Effective Exploitation of a Zero Overhead Loop Buffer

Gang-Ryung Uh] Yuhong Wangt, David Whalleyt, Sanjay Jintutkathris Burng] and Vincent Cadl
tDepartment of Computer Science, Florida State/&sity, Tallahassee, FL 32306-4530, U.S.A.
e-mail: {yuhong,whallg}@cs.fsu.edu phong850) 644-3506
[Lucent Technologies, AllentownARL8103
e-mail: {uh,sjinturkar,cpbrns,vpcao}@Ilucent.com phon@10) 712-2447

Abstract

A zero wverhead loop bffer (ZOLB) is an architec-

A Zero Overhead Loop Buffer (ZOLB) is an architectural tural feature commonly found in DSP processoisis

feature that is commonly found in DSP processdrhis

buffer can be used to increase the speed of applications

buffer can be viewed as a compiler managed cache thaWvith no increase in code size and often with reducedepo

contains a sequence of instructions that will keceted a

specified number of timedJnlike techniques such as loop ') :
unrolling, a loop biffer is a hardware technique that can be times under program control. Depending on the implemen-
used to minimize loop verhead without the penalty of .
increasing code size. In addition, a ZOLB also requires rel-fetched faster from a ZOLB than from the vemtional
atively little space and pmer, which are both important

considerations for most DSP application$his paper
describes strategies for generating code fiec¥ely use a
ZOLB. The authors hee found that may common

consumption. AZOLB is a luffer that can contain a fxl
number of instructions to bexecuted a specified number of

tation of the DSP architecture, some instructions may be

instruction memory In addition, the same memoryub

used to fetch instructions can sometimes be used to access
data when certain gisters are dereferenced. Thus, mem-
ory bus contention can be reduced when instructions are

improving transformations used by optimizing compilers to fetched from a ZOLB.Due to addressing complications,

improve mde on cowentional architectures are shio (1)

to allov more loops to be placed in a ZOLB and (2) to fur :
ther reduce loop\@rhead of the loops placed in a ZOLB. attempts to xecute may of the innermost loops of pro-
The results gien in this paper demonstrate that this archi- 9rams from this bffer. A ZOLB can be viewed as a com-

tectural feature can often bexpboited with substantia

improvements in gecution time and slight reductions in

code size.

1. Introduction
For mary applications, a laye percentage of th

e

transfers of control instructions are not typically a#éal in
such lhuffers. Therefore,a wmpiler or assembly writer

piler controlled cache since special instructions are used to
load instructions into it.Unlike corventional caches, the
state of this buffer is preserved across context switches.

This paper describes approaches for exploiting the
ZOLB that is @ailable on the DSP16000 architecture [3].
Figure 1 presents arverview of the compilation process

execution time is spent in the innermost loops of a program Used by the authors to generate and imprade for this

[1]. The execution of these loops incur significanteo

architecture. Firstcode is generated using a C compiler

head, which is due to the increment and branch instructiond€tageted to the DSP16000 [4[Corventional impraving

to initiate a ne iteration of a loop.Many code impraing
transformations and architectural features imprexeu-
tion time at the expense of substantial codewtroand

more power consumptiork-or instance, loop unrolling is a

popular technique to decrease loogrbead [2]. Yet, this

transformations in this C compiler are applied and assem-
bly files are generatedThe generated code is then pro-
cessed by another optimizaevhich performs a number of
improving transformations including those thadpkoit the
ZOLB on this architecture.There are advantages of

approach often requires a significant increase in code size@ttempting to xploit a ZOLB using this approachirst,
DSP processors are typically used for applications in the exact number of instructions in a loop will be Wwno
embedded systems thatvkadrict code size and power lim-

itations. Spacencreasing transformations, such as loop

unrolling, are often unacceptable for rgaDSP applica-
tions due to these limitations.

after code generation, which will ensure that the maximum
number of instructions that can be contained in the ZOLB
is not xceeded. Whileperforming these transformations
after code generation sometimes resulted in more compli-
cated algorithms, the optimizera able to apply transfor
mations more frequently since it did notvhato rely on
conservatie heuristics concerning the ratio of intermediate
operations to machine instructions. Second, interprocedu-
ral analysis and transformations alsovadto be \aluable

in exploiting a ZOLB, as will be shown later in this paper.

