
Decoupling Address Generation from Loads and
Stores to Improve Data Access Energy Efficiency

Michael Stokes
Florida State University

Tallahassee, Florida, United States
mstokes@cs.fsu.edu

Ryan Baird
Florida State University

Tallahassee, Florida, United States
baird@cs.fsu.edu

Zhaoxiang Jin
Michigan Technological University
Houghton, Michigan, United States

zjin3@mtu.edu

David Whalley
Florida State University

Tallahassee, Florida, United States
whalley@cs.fsu.edu

Soner Onder
Michigan Technological University
Houghton, Michigan, United States

soner@mtu.edu

Abstract
Level-one data cache (L1 DC) accesses impact energy usage
as they frequently occur and use significantly more energy
than register file accesses. A memory access instruction con-
sists of an address generation operation calculating the lo-
cation where the data item resides in memory and the data
access operation that loads/stores a value from/to that lo-
cation. We propose to decouple these two operations into
separate machine instructions to reduce energy usage. By
associating the data translation lookaside buffer (DTLB) ac-
cess and level-one data cache (L1 DC) tag check with an
address generation instruction, only a single data array in
a set-associative L1 DC needs to be accessed during a load
instruction when the result of the tag check is known at
that point. In addition, many DTLB accesses and L1 DC tag
checks are avoided by memoizing the DTLB way and L1
DC way with the register that holds the memory address
to be dereferenced. Finally, we are able to often coalesce an
ALU operation with a load or store data access using our
technique to reduce the number of instructions executed.

CCS Concepts • Hardware → Power estimation and
optimization; • Software and its engineering → Com-
pilers;

Keywords Data Accesses, Energy Efficiency, Compiler Op-
timizations

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
LCTES’18, June 19–20, 2018, Philadelphia, PA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5803-3/18/06. . . $15.00
https://doi.org/10.1145/3211332.3211340

ACM Reference Format:
Michael Stokes, Ryan Baird, Zhaoxiang Jin, DavidWhalley, and Soner
Onder. 2018. Decoupling Address Generation from Loads and Stores
to Improve Data Access Energy Efficiency. In Proceedings of 19th
ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and
Tools for Embedded Systems (LCTES’18). ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3211332.3211340

1 Introduction
Contemporary architectures designed using RISC principles
attempt to implement each instruction using a single µop.
However, memory operations involve many hidden hard-
ware µops. These µops not only form dependence chains,
but also use a significant amount of energy.

Figure 1(a) shows code containing a load and a store along
with the µops that implement these instructions. The load
µops are: #1 Add the base register value and the offset to
obtain the virtual address (va); #2 Access the data translation
lookaside buffer (DTLB) using the va to get the physical
address (pa); #3 Perform the tag check to identify the way
where the data resides in a set-associative cache; and #4 use
the pa index and the way to access the cache data and update
the register. The store uses identical µops #1, #2, and #3, but
#5 assigns the data to the cache line. Given that the load
and store access the same location, the first three µops for
the store are clearly redundant, which can be eliminated
if the store instruction can use the results of prior µops.
Unfortunately, these µops are not visible to the compiler with
conventional ISAs and it would be expensive to implement
each µop as an ISA instruction in terms of code size, fetch
bandwidth, and energy.

Eliminating redundant µops can be accomplished without
exposing each µop as an explicit instruction to the compiler.
In our example, µop (1) va=r4+0; can be combined with
the two instructions that update r4. Coupling µops (2) and
(3) into these instructions effectively creates a prepare to
access memory (pam) instruction, yielding the code shown
in Figure 1(b) that eliminates the redundant virtual address
calculation, DTLB access, and L1 DC tag check in the loop.

65

https://doi.org/10.1145/3211332.3211340
https://doi.org/10.1145/3211332.3211340

LCTES’18, June 19–20, 2018, Philadelphia, PA, USA Stokes, Baird, Jin, Whalley, and Onder

Table 1. Last Instruction to Compute a Data Address
Size Type Operation MIPS Inst Effect Source Operands

Scalar
Local (1) integer immediate add rd = rs + immed stack pointer and offset
Global (2) bitwise immediate OR rd = rs | immed high | low portions of global address
Pointer (3) integer load rt = M[rs] pointer variable address

Composite
Array Element (4) integer register add rd = rs + rt array base address and element offset
Structure Field (1) integer immediate add rd = rs + immed struct base address and field offset

Pointer Arithmetic (5) integer register sub rd = rs - rt pointer - var offset

 2. pa=dtlb_access(va);

 3. way=tag_check(pa);

 4. r3=load_access(pa,way);

 1. va=r4+0;

r3=M[r4];

r4=sp+72;

r3=r3+r5;

M[r4]=r3;

r4=r4+4;

PC=r4!=r8,L1;

 2. pa=dtlb_access(va);

 3. way=tag_check(pa);

 1. va=r4+0;

 5. store_access(r3,pa,way);

L1:

 4. r3=load_access(pa,way);

 1. va=sp+72;

 2. pa=dtlb_access(va);

 3. way=tag_check(pa);

 3. way=tag_check(pa);

 5. store_access(r3,pa,way);

 6. va=r4+4;

 2. pa=dtlb_access(va);

r4=sp+72;

r3=M[r4];

r4=r4+4;

PC=r4!=r8,L1;

M[r4]=r3;

r3=r3+r5;

[pam]

[pam]

L1:

(a) Conventional Micro Operations

(b) Decoupled Micro Operations

Figure 1. Memory Access Micro Operations

Note that the pam in the figure is simply an annotation. An in-
struction whose destination result can be used as the address
input of a memory operation can be annotated, including
integer load instructions used for pointer chasing. Hence,
µop results, such as pa, and way are effectively coupled with
the result register (r4) of the pam instruction by the micro-
architecture and essentially extend the live-ranges of these
values to other instructions.

