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Abstract

A Zero Overhead Loop Buffer (ZOLB) is an architectural
feature that is commonly found in DSP processors.This
buffer can be viewed as a compiler managed cache that
contains a sequence of instructions that will be executed a
specified number of times.Unlike techniques such as loop
unrolling, a loop buffer is a hardware technique that can be
used to minimize loop overhead without the penalty of
increasing code size. In addition, a ZOLB also requires rel-
atively little space and power, which are both important
considerations for most DSP applications.This paper
describes strategies for generating code to effectively use a
ZOLB. The authors have found that many common
improving transformations used by optimizing compilers to
improve code on conventional architectures are shown (1)
to allow more loops to be placed in a ZOLB and (2) to fur-
ther reduce loop overhead of the loops placed in a ZOLB.
The results given in this paper demonstrate that this archi-
tectural feature can often be exploited with substantial
improvements in execution time and slight reductions in
code size.

1. Intr oduction

For many applications, a large percentage of the
execution time is spent in the innermost loops of a program
[1]. The execution of these loops incur significant over-
head, which is due to the increment and branch instructions
to initiate a new iteration of a loop.Many code improving
transformations and architectural features improve execu-
tion time at the expense of substantial code growth and
more power consumption.For instance, loop unrolling is a
popular technique to decrease loop overhead [2]. Yet, this
approach often requires a significant increase in code size.
DSP processors are typically used for applications in
embedded systems that have strict code size and power lim-
itations. Spaceincreasing transformations, such as loop
unrolling, are often unacceptable for many DSP applica-
tions due to these limitations.

A zero overhead loop buffer (ZOLB) is an architec-
tural feature commonly found in DSP processors.This
buffer can be used to increase the speed of applications
with no increase in code size and often with reduced power
consumption. AZOLB is a buffer that can contain a fixed
number of instructions to be executed a specified number of
times under program control. Depending on the implemen-
tation of the DSP architecture, some instructions may be
fetched faster from a ZOLB than from the conventional
instruction memory. In addition, the same memory bus
used to fetch instructions can sometimes be used to access
data when certain registers are dereferenced. Thus, mem-
ory bus contention can be reduced when instructions are
fetched from a ZOLB.Due to addressing complications,
transfers of control instructions are not typically allowed in
such buffers. Therefore,a compiler or assembly writer
attempts to execute many of the innermost loops of pro-
grams from this buffer. A ZOLB can be viewed as a com-
piler controlled cache since special instructions are used to
load instructions into it.Unlike conventional caches, the
state of this buffer is preserved across context switches.

This paper describes approaches for exploiting the
ZOLB that is available on the DSP16000 architecture [3].
Figure 1 presents an overview of the compilation process
used by the authors to generate and improve code for this
architecture. First,code is generated using a C compiler
retargeted to the DSP16000 [4].Conventional improving
transformations in this C compiler are applied and assem-
bly files are generated.The generated code is then pro-
cessed by another optimizer, which performs a number of
improving transformations including those that exploit the
ZOLB on this architecture.There are advantages of
attempting to exploit a ZOLB using this approach.First,
the exact number of instructions in a loop will be known
after code generation, which will ensure that the maximum
number of instructions that can be contained in the ZOLB
is not exceeded. Whileperforming these transformations
after code generation sometimes resulted in more compli-
cated algorithms, the optimizer was able to apply transfor-
mations more frequently since it did not have to rely on
conservative heuristics concerning the ratio of intermediate
operations to machine instructions. Second, interprocedu-
ral analysis and transformations also proved to be valuable
in exploiting a ZOLB, as will be shown later in this paper.
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Figure 1: Overview of the Compilation Process for the DSP16000

The remainder of this paper has the following organi-
zation. First,we introduce related work that reduces the
overhead of loops.Second, we portray the characteristics
of the ZOLB on the DSP16000 architecture and how it can
be accessed using DSP16000 assembly instructions.Third,
we describe improving transformations that can be used to
place more loops in a ZOLB.Fourth, we delineate addi-
tional improving transformations that can be utilized to fur-
ther reduce the overhead of loops that are placed in a
ZOLB. Fifth, we present the order in which these transfor-
mations were invoked and explain why specific transforma-
tions were performed before others.Sixth, we contrast
loop unrolling with the effectiveness of applying these
transformations for exploiting a ZOLB. Finally, we present
the conclusions for the paper.

