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Abstract

Debugging is an integral part of the software develop-
ment cycle which can account for up to 50% of the de-
velopment time of an application. This paper discusses
some of the challenges specific to real-time debugging.
It explains how developing real-time applications can
be supported by an environment which addresses the
issues of time deadline monitoring and distortion due to
the interference of debugging. The current implemen-
tation of this environment provides the elapsed time
during debugging on request at breakpoints. This time
information corresponds to the elapsed execution time
since program initiation. Delays due to the interference
of the debugger, for example input delays at break-
points, are excluded from the time estimates. The en-
vironment includes a modified compiler and a static
cache simulator which together produce instrumented
programs for the purpose of debugging. The instru-
mented program supports source-level debugging of op-
timized code and an efficient cache simulation to pro-
vide timing information at execution time. The over-
head in execution time of an instrumented program is
only approximately 1 to 4 times slower than the cor-
responding unoptimized program. Conventional hard-
ware simulators could alternatively be used to obtain
the same information but would run much slower. The
environment facilitates the debugging of real-time ap-
plications. It allows the monitoring of deadlines, helps
to locate the first task which misses a deadline, and
supports the search for code portions which account
for most of the execution time. This facilitates hand-
tuning of selected tasks to make a schedule feasible.

1 Introduction

The issue of debugging real-time applications has re-
ceived little attention in the past. Yet, in the process
of building real-time applications, debugging is com-
monly performed just as in the development of non-
real-time software and may account for up to 50% of
the development time [16]. The debugging tools used
for real-time applications are often ordinary debuggers
which do not cater to specific needs of real-time sys-
tems listed below.
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Time distortion: The notion of real time is central to
real-time applications. Hardware timers are com-
monly used to inquire timing information during
program execution to synchronize the application
with periodic events. Yet, during debugging the
notion of real time should be replaced by the no-
tion of virtual time to compensate for time distor-
tion due to the interference of debugging. External
events have to be simulated based on the elapsed
(virtual) time of tasks. Thus, values of variables
can be related to the elapsed time which 1s essen-
tial for debugging real-time applications.

Deadline monitoring: During the implementation
phase, deadlines may not always be met. A real-
time debugger should display the elapsed time for
a task on request. This would facilitate finding the
first task which fails to meet a deadline. It could
also be used to inquire at which point during the
execution a deadline was missed. Furthermore, the
elapsed time may help in tuning tasks by locating
where most of the execution time is spent.

Uniprocessor vs. multiprocessor: Multiprocessor
applications are sometimes simulated on unipro-
cessors during debugging. In this case, a virtual
clock has to be kept for each processor which is
shared by a set of tasks running on this processor.

This work concentrates on time distortion and deadline
monitoring.

A debugging environment has been developed which
permits the user to query the elapsed time. This time
corresponds to the virtual time from program initi-
ation to the current breakpoint excluding debugging
overhead and is calculated on demand. In contrast,
time queries in current debuggers correspond to the
wall-clock time and include the delay of user input at
breakpoints as well as the debugger trap overhead.

The environment can be used to debug a set of real-
time tasks which do not meet their deadline. It fa-
cilitates the analyses of the tasks and helps to find
out where a task spends most of it’s execution time
or which portion of a task completed execution before
missing the deadline. This knowledge can then be uti-
lized to fine-tune the task which 1s missing its deadlines
or any of the previous tasks in the schedule. Thus, this
debugging environment assists the process of designing
a feasible schedule in a step-by-step fashion.
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The elapsed time of a task is estimated based on the
caching behavior of the task. The caching information
is updated during execution and provides an estimate
of the number of elapsed processor cycles.

The dynamic simulation of cache performance neces-
sitates the tracking of events and their ordering to de-
termine a cache miss vs. a cache hit. It can be quite a
challenge to perform order-dependent events efficiently.
This paper describes the design and implementation of
such an environment within the framework of a com-
piler, a static cache simulator [12], and an arbitrary
source-level debugger. The compiler translates a pro-
gram into assembly code and provides control-flow in-
formation to the static cache simulator. The static
cache simulator analyzes the caching behavior of the
program and produces instrumentation code which is
merged into the assembly code. The source program
corresponding to the resulting assembly code can then
be debugged and the elapsed time can be requested at
breakpoints.