C C Compiler
Source Generated
File 1 As;embly
File 1
Optimization Optimization Improved
oes oes Assembly
Phase | Phase II File
C C Compiler
Source Generated
File n As;embly
File n

Figure 1: Overviw of the Compilation Process for the DSP16000

The remainder of this paper has the followingani-
zation. First,we introduce related ovk that reduces the
overhead of loops.Second, we portray the characteristics
of the ZOLB on the DSP16000 architecture anda ftacan
be accessed using DSP16000 assembly instructitimisd,
we describe impning transformations that can be used to
place more loops in a ZOLBFourth, we delineate addi-
tional improving transformations that can be utilized te fur
ther reduce the werhead of loops that are placed in a
ZOLB. Fifth, we present the order in which these transfor
mations were woked and explain wty specific transforma-
tions were performed before other&ixth, we contrast
loop unrolling with the déctiveness of applying these
transformations forxgloiting a ZOLB. Finally, we pgesent
the conclusions for the paper.

2. RelatedWork

A number of hardware and software techniquessha
been used to reduce loowethead. Commorhardware

using a ZOLB.

3. Usingthe ZOLB on the DSP16000 Architecture

The target architecture for which the authors gener
ated code was the DSP16000valeped at Lucent dch-
nologies. Thisarchitecture contains a ZOLB that can hold
up to 31 instructionsTwo special instructions, théo and
ther edo, are used to control the ZOLB on the DSP16000
[8]. Figure 2(a) shows the assembly syntax for using the
do instruction, which specifies that the instructions
enclosed between the curly braces are to eeuted k
times. Theactual encoding of theéo instruction includes a
value of n, which can range from 1 to 31, indicating the
number of instructions following theo instruction that are
to be placed in the ZOLB. Thealek is also included in
the encoding of thdo instruction and represents the num-
ber of iterations associated with an innermost loop placed
in the ZOLB. Whenk is a compile-time constant less than
128, it may be specified as an immediate value since it will

techniques include branch prediction hardware to reduce

branch mispredictions and superscalar or VLI¥écaition

to allov other operations toxecute in parallel with the
loop overhead instructions [1].However, the use of com-
plex hardware mechanisms to minimize branchetead
results in the consumption of morews. Common soft-
ware techniques to reduce loopvethead include loop
strength reduction with basic induction variable elimination
and loop unrolling. Note that loop unrolling can signifi-
cantly increase code size.

Currently aailable versions of ZOLBs in TI, ADI,
and Lucent processorsvebeen described [6]Assembly
language programmers for DSPs commonly use ZOLBs in
the code that thewrite. However, optimizing compilers
have keen used only recently for DSP applications and pro-
grammers still tend to write critical sections by hand [7].
To the best of our knowledge, no other work describeg ho
a ZOLB can be exploited by a compiléhe interaction of
exploiting a ZOLB with other impraing transformations,
and the performance benefits that can be aethidrom

do k {
instruction 1

00
instructionn

}

(a) Assembly Syntax for
Using thedo Instruction

redo k

(b) Assembly Syntax for
Using ther edo Instruction

Figure 2: DSP16000 Assembly Syntax for Using the ZOLB

be small enough to be encoded into the instruct@ther-

wise a alue of zero is encoded and the number of times the

instructions in the ZOLB will bexecuted is obtained from
thecl oopregister The first iteration results in the instruc-

tions enclosed between the curly braces being fetched from

the memory systemxecuted, and loaded into the ZOLB.
The remainingk-1 iterations are>ecuted from the ZOLB.
Ther edo instruction shown in Figure 2(b) is similar to the
do instruction, except that the current contents of the
ZOLB are eecutedk times. Figure3 depicts some of the
hardware used for a ZOLB, which includes a 31 instruction
buffer, a cl oop register initially assigned the number of

iterations and implicitly decremented on each iteration, and

acst at e register containing the number of instructions in

the loop and the pointer to the current instruction to load or

execute.
instruction
buffer cloop
instruction 1 ’ k ‘
instruction 2
e cstate
instruction 31| " zolbpc‘ n ‘

Figure 3: ZOLB Hardware

Figure 4 shows a simplexample of exploiting the

for (i =0; i
a[i] = 0;
(a) Source Code of Loop

< 10000; i ++)

ro = _a # r[0] =ADDR(_a) ;
a2 =0 # a[2] =0;
al = -9999 # a[1] =—9999;
L5: *r0++ = a2 # Mr[O0]]=al2];
r[0]=r[0] +2;
al = al +1 # a[1] =a[1] +1;
| C=a[1] +1°?0;

if le goto L5# PC=l C<=0?L5: PC;

(b) DSP16000 Assembly and Corresponding RTLS
without Using the ZOLB

cl oop = 10000

ro = _a
a2 = 0

do cl oop {
*ro++ = a2
}

(c) After Using the ZOLB

Figure 4: Example of Using the ZOLB on the DSP16000

ZOLB on the DSP16000. Figure 4(a) contains the source4. Allowing More Loops to be Placed in a ZOLB

code for a simple loopFigure 4(b) depicts the correspond-
ing code for the DSP16000 without placing instructions in
the ZOLB. The effects of these instructions are alsaveho
in this figure. The array in Figure 4(a) and the arrays in the
other examples in the paper are of tgyeort . Thus, the
postincrement causad) to be incremented by 2Many

