
Predicting Instruction Cache Behavior �Frank Mueller, David B. Whalley Marion HarmonDept. of Computer Science, B-173 Dept. of Computer and Information SystemsFlorida State University Florida A & M UniversityTallahassee, FL 32306-4019 Tallahassee, FL 32307e-mail: whalley@cs.fsu.edu phone: (904) 644-3506AbstractIt has been claimed that the execution time of a pro-gram can often be predicted more accurately on anuncached system than on a system with cache mem-ory [5, 20]. Thus, caches are often disabled for crit-ical real-time tasks to ensure the predictability re-quired for scheduling analysis. This work shows thatinstruction caching can be exploited to gain executionspeed without sacri�cing predictability. A new methodcalled Static Cache Simulation is introduced which usescontrol-ow information provided by the back-end of acompiler. This simulator statically predicts the cachingbehavior of a large portion of the instruction cachereferences of a program. In addition, a fetch-from-memory bit is added to the instruction encoding whichindicates whether an instruction shall be fetched fromthe instruction cache or from main memory. This bit-encoding approach provides a signi�cant speedup inexecution time (factor 3-8) over systems with a dis-abled instruction cache without any sacri�ce in the pre-dictability of worst-case execution time. Even withoutbit-encoding, the ability to predict the caching behav-ior of a large percentage of the instruction referencesis very useful for providing tight worst-case executiontime predictions of large code segments on machineswith instruction caches.1 IntroductionPredicting the execution time of programs or code seg-ments is a di�cult task. Yet, in the context of hardreal-time systems, it is essential to provide a schedulefor tasks with known deadlines. Thus, tasks have to beanalyzed to determine their best-case execution time(BET) and worst-case execution time (WET). The fol-lowing problems have to be addressed to predict theexecution time of a task or program:� The number of loop iterations needs to be knownprior to execution. It is often required that the�1st revision June 26, 1994. This work was supported in partby the O�ce of Naval Research under contract # N00014-94-1-0006

maximum number of iterations is provided by theprogrammer [11].� The possible execution paths in the control owhave to be analyzed to predict both BET andWET.� Architectural features have to be taken into ac-count (e.g. pipeline stalls).Cache memories have become a major factor tobridge the bottleneck between the time to access mainmemory and the faster clock rate of current processors.In the context of real-time systems, caches have beenregarded as a source for unpredictability which conictswith the goal of making the execution of tasks deter-ministic [20]. For a system with an instruction cacheas a primary (on-chip) cache, the execution time ofan instruction can vary greatly depending on whetherthe given instruction is in cache or not. In addition,context switches and interrupts may replace the in-structions cached by one task with instructions fromanother task or an interrupt handler. As a result, ithas been common practice to simply disable the cachefor sections of code when predictability was required[20].This work shows that it is possible to predict somecache behavior with certain restrictions. Let a taskbe the portion of code executed between two schedul-ing points (context switches). When a task starts ex-ecution, the cache memory is assumed to be invali-dated. During task execution, instructions are grad-ually brought into cache and often result in many hitsand misses which can be predicted by Static Cache Sim-ulation, a technique which analyzes control ow priorto execution time. Furthermore, a slight change in thearchitecture in conjunction with the simulator's anal-ysis allows, without loss of predictability, signi�cantlyfaster execution time than on system with a disabledinstruction cache.This paper is structured as follows: Section 2 re-views related work in the area. Section 3 introducesthe method of Static Cache Simulation. Section 4 de-tails a bit-encoding approach which can exploit cachesfor real-time systems. Section 5 provides a quantita-tive analysis of both Static Cache Simulation and theIn ACM SIGPLAN Workshop on Language, Compiler and Tool Support for Real-Time Systems, June 1994 1



bit-encoding approach. Section 6 outlines future workand section 7 presents the conclusions of this study.2 Related WorkThe problem of determining the execution time of pro-grams has been the subject of some research in the past.Sarkar [19] suggested a framework to determine bothaverage execution time and its variance. His work wasbased on the analysis of a program's interval structureand its forward control ow. He calculated a program'sexecution time for a speci�c set of input data by us-ing a description of the architecture and the frequencyinformation obtained by incrementing counters duringa pro�ling run. He assumed that the execution orderof instructions does not a�ect this calculation. Thus,his method cannot capture the impact of caching onexecution time.For real-time systems, several tools to predict theexecution time of programs have been designed. Theanalysis has been performed at the level of source code[18], at the level of intermediate code [16], and at thelevel of machine code [6]. Only Harmon's tool took theimpact of instruction caches into account for restrictivecircumstances, i.e. only for small code segments whichentirely �t into cache.Niehaus outlined how the e�ects of caching can betaken into account