In this paper we propose the Decoupled Address Genera-
tion and Data Access (DAGDA1) technique to separate the
micro-operations associated with memory accesses and dis-
tribute them to other instructions. This separation facilitates
energy optimizations, some of which rely on simple memo-
ization techniques that are implemented by using the des-
tination register number of pam annotated instructions as
an index into simple small tables maintained by the micro-
architecture.

2 Background
In this paper we describe our proposed techniques in the con-
text of an in-order pipeline where the benefits are more obvi-
ous. In-order pipelines are commonly used in many embed-
ded processors, are the only option for extreme low-power
systems, and are growing in importance as computation
is facing more stringent power and energy requirements.
1A simple, but very powerful Celtic God.

However, our proposed techniques are also applicable in
out-of-order (OoO) processors.

Figure 2 depicts how a classical in-order pipeline performs
a load from an n-way set-associative L1 DC. The virtual
memory address is generated by adding a displacement to
a base address obtained from the register file in an address
generation (ADDR-GEN) stage. In the SRAM-ACCESS stage
the DTLB, the L1 DC tags, and the L1 DC data are all accessed
in parallel to minimize load hazard stalls and the tag value
of the physical address is compared to the tag value of the
physical page number from the DTLB.2 This organization
is energy inefficient as all data arrays are accessed, but the
value can reside in at most one way within a cache set.

G
A

U

ADDR−GEN SRAM−ACCESS

...

...

Base Address

Displacement

DATA: n−1

DATA: 0

TAG: n−1

TAG: 0

DTLB

...

...

=

=

Figure 2. Conventional L1 DC Pipeline Load Access

Figure 3 shows the address fields used to access the DTLB
and the L1 DC. The virtual page number is used to access
the DTLB, which produces the corresponding physical page
number. The virtual and physical page offsets remain the
same. The L1 DC block number uniquely identifies the L1
DC line being accessed. The L1 DC offset indicates the first
byte of the data to be accessed in the L1 DC line. The set
index is used to access the L1 DC set. The tag contains the
remaining bits that are used to verify if the line resides in
the L1 DC.3

3 Decoupling the Address Generation and
Memory Access Operations

The SRAM-ACCESS pipeline stage as depicted in Figure 2
is inefficient with respect to energy usage since all L1 DC
data arrays must be accessed for loads as the data access
occurs in parallel with the L1 DC tag check. It is possible
2The register level after the ADDR-GEN stage is embedded in the DTLB,
TAG, and DATA blocks.
3We depict the physical page number and the tag fields being the same
size, but the physical page number could be smaller for a virtually-indexed,
physically-tagged (VIPT) cache. To simplify the description, we assume
these two fields are the same size.

66

Decoupling Address Generation from Loads and Stores . . . LCTES’18, June 19–20, 2018, Philadelphia, PA, USA

tag

L1 DC block number

set index

physical page number page offset

virtual page number page offset

DTLB

physical address

virtual address

offset
L1 DC

Figure 3. Address Fields

to extend the instruction pipeline to have a separate stage
for accessing the DTLB and L1 DC tag arrays so only a
single L1 DC data array needs to be accessed. We found
that across the MiBench benchmarks [6] the execution time
increases by 8% on average for an in-order processor whose
L1 DC access is increased from two stages to three stages to
facilitate sequential tag and data accesses [2]. The change is
impractical since the reduced energy usage for the L1 DC
accesses would be largely offset by the increased energy
required for longer execution times of applications.
As shown in Figure 2, an in-order instruction pipeline

includes separate pipeline stages for generating the memory
address (ADDR-GEN) and accessing the data cache (SRAM-
ACCESS) within a load instruction. An address generation
step is included in an instruction pipeline since most proces-
sors support a displacement addressing mode for a memory
operation, where the effective address is the sum of a base
register value and a sign-extended immediate offset (i.e.,
M[rs+immed]). We propose that the DTLB access and L1 DC
tag check be decoupled from the L1 DC data access by as-
sociating these operations with different instructions. The
possible last instructions in the computation of the addresses
of variables in a C/C++ application for almost all cases are
shown in Table 1. Thus, these five instructions can either be
annotated or separate opcodes can be used to indicate that
the integer destination register can be subsequently used
to dereference a data value. The actual data access to per-
form the load or store will now use only a register indirect
addressing mode (i.e., M[rs]).

Decoupling address generation and data access into sepa-
rate instructions does not significantly increase the instruc-
tions executed for the following reasons. (1) Load and store
instructions in our compiler used a zero displacement 46%
of the time for theMiBench benchmark suite. Many memory
references sequentially access array elements and the dis-
placement becomes zero after performing the loop strength
reduction optimization, where the array base address is as-
signed to a register before the loop and an integer addition
is used to calculate the next array element address in the
loop. (2) Sometimes the address generation calculation is
redundant. In fact, a memory address using a non-zero dis-
placement is often loop invariant, such as referencing a lo-
cal variable that uses the stack pointer register, and can be
hoisted out of loops. (3) We will later show in Section 5 that
we can encode an ALU operation with load and store opera-
tions that use a simple indirect register addressing mode.

Table 2 shows the DAGDA pipeline stages for a tradition-
ally pipelined in-order processor extended with decoupled
address generation and data accesses. The first five are con-
ventional stages found in a traditional pipeline. The AG stage
includes generating an address through an integer addition
or bitwise OR operation. The TC and DA stages in the table
comprise other actions that are typically associated with a
single conventional data cache access (MEM) pipeline stage.
The TC stage accesses the DTLB to obtain the physical page
number and accesses the L1 DC tag arrays to check if the
desired line is resident in the L1 DC. Both the DTLB and L1
DC tag accesses occur in parallel. The DA stage accesses a
single L1 DC data array to either load or store a value.