2. RelatedWork

A number of hardware and software techniques have
been used to reduce loop overhead. Commonhardware
techniques include branch prediction hardware to reduce
branch mispredictions and superscalar or VLIW execution
to allow other operations to execute in parallel with the
loop overhead instructions [1].However, the use of com-
plex hardware mechanisms to minimize branch overhead
results in the consumption of more power. Common soft-
ware techniques to reduce loop overhead include loop
strength reduction with basic induction variable elimination
and loop unrolling. Note that loop unrolling can signifi-
cantly increase code size.

Currently available versions of ZOLBs in TI, ADI,
and Lucent processors have been described [6].Assembly
language programmers for DSPs commonly use ZOLBs in
the code that they write. However, optimizing compilers
have been used only recently for DSP applications and pro-
grammers still tend to write critical sections by hand [7].
To the best of our knowledge, no other work describes how
a ZOLB can be exploited by a compiler, the interaction of
exploiting a ZOLB with other improving transformations,
and the performance benefits that can be achieved from

using a ZOLB.

3. Usingthe ZOLB on the DSP16000 Architecture

The target architecture for which the authors gener-
ated code was the DSP16000 developed at Lucent Tech-
nologies. Thisarchitecture contains a ZOLB that can hold
up to 31 instructions.Tw o special instructions, thedo and
theredo, are used to control the ZOLB on the DSP16000
[8]. Figure 2(a) shows the assembly syntax for using the
do instruction, which specifies that then instructions
enclosed between the curly braces are to be executed k
times. Theactual encoding of thedo instruction includes a
value of n, which can range from 1 to 31, indicating the
number of instructions following thedo instruction that are
to be placed in the ZOLB. The valuek is also included in
the encoding of thedo instruction and represents the num-
ber of iterations associated with an innermost loop placed
in the ZOLB. Whenk is a compile-time constant less than
128, it may be specified as an immediate value since it will

•••
do k {
instruction 1
•••
instructionn

•••
}

(a) Assembly Syntax for
Using thedo Instruction

•••
redo k
•••

(b) Assembly Syntax for
Using theredo Instruction

Figure 2: DSP16000 Assembly Syntax for Using the ZOLB
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be small enough to be encoded into the instruction.Other-
wise a value of zero is encoded and the number of times the
instructions in the ZOLB will be executed is obtained from
thecloop register. The first iteration results in the instruc-
tions enclosed between the curly braces being fetched from
the memory system, executed, and loaded into the ZOLB.
The remainingk-1 iterations are executed from the ZOLB.
Theredo instruction shown in Figure 2(b) is similar to the
do instruction, except that the current contents of the
ZOLB are executedk times. Figure3 depicts some of the
hardware used for a ZOLB, which includes a 31 instruction
buffer, a cloop register initially assigned the number of
iterations and implicitly decremented on each iteration, and
acstate register containing the number of instructions in
the loop and the pointer to the current instruction to load or
execute.

instruction 1

instruction 2

buffer cloop

k

cstate

...

instruction

...
instruction 31 nzolbpc

Figure 3: ZOLB Hardware

Figure 4 shows a simple example of exploiting the
ZOLB on the DSP16000. Figure 4(a) contains the source
code for a simple loop.Figure 4(b) depicts the correspond-
ing code for the DSP16000 without placing instructions in
the ZOLB. The effects of these instructions are also shown
in this figure. The array in Figure 4(a) and the arrays in the
other examples in the paper are of typeshort. Thus, the
postincrement causesr0 to be incremented by 2.Many
DSP architectures use an instruction set that is highly spe-
cialized for known DSP applications. The DSP16000 is no
exception and its instruction set has many complex fea-
tures, which include separation of address (r0-r7) and
accumulator (a0-a7) registers, postincrements of address
registers, and implicit sets of condition codes from accumu-
lator operations.Figure 4(b) also shows that the value of
the loop variable is set to a negative value before the loop
and is incremented on each loop iteration.This strategy
allows an implicit comparison to zero with the increment to
avoid performing a separate comparison instruction.Figure
4(c) shows the equivalent code after placing the loop in the
ZOLB. The branch in the loop is deleted since the loop
will be executed the desired number of iterations.After
applying basic induction variable elimination and dead
store elimination, the increment and initialization ofa1 are
removed. Thus,the loop overhead has been eliminated.

