Predicting Instruction Cache Behavior *

Frank Mueller, David B. Whalley
Dept. of Computer Science, B-173

Florida State University
Tallahassee, FL. 32306-4019

e-mail: whalley@cs. fsu.edu

Abstract

It has been claimed that the execution time of a pro-
gram can often be predicted more accurately on an
uncached system than on a system with cache mem-
ory [5, 20]. Thus, caches are often disabled for crit-
ical real-time tasks to ensure the predictability re-
quired for scheduling analysis. This work shows that
instruction caching can be exploited to gain execution
speed without sacrificing predictability. A new method
called Static Cache Simulation is introduced which uses
control-flow information provided by the back-end of a
compiler. This simulator statically predicts the caching
behavior of a large portion of the instruction cache
references of a program. In addition, a fetch-from-
memory bit is added to the instruction encoding which
indicates whether an instruction shall be fetched from
the instruction cache or from main memory. This bit-
encoding approach provides a significant speedup in
execution time (factor 3-8) over systems with a dis-
abled instruction cache without any sacrifice in the pre-
dictability of worst-case execution time. Even without
bit-encoding, the ability to predict the caching behav-
ior of a large percentage of the instruction references
is very useful for providing tight worst-case execution
time predictions of large code segments on machines
with instruction caches.

1 Introduction

Predicting the execution time of programs or code seg-
ments is a difficult task. Yet, in the context of hard
real-time systems, it is essential to provide a schedule
for tasks with known deadlines. Thus, tasks have to be
analyzed to determine their best-case execution time
(BET) and worst-case execution time (WET). The fol-
lowing problems have to be addressed to predict the
execution time of a task or program:

e The number of loop iterations needs to be known
prior to execution. It is often required that the

*1st revision June 26, 1994. This work was supported in part
by the Office of Naval Research under contract # N00014-94-1-
0006

Marion Harmon

Dept. of Computer and Information Systems

Florida A & M University
Tallahassee, FL 32307

phone: (904) 644-3506

maximum number of iterations is provided by the
programmer [11].

e The possible execution paths in the control flow
have to be analyzed to predict both BET and
WET.

e Architectural features have to be taken into ac-
count (e.g. pipeline stalls).

Cache memories have become a major factor to
bridge the bottleneck between the time to access main
memory and the faster clock rate of current processors.
In the context of real-time systems, caches have been
regarded as a source for unpredictability which conflicts
with the goal of making the execution of tasks deter-
ministic [20]. For a system with an instruction cache
as a primary (on-chip) cache, the execution time of
an instruction can vary greatly depending on whether
the given instruction is in cache or not. In addition,
context switches and interrupts may replace the in-
structions cached by one task with instructions from
another task or an interrupt handler. As a result, it
has been common practice to simply disable the cache
for sections of code when predictability was required
[20].

This work shows that it 1s possible to predict some
cache behavior with certain restrictions. Let a task
be the portion of code executed between two schedul-
ing points (context switches). When a task starts ex-
ecution, the cache memory is assumed to be invali-
dated. During task execution, instructions are grad-
ually brought into cache and often result in many hits
and misses which can be predicted by Static Cache Sim-
ulation, a technique which analyzes control flow prior
to execution time. Furthermore, a slight change in the
architecture in conjunction with the simulator’s anal-
ysis allows, without loss of predictability, significantly
faster execution time than on system with a disabled
instruction cache.

This paper is structured as follows: Section 2 re-
views related work in the area. Section 3 introduces
the method of Static Cache Simulation. Section 4 de-
tails a bit-encoding approach which can exploit caches
for real-time systems. Section b provides a quantita-
tive analysis of both Static Cache Simulation and the

In ACM SIGPLAN Workshop on Language, Compiler and Tool Support for Real-Time Systems, June 1994 1

bit-encoding approach. Section 6 outlines future work
and section 7 presents the conclusions of this study.

2 Related Work

The problem of determining the execution time of pro-
grams has been the subject of some research in the past.
Sarkar [19] suggested a framework to determine both
average execution time and its variance. His work was
based on the analysis of a program’s interval structure
and its forward control flow. He calculated a program’s
execution time for a specific set of input data by us-
ing a description of the architecture and the frequency
information obtained by incrementing counters during
a profiling run. He assumed that the execution order
of instructions does not affect this calculation. Thus,
his method cannot capture the impact of caching on
execution time.

For real-time systems, several tools to predict the
execution time of programs have been designed. The
analysis has been performed at the level of source code
[18], at the level of intermediate code [16], and at the
level of machine code [6]. Only Harmon’s tool took the
impact of instruction caches into account for restrictive
circumstances, i.e. only for small code segments which
entirely fit into cache.

Niehaus outlined how the effects of caching can be
taken into account in the prediction of execution time
[17]. He suggested that caches be flushed on context
switches to provide a consistent cache state at the be-
ginning of each task execution. He provided a rough
estimate of the benefit of caches for speedup and tried
to determine the percentage of instruction cache ref-
erences which can be predicted as hits. The level of
analysis remained at a very abstract level though as
it only dealt with spatial locality for sequential execu-
tion and some temporal locality for simple loops. No
general method to analyze the call graph of a task and
control flow for each function was given.

