax) {elapsed_cycles() = 70553(dbx) contstopped in main at line 123 /* execution stopped on conditional breakpoint */123 four(tdata,nn,isign);elapsed_cycles() = 4015629(dbx) clear(dbx) contK = 100 Time = 0.290000 Seconds /* program output */elapsed cycles() = 4095351 /* total number of executed cycles */execution completed, exit code is 1program exited with 1(dbx) quit Figure 2: Annotated Sample Debugging Sessionbugging of unoptimized code. The cache simulation, onthe other hand, adds to the execution time. A quanti-tative analysis of the e�ect of these issues will be givenin the measurement section.4 ApplicationsThe output shown in Figure 2 illustrates a short de-bugging session of a program performing fast fouriertransformations within the environment using the un-modi�ed source-level debugger dbx [15].First, a few breakpoints are set including a condi-tional breakpoint on a subroutine call which checks ona deadline miss after 4 million cycles. The display com-mand ensures that the elapsed time estimated in cyclesis displayed at each breakpoint as seen later during ex-ecution. The value of the variable mmax can be printedalthough it has been assigned to a register due to codeoptimization. Notice that the breakpoint on line 43 isreached twice. The di�erence in the number of cyclesbetween line 43 and line 44 is 15 cycles during the �rst
iteration but only 6 cycles during the second iteration.A closer investigation reveals that during the �rst it-eration, one of the six instructions in the basic blockreferences a program line which results in a compulsorymiss estimated as 10 cycles. On the second iteration,the same reference results in a hit due to temporal lo-cality estimated as 1 cycle. The execution is stoppedon line 123 after over 4 million cycles which indicatesthat the task could not �nish within the given deadline.This conditional breakpoint was placed on a repeatedlyexecuted subroutine call to periodically check this con-dition. The deadline miss can be narrowed down toan even smaller code portion by setting further condi-tional breakpoints. At program termination, the �nalnumber of processor cycles is displayed.The timing information can be used during debug-ging to locate portions of code which consume most ofthe execution time. This information can be used tohand-tune programs or redesign algorithms.When a set of real-time tasks is debugged, one canIn ACM SIGPLAN Workshop on Language, Compiler and Tool Support for Real-Time Systems, June 1994 4



Size unopt. opt. code with time estimatesName Description [bytes] code 1kB 2kB 4kB 8kBcachesim Cache Simulator 8,452 1.1 2.0 1.4 1.3 1.2cb C Program Beauti�er 4,968 1.4 6.8 5.8 3.4 2.6compact Hu�man Code Compression 5,912 2.1 10.3 7.8 6.0 2.7copt Rule-Driven Peephole Optimizer 4,144 1.4 2.5 1.7 1.4 1.4dhrystone Integer Benchmark 1,912 1.6 2.7 1.6 1.6 1.6�t Fast Fourier Transform 1,968 1.3 1.4 1.2 1.2 1.2genreport Detailed Execution Report Generator 17,716 1.4 3.6 2.5 2.4 2.3mincost VLSI Circuit Partitioning 4,492 1.6 5.0 3.2 2.2 1.8sched Instruction Scheduler 8,352 2.1 22.9 14.6 8.3 4.1sdi� Side-by-side Di�erences between Files 7,288 4.1 27.1 8.1 4.0 3.0whetstone Floating point benchmark 4,812 1.2 2.0 2.0 1.5 1.2average 6,365 1.8 7.8 4.5 3.0 2.1Table 1: Performance Overheadidentify the task which is missing a deadline either bychecking the elapsed time or by setting a conditionalbreakpoint dependent on the elapsed time. The sched-ule can then be �xed in various ways. One can tunethe task which missed the deadline. Alternatively, onecan tune any of the preceding tasks if this results ina feasible schedule. The latter may be a useful ap-proach when a task overruns its estimated executiontime without violating a deadline thereby causing sub-sequent tasks to miss their deadlines. The debuggerwill help to �nd the culprit in such situations. Anotheroption would be to redesign the task set and the sched-ule, for example by further partitioning of the tasks [7].5 MeasurementsThe