
Facilitating the Bootstrapping of a New ISA
Abigail Mortensen
Computer Science

Florida State University
Tallahassee, Florida, USA
mortense@cs.fsu.edu

Scott Pomerville
Department of Computer Science
Michigan Technological University

Houghton, Michigan, USA
skpomerv@mtu.edu

David Whalley
Computer Science

Florida State University
Tallahassee, Florida, USA

whalley@cs.fsu.edu

Soner Onder
Department of Computer Science
Michigan Technological University

Houghton, Michigan, USA
soner@mtu.edu

Gang-Ryung Uh
Computer Science

Florida State University
Panama City, Florida, USA

guh@fsu.edu

Abstract
Implementation of a new instruction set architecture (ISA) is
a non-trivial task that involves significant modifications to
the system software, such as the compiler, the assembler, and
the linker. This task also includes modifying and verifying
functional and cycle accurate simulators to facilitate perfor-
mance evaluation of programs under the new ISA. Isolating
errors in these software components becomes extremely
challenging and demands automated and semi-automated
mechanisms since neither the compilation infrastructure nor
the simulation infrastructure can be trusted as both parties
have been heavily modified. Bootstrapping a new ISA is very
common in embedded systems since there is a greater va-
riety of embedded ISAs due to often not having a need to
support backward compatibility of executables. In this paper,
we present the tools and the verification mechanisms we
have implemented to support the development of a number
of related, but distinct ISAs. Our work in developing the
system software and simulators for these ISAs demonstrate
that a step-by-step semi-automated approach which relies on
simple invariants can facilitate effective bootstrapping of the
complete system software and the simulator infrastructure.

CCS Concepts: • Software and its engineering→Retar-
getable compilers; • Computer systems organization
→ Pipeline computing.

Keywords: instruction set architecture, instruction set sim-
ulation, compiler optimization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
LCTES ’23, June 18, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0174-0/23/06. . . $15.00
https://doi.org/10.1145/3589610.3596282

ACM Reference Format:
Abigail Mortensen, Scott Pomerville, David Whalley, Soner Onder,
and Gang-Ryung Uh. 2023. Facilitating the Bootstrapping of a New
ISA. In Proceedings of the 24th ACM SIGPLAN/SIGBED International
Conference on Languages, Compilers, and Tools for Embedded Systems
(LCTES ’23), June 18, 2023, Orlando, FL, USA. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3589610.3596282

1 Introduction
Development of a new instruction set architecture (ISA) is a
non-trivial task in itself, involving many decisions and com-
promises regarding instruction encoding and the instruc-
tion set features to be supported. However, once the ISA
is designed, a harder challenge arises. The ISA needs to be
implemented in the system software, such as the compiler,
the assembler and the linker. In addition, new simulators
have to be developed or existing ones need to be modified
and verified. All of these software components are very large
pieces of software that are required to handle millions of
lines of input code and still flawlessly execute.

Desktop computers are dominated by the x86 ISA and its
extensions that are backward compatible so that software
(executables) that users have purchased in the past can exe-
cute on microprocessors that support extended x86 ISAs. In
contrast, embedded systems have a much greater variety of
ISAs since both the embedded microprocessor and embedded
software are often packaged together and there is no need to
support backward compatibility. In addition, the embedded
software development environment will typically not be the
same as the embedded execution environment. Hence sup-
porting simulators for ISAs in embedded systems is crucial.
Thus, boostrapping new ISAs is much more common for
embedded systems than for conventional processors.
There are many challenges in the development process

of a simulation and compilation infrastructure for a new
ISA: (1) Verification of the compiler requires running the
generated code using a verified functional simulator. Veri-
fication of a functional simulator requires a correctly func-
tioning compiler to generate code to test the simulator. It

https://doi.org/10.1145/3589610.3596282
https://doi.org/10.1145/3589610.3596282

LCTES ’23, June 18, 2023, Orlando, FL, USA Abigail Mortensen, Scott Pomerville, David Whalley, Soner Onder, and Gang-Ryung Uh

would appear both a compiler and simulator have to be de-
veloped before any meaningful testing of the new ISA can
commence, creating a chicken-and-egg problem. (2) Sim-
ulators may not always correctly function. Even a simple
error in the specification of a single instruction in a simu-
lator may cause an error that can propagate thousands or
even millions of cycles before it causes an observable failure,
such as a crash. Isolating an incorrectly implemented in-
struction is even more difficult to debug when it only causes
the program to produce incorrect results. The situation is
worse for debugging cycle accurate simulators, since they
require disproportionally longer simulation times. (3) Verifi-
cation of the compiler generated code is challenging even
with a verified functional simulator. An incorrectly imple-
mented code-improving transformation may correctly work
for many cases, but may occasionally generate incorrect code
depending on the context. Identification of the problem in
most cases requires locating the region of the code in the
input program where the error has occurred.
In this paper, we discuss our experience in dealing with

these challenges and present the solutionswe have developed
during the development of our ISA, called SCALE [2]. The
contributions of this paper are general techniques to facilitate
the bootstrapping of a new ISA. These techniques include (1)
constructing a simulator without a compiler, (2) automatic
isolation of simulation errors, and (3) automatic isolation of
code-improving transformation errors.

2 Initial Bootstrapping of a New ISA
One needs systematic and automatic methods for isolating
errors in both simulators and compilers when bootstrapping
a new ISA. Any systematic mechanism must rely on some
invariants that the developers can trust. Clearly, isolating
simulation errors is simplified when an existing simulator
can be used as the basis for comparison. Likewise, isolating
compilation errors is simplified when an existing compiler
can correctly generate code to facilitate isolating problems.
However, neither a correctly functioning simulator, nor a
correctly functioning compiler exist for a new ISA.
Our solution to this problem is to utilize a verified simu-

lator and a compiler for a different ISA, which we call the
base ISA. We rely on the invariance of control-flow and the
premise that the data memory should receive the same up-
dates in both simulators for validation.
For our initial bootstrapping implementation, we choose

the MIPS ISA as our base ISA and translate MIPS instructions
into our target SCALE ISA using assembly macros, which
results in an assembler that accepts verified MIPS code and
generates the binary in the target ISA, as shown in Figure 1.
In a sense, this assembler is bilingual since it can accept two
different sets of assembly instructions. Since every MIPS
instruction is defined to be a macro, any MIPS instruction
is translated to the target ISA, but target ISA instructions

are directly handled and encoded in binary. Furthermore,
the input program can be a mixture of MIPS and SCALE
instructions. Having the assembler accept a mixture of base
and target ISA instructions significantly helps the compiler
development as well, which will be subsequently described.
This technique of using assembly macros will only work if
the differences between the two ISAs are such thatmacros are
able to translate each base ISA instruction to a corresponding
sequence of target instructions. If more substantial changes
are needed, such as different calling conventions, then this
approach will not work.