A few attempts have been made to improve on the
predictability of caches by architectural modifications
to meet the needs of real-time systems. Kirk [10] out-
lined such a system which relied on the ability to seg-
ment the cache memory into a number of dedicated
partitions, each of which can only be accessed by a ded-
icated task. But this approach introduced new prob-
lems such as exhibiting lower hit ratios due to the par-
titioning and increasing the complexity of scheduling
analysis by introducing another resource (cache par-
titioning) as an additional degree of freedom in the
allocation process.

Other suggested architectural modifications often
dedicate a bit in the instruction encoding which is used
by the compiler to affect the cache behavior. McFar-
ling [12] used such an approach to exclude instructions

from cache that were not likely to be in cache on subse-
quent references. Chi and Dietz [4] introduced a data
cache bypass bit on load and store instructions which,
when set, indicates that the processor should go di-
rectly to memory (without caching the value as a side-
effect) or goes to the cache when clear. Their idea
is to improve execution speed by keeping data values
either in registers or in cache, thus avoiding storage
mirroring among the fasted components in the mem-
ory hierarchy (registers and data caches). Our work
emphasizes instruction caches rather than data caches.
In contrast to McFarling’s study and the work by Chi
and Dietz, we are primarily concerned about the pre-
dictability of instruction caching and secondarily about
execution speed.

3 Static Cache Simulation

The method of Static Cache Simulation can be used to
statically predict the behavior of a large number of the
instruction cache references for a given program/task
with a specific cache configuration. Unlike many data
references, the address of each instruction is known
statically. This is certainly true for code which is physi-
cally locked into memory. It also holds for virtual mem-
ory mapping if and only if the page size is an integer
multiple of the instruction cache size, which is typical
for many systems [7]. In this case, the relocation of a
virtual page would not affect the mapping of program
lines into cache lines.

Figure 1 depicts an overview of the tools and inter-
faces involved in instruction cache analysis using Static
Cache Simulation. The set of source files of a program

source
files

object executable

compiler files program

cache configuration

control
flow

instruction

) . annotation
information

Figure 1: Overview of Static Cache Simulation

are translated by a compiler. The compiler generates
object code and passes information about the control
flow of each source file to the static cache simulator.
The static cache simulator performs the task of deter-
mining which instruction references can be predicted
prior to execution time. It constructs the call graph of
the program and the control-flow graph of each func-
tion based on the information provided by the compiler.

In ACM SIGPLAN Workshop on Language, Compiler and Tool Support for Real-Time Systems, June 1994 2

The cache behavior is then simulated for a given cache
configuration. Furthermore, the static simulator pro-
duces instruction annotations and passes them to the
linker which modifies the object code according to the
annotations and creates an executable program.

The task of Static Cache Simulation is to determine
whether each instruction reference will result in a cache
hit or miss during program execution. This is done by
analyzing the call graph and the control flow for each
function. Since it is not always possible to determine
if a reference is a hit or miss, instructions are classified
into categories of always-hit, always-miss, first-miss,
or conflict. If an instruction is always (never) in cache,
then it is denoted as an always-hit (always-miss). If an
access to an instruction results in a miss on the first
access and in hits for any subsequent accesses, then it
is classified as a first-miss. If an access to a program
line results in either a hit or a misses depending on the
flow of control, then it is referred to as a conflict.

The following subsections describe this process in
more detail. A formal approach to Static Cache Simu-
lation can be found elsewhere [13].

3.1 Decomposition

To statically determine a program’s or task’s cache be-
havior as accurately as possible, the program/task is
decomposed into smaller components. A program/task
may be composed of a number of functions'. The possi-
ble sequence of calls between these functions is depicted
in a call graph. Each function can be represented by a
control-flow graph where nodes are basic blocks? and
edges denote legal transitions of the control flow be-
tween basic blocks.

Functions are further distinguished by function in-
stances. An instance depends on the call sequence,
that is, it depends on the immediate call site within its
caller as well as the caller’s call site, etc. The instance
1 of a function corresponds to the ith occurrence of the
function within a depth-first traversal of the call graph.
Thus, a directed acyclic call graph (without recursion)
is transformed into a tree of function instances.

3.2 Instruction Categorization

Static Cache Simulation calculates the abstract cache
states associated with basic blocks. The calculation
is performed by repeated traversal of the call graph’s
functions, their function instances, and the basic blocks
of each function’s control-flow graph.

1We will use the term function rather than procedure, sub-
routine, subprogram, or other equivalent notions.

2 A basic block is a sequence of instructions where only the
first instruction may be preceded by a label and only the last
instruction may be a transfer of control.

Definition 1 A program line | can potentially be
cached if there erists a sequence of transitions in the
combined control-flow graphs and call graph (with func-
tion instances) such that | is cached when it is reached
wn the basic block.