in the prediction of execution time[17]. He suggested that caches be ushed on contextswitches to provide a consistent cache state at the be-ginning of each task execution. He provided a roughestimate of the bene�t of caches for speedup and triedto determine the percentage of instruction cache ref-erences which can be predicted as hits. The level ofanalysis remained at a very abstract level though asit only dealt with spatial locality for sequential execu-tion and some temporal locality for simple loops. Nogeneral method to analyze the call graph of a task andcontrol ow for each function was given.A few attempts have been made to improve on thepredictability of caches by architectural modi�cationsto meet the needs of real-time systems. Kirk [10] out-lined such a system which relied on the ability to seg-ment the cache memory into a number of dedicatedpartitions, each of which can only be accessed by a ded-icated task. But this approach introduced new prob-lems such as exhibiting lower hit ratios due to the par-titioning and increasing the complexity of schedulinganalysis by introducing another resource (cache par-titioning) as an additional degree of freedom in theallocation process.Other suggested architectural modi�cations oftendedicate a bit in the instruction encoding which is usedby the compiler to a�ect the cache behavior. McFar-ling [12] used such an approach to exclude instructions

from cache that were not likely to be in cache on subse-quent references. Chi and Dietz [4] introduced a datacache bypass bit on load and store instructions which,when set, indicates that the processor should go di-rectly to memory (without caching the value as a side-e�ect) or goes to the cache when clear. Their ideais to improve execution speed by keeping data valueseither in registers or in cache, thus avoiding storagemirroring among the fasted components in the mem-ory hierarchy (registers and data caches). Our workemphasizes instruction caches rather than data caches.In contrast to McFarling's study and the work by Chiand Dietz, we are primarily concerned about the pre-dictability of instruction caching and secondarily aboutexecution speed.3 Static Cache SimulationThe method of Static Cache Simulation can be used tostatically predict the behavior of a large number of theinstruction cache references for a given program/taskwith a speci�c cache con�guration. Unlike many datareferences, the address of each instruction is knownstatically. This is certainly true for code which is physi-cally locked into memory. It also holds for virtual mem-ory mapping if and only if the page size is an integermultiple of the instruction cache size, which is typicalfor many systems [7]. In this case, the relocation of avirtual page would not a�ect the mapping of programlines into cache lines.Figure 1 depicts an overview of the tools and inter-faces involved in instruction cache analysis using StaticCache Simulation. The set of source �les of a program
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The cache behavior is then simulated for a given cachecon�guration. Furthermore, the static simulator pro-duces instruction annotations and passes them to thelinker which modi�es the object code according to theannotations and creates an executable program.The task of Static Cache Simulation is to determinewhether each instruction reference will result in a cachehit or miss during program execution. This is done byanalyzing the call graph and the control ow for eachfunction. Since it is not always possible to determineif a reference is a hit or miss, instructions are classi�edinto categories of always-hit, always-miss, �rst-miss,or conict. If an instruction is always (never) in cache,then it is denoted as an always-hit (always-miss). If anaccess to an instruction results in a miss on the �rstaccess and in hits for any subsequent accesses, then itis classi�ed as a �rst-miss. If an access to a programline results in either a hit or a misses depending on theow of control, then it is referred to as a conict.The following subsections describe this process inmore detail. A formal approach to Static Cache Simu-lation can be found elsewhere [13].3.1 DecompositionTo statically determine a program's or task's cache be-havior as accurately as possible, the program/task isdecomposed into smaller components. A program/taskmay be composed of a number of functions1. The possi-ble sequence of calls between these functions is depictedin a call graph. Each function can be represented by acontrol-ow graph where nodes are basic blocks2 andedges denote legal transitions of the control ow be-tween basic blocks.Functions are further distinguished by function in-stances. An instance depends on the call sequence,that is, it depends on the immediate call site within itscaller as well as the caller's call site, etc. The instancei of a function corresponds to the ith occurrence of thefunction within a depth-�rst traversal of the call graph.Thus, a directed acyclic call graph (without recursion)is transformed into a tree of function instances.3.2 Instruction CategorizationStatic Cache Simulation calculates the abstract cachestates associated with basic blocks. The calculationis performed by repeated traversal of the call graph'sfunctions, their function instances, and the basic blocksof each function's control-ow graph.1We will use the term function rather than procedure, sub-routine, subprogram, or other equivalent notions.2A basic block is a sequence of instructions where only the�rst instruction may be preceded by a label and only the lastinstruction may be a transfer of control.