cloop = 10000
r0 = _a
a2 = 0
do cloop {
*r0++ = a2
}

(c) After Using the ZOLB

for (i = 0; i < 10000; i++)
a[i] = 0;

(a) Source Code of Loop

r0 = _a # r[0]=ADDR(_a);
a2 = 0 # a[2]=0;
a1 = −9999 # a[1]=−9999;

L5: *r0++ = a2 # M[r[0]]=a[2];

if le goto L5 # P C=IC<=0?L5:PC;

# r[0]=r[0]+2;
a1 = a1 + 1 # a[1]=a[1]+1;

# IC=a[1]+1?0;

(b) DSP16000 Assembly and Corresponding RTLs
without Using the ZOLB

Figure 4: Example of Using the ZOLB on the DSP16000

4. Allowing More Loops to be Placed in a ZOLB

The limiting factors that can prevent exploiting a
ZOLB for an innermost loop are (1) transfers of control
other than the loop branch, (2) the number of instructions in
the loop exceeding the ZOLB limit, and (3) the number of
iterations being unknown. In this section we describe tech-
niques that can often address each of these factors.

One limiting factor that prevents the exploitation of a
ZOLB for many loops is that transfers of control cannot be
executed from a ZOLB. This limitation can be partially
overcome by the use of conditional instructions.Consider
the example source code in Figure 5(a), which shows a loop
with an assignment that is dependent on a condition.The
assembly code in Figure 5(b) cannot be placed into a ZOLB
since there is a conditional branch that is not associated
with the exit condition of the loop.1 Our compiler used
predicated execution when possible to avoid this problem
[1]. Figure 5(c) depicts the same loop with a conditional
instruction and this loop can be transformed to be executed
from a ZOLB. Unfortunately, many potential loops could
not be placed in a ZOLB by the optimizer since predicates
are assigned to a single condition code register on the
DSP16000 and only a subset of the DSP16000 instructions

1 The a0 = a0 instruction is used to set the condition codes,
which are not set by the previous load instruction.
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can be conditionally executed.

(a) Original Source Code

r0 = _a
a1 = -9999

L5: a0 = *r0
a0 = a0
if le a2 = a2 + a0
r0 = r0 + 2
a1 = a1 + 1
if le goto L5

(c) DSP16000 Assembly
with Conditional Instructions

sum += a[i];
if (a[i] > 0)

for (i = 0; i < 10000; i++)

if gt goto L4

r0 = _a
a1 = -9999

L5: a0 = *r0
a0 = a0

a2 = a2 + a0
L4: r0 = r0 + 2

a1 = a1 + 1
if le goto L5

(b) DSP16000 Assembly
without Conditional Instructions

Figure 5: Example of Using Conditional Instructions
to Allow More Loops to Be Placed in a ZOLB

A call instruction is another transfer of control that
cannot be placed in the DSP16000 ZOLB.Consider the
source code and corresponding DSP16000 assembly in Fig-
ures 6(a) and 6(b). The loop cannot be placed in a ZOLB
since it contains a call to_abs. Howev er, the function can
be inlined as shown in Figure 6(c) and the ZOLB can be
used for the resulting loop.The DSP16000 optimizer does
not inline indiscriminately due to potential growth in code
size. However, the optimizer inlines functions that are
called from a loop when the loop after inlining can be
placed in the ZOLB (i.e. limited code growth for measur-
able performance benefits).Likewise, inlining of a func-
tion is performed by the optimizer when the function is
only called from one site (i.e. no code growth) [9].

Another factor that sometimes prevented loops from
being placed in the DSP16000 ZOLB was the limit of 31
instructions in the buffer. Consider the loop in Figure 7(a).
When translated to DSP16000 assembly, this loop requires
34 instructions.However, not all of the statements in the
loop are dependent.The authors implemented loop split-
ting to address this problem.The optimizer splits loops
exceeding the ZOLB limit if the sets of dependent

v = −v;
return v;

}
•••
sum = 0;
for (i = 0; i < 10000; i++)

sum += abs(a[i]);
•••

(a) Source Code

if lt a0 = −a0
_abs: a0 = a0

return
•••
r4 = _a
a5 = 0

if (v < 0)

a4 = −9999

call _abs
a5 = a5 + a0
a4 = a4 + 1
if le goto L5

(b) Before Inlining

if le goto L5

(c) After Inlining

a4 = a4 + 1
a5 = a5 + a0
if lt a0 = −a0
a0 = a0

L5:a0 = *r4++
a4 = −9999
a5 = 0
r4 = _a

{

L5: a0 = *r4++

int abs(int v)