The elapsed time is calculated based on the cache
simulation up to the current breakpoint, i.e. the num-
ber of cache hits and misses are multiplied by the access
time for hits and misses respectively. This provides an
estimate of the executed numbers of processor cycles
corresponding to the elapsed (virtual) time since pro-
gram initiation.

It may be argued that the virtual execution time can
be provided by the operating system. Notice though
that the debugging process affects the execution of the
real-time task, e.g. the caching behavior. The cache
simulation discussed here estimates the timing of the
task in an actual real-time environment disregarding
the interference of debugging.

Another problem is posed by the debugging of op-
timized code. Conventional compilers only support
source-level debugging of unoptimized code. Clearly,
unoptimized code causes further time distortion which
cannot be accepted for real-time systems. Thus, a com-
piler has been modified to support source-level debug-
ging of optimized code with certain restrictions, which
are discussed later in the paper.

2 Related Work

Conventional debugging tools, whether at the
assembly-level or at the source-level, do not address the
specific demands of real-time debugging. The amount
of work in the area of real-time debugging has been
limited with a few exceptions.

The Remedy debugging tool [14] addresses the cus-
tomization of the debugging interface for real-time pur-
poses and synchronizes on breakpoints by suspending
the execution on all processors. DCT [5] is a tool
that allows practically non-intrusive monitoring but re-
quires special hardware for bus access. Both RED [8]
and ART [17] provide monitoring and debugging fa-
cilities at the price of software instrumentation. RED

dedicates a co-processor to collect trace data and send
it to the host system. The instrumentation is removed
for production code. In ART, a special reporting task
sends trace data to a host system for further process-
ing. The instrumentation code is a permanent part of
the application. It will never removed to prevent al-
teration of the timing. Debugging is limited to forced
suspension and resumption of entities, viewing and al-
teration of variables, and monitoring of communication
messages.

The DARTS system [16] approaches the debugging
problem in two stages. It first generates a program
trace and then allows for debugging based on the trace
data which is time-stamped to address the time distor-
tion problem. The debugging is limited to a restricted
set of events which is extracted from the control flow.
This tool only supports a subset of the functionality of
common debuggers, e.g. excluding data queries. The
high volume of trace information and the associated
overhead of trace generation may also limit its applica-
tion to programs with short execution times. None of
the systems make use of the compiler to enhance the
debugging process.

In the absence of real-time debuggers, hardware sim-
ulators are often used which run considerably slower
than the actual application and, consequently, allow
only selective and not very extensive testing. In addi-
tion, changing the simulated architecture of hardware
simulators is typically complicated.

3 A Real-Time Debugging Environment

The current work concentrates on monitoring deadlines
based on the cache analysis of a task and the corre-
sponding estimate of the elapsed (virtual) execution
time. This facility can be used in conjunction with a
conventional debugger. The debugger does not need to
be modified.

The cache simulation overhead at run time is reduced
by analyzing the cache behavior statically. A large
number of cache hits and misses can be determined
prior to execution time by considering the control flow
of each function and the call graph of the program. The
remaining references are simulated at execution time.

Figure 1 depicts an overview of the environment. A
set of source files of a program are translated by a com-
piler. The compiler generates object code and passes
information about the control flow of each source file
to the static cache simulator. The static cache simula-
tor performs the task of determining which instruction
references can be predicted prior to execution time.
It constructs the call graph of the program and the
control-flow graph of each function based on the infor-
mation provided by the compiler. The cache behavior
is then simulated for a given cache configuration. Fur-
thermore, the static simulator produces instruction an-
notations and passes them to the linker which modifies
the object code according to the annotations and cre-
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Figure 1: Overview of the Environment

ates an executable program including library routines
for the time estimation. The executable may then be
run within a source-level debugger. The elapsed time
can be inquired at any breakpoint by calling the library
routine which estimates the number of processor cycles
executed based on the number of cache hits and misses
up to that point.

3.1 Static Cache Simulation

The task of static cache simulation is to determine
whether each instruction reference will result in a cache
hit or miss during program execution.! This is accom-
plished by analyzing the call graph and the control flow
for each function. Since it is not always possible to de-
termine if a reference is a hit or miss, instructions are
classified to be in the categories of always-hit, always-
miss, first-miss, or conflict. If an instruction is always
(never) in cache, then it is denoted as an always-hit
(always-miss). If an access to an instruction results in
a miss on the first access and in hits for any subsequent
accesses, then it is classified as a first-miss. If an ac-
cess to a program line results in either a hit or a miss
depending on the flow of control, then it is referred to
as a conflict.