Table 2. DAGDA Inst Pipeline Stages
Stage Explanation Stage Explanation
1. IF inst fetch 6. AG address generation
2. ID inst decode 7. TC DTLB access and
3. RF register fetch L1 DC tag check
4. EX execute 8. DA L1 DC data access to
5. WB write back load/store a value

Table 3 shows DAGDA pipeline stages applied for vari-
ous instructions. Unlike a conventional pipeline, the data
access (DA) stage is performed before the execution (EX)
stage. Stages shown in italics font indicate that information
is passed through the stage, but no action is taken. For in-
stance, a conventional ALU instruction does not perform a
data access. A pam ALU instruction performs a DTLB access
and L1 DC tag check (TC stage) and updates the register
file (WB stage) after the address is calculated (AG stage).
The TC stage is performed immediately following the AG
stage allowing the DTLB access and L1 DC tag check to be
peformed in the following cycle. We use a distinct adder
for the AG stage so that the address can be performed a
cycle earlier to decrease stalls with a dependent load or store
instruction. This same adder can also be used for branch
target address calculations. The EX stage is not used for the
address generation for load and store instructions since the
address has already been generated by a pam instruction
and memory references are only performed with a register
indirect addressing mode. We will describe in Section 5 how
to exploit the EX stage associated with a load or store to
perform an ALU operation in addition to a memory access.
The TC stage is not used for regular loads and stores as the
DTLB access and L1 DC tag check are previously performed

Table 3. DAGDA Stages Used by Instructions
Instruction Pipeline Stages
ALU inst IF ID RF DA EX WB
pam ALU inst IF ID RF AG TC WB
load inst IF ID RF DA EX WB
pam load inst IF ID RF DA TC WB
store inst IF ID RF DA EX WB

67

LCTES’18, June 19–20, 2018, Philadelphia, PA, USA Stokes, Baird, Jin, Whalley, and Onder

Table 4. DAGDA Instruction Pipeline Example
Instruction 1 2 3 4 5 6 7 8 9 10
1. pam add IF ID RF AG TC WB
2. other IF ID RF DA EX WB
3. pam load IF ID RF DA TC WB
4. other IF ID RF DA EX WB
5. load IF ID RF DA EX WB

in a pam instruction. A pam load instruction will perform
the TC stage after the address has been loaded from the L1
DC (DA stage). The write back (WB) stage is not used for a
store instruction.
Table 4 depicts a sequence of instructions in a DAGDA

in-order instruction pipeline. The AG, DA, and TC stages
used in the example are depicted in boldface in the pipeline
diagram. Instruction 1 calculates an address during the AG
stage and performs a DTLB access and a tag check in the TC
stage to determine the L1DCway of the set where the desired
data line resides. Instruction 3 loads an address value from
the L1 DC. The DA is performed in cycle 6 and the L1 DC
way can be forwarded from instruction 1, which is available
at the end of cycle 5. Instruction 3 also performs the TC stage
in cycle 7 since it is a pam load. Instruction 5 uses the loaded
value to dereference memory in cycle 8. Note in this pipeline
one instruction is required to be executed between the point
that an address calculation is performed (instruction 1) or a
pointer address is loaded from memory (instruction 3) and
the point that the address is dereferenced (instructions 3 and
5). Scheduling at least one independent instructions between
a pam instruction and the point of a load is often easier
than the conventional problem of scheduling an independent
instruction between a load and the use of a loaded value since
effective address calculations typically do not have many
dependences with other instructions. We show in the next
section that in many cases the L1 DC way will be known
after the AG stage of a pam instruction allowing the TC
stage and potential hazards between pam and data access
(load and store) instructions to be avoided. In the infrequent
case when the L1 DC way is unknown after the AG stage
and the pam instruction can only be scheduled immediately
before the data access instruction, there are two options:
(1) the pipeline could either stall the data access instruction
for a cycle to allow the TC stage of the pam instruction to
complete before the DA stage of the data access instruction
or (2) all L1 DC data arrays could be accessed in parallel in
the DA stage of the data access instruction with the L1 DC
tag check in the TC stage of the pam instruction.

4 Memoizing L1 DC and DTLB Ways
The L1 DC way must be stored in a structure since the pam
instruction and the corresponding data access instruction
may be separated by many instructions, which would pre-
vent forwarding the L1 DC way in the instruction pipeline.
In fact, a DTLB access and L1 DC tag check will often be

unnecessary since the same line may be accessed again. Fig-
ure 4(a) shows code for loading from and storing to the same
variable. While the load needs a corresponding pam instruc-
tion, the store can use the same L1 DC way as the value of
r6 has not been changed. Figure 4(b) shows an example of
accessing sequential array locations. The pam instruction
(r20=r20+4;) need not perform a DTLB access or L1 DC
tag check when the L1 DC block number field of the L1 DC
address (see Figure 3) is not updated.

r6=...;[pam]

M[r6]=...;

...

...=M[r6];

...

(a) Redundant Address

r2=M[r20];

PC=r20!=r21,L3;

r20=r20+4;[pam]

...