Figure 6: Example of Inlining a Function
to Allow a Loop to Be Placed in a ZOLB

instructions can be reorganized into separate loops that can
all be placed in a ZOLB. The optimizer first finds all of the
sets of dependent instructions. The conditional branch and
the instructions that contribute to setting the condition
codes for that branch are treated separately since they will
be placed with each set.Note that these instructions will
typically be deleted once loops are placed in the ZOLB and
the basic induction variable elimination and dead store
elimination transformations are applied. The optimizer
then checks if each set of instructions will fit in the ZOLB
and combines multiple sets together when they would not
exceed the maximum number of instructions that the ZOLB
can hold. Figure 7(b) shows the source code after loop
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splitting. Now each of the two loops require 18 DSP16000
instructions and both can be placed in a ZOLB.2

b[i] += b[i]*y;
c[i] += c[i]*x;
d[i] += d[i]*y;
x = x+1;
y = y+2;
}

for (i = 0; i < 10000; i++) {

a[i] += a[i]*x;

c[i] += c[i]*x;
a[i] += a[i]*x;

}
for (i = 0; i < 10000; i++) {

b[i] += b[i]*y;
d[i] += d[i]*y;
y = y+2;
}

(b) Source Code after Loop Splitting

for (i = 0; i < 10000; i++) {

x = x+1;

(a) Source Code before Loop Splitting

Figure 7: Example of Splitting Loops
to Allow More Loops to Be Placed in a ZOLB

A final factor preventing the use of the ZOLB is that
often the number of iterations associated with a loop is
unknown. However, sometimes such loops can still be
placed in the ZOLB on the DSP16000.Consider the source
code shown in Figure 8(a) and the corresponding
DSP16000 assembly shown in Figure 8(b). The number of
iterations is unknown since it is not known which will be
the first element of arraya that will be equal ton. For each
iteration of a ZOLB loop on the DSP16000 thecloop reg-
ister is implicitly decremented by one and then tested.The
ZOLB is exited when this register is equal to zero.Thus,
assigning a value of one to thecloop register will cause
the loop to exit after the current iteration completes.The
loop in Figure 8(b) can be transformed to be placed in the
ZOLB since thecloop register can be conditionally
assigned a value in a register. Figure 8(c) depicts the trans-
formed code. The cloop register is initially set to the
maximum value to which it can be assigned and a register,
a3, is allocated to hold the value 1.Thea[i] != n test
is accomplished by the last three instructions in Figure 8(b).

2 Loop splitting and some of the other examples to illustrate im-
proving transformations in the paper are given at the source code level to
simplify their presentation.However, these improving transformations to
exploit the DSP16000 ZOLB were actually performed after code genera-
tion so the exact number of instructions would be known.

To force an exit from the ZOLB on the DSP16000, the
cloop register must be assigned a value of 1 at least three
instructions before the end of the loop due to the latency
requirements of the machine.Moving three instructions
after the branch, comparison, and instructions that affect
the comparison often required the optimizer to perform reg-
ister renaming and adjust the displacements of memory ref-
erences, as shown in Figure 8(c). Since the loop can

(a) Source Code of Loop

L3:

(b) DSP16000 Assembly
without Using the ZOLB

if ne goto L5
a0 − a1
a0 = *r0
a2 = a2 + a0
a0 = a0 <<< 1

L5: a0 = *r0++
if eq goto L3
a0 − a1
a1 = *r1
a0 = *r0
r1 = _n
a2 = 0
r0 = _a

•••
if eq goto L3
cloop = <max value>
a3 = 1
do cloop {
a4 = *(r0+2)
a4 − a1
if eq cloop = a3
a0 = *r0++
a0 = a0 <<< 1
a2 = a2 + a0
}
goto L01

L02: cloop = <max value>
redo cloop

L01: a4 − a1
if ne goto L02

L3:

after Using the ZOLB
(c) DSP16000 Assembly

sum += a[i]*2;
for (i = 0; a[i] != n; i++)
sum = 0;

Figure 8: Example of Placing a Loop
with an Unknown Number of Iterations in a ZOLB
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ev entually exit due to thecloop register being decre-
mented to zero without being set in the conditional assign-
ment, another loop is placed after the ZOLB loop that will
repeatedlyredo the ZOLB loop until the exit condition has
been satisfied. Note that unlike ZOLB loops with a known
number of iterations, the number of instructions in this
ZOLB loop is not less than the number of instructions
before the loop was placed in the ZOLB.However, condi-
tional branches on the DSP16000 require more cycles than
conditional assignments. Other potential benefits include
reducing contention to the memory system in the loop.
Thus, there is a performance benefit on the DSP16000 from
placing loops with an unknown number of iterations in the
ZOLB.