De�nition 1 A program line l can potentially becached if there exists a sequence of transitions in thecombined control-ow graphs and call graph (with func-tion instances) such that l is cached when it is reachedin the basic block.De�nition 2 The abstract cache state of a basicblock b in a function instance is the subset of programlines which can potentially be cached prior to the exe-cution of b.The notion of an abstract cache state is a compromisebetween a feasible storage complexity of the proposedmethod and the alternative of an exhaustive set of allcache states which may occur at execution time withan exponential storage complexity.De�nition 3 The reaching state of a basic block bin a function instance is the subset of program lineswhich can be reached through control-ow transitionsfrom b.For a given function instance, each instruction iwithin a basic block b is categorized based on its posi-tion in the corresponding program line l = i0::in�1, onthe corresponding abstract cache state s, and on thereaching state t. The program line l maps into cacheline c, denoted by l ! c.always-miss: A cache miss is predicted if� i = i0: instruction i is the �rst reference toprogram line l in b and� l 62 s: l is not in the abstract cache state.always-hit: A cache hit is predicted if� i 2 fi1::in�1g: instruction i is not the �rstreference to program line l in b. Or� { i = i0: instruction i is the �rst referenceto program line l in b,{ l 2 s: l is in the abstract cache state, and{ 8m!c;m 6=l m 62 s: no other line m(which maps into the same cache line asl) is in the abstract cache state.�rst-miss: A miss on the �rst reference and hits forconsecutive references is predicted if� i = i0: instruction i is the �rst reference toprogram line l in b,� l 2 s: l is in the abstract cache state,� 9m!c;m 6=l m 2 s: another line m (whichmaps into the same cache line as l) is also inthe abstract cache state,In ACM SIGPLAN Workshop on Language, Compiler and Tool Support for Real-Time Systems, June 1994 3



� 8m!c;m 6=l m 2 s ) m 62 t: all other pro-gram lines m (which maps into the samecache line as l) cannot be reached anymoreif they are in the abstract cache state, and� 80�x�n�1 category(ix) 2falways-hit, �rst-missg: all other instruc-tions of program line l are either always hitsor �rst misses.3conict: A reference may result in either a cache hitor cache miss at execution time in all other cases.The categorization can be used to statically infernon-trivial caching behavior as will be shown in thenext subsection.3.3 ImplementationThe iterative algorithm in Figure 2 was used to cal-culate the abstract cache states. Each basic block hasinput_state(top) := all invalid lines;WHILE any change DOFOR each instance of a basic block Bin the program DOinput_state(B) := NULL;FOR each immediate predecessor P of B DOinput_state(B) += output_state(P)END FOR;output_state(B) := (input_state(B) +prog_lines(B)) - conf_lines(B)END FOREND WHILEFigure 2: Algorithm to Calculate Cache Statesan input and output state of program lines which canpotentially be in cache at that point. Initially the topblock's input state (entry block of the main function) isset to all invalid lines. The input state of a block is cal-culated by taking the union of the output states of itsimmediate predecessors. The output state of a blockis calculated by taking the union of its input state andthe program lines accessed by the block and subtract-ing the program lines with which the block conicts.The calculation of these abstract cache states requiresa time overhead comparable to that of data-ow anal-ysis used in optimizing compilers and a space overheadlinear to the number of program lines, basic blocks, andfunction instances. The correctness of the algorithm fordata-ow analysis is discussed in [1]. The calculationcan be performed for an arbitrary control-ow graph,3This additional requirement is a correction to the version ofthis paper published in the LCTS'94 workshop.