Definition 2 The abstract cache state of a basic
block b wn a function instance is the subset of program
lines which can potentially be cached prior to the exe-
cution of b.

The notion of an abstract cache state is a compromise
between a feasible storage complexity of the proposed
method and the alternative of an exhaustive set of all
cache states which may occur at execution time with
an exponential storage complexity.

Definition 3 The reaching state of a basic block b
m a function instance is the subset of program lines
which can be reached through control-flow transitions

from b.

For a given function instance, each instruction i
within a basic block b is categorized based on its posi-
tion in the corresponding program line ! = ¢y..¢,_1, on
the corresponding abstract cache state s, and on the
reaching state {. The program line ! maps into cache
line ¢, denoted by [— ¢.

always-miss: A cache miss is predicted if

e i = i5: Instruction ¢ is the first reference to
program line { in b and

e [& s: lisnot in the abstract cache state.
always-hit: A cache hit is predicted if

e i € {iy..ip_1}: instruction i is not the first
reference to program line [in b. Or

e — 1 = 1qy: instruction 7 1s the first reference
to program line { in b,
— [€ s: l1s1in the abstract cache state, and
- v
m—c,m#l
(which maps into the same cache line as
[) is in the abstract cache state.

m & s: mno other line m

first-miss: A miss on the first reference and hits for
consecutive references is predicted if

e i = i5: Instruction ¢ is the first reference to
program line { in b,
e [€ s: s in the abstract cache state,
. 3
m—c,m#l
maps into the same cache line as {) is also in
the abstract cache state,

m € s: another line m (which

In ACM SIGPLAN Workshop on Language, Compiler and Tool Support for Real-Time Systems, June 1994 3

° v
m—c,m#l
gram lines m (which maps into the same
cache line as [) cannot be reached anymore
if they are in the abstract cache state, and

° v
0<e<n—1
{always-hit, first-miss}: all other instruc-
tions of program line [are either always hits
or first misses.3

m € s = m & t: all other pro-

category(iy) €

conflict: A reference may result in either a cache hit
or cache miss at execution time in all other cases.

The categorization can be used to statically infer
non-trivial caching behavior as will be shown in the
next subsection.

3.3 Implementation

The iterative algorithm in Figure 2 was used to cal-
culate the abstract cache states. Each basic block has

input_state(top) := all invalid lines;
WHILE any change DO
FOR each instance of a basic block B
in the program DO
input_state(B) := NULL;
FOR each immediate predecessor P of B DO
input_state(B) += output_state(P)

END FOR;
output_state(B) := (input_state(B) +
prog_lines(B)) - conf_lines(B)
END FOR
END WHILE

Figure 2: Algorithm to Calculate Cache States

an input and output state of program lines which can
potentially be in cache at that point. Initially the top
block’s input state (entry block of the main function) is
set to all invalid lines. The input state of a block is cal-
culated by taking the union of the output states of its
immediate predecessors. The output state of a block
is calculated by taking the union of its input state and
the program lines accessed by the block and subtract-
ing the program lines with which the block conflicts.
The calculation of these abstract cache states requires
a time overhead comparable to that of data-flow anal-
ysis used 1n optimizing compilers and a space overhead
linear to the number of program lines, basic blocks, and
function instances. The correctness of the algorithm for
data-flow analysis is discussed in [1]. The calculation
can be performed for an arbitrary control-flow graph,

3This additional requirement is a correction to the version of
this paper published in the LCTS’94 workshop.

even if it is irreducible. The order of processing basic
blocks is irrelevant.

Figure 3 illustrates a simple example of calculating
input and output states. Assume there are 4 cache
lines and the line size is 16 bytes (4 instructions). The
immediate successor of a block with a call 1s the first
block in that instance of the called function. Block 8a
corresponds to the first instance of foo() called from
block 1 and block 8b corresponds to the second in-
stance of foo() called from block 5. Two passes are
required to calculate the input and output states of
the blocks, given that the blocks are processed in the
order shown in Figure 3. Only the states of blocks 3,
4, and 5 changed during the second pass. Pass 3 re-
sults in no more changes. The reaching states are as
follows: Block 7 cannot reach any program lines, and
all other blocks can reach lines 1 to 5. The calculation
of the reaching states can be performed by the same al-
gorithm with input_state(top) = conf_lines(B) =

o.

After determining the abstract cache states (input
states) of all blocks, each instruction is categorized ac-
cording to the criteria specified in the previous section.
By inspecting the states of each block, one can make
some observations that may not be detected by a naive
inspection of only physically contiguous sequences of
references. For instance, the static simulation deter-
mined that the first instruction in block 7 will always
be in cache (always hit) due to spatial locality. Tt also
determined that the first instruction in basic block 8b
will always be in cache (always hit) due to temporal
locality. The last instruction in block 3 will not be in
cache on the first reference, but will always be in cache
on subsequent references (first miss). This is also true
for the first instruction of block 5 and the first instruc-
tion of block 6, though a miss will only occur on the
first reference of either one of the instructions. This
situation is termed a group first miss. The first in-
struction in block 3 is classified as a conflict since 1t
could either be a hit or a miss. The line is in conflict
with the second instruction of block 8b, an always miss,
due to the conditional execution of the call to foo() in

block 5.