5. Further Reducing Loop Overhead

As shown previously in Figure 4(c), basic induction
variable and dead store elimination are invoked after plac-
ing a loop in a ZOLB since often assignments to the loop
variable become unnecessary due to the branch no longer
being in the loop.Consider if the value ofi was used after
the loop in Figure 4(a). The optimizer could not delete the
increment of basic induction variable,a1, as depicted in
Figure 9(a). When the value of the basic induction variable
is used after the loop and is used for no other purpose in the
loop, the optimizer extracts these increments of the variable
from the loop. First, the increments in the loop are deleted.
Next, a new increment of the variable is placed after the
loop. Figure9(b) shows that the new increment value is the
product of the original increment and the number of loop
iterations.

cloop = 10000cloop = 10000
r0 = _a
a2 = 0
do cloop {
*r0++ = a2
a1 = a1 + 1
}

(a) DSP16000 Assembly
after Using the ZOLB with
a1 Live after the Loop

r0 = _a
a2 = 0
do cloop {
*r0++ = a2
}
a1 = a1 + 10000

(b) DSP16000 Assembly
after Extracting the
Assignment toa1

Figure 9: Example of Extracting Increments
of Basic Induction Variables from a ZOLB Loop

Another approach that is often used to reduce the
overhead associated with outer level loops is to collapse
nested loops into a single loop.Figure 10(a) shows per-
fectly nested loops that initialize every element of a matrix.
Figure 10(b) shows how the array is conceptually accessed
after these loops are collapsed by our optimizer into a sin-
gle loop. After the optimizer places the collapsed loop into
the ZOLB, the loop overhead for both original loops are

entirely eliminated. The optimizer collapses nested loops
whenever possible. Even when the inner loop cannot be
placed in a ZOLB, the loop overhead is reduced since the
outer loop is eliminated.

int a[50][100];

for (j = 0; j < 100; j++)
for (i = 0; i < 50; i++)

a[i][j] = 0;

(a) Original Nested Loops

int a[5000];

for (i = 0; i < 5000; i++)
a[i] = 0;

(b) After Loop Collapsing

Figure 10: Example of Loop Collapsing
to Eliminate Additional Loop Overhead

Figures 11(a) and 11(c) show the source and corre-
sponding assembly code for an example of loop nest that
cannot be collapsed by our optimizer since not all of the
elements of each row of the matrix are accessed.However,
these two loops can be interchanged, as shown in Figures
11(b) and 11(d). After interchanging the two loops, the
inner loop now has a greater number of loop iterations,
which can be executed from the ZOLB as shown in Figure
11(e). Moreloop overhead is now eliminated by placing
the interchanged inner loop in the ZOLB as opposed to the
original inner loop.The optimizer attempts to interchange
nested loops when the loops cannot be collapsed, the loops
are perfectly nested, the number of iterations for the origi-
nal inner loop is less than the number of iterations for the
original outer loop, the number of instructions in the inner
loop does not increase, and the resulting inner loop can be
placed in the ZOLB.Figure 11(d) shows that register k
was allocated to hold the value of the increment 200 so an
additional instruction to incrementr0 would be unneces-
sary. This example illustrates the advantage of performing
loop interchange after code generation since otherwise it
would not be known if a register was available to be used to
hold the increment and the transformation may result in
more instructions in the inner loop.Note that interchanging
loops should not be performed if it will degrade the perfor-
mance of the memory hierarchy. This is not an issue for the
DSP16000 since it has no data cache or virtual memory
system and only a limited on-chip RAM.
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for (j=0; j<50; j++)
a[i][j]=0;

(a) Source Code of Nested Loops

a3 = 0
r1 = _a

L5: cloop = 200
r0 = r1

a2 = -49

do cloop {
*r0++k = a3
}

j = 200

a2 = a2 + 1
if le goto L5

(e) DSP16000 Assembly after Using the ZOLB

for (i=0; i<200; i++)

extern int a[200][100];

r1 = r1 + 2

extern int a[200][100];

for (j=0; j<50; j++)
for (i=0; i<200; i++)

a[i][j]=0;