(b) Strided Accesses

r20=...;[pam]

L3:

Figure 4. Memoization Examples

A simple and efficient approach to avoid redundant DTLB
accesses and L1 DC tag checks is to associate information
with the destination register number of a pam instruction
and to detect when updates to this register do not invalidate
this information. Consider the address generation structure
(AGS) in Figure 5(a) that contains fields associated with each
integer register used as an indirect address register in load
and store instructions. The AGS structure could also be uti-
lized for an OoO processor by associating the AGS entry
information with each physical register. The DWV bit in-
dicates if the DTLB way field is valid. The DTLB way field
holds the DTLB way in which the associated physical page
number resides. If the DWV bit is not set, then the rest of
the AGS entry is considered invalid. The LWV bit indicates
if the L1 DC way field is valid. The L1 DC way field holds
the L1 DC way in which the associated cache line resides.
By only allowing an indirect addressing mode, the L1 DC set
index field (see Figure 3) of the register value indicates the
L1 DC set and need not be stored in the AGS. The PP field
contains page protection bits from the DTLB entry since
the AGS structure allows DTLB references to be avoided.
The AGS entry needs to be accessed during the RF stage to
allow a data access (DA) for a load in the following cycle.
Figure 5(b), which deals with the coherence issue of L1 DC
evictions, will be described later in this section.
An address is often updated and still resides in the same

cache line and more frequently in the same page. Figure 6
shows how to easily detect if the cache line to be accessed
will change during a pam integer immediate addition (rd =
rs + immed). First, the magnitude of the immediate has to

68

Decoupling Address Generation from Loads and Stores . . . LCTES’18, June 19–20, 2018, Philadelphia, PA, USA

...

n−1

0

wayLWVDWV
L1 DCDTLB

way PP

...

31

0

(a) Address Generation (b) Address Generation
Structure (AGS) Valid Information (AGV)

Figure 5. Address Generation Information

be less than the line offset size. Second, the carry out values
are inspected during the addition. If the set index field is
updated, then the L1 DC way may no longer be accurate and
the L1 DC tag arrays and a single way in the DTLB have
to be accessed in the TC stage. If the virtual page number
(VPN) field is updated, then the DTLB way may have also
changed and all the ways in the DTLB have to be accessed.
A pam integer add with registers can be handled in a similar
manner as the magnitude of the register source values can
be checked during the integer addition.

Figure 6. Detecting Address Changes

Conventional compiler optimizations, such as common
subexpression elimination and loop-invariant code motion,
are used to reduce the number of pam address generation
calculations and the associated L1 DC tag checks and DTLB
accesses. However, we also perform another optimization to
avoid more L1 DC tag checks and DTLB accesses. Consider
Figure 7(a) where two nearby addresses are dereferenced.
Figure 7(b) shows that the second pam instruction can be
expressed using the destination register of the first pam
instruction. If the addition of -8 is still within the same line
as the r17 source value, then the L1 DC tag check and DTLB
access can be avoided. Even if the two addresses do not reside
in the same line, the associative DTLB access can be avoided
if the addresses reside in the same page.

r2=sp+80; [pam]
...

r2=M[r2];
...

r2=sp+72; [pam]
...

r2=M[r2];

(a) Original Insts

r17=sp+80; [pam]
...

r2=M[r17];
...

r17=r17+−8; [pam]
...

r2=M[r17];

(b) Updated Insts

Figure 7. Accessing Nearby Addresses
Figure 5(b) depicts the AGV structure that is used as one

possible method to invalidate AGS entries when an L1 DC
line is evicted or invalidated. Each entry in the structure

contains a bit vector, where each bit represents an integer
register. An entry is indexed by the L1 DC way, where n
is the associativity level for the L1 DC. Each time an AGS
entry shown in Figure 5(a) is associated with a line, the bit
corresponding to the register number used in the indexed
entry of the AGV structure is set. Each time the LWV bit (see
Figure 5(a)) is cleared due to a non-pam instruction updating
an integer register, the bit corresponding to that register
is also cleared in every AGV entry. The AGV structure is
read when an L1 DC line is replaced or invalidated and the
corresponding bits set in the entry accessed by the L1 DC
way of that line are used to determine which AGS entries
will have their LWV bit cleared. Thus, this structure con-
tains an inverse mapping between one L1 DC way and the
AGS entries. Additional AGV entries in Figure 5(b) could be
added by using the low-order bits of the set index field of
the address shown in Figure 3 along with the L1 DC way
to distinguish between different AGV entries. DTLB entries
are less frequently replaced. All the DWV bits in the AGS
structure and the values in the AGV structure are cleared
upon a DTLB eviction.

5 Coalescing ALU Operations with
Memory Data Accesses

We perform an ALU operation when possible in the instruc-
tion that encodes a DAGDA load or store data access to both
decrease code size and improve performance. Supporting
direct ALU memory operands is problematic for a 32-bit in-
struction set when nonzero displacements are allowed.We do
not have these problems with DAGDA. Consider Figure 8(a)
that shows the MIPS I format that is conventionally used to
encode immediate instructions that include load and store
data accesses. The 16-bit immediate field is no longer used in
DAGDA load and store operations since a displacement ad-
dressing is not allowed. Thus, 16 bits are available to encode
another operation. These ALU operations performed with
loads and stores can be implemented without requiring an
extra ALU in the processor. For a load operation, a funct field
and either a register or a short immediate can be encoded in
the available 16 bits and an ALU operation can be performed
on the loaded value since the DA pipeline stage occurs a
cycle before the EX pipeline stage is performed (see Table 3).
Figure 8(b) shows how the MIPS R instruction format can be
used to encode a load and a dependent operation that uses
the loaded value. Figure 8(c) shows how a short immediate
can be encoded where a dependent operation can follow a
load. The figure also shows it is possible to update the regis-
ter being dereferenced in a load or a store, which means a
postincrement of this register could be performed in paral-
lel with the memory operation. Note that a postincrement
for a load requires that either a second write port would be
needed for the integer register file or a buffer would have

69

LCTES’18, June 19–20, 2018, Philadelphia, PA, USA Stokes, Baird, Jin, Whalley, and Onder

to be utilized to store one of the write operations until the
integer register write port is free.