DSP architectures use an instruction set that is highly spe-

cialized for known DSP applications. The DSP16000 is no
exception and its instruction set has mamomplex fea-
tures, which include separation of addres®-f7) and
accumulator §0-a7) regsters, postincrements of address
registers, and implicit sets of condition codes from accumu-
lator operations.Figure 4(b) also shows that the value of
the loop wariable is set to a getive value before the loop
and is incremented on each loop iteratiorhis stratgy
allows an implicit comparison to zero with the increment to
avad performing a separate comparison instructibigure
4(c) shows the equilent code after placing the loop in the
ZOLB. Thebranch in the loop is deleted since the loop
will be executed the desired number of iteration&fter
applying basic induction ariable elimination and dead
store elimination, the increment and initializationadf are
removed. Thusthe loop @erhead has been eliminated.

The limiting factors that can pvent exploiting a
ZOLB for an innermost loop are (1) transfers of control
other than the loop branch, (2) the number of instructions in
the loop exceeding the ZOLB limit, and (3) the number of
iterations being unkmen. Inthis section we describe tech-
niques that can often address each of these factors.

One limiting factor that prents the exploitation of a
ZOLB for mary loops is that transfers of control cannot be
executed from a ZOLB. This limitation can be partially
overcome by the use of conditional instructiorGonsider

the example source code in Figure 5(a), which shows a loop
with an assignment that is dependent on a conditidre
assembly code in Figure 5(b) cannot be placed into a ZOLB
since there is a conditional branch that is not associated
with the exit condition of the Ioob.Our compiler used
predicated ®ecution when possible tovaid this problem

[1]. Figure 5(c) depicts the same loop with a conditional
instruction and this loop can be transformed tomewed
from a ZOLB. Unfortunately mary potential loops could

not be placed in a ZOLB by the optimizer since predicates
are assigned to a single condition codgister on the
DSP16000 and only a subset of the DSP16000 instructions

1 Thea0 = a0 instruction is used to set the condition codes,
which are not set by the previous load instruction.

can be conditionally>ecuted.

for (i = 0; i < 10000; i++)
if (a[i] > 0)
sum += a[i];
(a) Original Source Code
ro = _a
al = -9999
L5: a0 = *r0
a0 = a0
if gt goto L4
a2 = a2 + a0
L4: rO =r0 + 2
al = al +1
if le goto L5

(b) DSP16000 Assembly
without Conditional Instructions

ro = _a
al = -9999
L5: a0 = *r0
a0 = a0
if le a2 = a2 + a0
ro=r0 + 2
al = al + 1
if le goto L5

(c) DSP16000 Assembly
with Conditional Instructions

Figure 5: Example of Using Conditional Instructions
to Allow More Loops to Be Placed in a ZOLB

A call instruction is another transfer of control that
cannot be placed in the DSP16000 ZOLBonsider the

source code and corresponding DSP16000 assembly in Fig-

ures 6(a) and 6(b). The loop cannot be placed in a ZOLB
since it contains a call toabs. Howeve, the function can
be inlined as shen in Figure 6(c) and the ZOLB can be
used for the resulting loopThe DSP16000 optimizer does
not inline indiscriminately due to potential growth in code
size. Havever, the optimizer inlines functions that are
called from a loop when the loop after inlining can be
placed in the ZOLB (i.e. limited code growth for measur
able performance benefitskikewise, inlining of a func-
tion is performed by the optimizer when the function is
only called from one site (i.e. no code growth) [9].

Another factor that sometimes peated loops from
being placed in the DSP16000 ZOLB was the limit of 31
instructions in the tffer. Consider the loop in Figure 7(a).
When translated to DSP16000 assemthlis loop requires
34 instructions. However, not all of the statements in the
loop are dependeniThe authors implemented loop split-
ting to address this problemrhe optimizer splits loops
exceeding the ZOLB limit if the sets of dependent

4-

int abs(int v)

if (v <0
vV = -v;
return v;
}
sum = O;
for (i = 0; i < 10000; i++)
sum += abs(a[i]);
(a) Source Code
_abs: a0 = a0
if It a0 =-a0
return
r4 = a
a5 =0
a4 = -9999
L5: a0 = *r4++
call _abs
a5 = a5 + a0
a4 = a4 + 1
if le goto L5