Source

Program
GCC

MIPS

Assembly

Program
Assembler

Macro

Translator

SCALE

Figure 1. Compiling Using a Bilingual Assembler
Of course, the macro-translator needs to be verified and

its verification would be quite challenging without the use of
a verified functional simulator for the target ISA. Since that
simulator is being developed, we use the verified simulator
for the base ISA to validate both the assembly macro trans-
lator and the functional simulator for the new ISA. During
debugging, we run the MIPS functional simulator side-by-
side with the SCALE functional simulator such that they are
connected by a data pipe through which the MIPS simulator
sends control-flow information and values flowing to the
memory, as shown in Figure 2. Matching the control-flow
exercised and the data values communicated to the memory
allows us to locate the errors before they propagate too far
since an erroneous instruction implementation often causes
a nearby branch instruction to change direction, or, alter val-
ues flowing to the memory. As a result, we can use the same
assembly program generated by a verified compiler (GCC) for
an existing ISA (MIPS) to validate the new functional simula-
tor (SCALE), hence breaking the chicken-and-egg problem.

pipe

Continue/Halt

Verified Functional

Simulator Simulator

Target

Cont Flow+Store Vals Cont Flow+Store Vals

LogicCompare

Figure 2. Simulator Verification Design Layout
For developing the new compiler for the SCALE ISA, we

again rely on translating assembly instructions into the tar-
get ISA. Contrary to the typical compiler back-ends, our back
end, asopt (assembly optimizer) translates MIPS assembly
instructions to SCALE assembly instructions. In this respect,
asopt embodies the facilities of the entire back-end of a typi-
cal compiler, but also incorporates a simple translator which
translates from the base ISA to the target ISA. Since our func-
tional simulator is bilingual, the translator part of asopt could
be developed one instruction at a time as any untranslated
instruction is automatically translated through the use of
macros by the bilingual assembler to the target code. Further-
more, disabling all optimizations allows us to first verify the

Facilitating the Bootstrapping of a New ISA LCTES ’23, June 18, 2023, Orlando, FL, USA

correctness of the translation fromMIPS to the target ISA us-
ing the verified functional simulator, and then progressively
develop and apply machine specific optimizations.

3 Simulation/Compilation Environment
In this section, we describe some features of the SCALE ISA
that is the target of our compilation system and is input
to our simulators. We next delineate our infrastructure for
producing simulators, assemblers, and linkers. We finally
summarize our compilation system used for this project.

3.1 The SCALE ISAs
This research is part of the NSF SCALE project, which in-
volves developing both simulation and compilation support
for a set of related, but distinct ISAs [2]. We describe the first
two ISAs implemented in this project, which are the SCALE
base ISA and the SCALE VLIW ISA. We present some details
about these ISAs so the reader can grasp the scope of the
problem of bootstrapping these SCALE ISAs in our study.
The SCALE instruction sets were designed to communi-

cate compiler computed information to themicro-architecture
through instruction annotations. Such annotations include
statically computed scheduling commands as well as addi-
tional hints to the micro-architecture. As a result, SCALE
ISAs have quite different instruction formats and encodings
than typical RISC ISAs, such as MIPS or RISC-V. All SCALE
loads and stores support only the register indirect address-
ing mode, meaning that memory operations in SCALE ISAs
are performed without a displacement from a base register.
While the primary motivation for this approach is extracting
the necessary annotation encoding space, this approach also
decreases the number of stages in the instruction pipeline.
In fact, many processors will dynamically split a load or
store into an address generation instruction and a memory
reference instruction anyway and treat them as separate in-
structions within the processor. By splitting these operations
at compile time, redundant effective address calculations can
sometimes be eliminated. We view the amount of differences
between the MIPS and SCALE ISAs to be no less than the
amount of differences between the MIPS and RISC-V ISAs.

VLIW architectures were introduced in the early 1980s [8]
and are still used in some domains like digital signal process-
ing (DSP) where instruction-level parallelism (ILP) can be
explicitly exploited by a compiler. The generated VLIW code
must be packaged into groups of independent operations
encoded as a single instruction, hence enabling these opera-
tions to be simultaneously issued. We refer to such groups of
operations as VLIW packs and the position of an operation
within a VLIW pack as a lane. Our ISA permits the number of
operations in each VLIW pack and which types of operations
can be placed in each lane to be configurable at compile time.
As a result, the SCALE VLIW ISA uses instructions defined
by the SCALE base ISA, but supports VLIW execution.

We permit operations to follow a branch within a SCALE
VLIW pack. An operation after one or more branches within
a VLIW pack is only committed if the preceding branches
are found to be not taken. These features, permit simultane-
ous execution of operations specified by each instruction in
the VLIW pack to have the same semantics as the sequen-
tial handling of instructions, one at a time, left to right in
a VLIW pack. Hence, we can utilize a functional simulator
that processes a single instruction at a time for debugging
our compiler back end, asopt. Note that, supporting multi-
ple conditional branches in a single VLIW instruction has
been used in even some of the earliest designed VLIW pro-
cessors [8]. Only nop instructions should be placed after an
unconditional transfer of control within a VLIW pack.

3.2 ADL Simulation System
We use theADL simulation system, which takes a microarchi-
tecture specification file as input and automatically produces
an assembler, linker, and disassembler [10]. ADL provides
constructs for specifying (1) microarchitectural features in-
cluding pipelines, control, and memory hierarchy and (2) the
instruction set architecture including the assembly syntax
and corresponding binary representation. The assembler and
linker are used to produce a statically linked executable that
is invoked by the ADL produced functional or cycle accu-
rate simulators. These cycle accurate simulators perform a
more realistic simulation than many commonly used sim-
ulators as instructions and data are actually fetched from
the instruction and data caches, target addresses are actually
fetched from a branch target buffer, values are actually for-
warded through the pipeline, etc. A more realistic simulation
helps to ensure that the described techniques are correctly
implemented and hence provides more reliable statistics.