The categorization of instruction references will be
discussed briefly. A more formal description and
the corresponding algorithms can be found elsewhere
[12, 11]. An abstract cache state of a basic block in
the control-flow graph denotes the subset of program
lines which can potentially be cached before executing
the block, i.e. there exists an execution path for each
program line of the subset such that the program line
is cached at the beginning of the block.

A program line reference results in an always-miss
if the program line is not in the abstract cache state.
An always hit occurs if the line is in the abstract cache
state and no other program line mapping into the same
cache line is in the abstract cache state. A first miss
occurs if the line is in the abstract cache state, and
all other lines in the abstract cache state (mapping
into the same cache line) cannot be reached anymore

1The current implementation is limited to direct-mapped in-
struction caches. The work is being extended to include set-
associative caches and to also handle data caches.

through the control flow. The remaining instructions
are classified as conflicts.

The calculation of the abstract cache states is per-
formed by an iterative algorithm similar to the data-
flow analysis performed in optimizing compilers. The
categorization amounts to a traversal of the program
lines, ¢.e. a traversal of the program lines for each basic
block within the combination of the call graph and the
control-flow graphs of each function.

Based on the category of a program line, the static
simulator emits instruction annotations, placed at the
beginning of basic blocks, which provide frequency
counts and simulate the “conflicts” using simple state
transitions at execution time. The additional code af-
fects the run time of the program but not the calcula-
tion of the elapsed time since the latter is based on the
cache simulation performed on the original, uninstru-
mented program.

3.2 Querying the Elapsed Time

The elapsed execution time can be queried at any
breakpoint while debugging a program without modi-
fying the debugger. The time is calculated based on the
cache analysis. The number of cache hits and misses
can be calculated on the fly from the frequency coun-
ters. The elapsed time is then calculated as

telapsed = hitsxhit_penalty+missesxmiss_penalty [cycles]

where the hit penalty is typically one cycle while the
miss penalty is ten cycles [9] or even more, depending
on the clock rate and the access time of main memory.
This time estimate can be converted into seconds by
multiplying it by the cycle time. The calculation of hits
and misses takes only a short time and can therefore
be repeated whenever the program stops at a break-
point without much overhead. The code performing
the calculation is hidden in linked-in library code.

The debugged program has been compiled with full
optimizations to avoid time distortion. The compiler
was modified to emit debugging information for unop-
timized code as well as optimized code. Emitting accu-
rate debugging information for optimized code is a non-
trivial task and subject to ongoing research [1, 6, 10].
Contrary to debugging unoptimized code, debugging
optimized code typically restricts the scope of break-
points and the displaying of data structures. In the de-
bugging environment described in this paper, a break-
point set on a source line is approximated as a break-
point at the beginning of the corresponding basic block
when code is optimized. In addition, the value of vari-
ables assigned to a register will only be displayed if
all live ranges are assigned to the same register [2].
Register-mapped values may still be inconsistent at
times due to global optimizations, such as common
subexpression elimination which is a common problem
when debugging optimized code.

The fact that optimized code 1s executed during de-
bugging speeds up the execution over conventional de-
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> dbx fft
Reading symbolic information...
Read 396 symbols

(dbx) stop at 43 /*
(2) stop at 43
(dbx) stop at 114 /*

(3) stop at 114
(dbx) stop at 123 if elapsed_cycles() > 4000000 /*
(4) stop at 123 if elapsed_cycles() > 4000000

