Decoupling Address Generation from Loads and
Stores to Improve Data Access Energy Efficiency

Michael Stokes, Ryan Baird, Zhaoxiang Jin*,
David Whalley, Soner Onder*

Computer Science Department
Florida State University

*Computer Science Department
Michigan Technological University

June 19, 2018

Motivation
[]

Motivation

o Energy Efficient Processor Design

o Extend battery life
e Reduce generated heat
e Reduce energy cost

@ DAGDA is a technique that reduces data access energy

@ Achieves set-associative cache access hit-rate with
direct-mapped cache access energy without increasing access
time

Background
@000

Set-Associative Cache Access

@ A traditional set-associative cache access must perform the
following steps:

o Calculate the virtual address by adding the register and offset

e Translate the virtual address to a physical address by accessing
the DTLB

o Determine the correct way by comparing the tag portion of the
physical address with the tags associated with the ways of the
set

o Access the desired word from the appropriate way, if the tag
comparison is a hit

Background
[o] le]e}

VIPT Cache Access Overview

virtual address

virtual page number page offset
physical address
physical page number ‘ page offset
L1 DC block number L1 DC
tag | setindex | offset

Background
[e]e] e}

VIPT Cache Access

ADDR-GEN SRAM-ACCESS

Displacement

Base Address

A\ DATA:n-1 A LA

o A virtually-indexed, physically-tagged cache accesses the
DTLB, tag array, and data arrays in parallel

@ This removes the DTLB and tag array from the critical path

Background
[e]ele]]

Conventional Micro-Operations

PC=r4!=r8,L1; way=tag_check (pa) ;

T. va=r4+0;
rd=sp+72; 2. pa=dtlb_access(va) ;

L1: r3=M[r4]; ___»3. way=tag_check (pa) ;
r3=r3415; 4. r3=load access (pa,way);
M[r4]=r3; —{1. va=r4+0;
rd=ri+4; 2. pa=dtlb_access(va);

3.
5.

store_access (r3,pa,way) ;

Decoupled Mem Access
[leJele]

Decoupled Micro-Operations

1. va=spt+72;
rd=sp+72; [pam] 2. pa=dtlb_access(va);

Ll: r3=M[r4]; \\\\\\\.>3. way=tag_check (pa) ;
r3=r34r5; 4. r3=load_access (pa,way) ;
M[r4]=r3; _—" 5. store_access(r3,pa,way);
rd=r4+4; [pam] 6. va=rd+4;

PC=rd =18, L1; 2. pa=dtlb_access(va);
3. way=tag_check (pa);

Decoupled Mem Access
[e] Jele]

Memoizing Cache Access Information

@ Saving cache-access information requires a new structure
o A PAM operation associates this information with the
destination register
o A load/store operation uses this information associated with
its source register

DTLB L1 DC
DWV way LWV way PP
0 0
31 n-1
(a) Address Generation (b) Address Generation

Structure (AGS) Valid Information (AGV)

Decoupled Mem Access
[e]e] o]

Avoiding Redundant DTLB and Tag Array Accesses

@ Often, the PAM instruction’s calculated virtual address shares
the same line as the source register

@ If so, the DTLB access and L1 DC tag check can be avoided
r20=...; [pam]
L3: r2=M[r20];

r20=r20+4; [pam]
PC=r20!=r21,L3;

Decoupled Mem Access
[efe]e]]

Detecting AGS Re-Use

o If we're adding a positive value and there is no carry out from
the offset field (set index), the calculated address shares the
same line (page) as the source register

o If we're adding a negative value and there is carry out from
the offset field (set index), the calculated address shares the
same line (page) as the source register

all zeros or all ones

A Jd
-~
31 16 15 I 0
I Sign Extension Immedia'te ‘
f
31 ; 0
I Register Value 1 ‘
il
32-bits |/ 32-bits : no
ADD 1_carry
31 V ——— out?,

I VPN Set Index I Line Offset ‘
1

Pipeline Mods
[JeJele]e]

Pipeline Modifications

@ In a traditional MIPS pipeline, the EX stage calculates the
effective address prior to a memory access

e With DAGDA, we calculate the effective address in the
prepare-to-access memory (PAM) instruction

@ Therefore, we can place the memory access stage before the
EX stage.

Pipeline Mods
0@000

DAGDA Stages Used by Instructions

@ The DAGDA pipeline can perform an operation on the loaded

value
’ Instruction | Pipeline Stages ‘
ALU inst IF | ID| RF | DA | EX | WB
pam ALU inst | IF | ID | RF | AG | TC | WB
load inst IF | ID| RF | DA | EX | WB

pam load inst | IF | ID | RF | DA | TC | WB
store inst IF | ID|RF| DA | EX | WB

Pipeline Mods
[e]e] le]e)

DAGDA Instruction Pipeline Example

@ One instruction needs to be placed between a PAM instruction
and a load to avoid a stall

’Instruction\1\2\3\4\5\6\7\8\9\10‘

1. pamadd | IF | ID | RF | AG | TC | WB

2. other IF | ID | RF | DA | EX | WB

3. pam load IF | ID | RF| DA | TC | WB

4. other IF | ID | RF | DA | EX | WB

5. load IF ID | RF | DA | EX | WB

Pipeline Mods
[e]e]e] o]

New Instruction Format

6 5 5 16
’ opcode ‘ rs ‘ rt ‘ immediate
ex: rt=M[rs+immed]; # load
(a) Original MIPS I Format Used for Loads and Stores
6 5 5 5 6
’ opcode ‘ rs ‘ rt ‘ rd ‘ ‘ funct
ex: rd=M[rs]+rt; # load+addreg
(b) MIPS R Format Used with Loads