The SCALE base ISA is used for a SCALE functional sim-
ulator, a SCALE pipelined simulator, and a SCALE out-of-
order (OoO) simulator. The SCALE VLIW ISA is used for
the SCALE VLIW simulator. The SCALE functional simula-
tor is the fastest simulator and is just used to check if the
simulation provides correct results for the generated code.
The SCALE pipelined simulator provides a six stage integer
pipeline, which includes the stages IF (Instruction Fetch), ID
(Instruction Decode), RF (Register Fetch), EX (EXecution)
or MEM (MEMory access), and WB (Write Back). Note the
MEM stage is performed in the same cycle as the EX stage as
each load and store does not have a displacement for the base
register and hence does not require the calculation of an ef-
fective address. As a result, the depth of the integer pipeline
is five stages. The simulated architecture also incorporates a
separate, three stage floating-point (FP) pipeline. A SCALE
assembly file can be simulated by the SCALE functional,
pipelined, and OoO simulators with no change in how the
file is produced. Instructions within a VLIW pack are fetched,
decoded, and executed together. The SCALE VLIW simulator

LCTES ’23, June 18, 2023, Orlando, FL, USA Abigail Mortensen, Scott Pomerville, David Whalley, Soner Onder, and Gang-Ryung Uh

is pipelined like the SCALE pipelined simulator, but forward-
ing and stalls occur across all lanes between VLIW packs of
instructions. If any instruction within a VLIW pack stalls,
then all instructions in the VLIW pack are stalled. An instruc-
tion that has an antidependence with a previous instruction
is never scheduled before the previous instruction in a VLIW
pack. A group of instructions in a pack can be executed ei-
ther simultaneously or one at a time in left to right order, as
would be the case with functional simulation. The SCALE
pipelined, SCALE VLIW, and SCALE OoO simulators include
the simulation of caches, branch target buffers (BTBs), and
various branch predictors (BPs).

3.3 Compilation System
The compilation support that we need for this project must
support low-level code generation and optimizations. Fig-
ure 3 shows how we generate code for the various SCALE
ISAs. We use gcc to produce MIPS assembly files, which al-
lows us to compile files in a variety of source languages, such
as C, C++, and Fortran, and also leverage the optimizations
that are provided by the gcc compiler. We developed our own
assembly optimizer, called asopt, that takes an assembly file
as input, translates instructions when necessary to a new
instruction set, performs a variety of analyses and optimiza-
tions, and produces modified assembly code as output. In
order to properly determine which registers are live at any
given point in a function, we need to know which registers
are being passed to each function that is being called and
which register if any is used to return a value. An optimizer
implemented either in a linker or a run-time environment
would attempt to perform interprocedural analysis to deter-
mine this information. We instead gather information as a
side effect of the gcc compilation. We use an option in gcc to
produce a .gkd file that contains information about each gcc
RTL (instruction), which we use to determine which regis-
ters are passed as values in function calls. We also generate a
MIPS object file with symbolic debugging information from
which we generate an .objdump file, which contains informa-
tion about the function return type that is used to determine
in which register a return value is placed. Both the .gkd and
.objdump files are input to our geninf tool that produces a
.inf file that could be easily parsed by asopt. The assembly
optimizer, asopt, reads both the .inf file and the MIPS assem-
bly file to produce the SCALE assembly file. Various flags
can be passed to asopt to both select the optimizations to be
performed and to select the ISA for the assembly target file.
function qcount int

calls fopen $4 $5

Figure 4. Ex .inf File

Figure 4 shows a few lines
from an .inf file, which contains
only two types of lines. A func-
tion line contains a return type

used to indicate which register contains the return value and
could be live at the point of each function return. A calls line
indicates which argument registers are live at the point of
a function call. We generate a .inf file as asopt also needs

file
gcc objdumpsource

obj file

MIPS

MIPS MIPS objdump

asm file gkd file
geninf

file

SCALE

asm file

SCALE

asm file

SCALE

asm file

base VLIW ...

asopt inf file

Figure 3. SCALE Code Generation Process

to process some hand-written assembly files in the libraries
we utilized. Most compilers would require that all code to
be processed be written at the source code level and any
hand-written assembly files would have to be modified by
hand to reflect changes in the ISA. In contrast, we only have
to generate a simple corresponding .inf file by hand for each
hand-written assembly file.
For each function, asopt reads in the instructions, identi-

fies the type of each instruction and which registers are set
and used, and builds the control flow graph. It then translates
each MIPS assembly instruction to its corresponding SCALE
assembly instruction when the input MIPS instruction is not
in the SCALE instruction set. It also expands any pseudo
instructions so that each SCALE assembly instruction has
a one-to-one mapping with a SCALE machine instruction.
This step is necessary when performing some low-level opti-
mizations. Having a one-to-one mapping between assembly
and machine instructions also enables many additional opti-
mizations that asopt can exploit.

4 Isolating Simulator Errors
The ADL simulation system supports cycle accurate descrip-
tions of simulators. With detailed descriptions comes the
need for catching potential issues relatively early on in the
code, since code may not exhibit irregular behavior until
millions or even billions of other instructions have retired.
The SCALE functional simulator was the first simulator

developed in the SCALE architectures. This simulator be-
haves similarly to a single-stage processor that executes the
semantics for an instruction before progressing to the next
instruction.We can verify correctness to a high degree of con-
fidence by executing this simulator on unoptimized SCALE
code and comparing the results to the output of equivalent
code running on a MIPS simulator. This functional simulator
serves both as a tool to pinpoint bugs with optimizations in
asopt, as well as a tool that can be used to identify the exact
point in a cycle-accurate simulator when some instruction
produces a result that diverges from the proper value.

In the development for the pipelined simulator, which uses
the same ISA, there are several simulation variables that can
be tracked throughout the lifetime of a program, despite
differences in architecture. Chief among these is the control

Facilitating the Bootstrapping of a New ISA LCTES ’23, June 18, 2023, Orlando, FL, USA

flow of a program in the simulator. In programs without ran-
domness, the path taken through a program is deterministic,
and minor changes in a program can drastically alter control
flow. For these deterministic programs, an error isolator for
the pipelined simulator can compare the program counter of
retiring instructions against the dynamically created trace
of the program from the functional simulation to determine
proper execution. However, in longer simulations that ex-
ecute potentially hundreds of billions of instructions, this
trace becomes space-probitive. So, instead, we dynamically
create the trace of the simulator.

Figure 2 shows the basic layout of this verification process.
We run two simulators in parallel: the simple SCALE func-
tional simulator and the SCALE pipelined simulator. Since
ADL simulators can load the simulated program starting at
a given virtual memory address, we can enforce the two
simulators to have the same virtual address space, as well
as to simulate the same program executable with identical
inputs. As a result, each instruction processed by the two
simulators always has the same program counter value.