opcode rs rt immediate

16556

ex: rt=M[rs+immed]; # load

(a) Original MIPS I Format Used for Loads and Stores

opcode rs rt rd funct

6 55 5 6

ex: rd=M[rs]+rt; # load+addreg

(b) MIPS R Format Used with Loads

rs rt funct

65 5 10

immediate

6

opcode

ex: rt=M[rs]+immed;

ex: rt=M[rs]; rs=rs+immed; # load+postincr

load+addimmed

ex: M[rs]=rt; rs=rs+immed; # store+postincr

(c) New Short Immediate Format Used with Loads and Stores

Figure 8. Encoding Loads and Stores
with an ALU Operation

We schedule the pam instruction so that it can immedi-
ately follow the memory access when possible. Consider the
loop in Figure 9(a) where the pam instruction is in the loop
header at L2. Figure 9(b) shows the revised loop where the
pam instruction is moved to both the preheader and the pre-
decessor block within the loop. Because the pam instruction
can immediately follow the memory reference that refer-
ences the same register, the compiler is able to coalesce the
pam instruction with the store instruction. Note the distance
in instructions from the pam instruction to the memory
reference that dereferences the pam register is increased.
Scheduling pam instructions earlier has multiple advantages.
(1) The number of instructions executed is decreased when
the pam instruction can be coalesced with a memory refer-
ence. (2) The L1 DC tag check is more likely to be completed
before the data access in the memory reference occurs. (3)
If the L1 DC tag check does not find a matching tag, then
the access to the next level of the memory hierarchy can be
initiated earlier, which can reduce the effective L1 DC miss
penalty.

 PC=L2;

L1: ...

 ...

 M[r7]=r3;

 ...

L2: ...

(a) Original Loop

 PC=r7!=r8,L1;

 r7=r7+4; [pam]

 PC=r7!=r8,L1;

 PC=L2;

L1: ...

 ...

 ...

 r7=r7+4; [pam]

L2: ...

 M[r7]=r3; r7=r7+4; [pam]

(b) After Transformation

Figure 9. Scheduling pam Instructions

6 Evaluation Framework
In this section we describe the experimental environment.
We use 17 benchmarks shown in Table 5 from the MiBench

benchmark suite [6], which is a representative set of embed-
ded applications. All benchmarks are simulated using the
large dataset option.

Table 5. Benchmarks Used
Category Benchmarks
automotive bitcount, qsort, susan
consumer jpeg, tiff
network dijkstra, patricia
office ispell, stringsearch
security blowfish, rijndael, pgp, sha
telecom adpcm, CRC32, FFT, GSM

We used the VPO compiler [5] to annotate pam instruc-
tions and to perform the optimizations described in the paper.
We generated code for a modified version of theMIPS instruc-
tion set that supports the ability to annotate pam instructions
shown in Table 1. We used the ADL simulator [11] to execute
both a baseline MIPS ISA and the ISA that supports both
pam annotations and loads and stores that can be coalesced
with ALU operations. We modified the ADL simulator to
estimate the performance of a single issue in-order pipeline
as described in the paper. Table 6 shows other processor
configuration details that we utilized in our simulations.

Table 6. Processor Configuration
page size 8KB

L1 DC 32KB size, 4 way associative,
1 cycle hit, 10 cycle miss penalty

DTLB 32 entries, fully associative

We used CACTI to estimate L1 DC and DTLB energy us-
age assuming 22-nm CMOS process technology with low
standby power (LSTP). Table 7 shows the energy required
for accessing various components of the L1 DC and DTLB.
We estimated the energy usage for a one-way L1 DC data
array read to be one fourth of the energy required to simul-
taneously read four L1 DC data arrays.

Table 7. Energy for L1 DC and DTLB Components
Component Energy
Read L1 DC Tags - All Ways 0.782 pJ
Read L1 DC Data - All Ways 8.236 pJ
Write L1 DC Data - One Way 1.645 pJ
Read L1 DC Data - One Way 2.059 pJ
Read DTLB - Fully Associative 0.823 pJ
Read DTLB - One Way 0.215 pJ
Write AGS - 1 Entry 0.320 pJ
Read AGS - 1 Entry 0.147 pJ
Write AGV - 1 Bit in All 4 Entries 0.240 pJ
Read AGV - 32 Bits in All 4 Entries 0.500 pJ

70

Decoupling Address Generation from Loads and Stores . . . LCTES’18, June 19–20, 2018, Philadelphia, PA, USA

Benchmarks

a
d
p
c
m

b
it
c
o
u
n
t

b
lo

w
fi
s
h

c
rc

d
ijk

s
tr

a ff
t

g
s
m

is
p
e
ll

jp
e
g

p
a
tr

ic
ia

p
g
p

q
s
o
rt

ri
jn

d
a
e
l

s
h
a

s
tr

in
g
s
e
a
rc

h

s
u
s
a
n

ti
ff

a
ri
th

 m
e
a
n

L
1
 D

C
 D

a
ta

 A
rr

a
y
 R

e
a
d
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Multiple Way Single Way

Figure 10. Load L1 DC Single and Multiple Way Data Array Accesses

Benchmarks

a
d
p
c
m

b
it
c
o
u
n
t

b
lo

w
fi
s
h

c
rc

d
ijk

s
tr

a ff
t

g
s
m

is
p
e
ll

jp
e
g

p
a
tr

ic
ia

p
g
p

q
s
o
rt

ri
jn

d
a
e
l

s
h
a

s
tr

in
g
s
e
a
rc

h

s
u
s
a
n

ti
ff

a
ri
th

 m
e
a
nL

1
 D

C
 T

a
g
 A

rr
a

y
 a

n
d
 D

T
L

B
 A

c
c
e
s
s
e
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DTLB Fully Associative Accesses DTLB Single Way Accesses L1 DC Tag Checks

Figure 11. L1 DC Tag Checks and DTLB Access Ratio

7 Results
Figure 10 shows the ratio of accessing all L1 DC data arrays to
a single L1DC data array for load instructions. All data arrays
are only accessed when the AGS entry is not marked as
valid, which could occur for two reasons. First, the compiler
sometimes cannot identify the pam instruction, which can
occur when the last instruction that sets the register being
dereferenced is passed as a parameter or returned from a
function. Second, the entry could be invalidated due to an L1
DC line eviction. Figure 5(b) shows that for each way in the
L1 DC there is a bit for each integer register that is set when
the AGS entry is associated with that L1 DC way. Whenever
a line is replaced, all AGS entries having that same way are
invalidated. Only 1.3% of the loads on average performed an
associative data array access. These results show that the
compiler is able to typically identify a pam instruction and
L1 DC evictions do not cause many associative data array
accesses for loads. Note that stores always access only a
single L1 DC data array.