The current implementation of the static simulator
imposes some restrictions. First, only direct-mapped
cache configurations are allowed. Recent results have
shown that direct-mapped caches have a faster access
time for hits, which outweighs the benefit of a higher hit
ratio in set-associative caches for large cache sizes [8].
Another restriction is that recursive programs are not
allowed since cycles in the call graph would complicate
the generation of unique function instances. Finally,
indirect calls are not handled since the static simulator
must be able to generate an explicit call graph.

In ACM SIGPLAN Workshop on Language, Compiler and Tool Support for Real-Time Systems, June 1994 4

main()

program line 0

5[f-miss

ahit

return

program line 5

(b)

a-hit

a-hit

"I'" = invalid
cache line 0 1
program line I I

input (1)
input(8a)
input(2)
input (3)
input (4)
input (5)
input (8b)
input (6)
input (7)

]

Lo B T e T e e e W s

input (1)
input(8a)
input(2)
input (3)
input (4)
input (5)
input (8b)
input (6)
input (7)

H -

Lo T e Y e s T s s e W s W |

23 12301 0 2 12301
IT012345 ITIIO0O12345
I1 1 output(1) =[I I IO]
IIO] output(8a) = [I1I 4 5]
11 4 5] output(2) = [IT 1 4]
IT 1 4] output(3) = [I 12 4 1]
I 12 4 1 output(4) =1[I 12 4 1]

I 12 4 1 output(5) =1[1234 1]
1234 1 output(8b) = [2 3 4 5]

I 12345] output(e) = [1234 5]
IT 12345] output(?) =[I I 1234H5]
I1 1 output(1) =[I I IO]
IIO] output(8a) = [I1I 4 5]
11 4 5] output(2) = [IT 1 4]
IT 12345] output(3) = [I 1234]
I 1234] output(4) =1[I 1234]
I 1234 1 output(s) =1[1234]
1234 1 output(8b) = [2 3 4 5]

I 12345] output(e) = [1234 5]
IT 12345] output(7) = [I 12345]

Figure 3: Example with Flow Graph

4 Bit-Encoding Approach

Based on the categorization of instruction references
introduced in the previous section, a bit-encoding ap-
proach has been formulated. The intention of this ap-
proach is to provide better performance than uncached
systems (as currently used in real-time systems) and
better predictability over conventional caches with a
moderate sacrifice in execution speed. A fetch-from-
memory bit 1s encoded into the instruction format by
dedicating a single bit position. If the bit is set in an
instruction, then the instruction will be fetched from
main memory. If the bit is not set, then the instruction
will be fetched from cache.

During each cache reference, the fetch-from-memory
bit 1s evaluated in parallel with the tag comparison, as
shown in the Appendix. The following logic 1s used to
resolve instruction fetch requests:

e If the cache access results in a miss, then the corre-
sponding program line is fetched from main mem-
ory taking n cycles and the fetch-from-memory bit
is ignored. (The bit would not be available anyway
until the instruction is fetched.)

e If the tag comparison matches and the cache line
is valid, then the effect depends on the evaluation
of the fetch-from-memory bit.

— If the bit is clear, then the processor is di-
rected to use the instruction without delay.

— If the bit is set, then the corresponding pro-
gram line is fetched from main memory tak-
ing n cycles.*

In the last subcase, a memory fetch is performed al-
though the program line already resides in code. If
the effect of such a memory fetch is only simulated to
reduce bus contention, as proposed in an earlier ver-
sion of the paper, it would be unpredictable whether
an actual memory fetch occurs or not. Thus, bus con-
tention may or may not occur. The current semantics
forces a memory access such that bus contention can
be predicted for any memory reference with a fetch-
from-memory bit set if a data reference occurs at the
same time.

The fetch-from-memory bit 1s set whenever the
Static Cache Simulation categorizes an instruction as
a conflict or an always-miss. Otherwise the bit is
cleared. This is straight forward for always-hits. For
first-misses, on the other hand, the cache look-up fails
on the first reference and the program line is fetched
from main memory. For any subsequent references to
this address, the instruction is found in cache with the
bit clear resulting in a cache hit and a one cycle access
time. Thus, bit-encoding takes advantage of first-miss
instructions.

If an instruction is in a function that has multiple
instances and the instruction has not been categorized

4The semantics has been changed for a set fetch-from-memory
bit since the publication in the LCTS’94 workshop.

In ACM SIGPLAN Workshop on Language, Compiler and Tool Support for Real-Time Systems, June 1994 5

the same in the different instances, then the static sim-
ulator must decide whether or not to set the fetch-
from-memory bit. Currently, the static simulator con-
servatively decides to fetch from memory if one or more
instances categorize the instruction as a miss or a con-
flict. Otherwise, the bit is cleared®.