(b) Source Code after Loop Interchange

r1 = _a
a3 = 0
a2 = -49

L5: r0 = r1
a1 = -199
k = 200

L9: *r0++k = a3
a1 = a1 + 1
if le goto L9
r1 = r1 + 2
a2 = a2 + 1
if le goto L5

(d) DSP16000 Assembly
after Loop Interchange

r1 = _a
a3 = 0
a2 = -199

L5: r0 = r1
a1 = -49

L9: *r0++ = a3
a1 = a1 + 1
if le goto L9
r1 = r1 + 200
a2 = a2 + 1
if le goto L5

(c) DSP16000 Assembly
before Loop Interchange

Figure 11: Example of Loop Interchange
to Increase the Iterations Executed in the ZOLB

6. Ordering the Analysis and Transformations

The order in which these transformations are applied
can affect how effectively a ZOLB can be exploited. Figure
12 shows the order of the pertinent analysis and transforma-
tions that are applied on the assembly code in the second
optimization phase shown in Figure 1.A call graph (#1) is
built to perform various types of interprocedural improving
transformations [9], which includes inlining (#8) to support

1. Build the call graph for the program.
2. Merge consecutive blocks when possible.
3. Find the loops in the program.
4. Calculate live register information.
5. Convert branches into conditional

assignments.
6. Find loop invariant values and basic

induction variables.
7. Calculate the number of loop iterations.
8. Perform inlining to support placing

loops in the ZOLB.
9. Calculate ranges of addresses accessed

by each memory reference.
10. Perform loop splitting to place more

loops in the ZOLB.
11. Flatten perfectly nested loops when

possible.
12. Perform loop interchange so more

iterations will be performed in the
ZOLB.

13. Place loops in the ZOLB.
14. Perform basic induction variable

elimination.
15. Extract basic induction variable

assignments.

Figure 12: Order of the Analysis and Transformations

placing loops in a ZOLB.Basic blocks are merged (#2)
when possible. This transformation does not usually
improve the code directly, but may provide additional
opportunities for other improving transformations.For
instance, placing loops in a ZOLB (#13) is only applied to
loops containing a single basic block.Merging basic
blocks (#2) also reduces the overhead of most types of
global analysis.Loops in the program are detected (#3) to
support a variety of improving transformations, which of
course includes placing loops in a ZOLB (#13).Live regis-
ter information is calculated (#4) since many improving
transformations require allocation of registers. For
instance, placing a loop with an unknown number of itera-
tions in the ZOLB (#13) requires renaming registers to
newly allocated registers to accomplish the scheduling
required to force an exit from the loop at the appropriate
time. Branchesare converted into conditional assignments
next. Someinstructions with immediate values cannot be
executed conditionally. When these instructions are inside
a loop and a register is available, the compiler replaces the
immediate value with the register and assigns the immedi-
ate value to the register outside the loop.Therefore,
branches are converted into conditional assignments (#5)
after finding loops (#3) and calculating live register infor-
mation (#4). Branches are converted into conditional
assignments (#5) before analysis is performed to determine
if a loop can be placed in the ZOLB (#13) since loops with
branches not associated with the exit condition of the loop
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cannot be placed in the ZOLB. Loop invariant values and
basic induction variables are detected (#6) so the number of
iterations for a loop may be calculated (#7). Note that
detecting the number of loop iterations is a much more
challenging task at the assembly level as compared to
examining source level loop statements. Inlining (#8) also
removes transfers of control from a loop, namely a call
instruction. Inlining(#8) was performed after detecting the
number of loop iterations (#7) since it could be determined
at this point if the inlining would allow the loop to be
placed in the ZOLB (#13) so unnecessary code growth
could be avoided. Rangesof addresses were calculated
(#9) for each memory reference to allow independent
instructions in a loop to be separated via loop splitting
(#10). Both loop flattening (#11) and loop interchange
(#12) are performed after calculating the number of loop
iterations (#7) since these transformations require this
information. Perfectlynested loops are flattened (#11)
before loop interchange (#12) is performed since flattening
loops places more iterations in a ZOLB than interchanging
loops. Basicinduction variable elimination (#14) was per-
formed after placing loops in the ZOLB (#13) since the
assignments were often unnecessary at that point.The
remaining assignments to basic induction variables are
extracted from loops (#15) after basic induction variable
elimination (#14) to prevent unnecessary extractions of
instructions. Thecomplete list of types of analysis and
improving transformations performed in this phase of opti-
mization and a more thorough description and rationale for
this order may be found elsewhere [10].