We execute the functional simulator alongside the target
simulator. The functional simulator, when retiring an instruc-
tion, inserts the simulated instruction’s program counter (PC)
into a blocking pipe. The target simulator at instruction re-
tirement will then check the PC of the retiring instruction
against the value at the pipe head. We compare instructions
at retirement as the pipelined simulator can potentially mis-
predict branches. If at any point the program counters di-
verge, the compare logic sends a signal to halt execution so
that the program’s failure can be analyzed.

Since the functional simulator is small, overhead for func-
tional verification is minor, as the only overhead is the com-
parison of retiring values to the corresponding values in the
pipe from the functional simulator. Reading from a pipe is
equivalent to reading from a trace file if one were to exist.
The functional simulator’s simple design allows it to place
values into the named pipe faster than the target simulator
can produce them while using minimal resources. So this
target simulator error isolation technique will effectively
never find the functional simulator to be a bottleneck.
This technique has also been expanded to support other

key points of potential divergence. Examples of other diver-
gences are verifying the value of the destination register of
the instruction or verifying the values stored and retrieved
by memory operations. This use case can be helpful in sce-
narios where control flow is highly independant of the data
input provided. As long as instructions are compared during
retirement, the basic logic remains the same.
The VLIW simulator executes packs of SCALE base in-

structions, and as such, the asopt must properly order the
SCALE base instructions within VLIW packs. By treating
each SCALE base instruction within a VLIW pack as a full
instruction, it is possible for the functional simulator to ex-
ecute the SCALE VLIW code. The key restriction is that

antidependencies between instructions within a pack must
remain ordered. This will allow SCALE base instructions
to be sequentially and correctly executed within a pack. In-
structions following a branch in SCALE VLIW packs are
only committed when a branch is not taken. By following
these restrictions the SCALE functional simulator can cor-
rectly simulate the VLIW code and remains a viable tool for
detecting simulator errors.

5 Isolating Assembly Optimizer Errors
asopt simulation testing began with code generated by the
assembly optimizer, but with applying no transformations.
Note at this point each MIPS instruction not supported by
the SCALE ISA is treated as a macro by the SCALE assem-
bler. asopt’s pseudo expansion phase was then applied and
simulated. Once all benchmarks transformed by pseudo-
expansion produced the correct simulation results, this phase
was considered correct and another phase could be tested in
the same manner. An important aspect of the asopt testing
process is that the correctness of one type of optimization
can be tested before testing another optimization phase.

5.1 Compiler Transformations and Phases
A code-improving transformation consists of a sequence of
changes where the semantic behavior of the code should
remain the same, although its performance may be enhanced.
A code-improving transformation can be viewed as optional,
as compared to a required transformation that is needed
for correct execution. An optimization phase consists of the
application of zero or more transformations of the same type.

Table 1 enumerates the different types of phases that can
be applied within our assembly optimizer. These transforma-
tions were developed as needed based on the output of the
gcc compiler. We only included assembly optimizer phases
that actually had opportunities to change the code. For in-
stance, unreachable code elimination is not included as gcc
never produces code where any instructions are unreachable.

Table 1. Types of Assembly Optimizer Phases
Phase Name Acronym Phase Name Acronym
Accumulator Expansion AE Reorder Commut Opers RCO
Copy Propagation CP Remove Empty Blocks REB
Common Subexpr Elim CSE Remove Incr True Deps RITD
Dead Assignment Elim DAE Remove Useless Insts RUI
Expand Pseudo Insts EPI Split Basic Induction Var SBIV
Loop Inv Code Motion LICM Save/Restore New Regs SRNR
Loop Unrolling LU VLIW Block Scheduling VBS
Merge Basic Blocks MBB VLIW Fill Slots VFS
Merge Increments MI VLIW Global Scheduling VGS
Redundant Asg Elim RAE

We now briefly describe some of the assembly optimizer
phases that may not be commonly known. AE changes an
innermost loop that has multiple commutative operations (+,
*, |, &), where the same register is only used in these opera-
tions. After AE we use a different register for each operation
so there are no dependences between these operations in
the loop. This transformation also requires changing the

LCTES ’23, June 18, 2023, Orlando, FL, USA Abigail Mortensen, Scott Pomerville, David Whalley, Soner Onder, and Gang-Ryung Uh

prologue and epilogue of the loop. EPI expands a pseudo
assembly instruction into multiple assembly instructions,
which is required when generating VLIW code. RITD re-
moves true dependences for instructions that either add a
constant to a register or are a move instruction, where the
dependent instruction uses the result of an increment instruc-
tion. SBIV splits a basic induction variable in an innermost
unrolled loop where there are multiple increments of the
basic induction variable. This transformation removes true
dependences between these increments and removes antide-
pendences between an increment and the uses of a prior
increment. SRNR saves and restores a newly allocated, but
previously unused, callee-save register.
Figure 5 shows some example transformations applied

by the assembly optimizer. Each subfigure shows an assem-
bly instruction in blue if the instruction will be modified or
deleted in the next subfigure and in bold if the instruction has
been modified or was inserted compared to the previous sub-
figure. Figure 5(a) shows original assembly code consisting
of three MIPS assembly instructions. The lw and sw assembly
instructions are pseudo instructions since a global address of
a variable, such as gcnt, cannot be encoded in a 32-bit instruc-
tion. Figure 5(b) shows the assembly code after expanding
the lw instruction. The lalui and laori instructions are SCALE
pseudo instructions that represent a global address as the
third argument. The lalui instruction indicates that the most
significant 16 bits of gcnt should be loaded into $2. Likewise,
the laori instruction indicates that the least significant 16
bits of gcnt should be ored with $2. The register $2 is used to
hold the result of the lalui instruction since the original lw
instruction was writing to $2, which makes $2 available for
use at that point. The ADL assembler/linker will convert the
lalui and laori assembly instructions into lui and ori machine
instructions, respectively, once the global address of gcnt is
known. Figure 5(c) shows the assembly code after expand-
ing the sw instruction. In this case $1, the MIPS assembler
temporary register, is used since $2 is live at the point the sw
is executed. Figure 5(d) shows the assembly code after the
assembly optimizer applies common subexpression elimina-
tion. The destination register of the first lalui is changed to
be $1 so that the value of the 16 most significant bits of gcnt
address is not overwritten until the second lalui is encoun-
tered. The use of $2 in the first laori instruction is replaced
with $1. Finally, the second lalui instruction is replaced by a
move instruction, where the source operand is $1. Figure 5(e)
shows the assembly code after the assembly optimizer re-
moves useless instructions. The move instruction that was
produced in Figure 5(d) has no effect since the source operand
is the same as the destination operand. Figure 5(f) shows the
assembly code after common subexpression is applied again.
The destination register of the first laori is changed to be $3
so that the address of gcnt is not overwritten until the second
laori is encountered. The use of $2 in the first lw instruction
is replaced with $3. Finally, the second laori instruction is

replaced by a move instruction, where the source operand is
$3. Figure 5(g) shows the assembly code after the assembly
optimizer applies copy propagation. The $1 register that is
used in the source operand of the sw instruction is replaced
with $3. Figure 5(h) shows the assembly code after the as-
sembly optimizer applies dead assignment elimination. The
move instruction in Figure 5(g) is now a dead assignment
and is removed since there are no uses of $1.