4.1 Speedup

In this section the execution time w.r.t. instruction
fetch overhead 1s analyzed. Other factors, e.g. data
references to main memory, may add to the execution
time but should not be adversely effected by the bene-
fits of instruction caching.

For any uncached system, let the fetch time of one
instruction be n cycles. Furthermore, let ¢ be the num-
ber of instructions executed. Then, a lower bound for
the time for this execution is

tuncached = 1% N cycles. (1)

For a cached system, let ¢ = h 4+ m be the number of
instructions executed where i and m are the number
of hits and misses respectively. Assume a cache look-
up penalty of one cycle [21, 7]. Since a cache look-up
always has to be performed before it can be decided
whether the program line associated with an instruc-
tion has to be fetched from main memory, the lower
bound for an execution in a cached system 1s

teached = h+m* (n+ 1) cycles. (2)

For the bit-encoded cached system, let ¢ = h' 4+ m’
be the number of instructions executed where A’ and
m' are the number of instructions fetched from cache
and memory respectively®. Then, a lower time bound
can be given as

thit_encoded = h' +m' * (n + 1) cycles. (3)

There 1s both spatial and temporal locality inherent
in the code of almost all programs. For instance, as-
sume that a cache line consists of multiple instructions.
The first reference to an instruction in such a line may
cause a miss. But if instructions are executed sequen-
tially, consecutive references to instructions of the same
line will result in hits. Also, assume that some portion
of the code that can be executed in a loop does not
conflict with any other program lines that can be ac-
cessed by the loop. Subsequent references to this code

5Tt is possible in such a situation that the merged instruction
could be safely classified as a first-miss and have its bit cleared.
An example of this situation is the first instruction in block 8 of
Figure 3. It is the authors’ intention to analyze the control flow
to recognize these situations in the future.

6h'and m' are approximately the same as the number of in-
structions executed with the fetch-from-memory bit clear and set
respectively with the exception of first-misses which are counted
as misses on the first reference and hits on subsequent references.

in the same execution of the loop will also result in hits.
Based on this observation, we can assume the following
inequalities for an average execution:

m<& h, m' <h' and ' < h.
On average, we conclude with the following relation for
an execution.

tcached < tbit_encoded < tuncached (4)

5 Analysis

This section analyzes the benefit of predicting the be-
havior of instruction cache references. Cache measure-
ments were obtained for user programs, benchmarks,
and UNIX utilities listed in Table 1. The measure-

Name Description

cachesim Cache Simulator

cb C Program Beautifier

compact Huffman Code Compression

copt Rule-Driven Peephole Optimizer
dhrystone | Integer Benchmark

fft Fast Fourier Transform

genreport | Detailed Execution Report Generator
mincost VLSI Circuit Partitioning

sched Instruction Scheduler

sdiff Side-by-side Differences between Files
tsp Traveling Salesman

whetstone | Floating point benchmark

Table 1: Test Set of C Programs

ments were produced by modifying the back-end of an
optimizing compiler VPO (Very Portable Optimizer)
[3] and by performing Static Cache Simulation. The
compiler back-end provided the control-flow informa-
tion for the static simulator. It also produced assem-
bly code with instrumentation points for instruction
cache simulation. The cache simulation for traditional
caches was based on the instruction categorization by
the static simulator and has been validated by compar-
ison with another trace-driven cache simulator. The
validity of the bit-encoding approach was derived from
mapping the instruction categories into the values for
the fetch-from-memory bit. The assembly code was
generated for the Sun SPARC instruction set, a RISC
architecture with a uniform instruction size of one word
(four bytes).

The parameters for cache simulation included direct-
mapped caches with sizes of 1kB, 2kB, 4kB, and 8kB
(see column 1 in Tables 2 and 3). The cache line size
was fixed at 4 words. The size of the programs varied
between 500 and 4500 instructions (5kB — 18kB, see
column 3 of Table 2). This provided a range of mea-
surements from capacity misses dominating for small
cache sizes to entire programs fitting in cache for large
cache sizes. The number of instructions executed for

In ACM SIGPLAN Workshop on Language, Compiler and Tool Support for Real-Time Systems, June 1994 6

