
Improving Both the Performance
Benefits and Speed of

Optimization Phase Sequence
Searches

Prasad Kulkarni and Michael Jantz
EECS, University of Kansas

David Whalley
CS, Florida State University

Optimization Phase Ordering Problem

• Compilers provide many optimization phases

– to improve binary program speed, size, power

• Different orders or application of phases may
produce distinct codes

– phases enable, disable, interact with each other

• No single phase sequence is known to produce
optimal code for all programs.

How to find the phase sequence for each

function/program that generates the best code?

Iterative Compilation

• Evaluate the performance of several phase
sequences to find the best one.

• How to generate different phase sequences?
– exhaustive algorithms are often not feasible

– intelligent machine learning algorithms

• Search time still substantial.

• Issues with iterative compilation
– what is best granularity (function, file, program) to

conduct phase sequence searches?

– how to reduce iterative compilation search time?

Outline

• Introduction

• Experimental framework

• Tradeoffs with search granularities

• Hybrid iterative search algorithm

• Future work

• Conclusions

Experimental Framework

• We used the VPO compilation framework
– established compiler backend, started development in

1988
– comparable performance to gcc -O2

• All VPO phases operate on a single intermediate
representation
– iteratively applies phases until no more improvements
– possible to arbitrarily reorder most phases

• Experiments use all 15 reorderable VPO phases.
• Target architecture is StrongARM SA-100

– SimpleScalar simulator to evaluate performance

VPO Optimization Phases

Optimization Phases

branch chaining loop transformations

common subexpression elim. code abstraction

remove unreachable code eval. order determination

loop unrolling (2, 4, 8) strength reduction

dead assignment elimination reverse branches

block reordering instruction selection

minimize loop jumps remove useless jumps

register allocation

Benchmarks

• Two programs each from six MiBench categories.

• 12 programs, 51 files, 251 functions, 90 executed.

Category Program File Func Description

auto bitcount 10 18 test processor bit manipulation abilities

qsort 1 2 sort strings using the quicksort algorithm

network dijkstra 1 6 Dijkstra’s shortest path algorithm

patricia 2 9 construct patricia tree for IP traffic

telecomm fft 3 7 fast fourier transform

adpcm 2 3 compress 16-bit linear PCM samples

consumer jpeg 7 62 image compression / decompression

tiff2bw 1 9 convert color tiff image to b/w

security sha 2 8 secure hash algorithm

blowfish 6 7 symmetric block cipher

office stringsearch 4 10 searches for given words in phrases

ispell 12 110 fast spelling checker

Iterative Search Algorithm
• Genetic algorithm based search algorithm

– 20 chromosomes per generation, 200 generations
– sequence length twice active batch sequence length

• Algorithm details
– first population of sequences randomly initialized
– apply each sequence, and sort by performance
– replace 4 sequences in low performing half using

crossover (gene mixing)
– replace each phase with another randomly selected

phase with 5-10% probability during mutation
– fitness criteria is 50% speed and 50% size, over whole

program performance

• Searches were performed at the program, file, and
function levels.

Program-Level Searches

– single phase sequence for all functions in program

– sequence length is twice maximum active batch length
over all program functions

– each simulation evaluates fitness of one sequence for
all program functions

DO

determine next compilation settings;

compile entire program with these settings;

IF any function is not redundant THEN

get entire program performance results

by simulating the program;

UNTIL number of iterations completed;

File-Level Searches

– single phase sequence for all functions in file
– finest granularity for compilers that do not allow

different sequences for individual functions
– smaller average sequence length; more simulations

FOR each file in program DO

DO

determine next compilation settings;

compile all functions in file with

these settings;

IF any function is not redundant THEN

get performance of functions in file

by simulating the program;

UNTIL number of iterations completed;

END FOR

Function-Level Searches

– different sequences and search for each function

– smallest average sequence length; most simulations

– greatest flexibility in customizing phase orderings over
smaller code regions

FOR each function in program DO

DO

determine next compilation settings;

compile function with these settings;

IF function is not redundant THEN

get function performance

by simulating the program;

UNTIL number of iterations completed;

END FOR

Performance Tradeoffs

• Lower granularity function-based search achieves best
performance.