(dbx) display elapsed_cycles() /*
elapsed_cycles() = 0 /*
(dbx) run /*
Running: fft
stopped in main at line 114 /*
114 printf("Objective: measure exec. time of
elapsed_cycles() = 22 /*
(dbx) cont /%
Objective: measure exec. time of 128 FFT. /*
stopped in four at line 43
43 mmax=2;
elapsed_cycles() = 29413
(dbx) next /%
stopped in four at line 44
44 while (n>mmax) {
elapsed_cycles() = 29428
(dbx) print mmax /*
mmax = 2
(dbx) cont
stopped in four at line 43
43 mmax=2;
elapsed_cycles() = 70547
(dbx) clear /%
(dbx) next
stopped in four at line 44
44 while (n>mmax) {
elapsed_cycles() = 70553
(dbx) cont
stopped in main at line 123 /*
123 four(tdata,nn,isign);

elapsed_cycles() = 4015629
(dbx) clear

(dbx) cont
K = 100 Time = 0.290000 Seconds /*
elapsed cycles() = 4095351 /*

execution completed, exit code is 1
program exited with 1
(dbx) quit

set breakpoint on line 43 */
set breakpoint on line 114 */
set cond. breakpoint */

display function return value on breakpoint */

0 cycles since program has not started */
start program execution */
execution stopped on first breakpoint */
128 FFT.\n");

22 cycles executed before first breakpoint */
resume execution until next breakpoint */
program output */

single step to next source line statement  */

print out value of variable */

clear current breakpoint (line 43) */

execution stopped on conditional breakpoint */

program output */
total number of executed cycles */

Figure 2: Annotated Sample Debugging Session

bugging of unoptimized code. The cache simulation, on
the other hand, adds to the execution time. A quanti-
tative analysis of the effect of these issues will be given
in the measurement section.

4 Applications

The output shown in Figure 2 illustrates a short de-
bugging session of a program performing fast fourier
transformations within the environment using the un-
modified source-level debugger dbz [15].

First, a few breakpoints are set including a condi-
tional breakpoint on a subroutine call which checks on
a deadline miss after 4 million cycles. The display com-
mand ensures that the elapsed time estimated in cycles
is displayed at each breakpoint as seen later during ex-
ecution. The value of the variable mmax can be printed
although 1t has been assigned to a register due to code
optimization. Notice that the breakpoint on line 43 is
reached twice. The difference in the number of cycles
between line 43 and line 44 is 15 cycles during the first

iteration but only 6 cycles during the second iteration.
A closer investigation reveals that during the first it-
eration, one of the six instructions in the basic block
references a program line which results in a compulsory
miss estimated as 10 cycles. On the second iteration,
the same reference results in a hit due to temporal lo-
cality estimated as 1 cycle. The execution is stopped
on line 123 after over 4 million cycles which indicates
that the task could not finish within the given deadline.
This conditional breakpoint was placed on a repeatedly
executed subroutine call to periodically check this con-
dition. The deadline miss can be narrowed down to
an even smaller code portion by setting further condi-
tional breakpoints. At program termination, the final
number of processor cycles is displayed.

The timing information can be used during debug-
ging to locate portions of code which consume most of
the execution time. This information can be used to
hand-tune programs or redesign algorithms.

When a set of real-time tasks is debugged, one can
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Size unopt. | opt. code with time estimates
Name Description [bytes] code | 1kB 2kB 4kB 8kB
cachesim Cache Simulator 8,452 1.1 2.0 1.4 1.3 1.2
cb C Program Beautifier 4,968 1.4 6.8 5.8 3.4 2.6
compact Huffman Code Compression 5,912 2.1 10.3 7.8 6.0 2.7
copt Rule-Driven Peephole Optimizer 4,144 1.4 2.5 1.7 1.4 1.4
dhrystone | Integer Benchmark 1,912 1.6 2.7 1.6 1.6 1.6
ft Fast Fourier Transform 1,968 1.3 1.4 1.2 1.2 1.2
genreport | Detailed Execution Report Generator | 17,716 1.4 3.6 2.5 2.4 2.3
mincost VLSI Circuit Partitioning 4,492 1.6 5.0 3.2 2.2 1.8
sched Instruction Scheduler 8,352 2.1 22.9 14.6 8.3 4.1
sdiff Side-by-side Differences between Files 7,288 4.1 27.1 8.1 4.0 3.0
whetstone | Floating point benchmark 4,812 1.2 2.0 2.0 1.5 1.2
average 6,365 1.8 7.8 4.5 3.0 2.1

Table 1: Performance Overhead

identify the task which is missing a deadline either by
checking the elapsed time or by setting a conditional
breakpoint dependent on the elapsed time. The sched-
ule can then be fixed in various ways. One can tune
the task which missed the deadline. Alternatively, one
can tune any of the preceding tasks if this results in
a feasible schedule. The latter may be a useful ap-
proach when a task overruns its estimated execution
time without violating a deadline thereby causing sub-
sequent tasks to miss their deadlines. The debugger
will help to find the culprit in such situations. Another
option would be to redesign the task set and the sched-
ule, for example by further partitioning of the tasks [7].