number of cache prediction

Cache instructions DAG tree
Size | Name DAG tree || memory | always hit | always miss | first-miss | conflict
cachesim 2,115 9,397 28.07% 69.30% 8.23% 0.74% | 21.73%
cb 1,242 7,017 31.08% 75.70% 2.85% 0.00% | 21.45%
compact 1,478 | 2,173 || 29.84% 69.67% 5.52% 0.18% | 24.62%
copt 1,037 | 1,152 || 21.99% 71.01% 7.73% 7.03% | 14.24%
dhrystone 479 549 23.17% 69.76% 11.29% 6.56% | 12.39%
1kB | fft 492 528 9.55% 74.05% 4.92% 16.29% 4.73%
genreport || 4,430 | 7,060 || 19.77% 70.64% 11.30% 6.18% | 11.88%
mincost 1,112 1,657 28.33% 72.24% 8.57% 1.39% | 17.80%
sched 2,068 3,378 32.88% 66.55% 5.98% 0.15% | 27.32%
sdiff 1,822 | 10,407 28.06% 67.44% 12.28% 1.08% | 19.21%
tsp 1,181 | 1,236 || 22.95% 72.73% 13.59% 4.37% | 9.30%
whetstone 1,204 1,485 26.62% 75.69% 11.65% 0.27% | 12.39%
1kB | average 1,555 3,837 25.19% 71.23% 8.66% 3.69% | 16.42%
2kB | average 1,555 3,837 21.18% 72.09% 5.88% 7.28% | 14.75%
4kB | average 1,555 3,837 11.35% 72.40% 4.36% 16.64% 6.60%
8kB | average 1,555 3,837 4.73% 72.61% 4.03% 22.77% 0.59%

Table 2: Static Measurements

each program comprised a range of 1 to 19 million us-
ing realistic input data for each program (see column

3 of Table 3).

5.1 Static Analysis

Static Cache Simulation classifies instructions into cat-
egories based on the predicted cache behavior. Table
2 shows the static number of instructions for each pro-
gram (column 3) and the number of instructions asso-
ciated with all function instances when the call graph is
converted from a DAG to a tree (column 4). Column
5 denotes the percentage of instructions in the DAG
which have the fetch-from-memory bit set. Columns
6 to 9 show the percentage of instructions in the tree
for each category as determined by the static simula-
tor. Notice that the cache behavior could be predicted
statically for 84-99% of the instructions, depending on
the ratio of program size and cache size. The remaining
1-16% are due to conflicts.

5.2 Dynamic Analysis

Table 3 illustrates the dynamic behavior of three sys-
tems: an uncached system (simulating a disabled in-
struction cache), a cached system with the bit-encoding
approach, and a conventional cached system. Column
3 indicates the number of instructions executed. The
hit ratio (percentage of cache hits of all instruction ref-
erences) is shown for the bit-encoded system in column
4 and for conventional caches in column 5. Column 6
shows the percentage of executed instruction references
which were classified as conflicts on a cached system.
Column 7 indicates the estimated execution time in cy-
cles for an uncached system. The percentage of cycles

required for a bit-encoded system (column 8) and for a
conventional cached system (column 9) are compared
to an uncached system. The execution time is calcu-
lated based on the equations 1, 2, and 3 for n = 9.7

The bit-encoding approach results in lower hit ra-
tios (72-98%) than on a conventional cached system
(92-99%). Yet, caches are often disabled for critical
real-time tasks to provide the predictability required by
scheduling analysis. Thus, the bit-encoding approach
should be compared to an uncached system. The bit-
encoding method requires only 13-39% of the cycles
used by the uncached systems. This provides a speedup
of programs by a factor of 3-8 without sacrificing the
predictability of a program’s execution time. The re-
sult resembles the improvement over critical real-time
tasks which require caches to be disabled. The results
improve considerably as the cache size increases and
entire programs fit into cache. The execution time re-
quired for a conventional cached system is only about
14% of an uncached system, but the predictability also
decreases to the point where it becomes insufficient for
scheduling analysis of critical tasks. This can be ex-
plained as follows:

Conflicts correspond to the instructions whose cache
behavior could not be predicted prior to execution in a
conventional cached system. The dynamic percentage
of conflict references is higher than the static percent-

"The latency for a memory fetch is assumed to be n = 9
cycles, a cache look-up takes one cycle, and thus a cache hit
also consumes one cycle while a miss takes n +1 = 10 cycles.
These assumptions are described as realistic by other researchers
[21, 7]. A memory fetch in an uncached system fetches exactly
one instruction while a memory fetch in a cached system fetches
a line of 4 instructions. Fetching a line of multiple instructions is
typically accomplished through a wider bus between cache and
main memory for a cached system.

In ACM SIGPLAN Workshop on Language, Compiler and Tool Support for Real-Time Systems, June 1994 7