(b) Before Inlining

r4 = a

ab =0

a4 = -9999
L5:a0 = *r4++

a0 = a0

if It a0 =-a0

ab = a5 + a0

a4 = a4 + 1

if e goto L5

(c) After Inlining

Figure 6: Example of Inlining a Function
to Allow a Loop to Be Placed in a ZOLB

instructions can be reganized into separate loops that can
all be placed in a ZOLB. The optimizer first finds all of the
sets of dependent instructions. The conditional branch and
the instructions that conttilte to setting the condition
codes for that branch are treated separately singewttie

be placed with each seNote that these instructions will
typically be deleted once loops are placed in the ZOLB and
the basic induction variable elimination and dead store
elimination transformations are applied. The optimizer
then checks if each set of instructions will fit in the ZOLB
and combines multiple sets together whery tiveuld not
exceed the maximum number of instructions that the ZOLB
can hold. Figure 7(b) shows the source code after loop

splitting. Now each of the tw loops require 18 DSP16000
instructions and both can be placed in a ZOLB.

for (i =0; i < 10000; i++) {

a[i] += a[i]*x;

b[i] += b[i]*y;

c[i] += c[i]*x;

dfi] +=d[i]*y;

X = X+1;

y = y+2;

}

(a) Source Code before Loop Splitting

for (i =0; i < 10000; i++) {
a[i] += a[i]*x;
c[i] += c[i]*x;
X = X+1;
}
for (i =0; i < 10000; i++) {

b[i] += b[i]~y;

dli] +=d[i]~y;

y = y+2;

}

(b) Source Code after Loop Splitting

Figure 7: Example of Splitting Loops
to Allow More Loops to Be Placed in a ZOLB

A final factor preenting the use of the ZOLB is that
often the number of iterations associated with a loop is
unknovn. However, sometimes such loops can still be
placed in the ZOLB on the DSP160000nsider the source
code shown in Figure 8(a) and the corresponding
DSP16000 assembly shown in Figure 8(b). The number of
iterations is unknown since it is not known which will be
the first element of arrag that will be equal tm. For each
iteration of a ZOLB loop on the DSP16000 tHeoop reg-
ister is implicitly decremented by one and then testguke
ZOLB is exited when this register is equal to zefdus,
assigning a value of one to tbé oop register will cause
the loop to exit after the current iteration completése
loop in Figure 8(b) can be transformed to be placed in the
ZOLB since thecl oop register can be conditionally
assigned a value in agister Fgure 8(c) depicts the trans-
formed code. The cl oop register is initially set to the
maximum value to which it can be assigned andysster,
a3, is dlocated to hold the value IThea[i] n test
is accomplished by the last three instructions in Figure 8(b).

2 Loop splitting and some of the othexamples to illustrate im-
proving transformations in the paper areegi at he source code Vel to
simplify their presentationHowever, these improving transformations to
exploit the DSP16000 ZOLB were actually performed after code genera-
tion so the exact number of instructions would be known.

To force an exit from the ZOLB on the DSP16000, the
cl oop register must be assigned a value of 1 at least three
instructions before the end of the loop due to the Igtenc
requirements of the machineMoving three instructions
after the branch, comparison, and instructions thizcaf
the comparison often required the optimizer to perforga re
ister renaming and adjust the displacements of memory ref-
erences, as sthm in Figure 8(c). Since the loop can

sum = O;
for (i 0; af[i]
sum += a[i]*2;

= = n; i++4)

(a) Source Code of Loop

ro = _a

a2 =0

rl = n

a0 = *r0

al = *rl

a0 - al

if eq goto L3
L5: a0 = *r0++

a0 = a0 << 1

a2 = a2 + a0

a0 = *r0

a0 - al

if ne goto L5
L3:

(b) DSP16000 Assembly
without Using the ZOLB

if eq goto L3

cl oop = <max value>
a3 =1

do cl oop {

a4 = *(r0+2)

a4 - al

if eq cloop = a3
a0 *rO++

a0 a0 <<< 1

a2 a2 + a0

}

goto LO1

cl oop = <max value>
redo cl oop

a4 - al

if ne goto LO2

LO2:
LO1:
L3:

(c) DSP16000 Assembly
after Using the ZOLB

Figure 8: Example of Placing a Loop
with an Unknown Number of Iterations in a ZOLB

evantually eit due to thecl oop register being decre- entirely eliminated. The optimizer collapses nested loops
mented to zero without being set in the conditional assign-wheneer possible. Een when the inner loop cannot be
ment, another loop is placed after the ZOLB loop that will placed in a ZOLB, the loopverhead is reduced since the
repeatedlyredo the ZOLB loop until the exit condition has outer loop is eliminated.

been satisfied. Note that urdilZOLB loops with a knan
number of iterations, the number of instructions in this
ZOLB loop is not less than the number of instructions
before the loop was placed in the ZOLBowever, condi-
tional branches on the DSP16000 require mgates than for (i = 0: i < 50; i++)
conditional assignments. Other potential benefits include for (j =0; j < 100; j+4+)
reducing contention to the memory system in the loop. a[i][j] = O;