lw $2,gcnt

addiu $2,$2,1

sw $2,gcnt

(a) original code

lalui $2,gcnt

laori $2,$2,gcnt

lw $2,($2)

addiu $2,$2,1

sw $2,gcnt

(b) after pseudo expansion

lalui $1,gcnt

laori $2,$1,gcnt

lw $2,($2)

addiu $2,$2,1

move $1,$1

laori $1,$1,gcnt

sw $2,($1)

(d) after common

subexpression elimination

lalui $2,gcnt

laori $2,$2,gcnt

lw $2,($2)

addiu $2,$2,1

lalui $1,gcnt

laori $1,$1,gcnt

sw $2,($1)

(c) after pseudo expansion

lalui $1,gcnt

laori $2,$1,gcnt

lw $2,($2)

addiu $2,$2,1

laori $1,$1,gcnt

sw $2,($1)

(e) after removing

useless insts

lalui $1,gcnt

laori $3,$1,gcnt

lw $2,($3)

addiu $2,$2,1

move $1,$3

sw $2,($1)

(f) after common

subexpression elimination

lalui $1,gcnt

laori $3,$1,gcnt

lw $2,($3)

addiu $2,$2,1

move $1,$3

sw $2,($3)

(g) after copy propagation

lalui $1,gcnt

laori $3,$1,gcnt

lw $2,($3)

addiu $2,$2,1

sw $2,($3)

(h) after dead

assignment elimination

Figure 5. Example of Assembly Optimizer Transformations

5.2 Error Isolator Technique
When the simulation of asopt-produced code fails, we must
isolate which code-improving transformation causes the er-
ror. To accomplish this task, we developed a tool called asop-
tiso to perform assembly optimizer error isolation. The asop-
tiso tool finds the first code-improving transformation caus-
ing the simulator to produce incorrect output for a given
program. asoptiso was implemented as a C program that
includes system() calls that allow it to perform unix shell
commands, which include invoking asopt and perform make
commands to invoke the assembler, the linker, and the sim-
ulator. A transformation range is a sequence of transforma-
tions applied by asopt to either a program or assembly file. A
transformation count is a number assigned to a specific trans-
formation in order to identify it. asoptiso performs a binary

Facilitating the Bootstrapping of a New ISA LCTES ’23, June 18, 2023, Orlando, FL, USA

search on all applied code-improving transformations, com-
paring the output of the simulation to the reference output
file to check for correctness of various transformation ranges
until the range is narrowed down to a single transformation.
asopt and asoptiso have different responsibilities relating

to the transformations applied to a program. The assembly
optimizer, asopt, applies transformations to a single assembly
file within a program. asopt has the ability to stop applying
code-improving transformations after a specified maximum
limit is reached within a file, after which only required trans-
formations will continue to be applied by the assembly opti-
mizer. The assembly optimizer error isolator, asoptiso, tracks
and controls the number of transformations applied to all
assembly files within a program.

 ...
 // apply opts

 }

 // required trans

 ...

}

 // apply remaining

int moreopts = TRUE;

optimize() {

 setjmp(...);

 ...

 if (moreopts) {

Figure 6. optimize()
Function

A portion of asopt’s optimize()
function is represented in Fig-
ure 6, and is responsible for
applying optimization phases.
In optimize(), each optimization
is applied by a call to other
functions within asopt. Figure 6
shows that a global boolean vari-
able called moreopts is set to true
by default and indicates whether
or not asopt should continue
to apply code-improving trans-
formations to the current func-
tion. When a maximum limit is

reached and code-improving transformations will no longer
be applied to the assembly file, moreopts will be set to false
and the control will be returned to the setjmp() within opti-
mize(). asopt will proceed with applying only required trans-
formations to the current function. Once a maximum limit
has been reached, code-improving transformations will not
be applied for the remainder of the current assembly file.
void incropt(enum opttype opt) {

 if (...) {

 // if limit reached

 }

 totopts[opt].count++;

 totopts[ALL_OPTS].count++;

 moreopts = FALSE;

 longjmp(...);

}

Figure 7. incropt() Function

We have to iden-
tify the start of a
code-improving trans-
formation and then
choose whether or
not to perform it. We
implemented a func-
tion named incropt()
in asopt that checks
if a transformation

should be performed. Figure 7 shows the code for the incropt()
function, which is called at each point asopt determines that
a transformation can be applied. The incropt() function takes
in the argument opt, which represents the transformation
type to be applied. If the opt transformation will exceed
a maximum limit, then we set moreopts to false and use a
longjmp() to return to the associated setjmp() in optimize()
in order to stop the further application of code-improving

transformations. If this transformation will not exceed a max-
imum limit, we increment the number of transformations.
This combination of calling setjmp() and longjmp() allows
us to stop applying code-improving transformations at any
point when isolating asopt errors.
The isolation flag is the asopt command line flag, where

the first erroneous transformation is suspected to be of this
type. The non-isolation flags are an optional string of com-
mand line flags used in conjunction with the isolation flag.
Note, only the isolation flag transformations will be isolated,
although the non-isolation flags will also be used to apply
optimizations when they are specified. The isolation flagmay
be set to a particular flag, that is reserved to represent all
applied transformations if a first erroneous transformation
type is not suspected. asoptiso performs a binary search on
all code-improving transformations of a program associated
with the specified isolation flag.