Cache | Name # instructions hit ratio conflicts || exec time [cycles] % of exec time
Size executed | bit-enc. cached cached uncached | bit-enc. | cached
cachesim 2,995,817 | 65.70% | 77.19% | 28.52% 26,962,353 | 45.41% | 33.92%
cb 3,974,882 | 67.24% | 93.84% | 31.08% 35,773,938 | 43.87% | 17.27%
compact 13,349,997 | 67.12% | 92.90% | 32.45% 120,149,973 | 43.99% | 18.21%
copt 2,342,143 | 68.56% | 93.64% | 28.93% 21,079,287 | 42.55% | 17.47%
dhrystone 19,050,093 | 77.95% | 83.73% | 15.75% 171,450,837 | 33.16% | 27.38%
1kB | fft 4,094,244 | 91.17% 99.95% 8.80% 36,848,196 | 19.94% | 11.16%
genreport 2,275,814 | T4.64% | 97.49% | 24.58% 20,482,326 | 36.47% | 13.63%
mincost 2,994,275 | 67.35% | 89.08% | 28.06% 26,948,475 | 43.76% | 22.03%
sched 1,091,755 | 67.21% | 96.41% | 32.15% 9,825,795 | 43.90% | 14.70%
sdiff 2,138,501 | 71.20% | 97.61% | 28.40% 19,246,509 | 39.92% | 13.50%
tsp 3,004,145 | 72.01% | 86.98% | 22.06% 27,037,305 | 39.10% | 24.13%
whetstone 8,520,241 | 71.57% | 100.00% | 23.78% 76,682,169 | 39.54% | 11.11%
1kB | average 5,485,992 | 71.81% | 92.40% | 25.38% 49,373,930 | 39.30% | 18.71%
2kB | average 5,485,992 | 77.81% | 97.49% | 21.14% 49,373,930 | 33.30% | 13.62%
1kB | average 5,485,992 | 90.73% | 99.714% | 9.12% 49,373,930 | 20.38% | 11.37%
8kB | average 5,485,992 | 98.15% | 99.99% 1.76% 49,373,930 | 12.97% | 11.13%

Table 3: Dynamic Measurements

age given in Table 2 since conflicts typically occur in
loops. Since 5-25% of the instructions executed were
conflicts, the execution time of programs cannot be pre-
dicted as tightly in conventional cached systems with
traditional timing tools, especially for smaller caches.
However, more recent work by the authors shows that
the instruction categorization of the static simulator
may be used by a more sophisticated timing tool to pro-
vide tight worst-case execution time predictions with a
4-9 times speedup over uncached system using a con-
ventional instruction cache [2].

6 Future Work

We are currently working on applying Static Cache
Simulation to data caches under certain restrictions,
such as the absence of pointers and dynamic memory
allocation. Most other data references could be pre-
dicted statically. Previous work has shown improve-
ments by balancing the number of instructions placed
behind loads where the memory latency was uncertain
[9]. By predicting the memory latency of a large por-
tion of loads, instruction scheduling could be performed
more effectively. For example, the number of instruc-
tions the scheduler would place between a load instruc-
tion and the first instruction referencing the loaded reg-
ister should be greater for a data reference classified as
an always miss than an always hit.

We are currently working on integrating the method
of Static Cache Simulation with a tool which estimates
a program’s best-case execution time (BET) and worst-
case execution time (WET) [6, 2]. Using the informa-
tion provided by Static Cache Simulation, the BET
and WET can be based on the categorization of in-
structions. This relieves the time-estimation tool from

having to simulate all possible cache states. The in-
struction categorization is refined to provide a separate
category for each loop level, thereby providing the base
for tight execution time predictions.

With the bit-encoding approach, a traditional tool
predicting the execution time can perform the same
type of analysis and provide estimations for both BET
and WET. But the execution time predictions can be
tighter since the caching behavior is fully predictable.
Instructions classified as always-hits can be assumed to
require one cycle, and always-misses or conflicts can be
estimated to take n 4+ 1 cycles. For a first-miss, the
tool could distinguish between the first reference (n+ 1
cycles) and any subsequent references (one cycle) by
simply tagging first-miss instructions which have been
encountered. A traditional timing tool should be easily
modified to take the effect of bit-encoding into account.
The resulting execution time estimate will be as tight
as for uncached systems since the estimation of the
fetch cost accurately represents the number of cycles
taken for an instruction in any category. There is no
uncertainty with respect to the effect of an instruction
classified as conflict, the fetch will always take n + 1
cycles.

The static simulator could be extended in several
ways. First, recursive functions could be handled by
applying the described algorithm to calculate abstract
cache states repeatedly on a function instance. Sec-
ond, a modified algorithm and data structure could be
designed to handle set-associative caches.

There are several other applications of Static Cache
Simulation. For example, instruction cache analysis
can be sped up by determining the caching behavior
of a large number of references prior to execution time
[14]. Other applications include detailed profiling and

In ACM SIGPLAN Workshop on Language, Compiler and Tool Support for Real-Time Systems, June 1994 8

tracking of execution time for a real-time debugger [15].

7 Conclusion

Cache memories have often been disabled for critical
real-time tasks to provide sufficient predictability for
scheduling analysis. This paper shows that the be-
havior of instruction cache references can be predicted
to a large extent prior to the execution of a program
via the method of Static Cache Simulation. The cache
simulator uses information provided by the back-end
of a compiler to statically predict the cache behavior
of 84-99% of the instructions. Furthermore, a fetch-
from-memory bit has been proposed which is added
to the instruction encoding. This approach provides a
speedup in execution time by a factor of 3-8 over un-
cached systems without sacrificing the predictability of
the program’s worst-case execution time. The ability
to predict the caching behavior of a large percentage
of the instruction references (in a conventional cached
system) or even all instruction references (using the
fetch-from-memory bit) can be used to predict the ex-
ecution time of large code segments on machines with
instruction caches.