7. Results

Table 1 describes the benchmarks and applications
used to evaluate the impact of using the ZOLB on the
DSP16000. All of these test programs are either DSP
benchmarks used in industry or typical DSP applications.
Many DSP benchmarks represent kernels of programs
where most of the cycles occur. Such kernels in DSP appli-
cations have been historically optimized in assembly code
by hand to ensure high performance [7].Thus, many estab-
lished DSP industrial benchmarks are small since they were
traditionally hand coded.

Table 2 contrasts the results for loop unrolling and
exploiting the DSP16000 ZOLB.3 Execution measurements
were obtained by accessing a cycle count from a DSP16000
simulator [11]. Code size measurements were gathered by
obtaining diagnostic information provided by the assembler
[12]. Theauthors compared the performance of using the
ZOLB against loop unrolling, which is a common approach
for reducing loop overhead. Theloop unrolling showed in

3 Only relative performance results could be given due to disclosure
restrictions for these test programs.

Program Description

add8 addtwo 8-bit images
convolution convolution code
copy8 copy one 8-bit image to another
ff t 128 point complex fft
fir finite impulse response filter
fir_no_red_ld firfilter with redundant load elim
fire fireencoder
iir iir filtering
inverse8 invert an 8-bit image
jpegdct jpeg discrete cosine transform
lms lmsadaptive filter
scale8 scalean 8-bit image
sumabsdiffs sumof abs diffs of two images
trellis trellis convolutional encoder
vec_mpy simple vector multiply

Table 1: Test Programs

Table 2 was performed on all innermost loops when the
number of iterations was known statically or dynamically.
As shown in the results, using the ZOLB typically resulted
in fewer execution cycles as compared to loop unrolling.
Sometimes loop unrolling did have benefits over using a
ZOLB. This occurred when an innermost loop had too
many instructions or had transfers of control that would
prevent it from being placed in a ZOLB. In addition, some-
times loop unrolling provided other benefits, such as addi-
tional scheduling and instruction selection opportunities,
that would not otherwise be possible.4 However, the aver-
age performance benefits of using a ZOLB are impressive,
particularly when code size is important. As shown in the
table, loop unrolling caused significant code size increases,
while using the ZOLB resulted in slight code size
decreases. Thecode size decreases when using the ZOLB
came from the combination of eliminating branches by
placing the loops in the ZOLB and applying induction vari-
able elimination and dead store elimination afterwards.

Table 3 depicts the benefit of applying the improving
transformations described in Sections 4 and 5.Only some
of the improving transformations applied without using a
ZOLB (column 2) had a performance benefit on their own.
These transformations include the use of conditional
instructions, inlining, and loop collapsing. The

4 The production version of the optimizer occasionally does limited
unrolling of loops. For instance, loop unrolling is applied when memory
references and multiplies can be coalesced.However, unrolling is not per-
formed when it would cause the number of instructions to exceed the limit
that the ZOLB can hold [10].Note the measurements presented in this pa-
per did not include loop unrolling while placing loops in the ZOLB since
it would make the comparison of applying loop unrolling and using a
ZOLB less clear.
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Loop Unrolling Using a ZOLB Instead