Thus, there is a performance benefit on the DSP16000 from -

placing loops with an unknown number of iterations in the (2) Original Nested Loops
ZOLB.

int a[50][100];

5. Further Reducing Loop Overhead Int a[5000];

As shown previously in Figure 4(c), basic induction for (i = 0; i < 5000; i++)
variable and dead store elimination argaked dter plac- ali] = 0;
ing a loop in a ZOLB since often assignments to the loop
variable become unnecessary due to the branch no longer
being in the loop.Consider if the value df was used after
the loop in Figure 4(a). The optimizer could not delete the
increment of basic inductionaviable,al, as @picted in
Figure 9(a). When the value of the basic inductianable
is used after the loop and is used for no other purpose in the Figures 11(a) and 11(c) shahe source and corre-
loop, the optimizer extracts these increments of #r@ble ~ sponding assembly code for an example of loop nest that
from the loop. First, the increments in the loop are deleted.cannot be collapsed by our optimizer since not all of the
Next, a nev increment of the variable is placed after the elements of each woof the matrix are accessedlowever,
loop. Figure9(b) shows that the meincrement value is the these tw loops can be interchanged, as shown in Figures
product of the original increment and the number of loop 11(b) and 11(d). After interchanging theavoops, the
iterations. inner loop nav has a greater number of loop iterations,
which can bexecuted from the ZOLB as shown in Figure
11(e). Moreloop overhead is na eiminated by placing
the interchanged inner loop in the ZOLB as opposed to the
original inner loop. The optimizer attempts to interchange

(b) After Loop Collapsing

Figure 10: Example of Loop Collapsing
to Eliminate Additional Loop Overhead

cl oop = 10000 cl oop = 10000
ro = _a ro = _a

a2 =0 a2 =0

do cl oop {
*ro++ = a2
al = al + 1
}

(a) DSP16000 Assembly
after Using the ZOLB with
al Live dter the Loop

do cl oop {
*ro++ = a2

}
al = al + 10000

(b) DSP16000 Assembly
after Extracting the
Assignment tal

nested loops when the loops cannot be collapsed, the loops
are perfectly nested, the number of iterations for the origi-
nal inner loop is less than the number of iterations for the
original outer loop, the number of instructions in the inner
loop does not increase, and the resulting inner loop can be
placed in the ZOLB.Figure 11(d) shows that gister k

was dlocated to hold the value of the increment 200 so an

additional instruction to incrememtO would be unneces-
sary This example illustrates the advantage of performing
loop interchange after code generation since otherwise it
would not be knarn if a register was\ailable to be used to
Another approach that is often used to reduce thehold the increment and the transformation may result in
overhead associated with outenék loops is to collapse ~ more instructions in the inner loolote that interchanging
nested loops into a single loogrigure 10(a) shows per loops should not be performed if it will degrade the perfor
fectly nested loops that initialize@y element of a matrix. ~ mance of the memory hierarchThis is not an issue for the
Figure 10(b) shows hwothe array is conceptually accessed DSP16000 since it has no data cache or virtual memory
after these loops are collapsed by our optimizer into a sin-System and only a limited on-chip RAM.
gle loop. After the optimizer places the collapsed loop into
the ZOLB, the loop werhead for both original loops are

Figure 9: Example of Extracting Increments
of Basic Induction Variables from a ZOLB Loop

Build the call graph for the program
Mer ge consecutive bl ocks when possible.
Find the | oops in the program
for (i=0; i<200; i++) Calculate live register information.
for (j=0; j<50; j++) Convert branches into conditional
a[i][j]=0; assi gnments.
Find | oop invariant values and basic
i nduction vari abl es.
7. Calculate the nunber of |oop iterations.

extern int a[200][100];

abkwNE

o

(a) Source Code of Nested Loops

extern int a[200][100]; 8. Performinlining to support placing
| oops in the ZOLB.
for (j=0; j<30; j++) 9. Calculate ranges of addresses accessed
for (i=0; i<200; i++) by each nenory reference.
ali][j]=0; 10. Performloop splitting to place nore
(b) Source Code after Loop Interchange | oops in the ZOLB.
11. Flatten perfectly nested | oops when
r1 = a possi bl e.
r1 = a a3 =0 12. Perform | oop interchange so nore
a3 =0 a2 = -49 iterations will be performed in the
a2 = -199 L5: r0 =r1 ZQLB.
L5 r0 =r1 al = -199 13. Place loops in the ZOLB.
al = -49 k = 200 14. Perform basic induction variable
L9: *r0++ = a3 L9: *rO0++k = a3 el imnation.
al = al + 1 al = al + 1 15. Extract basic induction variable
if le goto L9 if le goto L9 assi gnnents.
rl =rl1 + 200 ri=r1+ 2 . . .
a2 = a2 + 1 a2 = a2 + 1 Figure 12: Order of the Analysis and Transformations
if le goto L5 if le goto L5 . . .
placing loops in a ZOLB.Basic blocks are merged (#2)
(c) DSP16000 Assembly | (d) DSP16000 Assembly when possible. This transformation does not usually
before Loop Interchange after Loop Interchange
improve the code directly but may provide additional
ri= a opportunities for other improving transformation$:or
a3 = 0 instance, placing loops in a ZOLB (#13) is only applied to
a2 = -49 loops containing a single basic blockMerging basic
L5: cloop = 200 blocks (#2) also reduces thevethead of most types of
ro=ril global analysis.Loops in the program are detected (#3) to
] =200 support a griety of improving transformations, which of