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

b
e
s
t

G
A

 p
e
rf

/b
a
tc

h
 p

e
rf

.

Benchmarks

function file program

Performance Tradeoffs

• Lower granularity function-based search achieves best
performance.

• File-based = function-based, if each file has a single function

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

b
e
s
t

G
A

 p
e
rf

/b
a
tc

h
 p

e
rf

.

Benchmarks

function file program

Performance Tradeoffs

• Lower granularity function-based search achieves best
performance.

• File-based = function-based, if each file has a single function.

• File-based = program based, for single file programs.

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

b
e
s
t

G
A

 p
e
rf

/b
a
tc

h
 p

e
rf

.

Benchmarks

function file program

Search Progress

• All search types achieve respective best results at
about the same time.

• Function-level searches perform well even with
smaller number of generations.

35

35.5

36

36.5

37

37.5

38

38.5

39

1 21 41 61 81 101 121 141 161 181

%
P

e
rf

./
B

a
s

e
 P

e
rf

.

Generations

Function File Program

Compilation Time

• Function-level search applies 60% of phases
compared to program-level search.

• File-level search applies 87% of phases
compared to program-level search.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

R
a
ti

o
 o

f
a

p
p

li
e

d
 p

h
a

s
e

s

Benchmarks

function file

Number of Simulations

• Program-level search requires 59% of the
executions required for function-level search.

• File-level search requires 84% of the executions
required for function-level search.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

N
u

m
.
E

x
e

c
/N

u
m

.
N

a
iv

e
 E

x
e

c
.

Benchmarks

function file program

Need for Hybrid Search Strategy

• Function-level searches
finer search granularity generates best code

custom sequence lengths minimize compile time

– individual function evaluations require the greatest
number of simulations

• Program-level searches
– generates less efficient code after search

– longer sequence lengths increase compile time

smallest number of program simulations

Can we achieve the best of both worlds ?

Hybrid Search Strategy

• Perform individual function searches in parallel.

• Delay program simulation until each function has
an instance to evaluate.

– each simulation evaluates one (different) sequence for
each function in the program

• Each function search may be at different stages of
completion.

• Typically requires fewer simulations than even a
program-based approach

Hybrid Search

DO

FOR each function in program DO

IF function search still incomplete THEN

DO

determine next compilation settings

for this function;

compile function with these settings;

UNTIL function is not redundant OR

function search is complete

ENDIF

END FOR

get results of each function by

simulating program once;

UNTIL number of search generations completed

for all functions in program;

Hybrid Search – Code Performance

• Achieves performance comparable to function-
level search in most cases.

• 8% performance improvement over aggressive
batch compilation.

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

b
e

s
t

G
A

 p
e

rf
/b

a
tc

h
 p

e
rf

.

Benchmarks

function file program hybrid

Hybrid Search – Number of Simulations

• Fewest number of program simulations.

• Requires 48% of the simulations required for
function-level search.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

N
u

m
.
E

x
e

c
/N

u
m

.
N

a
iv

e

E
x
e
c

.

Benchmarks

function file program hybrid

Future Work

• Finer granularity searches achieve better
quality code

– find effective phase sequences over individual loops

• Determine how well our hybrid approach works
with other search algorithms.

• Searches on multi-processor machines

– explore parallelism in various search algorithms

– study benefit of hybrid strategy on multi-processor
machines

Related Work

• Triantafyllis et al. [CGO 2003] and Cooper et al.
[LCTES 2005] used static performance
estimators to reduce search time.

• Agakov et al. [CGO 2006] used static features to
focus their iterative search.

• Kulkarni et al. [PLDI 2004, LCTES 2006] used
pruning techniques to avoid redundant
executions.

• Fursin et al. [HiPEAC 2005] evaluated versions
of the same function in a single execution.

Conclusions

• We discovered that current iterative search
algorithms for effective optimization phase
sequences operating at function, file and program
levels have different tradeoffs
– program-level searches reduce search times due to

smallest number of program simulations

– function-level searches achieve better code
performance and reduce compilation time

• We introduced a hybrid search strategy
– that can achieve code performance comparable to

function-level search with faster search times than
program-level searches