Figure 11 shows the ratio of L1 DC tag checks and fully
associative DTLB accesses that are performed in DAGDA
compared to a conventional processor. Only 53.3% of the
memory references require an L1 DC tag check on average.
Likewise, only 34.6% of the memory references require a fully
associative DTLB access on average. These results illustrate
that our memoization techniques are very effective at reduc-
ing the number of L1 DC tag checks and fully associative
DTLB accesses.

Figure 12 shows the energy of accessing the DTLB, L1 DC,
AGS, and AGV structures in DAGDA versus a conventional
DTLB and L1 DC. The left bar for each benchmark shows
the energy usage breakdown for the baseline, which always
totals to 100%. The right bar for each benchmark shows
the energy usage breakdown for DAGDA relative to the
baseline. Static energy for all of the structures comprises
less than 0.5% of the total energy on average for both the
baseline and DAGDA. The biggest energy usage reduction
comes from L1 DC data array reads in DAGDA, dropping
from 73.6% to 19.0% on average. The L1 DC data array write
energy usage is unchanged since stores always access only a

71

LCTES’18, June 19–20, 2018, Philadelphia, PA, USA Stokes, Baird, Jin, Whalley, and Onder

Benchmarks

a
d
p
c
m

b
it
c
o
u
n
t

b
lo

w
fi
s
h

c
rc

d
ijk

s
tr

a ff
t

g
s
m

is
p
e
ll

jp
e
g

p
a
tr

ic
ia

p
g
p

q
s
o
rt

ri
jn

d
a
e
l

s
h
a

s
tr

in
g
s
e
a
rc

h

s
u
s
a
n

ti
ff

a
ri
th

.
m

e
a
n

T
o
ta

l
D

a
ta

 A
c
c
e
s
s
 E

n
e
rg

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Static Energy L1 DC Data Read L1 DC Data Write L1 DC Tag DTLB AGS+AGV

Figure 12. Data Access Energy Usage Ratio

Benchmarks

a
d

p
c
m

b
it
c
o

u
n

t

b
lo

w
fi
s
h

c
rc

d
ijk

s
tr

a ff
t

g
s
m

is
p

e
ll

jp
e

g

p
a

tr
ic

ia

p
g

p

q
s
o

rt

ri
jn

d
a

e
l

s
h

a

s
tr

in
g

s
e

a
rc

h

s
u

s
a

n

ti
ff

a
ri
th

 m
e

a
n

In
s
tr

u
c
ti
o

n
s
 E

x
e

c
u

te
d

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Figure 13. Instructions Executed Ratio

single L1 DC data array. The L1 DC tag array energy usage
dropped from 9.8% to 5.0% on average as about 47% of the
L1 DC tag checks are eliminated due to memoizing the L1
DC way in the AGS structure. Likewise, the DTLB energy
usage dropped from 10.3% to 2.7% on average as 47% of the
DTLB accesses are completely eliminated and 19% required
accessing only a single DTLB way on average. The AGS
and AGV structures required 4.7% additional energy usage
on average as compared to the baseline. Overall, DAGDA
provides on average a 62.4% reduction in total data access
energy usage!

Figure 13 shows the ratio of instructions executed inDAGDA
versus the baseline. Some additional instructions were ex-
ecuted in 9 of the 17 benchmarks due to decoupling the
address generation and data access, which requires an addi-
tional calculation when the displacement of the data access
was not zero. However, this increase in instructions executed
was offset by being able to coalesce data access operations
with ALU instructions. In addition, some of the additional in-
structions were loop invariant and were hoisted out of loops.
On average the number of instructions executed decreased
by over 1.4%.

Figure 14 shows the estimated cycles. The left bar for
each benchmark shows the baseline and always totals to
100%. The baseline includes stalls between loads and the first
instruction that references the loaded register, which only
occurs when a reference is immediately after the load. The
right bar for each benchmark shows the cycles using the
DAGDA technique. Stalls between a pam instruction and
loads and stores that reference the pam instruction desti-
nation register are depicted. Note that conventional load
hazard stalls on L1 DC hits are not possible since the data
access (DA) stage is performed earlier in the pipeline. Only
5 of the benchmarks with DAGDA increased the number of
cycles executed. DAGDA provides on average about a 7.6%
reduction in estimated cycles.

8 Related Work
Many techniques have been proposed to reduce energy usage
in set-associative L1 DCs. Unlike our DAGDA approach, way-
prediction techniques have a relatively high performance
penalty of several percent [7, 12]. Nicolaescu et al. propose
to save the way information of the last 16 cache accesses in

72

Decoupling Address Generation from Loads and Stores . . . LCTES’18, June 19–20, 2018, Philadelphia, PA, USA

Benchmarks

a
d
p
c
m

b
it
c
o
u
n
t

b
lo

w
fi
s
h

c
rc

d
ijk

s
tr

a ff
t

g
s
m

is
p
e
ll

jp
e
g

p
a
tr

ic
ia

p
g
p

q
s
o
rt

ri
jn

d
a
e
l

s
h
a

s
tr

in
g
s
e
a
rc

h

s
u
s
a
n

ti
ff

a
ri
th

 m
e
a
n

C
lo

c
k
 c

y
c
le

s
 R

e
la

ti
v
e

 t
o
 B

a
s
e

lin
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Load stalls (baseline) Insts (baseline) PAM mem stalls (DAGDA) Insts (DAGDA)