do cl oop {

103+ = 83 course includes placing loops in a ZOLB (#1Bjve regs-

ter information is calculated (#4) since mpaimproving

11 =11 + 2 transformations require allocation of gisters. Br
a2 = a2 + 1 instance, placing a loop with an unkvro number of itera-
if le goto L5 tions in the ZOLB (#13) requires renaminggisters to

newly allocated rgisters to accomplish the scheduling
required to force an exit from the loop at the appropriate
time. Branchesre comerted into conditional assignments
next. Someinstructions with immediate values cannot be
executed conditionally When these instructions are inside
6. Ordering the Analysis and Transformations a loop gnd a regls.ter |3/alab!e, the complller replacles the.
immediate alue with the register and assigns the immedi-
The order in which these transformations are applied gte value to the register outside the loopherefore,
can afect haw effectvely a ZOLB can bexploited. Figure pranches are ceerted into conditional assignments (#5)
12 shavs the order of the pertinent analysis and transforma- gfier finding loops (#3) and calculatingdi regster infor
tions that are applied on the assembly code in the secongnation (#4). Branches are omnted into conditional
optimization phase shown in Figure A.call graph (#1) is assignments (#5) before analysis is performed to determine
built to perform \arious types of interprocedural imping if a loop can be placed in the ZOLB (#13) since loops with
transformations [9], which includes inlining (#8) to support pranches not associated with thét eondition of the loop

(e) DSP16000 Assembly after Using the ZOLB

Figure 11: Example of Loop Interchange
to Increase the lterations Executed in the ZOLB

-7-

cannot be placed in the ZOLB. Loopvaniant values and
basic induction variables are detected (#6) so the number of

iterations for a loop may be calculated (#7). Note that Program Description
detecting the number of loop iterations is a much more adds addwo 8-bit images
challenging task at the assemblydeas compared to convolution corvolution code

examining source kel loop statements. Inlining (#8) also copy8 copy one 8-bit image to another
removes transfers of control from a loop, namely a call fft 128 point comple fft
instruction. Inlining(#8) was performed after detecting the fir finite impulse response filter

number of loop iterations (#7) since it could be determined
at this point if the inlining would alle the loop to be
placed in the ZOLB (#13) so unnecessary codewtyro

could be moided. Rangesf addresses were calculated inverse8 irvert an 8-bit image

(#9) for each memory reference to alloindependent jpegdct jpg discrete cosine transform
instructions in a loop to be separated via loop spliting | Ims Imsadaptve filter

(#10). Bothloop flattening (#11) and loop interchange scale8 scalan 8-bit image

(#12) are performed after calculating the number of loop sumabsdi sumof abs diffs of tvo images
iterations (#7) since these transformations require this | trellis trellis corvolutional encoder
information. Perfectlynested loops are flattened (#11) vec_mpy simple vector multiply

before loop interchange (#12) is performed since flattening
loops places more iterations in a ZOLB than interchanging
loops. Basidnduction variable elimination (#14) was per
formed after placing loops in the ZOLB (#13) since the
assignments were often unnecessary at that pdihe
remaining assignments to basic induction variables are.
extracted from loops (#15) after basic inductioariable
elimination (#14) to pneent unnecessary extractions of
instructions. Thecomplete list of types of analysis and
improving transformations performed in this phase of opti-
mization and a more thorough description and rationale for
this order may be found elsewhere [10].

