
Guaranteeing Instruction Fetch Behavior with a Lookahead
Instruction Fetch Engine (LIFE)

Stephen Hines
NVIDIA Corporation

2701 San Tomas Expressway
Santa Clara, CA 95050
shines@nvidia.com

Yuval Peress Peter Gavin
David Whalley Gary Tyson

Computer Science Department
Florida State University

Tallahassee, FL 32306-4530
{peress,gavin,whalley,tyson}@cs.fsu.edu

Abstract
Instruction fetch behavior has been shown to be very regularand pre-

dictable, even for diverse application areas. In this work,we propose the
Lookahead Instruction Fetch Engine (LIFE), which is designed to exploit
the regularity present in instruction fetch. The nucleus ofLIFE is the Tag-
less Hit Instruction Cache (TH-IC), a small cache that assists the instruction
fetch pipeline stage as it efficiently captures informationabout both sequen-
tial and non-sequential transitions between instructions. TH-IC provides
a considerable savings in fetch energy without incurring the performance
penalty normally associated with small filter instruction caches. LIFE ex-
tends TH-IC by making use of advanced control flow metadata tofurther
improve utilization of fetch-associated structures such as the branch predic-
tor, branch target buffer, and return address stack. These structures are se-
lectively disabled by LIFE when it can be determined that they are unneces-
sary for the following instruction to be fetched. Our results show that LIFE
enables further reductions in total processor energy consumption with no
impact on application execution times even for the most aggressive power-
saving configuration. We also explore the use of LIFE metadata on guiding
decisions further down the pipeline. Next sequential line prefetch for the
data cache can be enhanced by only prefetching when the triggering in-
struction has been previously accessed in the TH-IC. This strategy reduces
the number of useless prefetches and thus contributes to improving overall
processor efficiency. LIFE enables designers to boost instruction fetch effi-
ciency by reducing energy cost without negatively affecting performance.

Categories and Subject Descriptors C.1 [Computer Systems
Organization]: Processor Architectures

General Terms Experimentation, Measurement, Performance

Keywords Lookahead Instruction Fetch Engine (LIFE), Tagless
Hit Instruction Cache (TH-IC), L0/Filter Cache

1. Introduction
Processor design and development requires careful consideration
of execution, power, and area characteristics. The requirements for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

LCTES’09, June 19–20, 2009, Dublin, Ireland.
Copyright c© 2009 ACM 978-1-60558-356-3/09/06. . . $5.00

embedded systems are often tighter due to production costs and
reliance on batteries. One active area for exploration in embed-
ded processor design is instruction fetch. Existing research has fo-
cused on reducing instruction cache power, which accounts for ap-
proximately 27% of the total processor power on the StrongARM
SA110 [16]. There are, however, other components of instruction
fetch that can also have a sizable impact on the processor power
characteristics. In particular, speculation logic can account for a
significant percentage of fetch power consumption even for the
limited speculation performed in scalar embedded processors. In
fact, with advances in low power instruction cache design, these
other fetch components can dominate instruction fetch power re-
quirements. This paper describes the Lookahead Instruction Fetch
Engine (LIFE), which is a new approach for instruction fetchthat
attempts to reduce access to these power-critical speculation logic
structures when it can be determined that such an access is unnec-
essary.

Central to LIFE is the presence of a Tagless Hit Instruction
Cache or TH-IC, which we introduced in prior work [11]. TH-IC
is an improvement upon the traditional notion of an L0 or filter
cache (L0-IC) [13]. Both TH-IC and L0-IC are small caches that are
placed before the L1 instruction cache (L1-IC) for the purpose of
providing a more energy-efficient access path to frequentlyfetched
instructions. If the L0-IC experiences a cache miss, then the instruc-
tion needs to be fetched from the appropriate line in the L1-IC on
the following cycle. This entails an additional 1-cycle miss penalty
before the appropriate instruction is fetched. Although the L0-IC
reduces fetch energy requirements, these penalties can result in a
significant performance degradation for many applications. TH-IC
completely eliminates this miss penalty by providing a direct by-
pass to the L1-IC when the instruction to be fetched cannot be
guaranteed to reside in the TH-IC. Guaranteeing instruction cache
hits is accomplished through the use of specialized cache metadata
bits that represent simple relations between instructionswithin the
TH-IC. LIFE extends TH-IC by incorporating additional metadata
which can be used to further improve decisions made during in-
struction fetch.