Figure 14. Estimated Performance Ratio

a table, and each memory access speculatively performs a
fully associative tag search on this table. If there is a match,
then the way information is used to activate only the corre-
sponding way [10]. In contrast, our AGS structure is much
smaller and only a single AGS entry is accessed for each
memory reference. Way halting is another method for re-
ducing the number of tag comparisons [16], where partial
tags are stored in a fully associative memory (the halt tag
array) with as many ways as there are sets in the cache. In
parallel with decoding the word line address the partial tag
is searched in the halt tag array. Only for the set where a
partial tag match is detected can the word line be enabled by
the word line decoder. This halts access to ways that cannot
contain the data as determined by the partial tag comparison.
Way halting requires a specialized SRAM implementation
that might have a negative impact on the maximum opera-
tional frequency. An approach has been recently developed
that allows way halting to be speculatively applied, but this
technique only works when the displacement value in the
memory reference is small and there is no carry out into the
set index field of the address [9]. Way halting could be com-
bined with our DAGDA approach to reduce energy usage
even further.

There have also been some techniques proposed to avoid
DTLB accesses. For example, opportunistic virtual caching
is a technique to allow some blocks in the L1 caches to be
cached with virtual addresses by changing the operating sys-
tem to indicate which pages can use virtual caching [4]. In
contrast, DAGDA can avoid many DTLB accesses by detect-
ing that the physical page has not changed while requiring
no operating system changes.
L1 DC tag checks for memory references are eliminated

when the cache line to be accessed is identified by the com-
piler using direct address registers (DARs) [15]. The compiler
annotates a memory reference that sets a DAR identifying
the accessed L1 DC line and subsequent memory references
that are guaranteed to access the same line reference the

same DAR to avoid the tag check. Unlike DAGDA, several
compiler transformations are required, such as loop unrolling
and alignment of variables on cache line boundaries, to make
these guarantees, which can result in both code and data size
increases.

A tagless cache (TLC) design has been proposed that uses
an extended TLB (ETLB) to avoid tag checks [13]. While the
TLC approach can reduce energy usage, the authors assume
the ETLB is accessed first to subsequently allow accessing
a single L1 DC data array, which could either increase the
cycle time or require an additional cycle to access the L1 DC.
The DAGDA approach could be used in conjunction with
the TLC approach as the DTLB is accessed during the pam
instruction and the L1 DC data array is accessed at least one
cycle later. Unlike DAGDA, the TLC approach does not avoid
TLB accesses. Finally, the use of a TLC requires dealing with
synonyms, homonyms, and other problems associated with
virtually addressed data accesses.

Other small structures have been proposed to reduce L1
DC energy usage. A line buffer can hold the last line ac-
cessed in the L1 DC [14]. The buffer must be checked before
accessing the L1 DC, placing it on the critical path, which
can degrade performance. A line buffer also has a high miss
rate, which may increase the L1 DC energy usage due to
continuously fetching full lines from the L1 DC memory. A
small filter cache accessed before the L1 DC has been pro-
posed to reduce the power dissipation of data accesses [8].
However, filter caches reduce energy usage at the expense
of a significant performance penalty due to their high miss
rate. This performance penalty mitigates some of the energy
benefits of using a filter cache and has likely discouraged its
use.
Like our AGS Method, the Tag Check Elision (TCE) ap-

proach stores an L1 DC way with each integer register [17].
Unlike TCE, DAGDA retains the DTLBway to avoid DTLB ac-
cesses when a different line is accessed within the same page.

73

LCTES’18, June 19–20, 2018, Philadelphia, PA, USA Stokes, Baird, Jin, Whalley, and Onder

TCE stores a bound with every register, which in their evalu-
ation was a 29-bit value. TCE also does not schedule memory
operations using pam instructions. In contrast, DAGDA re-
quires no immediate value with AGS entries, which should
require less power to access. TCE requires two comparisons
and an addition to verify that the effective address of the
memory reference is within the bounds of the cache line as
well as an extra addition and a bound read and write each
time an integer register is incremented by a value. DAGDA’s
check for a carry out of an addition into the set index field
and VPN fields is much simpler. Unlike the TCE approach,
DAGDA avoids accessing n-1 L1 DC data array accesses in
an n-way set associative L1 DC even when the L1 DC way
is unknown before the L1 DC tag check is performed by a
pam instruction. Finally, TCE’s invalidation scheme requires
much more space than DAGDA’s invalidation method.
There have also been techniques proposed to avoid asso-

ciative L1 DC data array accesses. The speculative tag access
(STA) approach speculatively performs an L1 DC tag check
during the address generation stage when the displacement
is small [1]. This approach fails when the addition of the
displacement causes the index field of the effective address
to change as compared to the same field in the base register
value. Early load data dependence detection (ELD3) has been
proposed to allow the L1 DC tag check and the L1 DC data
access to be sequentially performed when it is detected that
the distance in instructions between the load and the first
use of the loaded value is great enough avoid a stall [2]. A
similar approach was also applied at compile time by us-
ing context-aware loads and stores [3]. DAGDA is able to
avoid more associative L1 DC data array accesses as well as
avoiding L1 DC tag checks and DTLB accesses.

9 Future Work
There are several configuration changes we can investigate
using DAGDA. First, larger L1 DC cache lines should lead
to fewer L1 DC tag checks due to the L1 DC set index field
being less frequently updated each time a pam increment
is executed. Likewise, a higher miss penalty for larger L1
DC lines may be offset by pam instructions initiating the L1
DC line prefetch before the load data access is performed.
Second, a higher associative L1 DC with DAGDA should
likely decrease energy usage as the power to access a single
L1 DC data array should be reduced. As shown in Section 7,
the common case in DAGDA is that only a single L1 DC
data array is accessed on loads. Third, the DAGDA approach
could be evaluated in the context of an out-of-order (OoO)
processor. Reducing data access energy usage is still likely
in an OoO processor since the DAGDA approach should still
result in fewer L1 DC data array accesses, fewer L1 DC tag
checks, and fewer DTLB accesses.