7. Results

fir_no_red_ld
fire
iir

-

firfilter with redundant load elin
fire encoder
iir filtering

Table 1: Test Programs

Table 2 was performed on all innermost loops when the
number of iterations was knm statically or dynamically
As shavn in the results, using the ZOLB typically resulted
in fewer eecution cycles as compared to loop unrolling.
Sometimes loop unrolling did @ benefits @er using a
ZOLB. This occurred when an innermost loop had too
mary instructions or had transfers of control thabuld
prevent it from being placed in a ZOLB. In addition, some-
times loop unrolling praided other benefits, such as addi-
tional scheduling and instruction selection opportunities,
that would not otherwise be possib‘\d:lowe/er, the aver-

) ~age performance benefits of using a ZOLB are impressi
Teble 1 describes the benchmarks and applicationsparticularly when code size is important. As whoin the

used to ealuate the impact of using the ZOLB on the taple, loop unrolling caused significant code size increases,
DSP16000. Allof these test programs are either DSP \yhile using the ZOLB resulted in slight code size
benchmarks used in industry or typical DSP applications. gecreases. Theode size decreases when using the ZOLB
Mary DSP benchmarks represenerkels of programs came from the combination of eliminating branches by
where most of the cycles occuBuch kernels in DSP appli- placing the loops in the ZOLB and applying inductiamiv
cations hee keen historically optimized in assembly code apje elimination and dead store elimination afterwards.
by hand to ensure high performance [Thus, mag estab- Table 3 depicts the benefit of applying the impng
lished DSP industrial benchmarks are small since Wezre ;) . .

transformations described in Sections 4 andOfly some

traditionally hand coded. of the impraving transformations applied without using a

Table 2 contrasts the results for loop unrolling and 7o B (column 2) had a performance benefit on thein.o
exploiting the DSP16000 ZOLB Execution measurements These transformations include the use of conditional

were obtained by accessingy&le count from a DSP16000 instructions, inlining, and loop collapsing. The
simulator [11]. Code size measurements weathered by
obtaining diagnostic information primed by the assembler * The production ersion of the optimizer occasionally does limited
[12]. Theauthors compared the performance of using the unrolling of loops. For instance, loop unrolling is applied when memory
ZOLB agninst loop unrolling, which is a common approach references and multiplies can be coalesdgowever, unrolling is not per

. . . formed when it wuld cause the number of instructions to exceed the limit
for reducing loop werhead. Thdoop unrolling showed in that the ZOLB can hold [10]Note the measurements presented in this pa-

per did not include loop unrolling while placing loops in the ZOLB since
it would male the comparison of applying loop unrolling and using a
ZOLB less clear.

s Only relatve performance results could bevgn due to disclosure
restrictions for these test programs.

Loop Unrolling Using a ZOLB Instead
Program Factor of 2 Factor of 4 Factor of 8 of Loop Unrolling

Cycles Code Size Cycles Code Size| Cycles Codesize Cycles | Code Size
adds -11.47%| +7.84% | -23.11%| +62.75% | -27.46%| +90.20%/| -36.33%| -3.92%
convolution -33.42% | +22.58% | -47.56%| +29.03% | -54.63%| +41.94%| -47.84% -3.23%
copy8 -23.11% | +6.25% | -42.32%| +12.50% | -51.92%| +25.00% | -62.44% -4.17%
fft -6.22% | +32.14% | -10.56% +92.86% | -12.73%| +214.29% -8.69% -3.57%
fir -20.35% | +21.05% | -35.25%| +147.37% | -41.98% +255.26% -48.42% -10.53%
fir_no_red_lId -3.97%| +34.88% -7.07%| +109.30% -9.14%| +258.14%| -31.35%| -4.65%
fire -0.75% | +36.27% -4.22%| +110.78% -6.20%| +255.88%| -26.90% -6.86%
iir -11.10% | +14.58% | -15.43%| +51.04% | -15.67%| +88.54%/| -19.61%| -4.17%
inverse8 -20.27%| +8.16% | -37.34%| +18.37% | -46.64%| +48.98%/| -55.50%| -4.08%
jpegdct -8.26% | +17.56% -8.44%| +59.54% -8.44% +59.54% 0.00% 0.00%
Ims -1.75% | +0.48% | -10.52% +1.78% | -10.52% +1.78% -8.33%| -0.04%
scale8 -4,90%| +38.46% -9.37%| +93.85% | -11.60%| +204.62% -14.28% -1.54%
sumabsdif -14.64% +8.57% | -19.57% +25.71%| -22.03% +60.00% -58.83% -8.57%
trellis -11.52% | +0.11% | -19.10% +0.33% | -22.79% +0.78% || -20.16%| -0.17%
vec_mpy -19.08% | +63.16% | -28.49% +336.84% | -31.15% +531.58% -38.16% -15.79%
aveaage -12.72%| +20.81% | -21.22%| +76.80% | -24.86%) +142.44% -31.79% -4.75%