even if it is irreducible. The order of processing basicblocks is irrelevant.Figure 3 illustrates a simple example of calculatinginput and output states. Assume there are 4 cachelines and the line size is 16 bytes (4 instructions). Theimmediate successor of a block with a call is the �rstblock in that instance of the called function. Block 8acorresponds to the �rst instance of foo() called fromblock 1 and block 8b corresponds to the second in-stance of foo() called from block 5. Two passes arerequired to calculate the input and output states ofthe blocks, given that the blocks are processed in theorder shown in Figure 3. Only the states of blocks 3,4, and 5 changed during the second pass. Pass 3 re-sults in no more changes. The reaching states are asfollows: Block 7 cannot reach any program lines, andall other blocks can reach lines 1 to 5. The calculationof the reaching states can be performed by the same al-gorithm with input state(top) = conf lines(B) =�.After determining the abstract cache states (inputstates) of all blocks, each instruction is categorized ac-cording to the criteria speci�ed in the previous section.By inspecting the states of each block, one can makesome observations that may not be detected by a naiveinspection of only physically contiguous sequences ofreferences. For instance, the static simulation deter-mined that the �rst instruction in block 7 will alwaysbe in cache (always hit) due to spatial locality. It alsodetermined that the �rst instruction in basic block 8bwill always be in cache (always hit) due to temporallocality. The last instruction in block 3 will not be incache on the �rst reference, but will always be in cacheon subsequent references (�rst miss). This is also truefor the �rst instruction of block 5 and the �rst instruc-tion of block 6, though a miss will only occur on the�rst reference of either one of the instructions. Thissituation is termed a group �rst miss. The �rst in-struction in block 3 is classi�ed as a conict since itcould either be a hit or a miss. The line is in conictwith the second instruction of block 8b, an always miss,due to the conditional execution of the call to foo() inblock 5.The current implementation of the static simulatorimposes some restrictions. First, only direct-mappedcache con�gurations are allowed. Recent results haveshown that direct-mapped caches have a faster accesstime for hits, which outweighs the bene�t of a higher hitratio in set-associative caches for large cache sizes [8].Another restriction is that recursive programs are notallowed since cycles in the call graph would complicatethe generation of unique function instances. Finally,indirect calls are not handled since the static simulatormust be able to generate an explicit call graph.In ACM SIGPLAN Workshop on Language, Compiler and Tool Support for Real-Time Systems, June 1994 4
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"I" = invalidcache line 0 1 2 3 0 1 2 3 0 1 0 1 2 3 0 1 2 3 0 1program line I I I I 0 1 2 3 4 5 I I I I 0 1 2 3 4 5PASS 1------input(1) = [I I I I ] output(1) = [ I I I 0 ]input(8a) = [ I I I 0 ] output(8a) = [ I I 4 5]input(2) = [ I I 4 5] output(2) = [ I I 1 4 ]input(3) = [ I I 1 4 ] output(3) = [ I 1 2 4 ]input(4) = [ I 1 2 4 ] output(4) = [ I 1 2 4 ]input(5) = [ I 1 2 4 ] output(5) = [ 1 2 3 4 ]input(8b) = [ 1 2 3 4 ] output(8b) = [ 2 3 4 5]input(6) = [ I 1 2 3 4 5] output(6) = [ 1 2 3 4 5]input(7) = [ I I 1 2 3 4 5] output(7) = [ I I 1 2 3 4 5]PASS 2------input(1) = [I I I I ] output(1) = [ I I I 0 ]input(8a) = [ I I I 0 ] output(8a) = [ I I 4 5]input(2) = [ I I 4 5] output(2) = [ I I 1 4 ]input(3) = [ I I 1 2 3 4 5] output(3) = [ I 1 2 3 4 ]input(4) = [ I 1 2 3 4 ] output(4) = [ I 1 2 3 4 ]input(5) = [ I 1 2 3 4 ] output(5) = [ 1 2 3 4 ]input(8b) = [ 1 2 3 4 ] output(8b) = [ 2 3 4 5]input(6) = [ I 1 2 3 4 5] output(6) = [ 1 2 3 4 5]input(7) = [ I I 1 2 3 4 5] output(7) = [ I I 1 2 3 4 5]Figure 3: Example with Flow Graph4 Bit-Encoding ApproachBased on the categorization of instruction referencesintroduced in the previous section, a bit-encoding ap-proach has been formulated. The intention of this ap-proach is to provide better performance than uncachedsystems (as currently used in real-time systems) andbetter predictability over conventional caches with amoderate sacri�ce in execution speed. A fetch-from-memory bit is encoded into the instruction format bydedicating a single bit position. If the bit is set in aninstruction, then the instruction will be fetched frommain memory. If the bit is not set, then the instructionwill be fetched from cache.During each cache reference, the fetch-from-memorybit is evaluated in parallel with the tag comparison, asshown in the Appendix. The following logic is used toresolve instruction fetch requests:� If the cache access results in a miss, then the corre-sponding program line is fetched from main mem-ory taking n cycles and the fetch-from-memory bitis ignored. (The bit would not be available anywayuntil the instruction is fetched.)� If the tag comparison matches and the cache lineis valid, then the e�ect depends on the evaluationof the fetch-from-memory bit.{ If the bit is clear, then the processor is di-rected to use the instruction without delay.