The three main steps of asoptiso are shown in Figure 8,
which are represented by the a, b, and c sections, respectively.
Before step a begins, asoptiso reads in a configuration file
which specifies error isolation information, including which
types of transformations should be applied.

a. collect
trans
count
data

b. make

assembly
optimized

files

c. assemble,
link, and
simulate

=

false

true

complete trans count range

assembly

file
asopt

update
total trans
count file

all files
processed

all files
processed

false

true

optimized
assembly file

asoptassembly

file

assembler/

linker

executable simulator
simulation

output first bad
trans found true

false

reference
outputupdated trans count range

isolation
complete

Figure 8. Optimization Error Isolation Process

In step a of Figure 8 asoptiso runs asopt on each assembly
file in the program to apply all transformations of the types
specified by the flags. asopt adds the number of transforma-
tions for the current file to the total_trans_count file.

Step b of Figure 8 produces the optimized assembly of the
program to be simulated. When transitioning from step a to
step b, the binary search range is initialized to be the range of
all applied code-improving transformations of the isolation
flag type within the program. If a suspected transformation
type is not known, the isolation flag may be set so that the
binary search range will be all code-improving transforma-
tions applied in the program. A binary search rangemidpoint
is set to be the middlemost transformation within the binary
search range. The midpoint is the transformation count to

LCTES ’23, June 18, 2023, Orlando, FL, USA Abigail Mortensen, Scott Pomerville, David Whalley, Soner Onder, and Gang-Ryung Uh

which transformations will be applied inclusive. When tran-
sitioning from step c to step b, the updated binary search
range is chosen based on the most recent simulation result.
As asoptiso is processing each assembly file as shown in

step b of Figure 8, asoptisowill first check if the file being pro-
cessed is themidpoint assembly file, which is the file in which
the midpoint transformation is applied. The isolator will in-
form asopt to apply transformations without restriction to
all assembly files prior to the midpoint assembly file. Once
at the midpoint assembly file, the isolator will have asopt
apply all transformations up to, and including, the midpoint
transformation. The isolator will apply no code-improving
transformations to files after the midpoint assembly file. In
order to further decrease the error isolation time, asoptiso
does not have asopt process an assembly file when the same
number of code-improving transformations would be applied
to the file for the next simulation.

Step c in Figure 8 assembles, links, and simulates the pro-
gram optimized by step b. The optimized assembly files are
assembled and linked to produce an executable that is input
to the simulator. The simulation output is compared against
the program’s reference output file to determine if the simula-
tion was successful. A new binary search range is determined
based on whether simulation output was correct or incorrect
and the isolator returns to step b if the new range is larger
than one transformation. The isolation is complete when
the binary search range has been narrowed down to one
transformation, which is the first erroneous transformation.

5.3 Error Isolator Enhancement and Benefits
asoptiso contributes an enhancement over previous work
through speeding up the isolation process by decreasing
the number of simulations performed. asoptiso takes in an
isolation flag, which is useful since compiler writers often
implement one new optimization at a time. If the flag com-
bination AB has been successfully simulated, but ABC has
not, we can assume the problem likely lies in the newest
flag added. Knowing which transformation type on which
to focus the error isolation provides a significant advantage:
it decreases the initial range of transformations which may
contain an error, resulting in fewer steps in the binary search
and thereforeminimizing the number of simulations required
to isolate the first erroneous code-improving transformation.
diff minimization is performed to further enhance the as-

sembly optimizer error isolation process. Figure 9 shows
eight asopt transformations applied. Note that there are three
transformations of interest, labeled as a, b, and c, which are
transformations 2, 5, and 6, respectively. Let’s say that isola-
tion is performed on a programwith an isolation flag of U and
non-isolation flag of V, so only U type transformations are
being isolated. Assume the result of asoptiso reveals that Fig-
ure 9’s transformation c is the problem, which means that the
U transformations up to, and including, transformation a are
not causing incorrect output. To perform diff minimization,

V U V V V U V V

1 2 3 4 5 6 7 8

 a b c

a: last correct U transformation

b: transformation before first

 erroneous U transformation

c: first erroneous U transformation

Figure 9. Error Isolation
Diff Minimization

the isolator will simulate
again, applying transforma-
tions up to transformation
b inclusive. If this simula-
tion is correct, asoptiso deci-
sively determines that trans-
formation c is the first erro-
neous transformation among
all types. Otherwise, the first
erroneous transformation is
located after transformation

a but before transformation c, and a second binary search is
now performed in this new search range.

Diff minimization also serves to increase the precision of
the isolator results. Diff minimization ensures that there is
only a difference of one transformation, of any type, between
correct code and the first found erroneous transformation.
Consider Figure 5 again. It is much easier to view the differ-
ences between the assembly code before and after a single
transformation than multiple transformations.

Applying a binary search using an isolation flag could be
the difference between isolating on 100,000 transformations
of all types versus 100 transformations of a single type. De-
creasing the number of binary search steps also decreases the
numbers of simulations. When the programs being tested
may take hours to simulate, even a small decrease in the
number of simulations is highly beneficial.
Once the isolation is complete, the user receives three

output files: the assembly file applying the first erroneous
transformation, this same assembly file without the first er-
roneous transformation, and a simulation result data file.
The first two files may be used with a diff tool to quickly
spot errors since they will only differ by the one erroneous
transformation. The third file includes the file-offset trans-
formation count of the first erroneous transformation. A
conditional breakpoint can be placed at the incropt() call to
stop immediately prior to the application of the first erro-
neous transformation and the compiler writer can determine
why the transformation was erroneously applied.

6 asopt Isolation Error Results
In this section we describe the number of code-improving
assembly optimizer transformations on several known bench-
marks and estimate the number of simulations required to
isolate the first transformation that causes incorrect output.
We do not show results from isolating simulator errors as
there is very little overhead as compared to conventional
simulation since the functional simulator runs in parallel
with the cycle accurate simulator.

A large number of transformations can be applied by the
assembly optimizer for a given benchmark, which indicates
a need to automatically isolate the first transformation that
causes incorrect output during simulation. Table 2 and Ta-
ble 3 show the number of transformations applied for each

Facilitating the Bootstrapping of a New ISA LCTES ’23, June 18, 2023, Orlando, FL, USA

Table 2. Number of asopt Transformations
in SPEC CINT2006 Benchmarks

Type bzip2 gcc gobmk h264ref hmmer lib mcf perl sjengquantum bench
DAE 330 5,239 1,683 2,949 1,074 91 60 2,733 514
CSE 521 6,257 1,948 2,241 704 77 67 5,045 768
LICM 360 2,434 902 2,284 877 69 27 739 224
CP 441 5,674 1,586 3,288 1,191 109 60 3,114 562
RCO 0 2 0 0 0 0 0 0 0
AE 1 12 1 22 3 2 0 3 0
SBIV 38 437 231 394 113 11 9 140 51
EPI 6,100 315,210 74,732 55,362 28,003 3,127 1,117 114,954 12,774
VBS 4,385 339,674 58,717 34,631 21,871 2,587 949 111,908 11,502
VGS 1,790 142,854 28,571 20,814 9,141 1,019 398 51,452 7,010
VFS 1,440 99,771 17,199 10,172 6,545 652 300 29,790 3,607
LU 39 499 331 338 120 14 13 232 56
MI 4 79 6 69 7 1 3 46 1