Table 2: Contrasting Loop Unrolling and Using a ZOLB

Impact on Execution Cycles
Program Transformations Using1e ZOLB | Using t_he ZOLB
without without with
Using the ZOLB | Transformations| mansformations

add8 -2.24% -35.09% -37.76%
convolution -8.22% -43.48% -52.13%
copy8 -1.84% -60.39% -63.13%
fft 0.00% -8.69% -8.69%
fir 0.00% -48.42% -48.42%
fir_no_red_Id -0.03% -31.37% -31.37%
fire -7.44% 0.00% -32.34%
iir 0.00% -19.61% -19.61%
inverse8 -1.64% -53.80% -56.23%
jpegdct 0.00% 0.00% 0.00%
Ims 0.00% -8.33% -8.33%
scale8 -3.79% -16.92% -17.52%
sumabsdif -23.11% 0.00% -51.70%

trellis -8.75% -7.36% -20.16%
vec_mpy 0.00% -38.16% -38.16%
aveaage -3.80% -24.77% -32.37%

Table 3: The Impact of Improving Transformations on Using a ZOLB

characteristics of the DSP16000 ymated conditional transfers of control other than a return instruction, which
instructions from being used frequentlinlining only had was the common case. Loop collapsing was applied most
occasional benefits for the test programs since the optimizefrequently of these transformations. The results shown in
only inlined functions when the function was called from a column 3 include basic inductiorarable elimination since
loop and inlining would ally the loop to be placed in the it was quite okious that this transformation could almost
ZOLB. Inlining was not performed when a function had always be applied when a loop is placed in the ZOOBe

combination of using the ZOLB with the imping trans-
formations (column 4) sometimes resulted in greater bene-[3]
fits than the sum of the benefits (columns 2 and 3) when
applied separatelyMost of the additional benefit came
from the n& opportunities for placing more loops in the
ZOLB (transformations described in Section 4).

The authors also obtained the percentage of theld]
innermost loops that were placed in the ZOLB.was
found that on eerage 71.56% of the innermost loops could
be placed in the ZOLB without applying the impirg [6]
transformations described in Section Mowever, 84.89%
of the innermost loops could be placed in the ZOLB with
these improving transformations appliettansfers of con-
trol was the most common factor thatymeted the use of a
ZOLB. Theuse of conditional instructions, inlining, and
the transformation on loops with an unknown number of
iterations all occasionally resulted in additional loops being [8]
placed in the ZOLB.

[7]

_ (9]

8. Conclusions

This paper described strgies for generating code
and utilizing impreing transformations to exploit a ZOLB. [10]
The authors found that maonventional improving trans-
formations used in optimizing compilers had significant
effects on hav a ZOLB can be gploited. Theuse of predi-
cated &ecution, loop splitting, and function inlining
allowed more loops to be placed in a ZOLB. Thverbead
of loops placed in a ZOLB was further reduced by basic [12]
induction variable elimination and extraction, loop collaps-
ing, and loop interchange. The authors also found that a
ZOLB can impre@e performance in \ays probably not
intended by the architects who originally designed this fea-
ture. Theuse of conditional instructions and instruction
scheduling with rgister renaming allowed some loops with
an unknown number of iterations to be placed in a ZOLB.
The results obtained from a number of test programs indi-
cate that these transformations a#al a ZOLB to be often
exploited with significant impreements in gecution time
and small reductions in code size.

(11]

9. Acknowledgements

The anonymous weewers provided helpful sugges-
tions that impreed the quality of the paperThis work was
supported by Lucentethnologies and in part by NSF grant
EIA-9806525.

10. Refeences

[1] J. Hennessy and D.d&erson,Computer Architec-
ture: A Quantitative Approach, Second Edition,
Morgan Kaufmann, San Francisco, CA (1996).

[2] J. W. Davidson and S. JinturkatAggressve Loop
Unrolling in a Retargetable, Optimizing Compjler
Proceedings of Compiler Construction Conference,

-10-

pp. 59-73 (April 1996).
Lucent Technologies, DSP16000 Digital Sgnal
Processor Core Information Manual, 1997.

Lucent Technologies,DSP16000 C Compiler User
Guide, 1997.

A. V. Aho, R. Sethi, and J. D. Ullma@ompilers
Principles, Techniques, and Tools, Addison-Wesley,
Reading, MA (1986).

P. Lapsle, J Bier, A. Shoham, and E. Led)SP
Processor Fundamentals - Architecture and Fea-
tures, IEEE Press (1996).

J. Eyre and J. Bier'DSP Processors Hit the Main-
stream,” [EEE Computer 31(8) pp. 51-59 (August
1998).

Lucent Technologies, DSP16000 Digital Sgnal
Processor Core Instruction Set Manual, 1997.

Yuhong Wang, Interprocedural Optimizations for
Embedded Systems, Masters Project, Florida State
University, Tallahassee, FL (1999).

David Whalley, DSP16000 C Optimizer Overview
and Rationale, Lucent Technologies, AllentownAP
(July, 1998).

LucentTechnologies,DSP16000 LuxWorks Debug-
ger, 1997.

Lucent Technologies, DSP16000 Assembly Lan-
guage User Guide, 1997.