environment discussed above was implemented forthe SPARC architecture. It includes a modi�ed com-piler back-end of VPO (very portable optimizer) [4],the static simulator for direct-mapped caches [12], andthe regular system linker and source level debuggerDBX under SunOS 4.1.3. Calling a library routine toquery the elapsed time takes a negligible amount oftime in the order of one millisecond. Thus, this sec-tion focuses on measuring the overhead of cache sim-ulation during program execution. The correctness ofthe instruction cache simulation was veri�ed by com-parison with a traditional trace-driven cache simula-tor. The execution time was measured for a number ofuser programs, benchmarks, and UNIX utilities usingthe built-in timer of the operating system to determinethe overhead of cache simulation at run time. Table1 shows programs of varying program size (column 3),the overhead of unoptimized code (column 4), and thesupport of virtual timing information through dynamiccache simulation (column 5-8) as a factor of the exe-cution time of optimized code for cache sizes of 1kB,2KB, 4kB, and 8kB.On average, unoptimized programs ran 1.8 timesslower than their optimized version. Running the op-timized program and performing cache simulation toprovide virtual timing information was on average 2.1

to 7.8 times slower than executing optimized code.2 Inother words, the optimized code with cache simulationwas roughly 1 to 4 times slower than the unoptimizedcode typically used for program debugging.The cache size inuences the overhead factor con-siderably which can be explained as follows: For smallcache sizes, programs do not �t into cache and capac-ity misses occur frequently which requires the dynamicoverhead of simulating program lines classi�ed as \con-icts". For larger cache sizes, a larger portion of theprogram �ts into cache reducing capacity misses andthereby reducing the number of \conicts". Once theentire program �ts into cache, no \conicts" need to besimulated. Rather, frequency counters are su�cient tosimulate the cache behavior. This reduces the overheadconsiderably.6 Future WorkThe work could be extended to take external eventsinto account. The user will be required to specify theoccurrence of events in a time table. The events arethen simulated by the debugging environment based onthe elapsed time. At program termination, the moni-tored activities (e.g. completion time, deadline) couldbe summarized in a table.The interaction of the debugging environment with acompiler provides the means to introduce a compilationpragma zero time which excludes a code portion fromvirtual time accounting. This can be used to insertconditionally compiled debugging code which does nota�ect the overall timing.The work is also being extended to include the im-pact of data caching and pipeline stalls to improve theaccuracy of the time estimates. Another application ofthis work is to design a detailed pro�ler which facili-tates the search for code portions which consume mostof the execution time.2Notice that the static cache simulation makes this approachfeasible. Traditional trace-driven cache simulation is reportedto slow down the execution time by one to three orders of amagnitude [18].In ACM SIGPLAN Workshop on Language, Compiler and Tool Support for Real-Time Systems, June 1994 5



Furthermore, this environment could also be usedfor multi-threaded applications where a thread corre-sponds to a task. The application could be designedfor a non-preemptive embedded system3 but may bedebugged on a regular workstation using the environ-ment to simulate the embedded system e�ciently.7 ConclusionThis work discusses some challenges of real-time de-bugging which have not yet been addressed adequately.A debugging environment is proposed which addressesthe problem of time distortion during debugging. Inthis environment, the notion of real time is replaced byvirtual time based on the estimated number of elapsedprocessor cycles. The �rst implementation