{ If the bit is set, then the corresponding pro-gram line is fetched from main memory tak-ing n cycles.4In the last subcase, a memory fetch is performed al-though the program line already resides in code. Ifthe e�ect of such a memory fetch is only simulated toreduce bus contention, as proposed in an earlier ver-sion of the paper, it would be unpredictable whetheran actual memory fetch occurs or not. Thus, bus con-tention may or may not occur. The current semanticsforces a memory access such that bus contention canbe predicted for any memory reference with a fetch-from-memory bit set if a data reference occurs at thesame time.The fetch-from-memory bit is set whenever theStatic Cache Simulation categorizes an instruction asa conict or an always-miss. Otherwise the bit iscleared. This is straight forward for always-hits. For�rst-misses, on the other hand, the cache look-up failson the �rst reference and the program line is fetchedfrom main memory. For any subsequent references tothis address, the instruction is found in cache with thebit clear resulting in a cache hit and a one cycle accesstime. Thus, bit-encoding takes advantage of �rst-missinstructions.If an instruction is in a function that has multipleinstances and the instruction has not been categorized4The semantics has been changed for a set fetch-from-memorybit since the publication in the LCTS'94 workshop.In ACM SIGPLAN Workshop on Language, Compiler and Tool Support for Real-Time Systems, June 1994 5



the same in the di�erent instances, then the static sim-ulator must decide whether or not to set the fetch-from-memory bit. Currently, the static simulator con-servatively decides to fetch frommemory if one or moreinstances categorize the instruction as a miss or a con-ict. Otherwise, the bit is cleared5.4.1 SpeedupIn this section the execution time w.r.t. instructionfetch overhead is analyzed. Other factors, e.g. datareferences to main memory, may add to the executiontime but should not be adversely e�ected by the bene-�ts of instruction caching.For any uncached system, let the fetch time of oneinstruction be n cycles. Furthermore, let i be the num-ber of instructions executed. Then, a lower bound forthe time for this execution istuncached = i � n cycles. (1)For a cached system, let i = h+m be the number ofinstructions executed where h and m are the numberof hits and misses respectively. Assume a cache look-up penalty of one cycle [21, 7]. Since a cache look-upalways has to be performed before it can be decidedwhether the program line associated with an instruc-tion has to be fetched from main memory, the lowerbound for an execution in a cached system istcached = h+m � (n + 1) cycles. (2)For the bit-encoded cached system, let i = h0 + m0be the number of instructions executed where h0 andm0 are the number of instructions fetched from cacheand memory respectively6. Then, a lower time boundcan be given astbit encoded = h0 +m0 � (n+ 1) cycles. (3)There is both spatial and temporal locality inherentin the code of almost all programs. For instance, as-sume that a cache line consists of multiple instructions.The �rst reference to an instruction in such a line maycause a miss. But if instructions are executed sequen-tially, consecutive references to instructions of the sameline will result in hits. Also, assume that some portionof the code that can be executed in a loop does notconict with any other program lines that can be ac-cessed by the loop. Subsequent references to this code5It is possible in such a situation that the merged instructioncould be safely classi�ed as a �rst-miss and have its bit cleared.An example of this situation is the �rst instruction in block 8 ofFigure 3. It is the authors' intention to analyze the control owto recognize these situations in the future.6h0and m0 are approximately the same as the number of in-structions executed with the fetch-from-memorybit clear and setrespectively with the exception of �rst-misses which are countedas misses on the �rst reference and hits on subsequent references.