Factor of 2 Factor of 4 Factor of 8 of Loop Unrolling

Cycles Code Size Cycles Code Size Cycles CodeSize Cycles Code Size

Program

add8 -11.47% +7.84% -23.11% +62.75% -27.46% +90.20% -36.33% -3.92%
convolution -33.42% +22.58% -47.56% +29.03% -54.63% +41.94% -47.84% -3.23%
copy8 -23.11% +6.25% -42.32% +12.50% -51.92% +25.00% -62.44% -4.17%
ff t -6.22% +32.14% -10.56% +92.86% -12.73% +214.29% -8.69% -3.57%
fir -20.35% +21.05% -35.25% +147.37% -41.98% +255.26% -48.42% -10.53%
fir_no_red_ld -3.97% +34.88% -7.07% +109.30% -9.14% +258.14% -31.35% -4.65%
fire -0.75% +36.27% -4.22% +110.78% -6.20% +255.88% -26.90% -6.86%
iir -11.10% +14.58% -15.43% +51.04% -15.67% +88.54% -19.61% -4.17%
inverse8 -20.27% +8.16% -37.34% +18.37% -46.64% +48.98% -55.50% -4.08%
jpegdct -8.26% +17.56% -8.44% +59.54% -8.44% +59.54% 0.00% 0.00%
lms -1.75% +0.48% -10.52% +1.78% -10.52% +1.78% -8.33% -0.04%
scale8 -4.90% +38.46% -9.37% +93.85% -11.60% +204.62% -14.28% -1.54%
sumabsdiff -14.64% +8.57% -19.57% +25.71% -22.03% +60.00% -58.83% -8.57%
trellis -11.52% +0.11% -19.10% +0.33% -22.79% +0.78% -20.16% -0.17%
vec_mpy -19.08% +63.16% -28.49% +336.84% -31.15% +531.58% -38.16% -15.79%

av erage -12.72% +20.81% -21.22% +76.80% -24.86% +142.44% -31.79% -4.75%

Table 2: Contrasting Loop Unrolling and Using a ZOLB

Impact on Execution Cycles

Transformations Usingthe ZOLB Using the ZOLB
without without with

Using the ZOLB Transformations Transformations

Program

add8 -2.24% -35.09% -37.76%
convolution -8.22% -43.48% -52.13%
copy8 -1.84% -60.39% -63.13%
ff t 0.00% -8.69% -8.69%
fir 0.00% -48.42% -48.42%
fir_no_red_ld -0.03% -31.37% -31.37%
fire -7.44% 0.00% -32.34%
iir 0.00% -19.61% -19.61%
inverse8 -1.64% -53.80% -56.23%
jpegdct 0.00% 0.00% 0.00%
lms 0.00% -8.33% -8.33%
scale8 -3.79% -16.92% -17.52%
sumabsdiff -23.11% 0.00% -51.70%
trellis -8.75% -7.36% -20.16%
vec_mpy 0.00% -38.16% -38.16%

av erage -3.80% -24.77% -32.37%

Table 3: The Impact of Improving Transformations on Using a ZOLB

characteristics of the DSP16000 prevented conditional
instructions from being used frequently. Inlining only had
occasional benefits for the test programs since the optimizer
only inlined functions when the function was called from a
loop and inlining would allow the loop to be placed in the
ZOLB. Inlining was not performed when a function had

transfers of control other than a return instruction, which
was the common case. Loop collapsing was applied most
frequently of these transformations. The results shown in
column 3 include basic induction variable elimination since
it was quite obvious that this transformation could almost
always be applied when a loop is placed in the ZOLB.The
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combination of using the ZOLB with the improving trans-
formations (column 4) sometimes resulted in greater bene-
fits than the sum of the benefits (columns 2 and 3) when
applied separately. Most of the additional benefit came
from the new opportunities for placing more loops in the
ZOLB (transformations described in Section 4).

The authors also obtained the percentage of the
innermost loops that were placed in the ZOLB.It was
found that on average 71.56% of the innermost loops could
be placed in the ZOLB without applying the improving
transformations described in Section 4.However, 84.89%
of the innermost loops could be placed in the ZOLB with
these improving transformations applied.Transfers of con-
trol was the most common factor that prevented the use of a
ZOLB. The use of conditional instructions, inlining, and
the transformation on loops with an unknown number of
iterations all occasionally resulted in additional loops being
placed in the ZOLB.

8. Conclusions

This paper described strategies for generating code
and utilizing improving transformations to exploit a ZOLB.
The authors found that many conventional improving trans-
formations used in optimizing compilers had significant
effects on how a ZOLB can be exploited. Theuse of predi-
cated execution, loop splitting, and function inlining
allowed more loops to be placed in a ZOLB. The overhead
of loops placed in a ZOLB was further reduced by basic
induction variable elimination and extraction, loop collaps-
ing, and loop interchange. The authors also found that a
ZOLB can improve performance in ways probably not
intended by the architects who originally designed this fea-
ture. Theuse of conditional instructions and instruction
scheduling with register renaming allowed some loops with
an unknown number of iterations to be placed in a ZOLB.
The results obtained from a number of test programs indi-
cate that these transformations allowed a ZOLB to be often
exploited with significant improvements in execution time
and small reductions in code size.
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