In summary, instruction cache behavior is sufficiently
predictable to provide worst-case execution time pre-
dictions which are tight enough for scheduling analysis
in a non-preemptive environment. Thus, the perfor-
mance advantage of instruction caches can be exploited
for critical real-time tasks by enabling either conven-
tional or bit-encoded instruction caches.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compil-
ers — Principles, Techniques, and Tools. Addison-

Wesley, 1986.
[2] R. Arnold, F. Mueller, D. B. Whalley, and M. Har-

mon. Bounding worst-case instruction cache per-
formance. In TEEE Symposium on Real-Time Sys-
tems, December 1994.

[3] M. E. Benitez and J. W. Davidson. A portable
global optimizer and linker. In ACM SIGPLAN
Conference on Programming Language Design and
Implementation, pages 329-338, June 1988.

[4] C.-H. Chi and H. Dietz. Unified management of
register and cache using liveness and cache bypass.
In ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 344—
355, June 1989.

[5] T. Hand. Real-time systems need predictability.
Computer Design (RISC Supplement), pages 57—
59, August 1989.

[6] M. Harmon, T. P. Baker, and D. B. Whalley. A re-
targetable technique for predicting execution time.
In ITEEE Symposium on Real-Time Systems, pages
68—77, December 1992.

[7] J. Hennessy and D. Patterson. Computer Archi-
tecture: A Quantitative Approach. Morgan Kauf-
mann, 1990.

[8] M. Hill. A case for direct-mapped caches. TEEFE
Computer, 21(11):25-40, December 1988.

[9] D. Kerns and S. Eggers. Balanced scheduling: In-
struction scheduling when memory latency is un-
certain. In ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation,

pages 278-289, June 1993.

[10] D. B. Kirk. SMART (strategic memory allocation
for real-time) cache design. In IEEE Symposium
on Real-Time Systems, pages 229-237, December
1989.

[11] E. Kligerman and A. Stoyenko. Real-time eu-
chid: A language for reliable real-time systems.
IEEE Transactions on Software Engineering, SE-
12(9):941-949, September 1986.

[12] S. McFarling. Program optimization for instruc-
tion caches. In Architectural Support for Program-
ming Languages and Operating Systems, pages
183-191, April 1989.

[13] F. Mueller and D. B. Whalley. Efficient on-the-fly
analysis of program behavior and static cache sim-
ulation. In Static Analysis Symposium, September

1994.

[14] F. Mueller and D. B. Whalley. Fast instruction
cache analysis via static cache simulation. TR 94-
042, Dept. of CS, Florida State University, April
1994.

[15] F. Mueller and D. B. Whalley. On debugging
real-time applications. In ACM SIGPLAN Work-
shop on Language, Compiler, and Tool Support for
Real-Time Systems, June 1994.

[16] D. Niehaus. Program representation and transla-
tion for predictable real-time systems. In IEEE
Symposium on Real-Time Systems, pages 53—63,
December 1991.

[17] D. Niehaus, E. Nahum, and J. A. Stankovic. Pre-
dictable real-time caching in the spring system. In
IEEE Workshop on Real-Time Operating Systems
and Software, pages 80-87, 1991.

[18] C. Y. Park. Predicting program execution times
by analyzing static and dynamic program paths.
Real-Time Systems, 5(1):31-61, March 1993.

[19] V. Sarkar. Determining average program execu-
tion times and their variance. In ACM SIGPLAN
Conference on Programming Language Design and
Implementation, pages 298-312, June 1989.

In ACM SIGPLAN Workshop on Language, Compiler and Tool Support for Real-Time Systems, June 1994 9

[20] D. Simpson. Real-time RISCS. Systems Integra-
tion, pages 35-38, July 1989.

[21] A. Smith. Cache memories. Computing Surveys,
14(3):473-530, September 1982.

Appendix
The access logic for an instruction cache using the pro-

posed bit-encoded approach is illustrated in Figure 4.
The instruction memory contains the cached instruc-

CPU

physical address
[tag [index [offset |

Instruction

s Vtogt memory
fetch ~ rest of instruction

Memory i

Instruction |

Figure 4: Access Logic for Bit-Encoded Approach

tions. It is accessed by using the index field to select
the cache line and the offset field to select the instruc-
tion within that line. The tag memory contains the
state bit and address tag for each cache line and is
also accessed by using the index field. The match logic
compares the tag of the instruction’s physical address
to the tag obtained by accessing the tag memory and
verifies the state to ensure that the cache line is valid.
In parallel, it also checks that the fetch-from-memory
bit 1s clear. If any of these conditions are not met,
then it informs the CPU to stall. The logic to request
a main memory fetch or stall for the appropriate num-
ber of cycles is not shown in this figure.

In ACM SIGPLAN Workshop on Language, Compiler and Tool Support for Real-Time Systems, June 1994

10