6 5 5 10 6
’ opcode ‘ rs ‘ rt ‘ immediate funct
ex: rt=M[rs]+immed; # load+addimmed

ex: rt=M[rs]; rs=rs+immed; # load+postincr
ex: M[rs]=rt; rs=rs+immed; # store+postincr
(c) New Short Immediate Format Used with Loads and Stores

Pipeline Mods
[e]e]e]e])

Optimizations Using New Encoding

PC=L2;
Ll: ...
M[r7]1=r3;

L2: ...
r7=r7+4; [pam]
PC=r7!=r8,L1;

(a) Original Loop

r7=r7+4; [pam]
PC=L2;
Ll: ...
M[r7]=r3; ri7=r7+4; [pam]

L2: ...
PC=r7!=r8,L1;

(b) After Transformation

Evaluation
@00

Benchmarks Used and Compiler

@ MiBench benchmarks used

@ The VPO (Very Portable Optimizer) was used to compile the
benchmarks

Category Benchmarks
automotive | bitcount, gsort, susan
consumer | jpeg, tiff

network dijkstra, patricia
office ispell, stringsearch
security blowfish, rijndael, pgp, sha

telecom adpcm, CRC32, FFT, GSM

Evaluation
oeo

Processor and Cache Configuration

@ Processor Configuration

page size | 8KB

L1 DC 32KB size, 4 way associative,

1 cycle hit, 10 cycle miss penalty
DTLB 32 entries, fully associative

@ The ADL simulator was used to estimate the results

e Simulator was modified to capture pipeline stalls.
e Single cycle stall for a PAM-followed-by-load hazard (DAGDA)

Evaluation
ooe

L1 DC and DTLB Component Energy

@ Used CACTI to estimate the L1 DC and DTLB energy
@ Used a 22-nm CMOS process technology with LSP

l Component \ Energy ‘
Read L1 DC Tags - All Ways 0.782 pJ
Read L1 DC Data - All Ways 8.236 pJ
Write L1 DC Data - One Way 1.645 pJ
Read L1 DC Data - One Way 2.059 pJ
Read DTLB - Fully Associative 0.823 pJ
Read DTLB - One Way 0.215 pJ
Write AGS - 1 Entry 0.320 pJ
Read AGS - 1 Entry 0.147 pJ
Write AGV - 1 Bit in All 4 Entries 0.240 pJ
Read AGV - 32 Bits in All 4 Entries | 0.500 pJ

Results
[leJele]e]

Instruction Count Impact

@ The instructions executed was reduced on average by 1.4%

14
0.9
0.8
0.7 A
0.6
0.5
0.4
0.3
0.2 -
0.1 4

0 ,

Instructions Executed

adpcm
bitcount
blowfish
dijkstra
ispell
Jpeg
patricia
gsort
rijndael
stringsearch
susan
arith mean

Benchmarks

Results
(o] Jele]e]

Cycle Count Impact

@ The cycle count was reduced on average by 7.6%

m Load stalls (baseline) = Insts (baseline) m PAM mem stalls (DAGDA) o Insts (DAGDA)
1.1

14 SN o I —— - - — — — — — — —

0.9 N [
0.8 M
0.7 A
0.6
0.5
0.4
0.3
0.2
0.1

O .

Clock cycles Relative to Baseline

oo [

dijkstra

adpcm =
bitcount i
blowfish L
fit
o B
ispell -
jpeg
patricia '
pgp L
gsort F
riindae! [

susan

sha «F
[
I
tiff
arith mean r

stringsearch

Benchmarks

Results
00e00

L1 DC Tag Array and DTLB Accesses

e L1 DC tag checks were avoided 47% of the time and fully
associative DTLB accesses were avoided 82% of the time

m DTLB Fully Associative Accesses DTLB Single Way Accesses m L1 DC Tag Checks
14
0.9 1
0.8 +

0.7
0.6
0.5 4
0.4
0.3
0.2
0.1

0-

L1 DC Tag Array and DTLB Accesses

b - © = o © oy © < c [=
E § 5 g s 2 2 § 5 T & 6 & E §
s 3 % 2] g & £ & & g © § 9 2
T 8 2 X 2 5 SR o 3 £
® 35 3 © e = é’ £
£ ®

Benchmarks k]

Results
00080

Data Access Energy

@ The total data access energy was reduced by 62%

m Static Energy m L1 DC Data Readm L1 DC Data Write @ L1 DC Tag o DTLB 0 AGS+AGV

0.9
0.8
0.7
0.6
0.5 1
0.4
0.3
0.2 4
0.1 4

0 -

Total Data Access Energy

adpcm
bitcount
blowfish
cre
dijkstra
fft
gsm
ispell
Jpeg
patricia

Pg
gsort
rijndael
sha
stringsearch
susan
tiff
arith. mean

Benchmarks

Results
0000e

Conclusions

@ DAGDA reduces data access energy by enabling loads to
directly access a single data array way of a set-associative
cache and by avoiding a large fraction of L1 DC tag checks
and DTLB accesses

e DAGDA is able to offer performance improvements with its
modified ISA

e The total number of instructions executed is reduced
o PAM operations can prefetch data accesses into the L1 DC in
the case of an L1 DC miss

Questions?

	Motivation
	Background
	Decoupled Mem Access
	Pipeline Mods
	Evaluation
	Results