RITD 385 23,481 11,537 3,041 3,029 630 100 7,505 644
REB 413 25,662 4,007 2,043 1,677 165 110 6,991 617
RUI 373 3,281 954 1,067 393 61 33 2,519 485
MBB 79 1,101 790 681 253 28 26 454 124
RAE 15 589 119 83 49 4 0 239 48
SRNR 9 324 78 84 82 13 3 84 16
total 16,723 972,580 203,392 139,563 75,132 8,660 3,275 337,948 38,973

Table 3. Number of asopt Transformations
in SPEC FP Benchmarks

Type cactus gems lbm sphinx3 zeus
ADM FDTD mp

DAE 1,777 1,724 85 433 1,240
CSE 1,938 2,169 67 255 2,252
LICM 1,312 1,201 27 359 291
CP 1,915 1,968 74 463 1,353
RCO 10 1 0 0 0
AE 19 1 0 4 8
SBIV 140 82 2 39 41
EPI 67,581 42,810 1,318 15,984 34,898
VBS 41,373 20,626 322 11,262 10,448
VGS 19,826 9,646 249 5,277 8,481
VFS 10,761 5,381 64 2,646 4,053
LU 152 59 4 54 34
MI 28 16 0 9 8

RITD 5,958 719 109 1,854 610
REB 3,256 1,710 19 817 264
RUI 963 451 3 157 842
MBB 303 139 6 104 70
RAE 62 173 3 24 19
SRNR 80 17 4 38 2
total 157,454 88,893 2,356 39,779 64,914

transformation type for each of the SPEC 2006 integer and
FP benchmarks, respectively. The optimization phase type
abbreviations and a description of each type of optimization
phase referenced in Tables 2 and 3 are given in Table 1. One
can see there are a number of transformations applied within
each of these benchmarks. The number of transformations
applied by asopt for the gcc benchmark is almost 1 million
evenwhen not including the transformations for the libraries.
It is obvious that some phases apply more transformations
than others. Some SPEC 2006 benchmarks are not included
as we are currently having some problems resolving linking
issues with the C++ benchmarks and are still resolving errors
with some of the Fortran FP benchmarks. We generated code
and tested all the applications listed in Tables 2 and 3. The
assembly optimizer error isolation technique is even more
valuable when isolating an error associated with the library
code due to the large number of library files.

As described in Section 6, asoptiso can decrease the number
of simulations if it isolates on a single type of code-improving
transformation rather than all code-improving transforma-
tions being performed. Table 4 shows the number of simu-
lations when varying the type of search and the number of
transformations on which the search is performed. We show
in the table the number of all code-improving transforma-
tions and the number of loop unrolling (LU) transformations.
We also show the number of simulations when performing a
sequential search on all transformations or a binary search
on all transformations or just all LU transformations. The
number of simulations for a sequential search would be on
average n/2, where n is the number of all code-improving
transformations. This naive error isolation approach will be
very inefficient. The number of simulations required when
isolating errors on all transformations using our error iso-
lation binary search will be ⌈loд2(n)⌉ + 1. The +1 accounts

for one simulation that occurs before step a of Figure 8 in
order to check that the program correctly simulates when
no code-improving transformations are applied. The number
of simulations when isolating errors using our error isola-
tion binary search on only a single transformation type will
be ⌈loд2(k)⌉ + 2, where k is the number of code-improving
transformations of that type. An additional simulation is re-
quired to verify that the isolated transformation of that type
is really causing the problem. One can see that the number
of simulations is decreased when isolating on a single type
of code-improving transformation as opposed to isolating
on all code-improving transformations. The decrease in the
number of simulations will depend on the fraction of total
transformations applied of the isolating transformation type.

Table 4. Assembly Optimizer Error Isolation Results

Benchmark

Number of Trans Number of Simulations
All

LU
Sequential Binary Binary

Code Search on Search on Search on
Improving All Trans All Trans LU Trans

bzip2 16,723 39 8,362 16 8
gcc 972,580 499 486,290 21 11
gobmk 203,392 331 101,696 19 11
h264ref 139,563 338 69,782 19 11
hmmer 75,132 120 37,566 18 9
libquantum 8,660 14 4,330 15 6
mcf 3,275 13 1,638 13 6
perlbench 337,948 232 168,974 20 10
sjeng 38,973 56 19,487 17 8
cactusADM 157,424 152 78,712 19 10
gemsFDTD 88,893 59 44,447 18 8
lbm 2,356 4 1,178 13 4
sphinx3 39,779 54 19,890 17 8
zeusmp 64,914 34 32,457 17 8

7 Examples of Isolating asopt Errors
In this section we describe a couple of interesting examples
of errors that asoptiso isolated. (1) The first example error was
caused by loop unrolling. The original loop was accessing
contiguous elements of an array and the loop exit condition

LCTES ’23, June 18, 2023, Orlando, FL, USA Abigail Mortensen, Scott Pomerville, David Whalley, Soner Onder, and Gang-Ryung Uh

branch checked if the basic induction register value was not
equal to a particular address. After unrolling asopt changed
the loop exit condition to use a branch with a less than con-
dition since it is possible that the register value could skip
over the exit address value. However, the exit address had
its most significant bit set and the less than condition treated
this address as a negative value. We had to change the loop
unrolling optimization to check if the basic induction reg-
ister was ever used to dereference memory and to change
the exit branch to instead use an unsigned less than condi-
tion. (2) The second example error was caused by a code
improving transformation that used a new callee-save reg-
ister. This transformation was then followed by a required
transformation that saved and restored the new callee-save
register in the function’s activation record, which also re-
quired increasing the activation record size. This function
received some extra arguments passed on the run-time stack,
which was accessed in the caller’s activation record. Because
the adjustment to the stack pointer was increased to save
and restore the new callee-save register, the offset from the
stack pointer to access the arguments passed in the caller’s
activation record had to also be increased.

8 Related Work
There has been a significant amount of work to assist in
the testing of architecture simulators. Much of this work
revolves around determining correctness and detecting if
simulators accurately reflect those of physical processors.
Glam and Lilja lay out a technique for ensuring that instruc-
tions in a simulated processor are faithfully executed [9].
Our technique differs as we assume there is no physical pro-
cessor to act as a source of truth, instead using a simplified
functional simulator.