in the same execution of the loop will also result in hits.Based on this observation, we can assume the followinginequalities for an average execution:m� h, m0 � h0, and h0 < h.On average, we conclude with the following relation foran execution.tcached < tbit encoded < tuncached (4)5 AnalysisThis section analyzes the bene�t of predicting the be-havior of instruction cache references. Cache measure-ments were obtained for user programs, benchmarks,and UNIX utilities listed in Table 1. The measure-Name Descriptioncachesim Cache Simulatorcb C Program Beauti�ercompact Hu�man Code Compressioncopt Rule-Driven Peephole Optimizerdhrystone Integer Benchmark�t Fast Fourier Transformgenreport Detailed Execution Report Generatormincost VLSI Circuit Partitioningsched Instruction Schedulersdi� Side-by-side Di�erences between Filestsp Traveling Salesmanwhetstone Floating point benchmarkTable 1: Test Set of C Programsments were produced by modifying the back-end of anoptimizing compiler VPO (Very Portable Optimizer)[3] and by performing Static Cache Simulation. Thecompiler back-end provided the control-ow informa-tion for the static simulator. It also produced assem-bly code with instrumentation points for instructioncache simulation. The cache simulation for traditionalcaches was based on the instruction categorization bythe static simulator and has been validated by compar-ison with another trace-driven cache simulator. Thevalidity of the bit-encoding approach was derived frommapping the instruction categories into the values forthe fetch-from-memory bit. The assembly code wasgenerated for the Sun SPARC instruction set, a RISCarchitecture with a uniform instruction size of one word(four bytes).The parameters for cache simulation included direct-mapped caches with sizes of 1kB, 2kB, 4kB, and 8kB(see column 1 in Tables 2 and 3). The cache line sizewas �xed at 4 words. The size of the programs variedbetween 500 and 4500 instructions (5kB { 18kB, seecolumn 3 of Table 2). This provided a range of mea-surements from capacity misses dominating for smallcache sizes to entire programs �tting in cache for largecache sizes. The number of instructions executed forIn ACM SIGPLAN Workshop on Language, Compiler and Tool Support for Real-Time Systems, June 1994 6



number of cache predictionCache instructions DAG treeSize Name DAG tree memory always hit always miss �rst-miss conictcachesim 2,115 9,397 28.07% 69.30% 8.23% 0.74% 21.73%cb 1,242 7,017 31.08% 75.70% 2.85% 0.00% 21.45%compact 1,478 2,173 29.84% 69.67% 5.52% 0.18% 24.62%copt 1,037 1,152 21.99% 71.01% 7.73% 7.03% 14.24%dhrystone 479 549 23.17% 69.76% 11.29% 6.56% 12.39%1kB �t 492 528 9.55% 74.05% 4.92% 16.29% 4.73%genreport 4,430 7,060 19.77% 70.64% 11.30% 6.18% 11.88%mincost 1,112 1,657 28.33% 72.24% 8.57% 1.39% 17.80%sched 2,068 3,378 32.88% 66.55% 5.98% 0.15% 27.32%sdi� 1,822 10,407 28.06% 67.44% 12.28% 1.08% 19.21%tsp 1,181 1,236 22.95% 72.73% 13.59% 4.37% 9.30%whetstone 1,204 1,485 26.62% 75.69% 11.65% 0.27% 12.39%1kB average 1,555 3,837 25.19% 71.23% 8.66% 3.69% 16.42%2kB average 1,555 3,837 21.18% 72.09% 5.88% 7.28% 14.75%4kB average 1,555 3,837 11.35% 72.40% 4.36% 16.64% 6.60%8kB average 1,555 3,837 4.73% 72.61% 4.03% 22.77% 0.59%Table 2: Static Measurementseach program comprised a range of 1 to 19 million us-ing realistic input data for each program (see column3 of Table 3).5.1 Static AnalysisStatic Cache Simulation classi�es instructions into cat-egories based on the predicted cache behavior. Table2 shows the static number of instructions for each pro-gram (column 3) and the number of instructions asso-ciated with all function instances when the call graph isconverted from a DAG to a tree (column 4). Column5 denotes the percentage of instructions in the DAGwhich have the fetch-from-memory bit set. Columns6 to 9 show the percentage of instructions in the treefor each category as determined by the static simula-tor. Notice that the cache behavior could be predictedstatically for 84-99% of the instructions, depending onthe ratio of program size and cache size. The remaining1-16% are due to conicts.5.2 Dynamic AnalysisTable 3 illustrates the dynamic behavior of three sys-tems: an uncached system (simulating a disabled in-struction cache), a cached system with the bit-encodingapproach, and a conventional cached system. Column3 indicates the number of instructions executed. Thehit ratio (percentage of cache hits of all instruction ref-erences) is shown for the bit-encoded system in column4 and for conventional caches in column 5. Column 6shows the percentage of executed instruction referenceswhich were classi�ed as conicts on a cached system.Column 7 indicates the estimated execution time in cy-cles for an uncached system. The percentage of cycles