step hasbeen completed and provides the elapsed time basedon instruction cache simulation at any breakpoint dur-ing debugging. This time information can be used fordeadline monitoring, identifying the task which �rstmisses a deadline, and locating time-consuming codeportions to support hand-tuning of tasks until a sched-ule becomes feasible. To provide this timing informa-tion, the execution speed of the application during de-bugging is 1-4 times slower in average than the speedof the corresponding unoptimized application. In con-trast, conventional hardware simulators may providethe same information but are less portable and muchslower. The environment facilitates the debugging ofreal-time programs when timing-related problems oc-cur which have to be reproduced during debugging.References[1] A. Adl-Tabatabai and Thomas Gross. Detectionand recovery of endangered variables caused byinstruction scheduling. In ACM SIGPLAN Con-ference on Programming Language Design and Im-plementation, pages 13{25, June 1993.[2] A. V. Aho, R. Sethi, and J. D. Ullman. Compil-ers { Principles, Techniques, and Tools. Addison-Wesley, 1986.[3] T. P. Baker, F. Mueller, and Viresh Rustagi. Ex-perience with a prototype of the POSIX \minimalrealtime system pro�le". In IEEE Workshop onReal-Time Operating Systems and Software, pages12{16, 1994.[4] M. E. Benitez and J. W. Davidson. A portableglobal optimizer and linker. In ACM SIGPLANConference on Programming Language Design andImplementation, pages 329{338, June 1988.[5] D. Bhatt, A. Ghonami, and R. Ramanujan. An in-strumented testbed for real-time distributed sys-tems development. In IEEE Symposium on Real-Time Systems, pages 241{250, December 1987.3A multi-threaded real-time kernel has been designed for suchan embedded system based on a SPARC VME bus board [3, 13].

[6] G. Brooks, G. Hansen, and S. Simmons. A newapproach to debugging optimized code. In ACMSIGPLAN Conference on Programming LanguageDesign and Implementation, pages 1{11, June1992.[7] R. Gerber and S. Hong. Semantics-based com-piler transformations for enhanced schedulability.In IEEE Symposium on Real-Time Systems, pages232{242, December 1993.[8] C. R. Hill. A real-time microprocessor debuggingtechnique. In ACM SIGSOFT/SIGPLAN Soft-ware Engineering Symposium on High-Level De-bugging, pages 145{148, 1983.[9] M. Hill. A case for direct-mapped caches. IEEEComputer, 21(11):25{40, December 1988.[10] U. Hoelzle, C. Chambers, and D. Ungar. Debug-ging optimized code with dynamic deoptimization.In ACM SIGPLAN Conference on ProgrammingLanguage Design and Implementation, pages 32{43, June 1992.[11] F. Mueller and D. B. Whalley. E�cient on-the-yanalysis of program behavior and static cache sim-ulation. In Static Analysis Symposium, September1994.[12] F. Mueller, D. B. Whalley, and M. Harmon. Pre-dicting instruction cache behavior. In ACM SIG-PLAN Workshop on Language, Compiler, andTool Support for Real-Time Systems, June 1994.[13] Frank Mueller. A library implementation ofPOSIX threads under UNIX. In Proceedings of theUSENIX Conference, pages 29{41, January 1993.[14] P. Rowe and B. Pagurek. Remedy: A real-time,multiprocessor, system level debugger. In IEEESymposium on Real-Time Systems, pages 230{239,December 1987.[15] Sun Microsystems, Inc. Programmer's LanguageGuide, March 1990. Part No. 800-3844-10.[16] M. Timmerman, F. Gielen, and P. Lambix. Aknowledge-based approach for the debugging ofreal-time multiprocessor systems. In IEEE Work-shop on Real-Time Applications, pages 23{28,1993.[17] H. Tokuda, M. Kotera, and C. W. Mercer. A real-time monitor for a distributed real-time operatingsystem. In ACM/ONR Workshop on Parallel andDistributed Debugging, pages 68{77, 1988.[18] D. B. Whalley. Fast instruction cache perfor-mance evaluation using compile-time analysis. InSIGMETRICS Conference on Measurement andModeling of Computer Systems, pages 13{22, June1992.In ACM SIGPLAN Workshop on Language, Compiler and Tool Support for Real-Time Systems, June 1994 6