Beardo et al. verified the functionality of a VLIW architec-
ture by using the memory unit to observe the state of the
processor[4]. Similar to our approach, they impose restric-
tions on VLIW code scheduling such that the code can be
represented as a single stream of instructions. However, they
do not use this single stream to compare instructions through
a source of truth mechanism such as a verified simulator.

There has been a significant amount of work to assist in the
testing of compilers. This work includes complex methods
such as compiler verification and translation validation [3],
in addition to more practical methods such as constructing
test programs, determining whether the output of a com-
piler is correct or not, optimizing the testing process, and
post-processing of test results [7]. Isolating the first code-
improving transformation that causes incorrect output, and
then identifying the place in the compiler source code where
that transformation is applied, falls in the last category.
A tool known as bugfind was developed to assist in the

debugging of optimizing compilers [6]. The bugfind tool at-
tempts to determine the highest optimization level at which

each file within a program can be compiled and produce
correct output. To isolate a function that was not correctly
optimized, one has to place each function within the appli-
cation in a separate file. This tool also relies on a different
compilation of each function that produces correct code. The
bugfind tool uses themake facility in Unix and is generalized
enough to work with different compilers.
LLVM provides a tool called bugpoint, which is used to

isolate problems to LLVM optimization phases (passes) [1].
It appears that bugpoint can isolate the phase that is causing
incorrect output. In contrast, asoptiso isolates the first code-
improving transformation that causes incorrect output.

The vpoiso tool finds not only the failing module, but also
the first code-improving transformation within a function
that causes incorrect results [5, 11]. The transformation num-
ber can be used to access the point in the vpo compiler when
the transformation is about to be applied.

The asoptiso tool is most similar to the vpoiso tool in that
both tools isolate the first code-improving transformation
that causes incorrect output. asoptiso also allows for isolation
of only a specified type of code-improving transformation to
decrease the error isolation time, which is important when
isolating errors using long-running simulations. We have
shown that asoptiso can significantly decrease the required
number of simulations when a specific compiler optimization
is being tested that is likely the cause of the error.

9 Conclusions
In this paper we described the tools we developed to facili-
tate bootstrapping a simulation and low-level compilation
infrastructure for a new ISA. The approach we use for initial
bootstrapping allows a simulator to be used for testing a
new ISA before any compilation support is provided. The
tool for isolating simulator errors determines the first in-
struction in any benchmark that produces an unexpected
value. The tool for isolating assembly optimization errors
isolates the first code-improving transformation that causes
incorrect results from the simulator. All of these tools are
completely automatic and have proved to be invaluable when
we were isolating errors as we retargeted our simulation and
low-level compilation infrastructure to a new ISA.

Acknowledgments
We appreciate the suggestions by the reviewers that helped
to improve the quality of this paper. This work was sup-
ported in part by the US National Science Foundation (NSF)
under grants DGE-1565215, CRI-1822737, CCF-1823398, CCF-
1823417, CCF-1900788, CCF-1901005, DUE-2030070, OISE-
2103103, OISE-2103105, DGE-2146354, CCF-2211353, and
CCF-2211354. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and may not reflect the views of the NSF.

Facilitating the Bootstrapping of a New ISA LCTES ’23, June 18, 2023, Orlando, FL, USA

References
[1] [n. d.]. LLVM bugpoint tool: design and usage. https://llvm.org/docs/

Bugpoint.html
[2] 2019-2023. Statically Controlled Asynchronous Lane Execution

(SCALE) Project. In Division of Computing and Communication Foun-
dations (CCF). National Science Foundation Grants CCF-1900788 and
CCF-1901005.

[3] A.Pnueli, M. Siegel, and F. Singerman. 1998. Translation Validation. In
Proceedings of TACAS ’98. 151–166 pages.

[4] M Beardo, Francesco Bruschi, Fabrizio Ferrandi, and Donatella Sciuto.
2000. An approach to functional testing of VLIW architectures. In
Proceedings IEEE International High-Level Design Validation and Test
Workshop (Cat. No. PR00786). IEEE, 29–33.

[5] M. R. Boyd and D. B.Whalley. 1993. Isolation and Analysis of Optimiza-
tion Errors. In Proceedings of the SIGPLAN Conference on Programming
Language Design and Implementation. 26–35.

[6] J. Caron and P. Darnell. 1990. Bugfind: A Tool for Debugging Optimiz-
ing Compilers. SIGPLAN Notices 25, 1 (Jan. 1990), 17–22.

[7] J. Chen, J. Patra, M. Pradel, Y. Xiong, H. Zhang, D. Hao, and L. Zhang.
2020. A Survey of Compiler Testing. Comput. Surveys 53, 1 (May 2020),
1–36.

[8] J. A. Fisher. 1983. Very Long Instruction Word architectures and the
ELI-512. In Proc. Int. Symp. on Computer Architecture. ACM, New York,
NY, USA, 140–150.

[9] B. Glamm and D.J. Lilja. 2001. Automatic verification of instruction
set simulation using synchronized state comparison. In Proceedings.
34th Annual Simulation Symposium. 72–77. https://doi.org/10.1109/
SIMSYM.2001.922117

[10] Soner Önder and Rajiv Gupta. 1998. Automatic generation of microar-
chitecture simulators. In IEEE International Conference on Computer
Languages. Chicago, 80–89.

[11] D. B. Whalley. 1994. Automatic Isolation of Compiler Errors. ACM
Transactions on Programming Languages and Systems 16, 5 (September
1994), 1648–1659.

Received 2023-03-16; accepted 2023-04-21

https://llvm.org/docs/Bugpoint.html
https://llvm.org/docs/Bugpoint.html
https://doi.org/10.1109/SIMSYM.2001.922117
https://doi.org/10.1109/SIMSYM.2001.922117

	Abstract
	1 Introduction
	2 Initial Bootstrapping of a New ISA
	3 Simulation/Compilation Environment
	3.1 The SCALE ISAs
	3.2 ADL Simulation System
	3.3 Compilation System

	4 Isolating Simulator Errors
	5 Isolating Assembly Optimizer Errors
	5.1 Compiler Transformations and Phases
	5.2 Error Isolator Technique
	5.3 Error Isolator Enhancement and Benefits

	6 asopt Isolation Error Results
	7 Examples of Isolating asopt Errors
	8 Related Work
	9 Conclusions
	References