required for a bit-encoded system (column 8) and for aconventional cached system (column 9) are comparedto an uncached system. The execution time is calcu-lated based on the equations 1, 2, and 3 for n = 9.7The bit-encoding approach results in lower hit ra-tios (72-98%) than on a conventional cached system(92-99%). Yet, caches are often disabled for criticalreal-time tasks to provide the predictability required byscheduling analysis. Thus, the bit-encoding approachshould be compared to an uncached system. The bit-encoding method requires only 13-39% of the cyclesused by the uncached systems. This provides a speedupof programs by a factor of 3-8 without sacri�cing thepredictability of a program's execution time. The re-sult resembles the improvement over critical real-timetasks which require caches to be disabled. The resultsimprove considerably as the cache size increases andentire programs �t into cache. The execution time re-quired for a conventional cached system is only about14% of an uncached system, but the predictability alsodecreases to the point where it becomes insu�cient forscheduling analysis of critical tasks. This can be ex-plained as follows:Conicts correspond to the instructions whose cachebehavior could not be predicted prior to execution in aconventional cached system. The dynamic percentageof conict references is higher than the static percent-7The latency for a memory fetch is assumed to be n = 9cycles, a cache look-up takes one cycle, and thus a cache hitalso consumes one cycle while a miss takes n + 1 = 10 cycles.These assumptions are described as realistic by other researchers[21, 7]. A memory fetch in an uncached system fetches exactlyone instruction while a memory fetch in a cached system fetchesa line of 4 instructions. Fetching a line of multiple instructions istypically accomplished through a wider bus between cache andmain memory for a cached system.In ACM SIGPLAN Workshop on Language, Compiler and Tool Support for Real-Time Systems, June 1994 7



Cache Name # instructions hit ratio conicts exec time [cycles] % of exec timeSize executed bit-enc. cached cached uncached bit-enc. cachedcachesim 2,995,817 65.70% 77.19% 28.52% 26,962,353 45.41% 33.92%cb 3,974,882 67.24% 93.84% 31.08% 35,773,938 43.87% 17.27%compact 13,349,997 67.12% 92.90% 32.45% 120,149,973 43.99% 18.21%copt 2,342,143 68.56% 93.64% 28.93% 21,079,287 42.55% 17.47%dhrystone 19,050,093 77.95% 83.73% 15.75% 171,450,837 33.16% 27.38%1kB �t 4,094,244 91.17% 99.95% 8.80% 36,848,196 19.94% 11.16%genreport 2,275,814 74.64% 97.49% 24.58% 20,482,326 36.47% 13.63%mincost 2,994,275 67.35% 89.08% 28.06% 26,948,475 43.76% 22.03%sched 1,091,755 67.21% 96.41% 32.15% 9,825,795 43.90% 14.70%sdi� 2,138,501 71.20% 97.61% 28.40% 19,246,509 39.92% 13.50%tsp 3,004,145 72.01% 86.98% 22.06% 27,037,305 39.10% 24.13%whetstone 8,520,241 71.57% 100.00% 23.78% 76,682,169 39.54% 11.11%1kB average 5,485,992 71.81% 92.40% 25.38% 49,373,930 39.30% 18.71%2kB average 5,485,992 77.81% 97.49% 21.14% 49,373,930 33.30% 13.62%4kB average 5,485,992 90.73% 99.74% 9.12% 49,373,930 20.38% 11.37%8kB average 5,485,992 98.15% 99.99% 1.76% 49,373,930 12.97% 11.13%Table 3: Dynamic Measurementsage given in Table 2 since conicts typically occur inloops. Since 5-25% of the instructions executed wereconicts, the execution time of programs cannot be pre-dicted as tightly in conventional cached systems withtraditional timing tools, especially for smaller caches.However, more recent work by the authors shows thatthe instruction categorization of the static simulatormay be used by a more sophisticated timing tool to pro-vide tight worst-case execution time predictions with a4-9 times speedup over uncached system using a con-ventional instruction cache [2].6 Future WorkWe are currently working on applying Static CacheSimulation to data caches under certain restrictions,such as the absence of pointers and dynamic memoryallocation. Most other data references could be pre-dicted statically. Previous work has shown improve-ments by balancing the number of instructions placedbehind loads where the memory latency was uncertain[9]. By predicting the memory latency of a large por-tion of loads, instruction scheduling could be performedmore e�ectively. For example, the number of instruc-tions the scheduler would place between a load instruc-tion and the �rst instruction referencing the loaded reg-ister should be greater for a data reference classi�ed asan always miss than an always hit.We are currently working on integrating the methodof Static Cache Simulation with a tool which estimatesa program's best-case execution time (BET) and worst-case execution time (WET) [6, 2]. Using the informa-tion provided by Static Cache Simulation, the BETand WET can be based on the categorization of in-structions. This relieves the time-estimation tool from