5 Measurements

The environment discussed above was implemented for
the SPARC architecture. It includes a modified com-
piler back-end of VPO (very portable optimizer) [4],
the static simulator for direct-mapped caches [12], and
the regular system linker and source level debugger
DBX under SunOS 4.1.3. Calling a library routine to
query the elapsed time takes a negligible amount of
time in the order of one millisecond. Thus, this sec-
tion focuses on measuring the overhead of cache sim-
ulation during program execution. The correctness of
the instruction cache simulation was verified by com-
parison with a traditional trace-driven cache simula-
tor. The execution time was measured for a number of
user programs, benchmarks, and UNIX utilities using
the built-in timer of the operating system to determine
the overhead of cache simulation at run time. Table
1 shows programs of varying program size (column 3),
the overhead of unoptimized code (column 4), and the
support of virtual timing information through dynamic
cache simulation (column 5-8) as a factor of the exe-
cution time of optimized code for cache sizes of 1kB,
2KB, 4kB, and 8kB.

On average, unoptimized programs ran 1.8 times
slower than their optimized version. Running the op-
timized program and performing cache simulation to
provide virtual timing information was on average 2.1

to 7.8 times slower than executing optimized code.? In
other words, the optimized code with cache simulation
was roughly 1 to 4 times slower than the unoptimized
code typically used for program debugging.

The cache size influences the overhead factor con-
siderably which can be explained as follows: For small
cache sizes, programs do not fit into cache and capac-
1ty misses occur frequently which requires the dynamic
overhead of simulating program lines classified as “con-
flicts”. For larger cache sizes, a larger portion of the
program fits into cache reducing capacity misses and
thereby reducing the number of “conflicts”. Once the
entire program fits into cache, no “conflicts” need to be
simulated. Rather, frequency counters are sufficient to
simulate the cache behavior. This reduces the overhead
considerably.

6 Future Work

The work could be extended to take external events
into account. The user will be required to specify the
occurrence of events in a time table. The events are
then simulated by the debugging environment based on
the elapsed time. At program termination, the moni-
tored activities (e.g. completion time, deadline) could
be summarized in a table.

The interaction of the debugging environment with a
compiler provides the means to introduce a compilation
pragma zero_time which excludes a code portion from
virtual time accounting. This can be used to insert
conditionally compiled debugging code which does not
affect the overall timing.

The work 1s also being extended to include the im-
pact of data caching and pipeline stalls to improve the
accuracy of the time estimates. Another application of
this work is to design a detailed profiler which facili-
tates the search for code portions which consume most
of the execution time.

2Notice that the static cache simulation makes this approach
feasible. Traditional trace-driven cache simulation is reported
to slow down the execution time by one to three orders of a
magnitude [18].
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Furthermore, this environment could also be used
for multi-threaded applications where a thread corre-
sponds to a task. The application could be designed
for a non-preemptive embedded system?® but may be
debugged on a regular workstation using the environ-
ment to simulate the embedded system efficiently.

7 Conclusion

This work discusses some challenges of real-time de-
bugging which have not yet been addressed adequately.
A debugging environment is proposed which addresses
the problem of time distortion during debugging. In
this environment, the notion of real time is replaced by
virtual time based on the estimated number of elapsed
processor cycles. The first implementation step has
been completed and provides the elapsed time based
on instruction cache simulation at any breakpoint dur-
ing debugging. This time information can be used for
deadline monitoring, identifying the task which first
misses a deadline, and locating time-consuming code
portions to support hand-tuning of tasks until a sched-
ule becomes feasible. To provide this timing informa-
tion, the execution speed of the application during de-
bugging is 1-4 times slower in average than the speed
of the corresponding unoptimized application. In con-
trast, conventional hardware simulators may provide
the same information but are less portable and much
slower. The environment facilitates the debugging of
real-time programs when timing-related problems oc-
cur which have to be reproduced during debugging.
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