10 Conclusions
DAGDA reduces energy usage for memory accesses by de-
coupling the address generation and the data access into
separate instructions. By associating the DTLB access and
L1 DC tag check with address generation instructions, we
are able to typically access a single L1 DC data array for
loads. We are also able to avoid many DTLB accesses and
L1 DC tag checks by associating the DTLB way and L1 DC
way with the register that holds the memory address to be
dereferenced. Finally, we show that performance is improved
due to merging the address generation with another instruc-
tion when the displacement is zero, applying conventional
compiler optimizations to eliminate redundant address gen-
eration instructions, coalescing ALU operations with loads
and stores, and prefetching L1 DC cache lines when a pam
instruction detects an L1 DC miss.

Acknowledgments
We thank the anonymous reviewers for their comments that
helped to improve this paper. This work was supported
in part by the US National Science Foundation (NSF) un-
der grants DUE-1241525, DUE-1259462, IIA-1358147, CCF-
1533846, CCF-1533828, DGE-1565215, and DRL-1640039. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of the NSF.

References
[1] A. Bardizbanyan, M. Själander, D. Whalley, and P. Larsson-Edefors.

Speculative tag access for reduced energy dissipation in set-associative
l1 data caches. In Proceedings of the IEEE International Conference on
Computer Design (ICCD 2013), Oct. 2013.

[2] A. Bardizbanyan, M. Själander, D. Whalley, and P. Larsson-Edefors.
Reducing set-associative l1 data cache energy by early load data de-
pendence detection (eld3). In IEEE/ACM Design Automation and Test
in Europe Conference, March 2014.

[3] A. Bardizbanyan, M. Själander, D. Whalley, and P. Larsson-Edefors.
Improving data access efficiency by using context-aware loads and
stores. In ACM Conference on Languages, Compilers, and Tools for
Embedded Systems, June 2015.

[4] A. Basu,M. Hill, andM. Swift. Reducingmemory reference energywith
opportunistic virtual caching. In Proceedings of ACM/IEEE International
Symposium on Computer Architecture, pages 297–308, June 2012.

[5] M. E. Benitez and J. W. Davidson. A portable global optimizer and
linker. In Proceedings of the SIGPLAN Symposium on Programming
Language Design and Implementation, pages 329–338, June 1988.

[6] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown. MiBench: A free, commercially representative embedded
benchmark suite. In Proc. Int. Workshop on Workload Characterization,
pages 3–14, Dec. 2001.

[7] K. Inoue, T. Ishihara, and K. Murakami. Way-predicting set-associative
cache for high performance and low energy consumption. In Proc.
IEEE Int. Symp. on Low Power Design (ISLPED), pages 273–275, Aug.
1999.

[8] J. Kin, M. Gupta, and W. Mangione-Smith. The filter cache: An energy
efficient memory structure. In Proc. Int. Symp. on Microarchitecture,
pages 184–193, Dec. 1997.

74

Decoupling Address Generation from Loads and Stores . . . LCTES’18, June 19–20, 2018, Philadelphia, PA, USA

[9] D. Moreau, A. Bardizbanyan, M. Själander, D. Whalley, and P. Larsson-
Edefors. Practical way halting by speculatively accessing halt tags. In
Proceedings of the IEEE Design, Automation, and Test in Europe (DATE
2016), Mar. 2016.

[10] D. Nicolaescu, B. Salamat, A. Veidenbaum, and M. Valero. Fast specu-
lative address generation and way caching for reducing l1 data cache
energy. In Proceedings of International Conference on Computer Design,
Oct. 2007.

[11] S. Önder and R. Gupta. Automatic generation of microarchitecture
simulators. In IEEE International Conference on Computer Languages,
pages 80–89, Chicago, May 1998.

[12] M. D. Powell, A. Agarwal, T. N. Vijaykumar, B. Falsafi, and K. Roy.
Reducing set-associative cache energy viaway-prediction and selective
direct-mapping. In Proc. ACM/IEEE Int. Symp. on Microarchitecture
(MICRO), pages 54–65, Dec. 2001.

[13] A. Sembrant, E. Hagersten, and D. Black-Shaffer. Tlc: A tag-less cache
for reducing dynamic first level cache energy. In Proc. 46th ACM/IEEE
Int. Symp. on Microarchitecture (MICRO), pages 351–356, Dec. 2013.

[14] C. Su and A. Despain. Cache design trade-offs for power and perfor-
mance optimization: A case study. In Proc. Int. Symp. on Low Power
Design (ISLPED), pages 63–68, 1995.

[15] E. Witchel, S. Larsen, C. S. Ananian, and K. Asanović. Direct addressed
caches for reduced power consumption. In Proc. 34th ACM/IEEE Int.
Symp. on Microarchitecture (MICRO), pages 124–133, Dec. 2001.

[16] C. Zhang, F. Vahid, J. Yang, andW. Najjar. A way-halting cache for low-
energy high-performance systems. ACM Transactions on Architecture
and Compiler Optimizations (TACO), 2(1):34–54, Mar. 2005.

[17] Z. Zheng, Z. Wang, and M. Lipasti. Tag check elision. In International
Symposium on Low Power Electronics and Design, pages 351–356, New
York, NY, USA, 2014. ACM.

75

	Abstract
	1 Introduction
	2 Background
	3 Decoupling the Address Generation and Memory Access Operations
	4 Memoizing L1 DC and DTLB Ways
	5 Coalescing ALU Operations with Memory Data Accesses
	6 Evaluation Framework
	7 Results
	8 Related Work
	9 Future Work
	10 Conclusions
	References