having to simulate all possible cache states. The in-struction categorization is re�ned to provide a separatecategory for each loop level, thereby providing the basefor tight execution time predictions.With the bit-encoding approach, a traditional toolpredicting the execution time can perform the sametype of analysis and provide estimations for both BETand WET. But the execution time predictions can betighter since the caching behavior is fully predictable.Instructions classi�ed as always-hits can be assumed torequire one cycle, and always-misses or conicts can beestimated to take n + 1 cycles. For a �rst-miss, thetool could distinguish between the �rst reference (n+1cycles) and any subsequent references (one cycle) bysimply tagging �rst-miss instructions which have beenencountered. A traditional timing tool should be easilymodi�ed to take the e�ect of bit-encoding into account.The resulting execution time estimate will be as tightas for uncached systems since the estimation of thefetch cost accurately represents the number of cyclestaken for an instruction in any category. There is nouncertainty with respect to the e�ect of an instructionclassi�ed as conict, the fetch will always take n + 1cycles.The static simulator could be extended in severalways. First, recursive functions could be handled byapplying the described algorithm to calculate abstractcache states repeatedly on a function instance. Sec-ond, a modi�ed algorithm and data structure could bedesigned to handle set-associative caches.There are several other applications of Static CacheSimulation. For example, instruction cache analysiscan be sped up by determining the caching behaviorof a large number of references prior to execution time[14]. Other applications include detailed pro�ling andIn ACM SIGPLAN Workshop on Language, Compiler and Tool Support for Real-Time Systems, June 1994 8



tracking of execution time for a real-time debugger [15].7 ConclusionCache memories have often been disabled for criticalreal-time tasks to provide su�cient predictability forscheduling analysis. This paper shows that the be-havior of instruction cache references can be predictedto a large extent prior to the execution of a programvia the method of Static Cache Simulation. The cachesimulator uses information provided by the back-endof a compiler to statically predict the cache behaviorof 84-99% of the instructions. Furthermore, a fetch-from-memory bit has been proposed which is addedto the instruction encoding. This approach provides aspeedup in execution time by a factor of 3-8 over un-cached systems without sacri�cing the predictability ofthe program's worst-case execution time. The abilityto predict the caching behavior of a large percentageof the instruction references (in a conventional cachedsystem) or even all instruction references (using thefetch-from-memory bit) can be used to predict the ex-ecution time of large code segments on machines withinstruction caches.In summary, instruction cache behavior is su�cientlypredictable to provide worst-case execution time pre-dictions which are tight enough for scheduling analysisin a non-preemptive environment. Thus, the perfor-mance advantage of instruction caches can be exploitedfor critical real-time tasks by enabling either conven-tional or bit-encoded instruction caches.References[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compil-ers { Principles, Techniques, and Tools. Addison-Wesley, 1986.[2] R. Arnold, F. Mueller, D. B. Whalley, and M. Har-mon. Bounding worst-case instruction cache per-formance. In IEEE Symposium on Real-Time Sys-tems, December 1994.[3] M. E. Benitez and J. W. Davidson. A portableglobal optimizer and linker. In ACM SIGPLANConference on Programming Language Design andImplementation, pages 329{338, June 1988.[4] C.-H. Chi and H. Dietz. Uni�ed management ofregister and cache using liveness and cache bypass.In ACM SIGPLAN Conference on ProgrammingLanguage Design and Implementation, pages 344{355, June 1989.[5] T. Hand. Real-time systems need predictability.Computer Design (RISC Supplement), pages 57{59, August 1989.
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[20] D. Simpson. Real-time RISCS. Systems Integra-tion, pages 35{38, July 1989.[21] A. Smith. Cache memories. Computing Surveys,14(3):473{530, September 1982.AppendixThe access logic for an instruction cache using the pro-posed bit-encoded approach is illustrated in Figure 4.The instruction memory contains the cached instruc-
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