LIFE exploits knowledge available in the TH-IC about the next
instruction to be fetched to selectively bypass speculation mecha-
nisms present in the fetch pipeline stage. If the next sequential in-
struction can beguaranteed to not be a transfer of control instruc-
tion, then the branch predictor (BP), branch target buffer (BTB),
and return address stack (RAS) do not need to be activated dur-
ing its fetch. Thus LIFE improves utilization of fetch-associated
structures by selectively disabling access. This results in reductions
in both fetch power and energy consumption, while not increasing
execution time. The reduction in power is affected by the hitrate

select next
address

Instruction

Fetch Address BTB RAS ITLB L1 IC

LIFEinf

TH IC

PCincr

BP

Figure 1. LIFE Organization

of the TH-IC and the ratio of branch and non-branch instructions
in the TH-IC. LIFE can further capitalize on common instruction
fetch behavior by detecting transfers of control that will be pre-
dicted as not-taken, which allows bypass of the BTB and RAS on
subsequent fetches since they act as non-branch instruction flow. A
substantial number of branches resolve as not-taken and arecon-
sistent for the entire execution. Identifying those branches residing
in the TH-IC that are almost always not-taken enables the branch
predictor to also be bypassed.

Figure 1 shows the organization of LIFE, which extends the
capabilities of TH-IC with additional metadata for tracking the
branching behavior of instructions. Bold dashed lines represent
control of fetch components by LIFE. Depending on the available
metadata, LIFE can choose to enable or disable access to appropri-
ate fetch structures during the following instruction fetch cycle.

In addition to directing access of fetch structures, the behav-
iors detected by LIFE can also be used to guide decisions thatare
made in subsequent pipeline stages. Traditional next sequential line
prefetching (NSLP) schemes often trade off energy efficiency for
improved performance from the data cache [9, 19, 20]. Although
the previously published TH-IC approach is not suitable fordata
caches due to the lack of identifiable access regularity, thefetch be-
havior of an application can yield clues about data access patterns.
This behavioral information can then be used to improve NSLP.

This paper makes the following contributions:

• We have performed the first study of instruction residency
within small instruction caches.

• An enhanced analysis of fetch behavior with a TH-IC motivates
the need to improve the efficiency of other fetch components
beyond caches as they become the dominant energy consumers.

• We propose the Lookahead Instruction Fetch Engine (LIFE),
a microarchitectural enhancement that exploits fetch regular-
ity to better control access to these power-hungry speculation
resources. Using just 128 bits (2 bits per TH-IC instruction),
LIFE can eliminate 61.17% of accesses to the speculative fetch
structures, leading to significant reductions in fetch power and
total energy consumed.

• We also show that the behaviors captured by LIFE can be
effectively used to tune other pipeline optimizations through a
case study with NSLP.

2. Background: Tagless Hit Instruc-
tion Cache (TH-IC)

Figure 2(a) shows the traditional layout of a small L0/filtercache.
Since the L0-IC is accessed instead of the L1-IC, any miss in
the L0-IC will incur an additional 1-cycle miss penalty prior to
fetching the appropriate line from the L1-IC. Although an L0-IC
reduces the requirements for fetch energy, these miss penalties can
accumulate and result in significant performance degradation for
some applications. It is important to note that this performance loss
will indeed reduce the energy benefit gained by adding the L0-IC

I−CacheL1 I−Cache CPU
Tagless Hit

(b) Tagless Hit I−Cache Configuration

L1 I−Cache
I−Cache
L0/Filter

CPU

(a) Traditional L0/Filter I−Cache Configuration

Figure 2. Traditional L0 and Tagless Hit I-Cache Layouts

due to having to actively run the processor for a longer period of
time. The inclusion of an L0-IC into a memory system design is
essentially a tradeoff providing a savings in fetch energy at the
expense of longer execution times.

The Tagless Hit Instruction Cache, or TH-IC, that our LIFE re-
search in this paper extends is shown in Figure 2(b) and is an al-
ternative configuration [11]. Using just a few specialized metadata
bits, the TH-IC supplies a fetched instruction only when thein-
struction isguaranteed to reside in it. As a side effect of the way
in which guarantees are implemented, tag comparisons become un-
necessary on hits, hence the term “Tagless Hit”. The small size of
the cache and its novel use of metadata are what facilitates the abil-
ity to make guarantees about future cache hits, while still retaining
the ability to operate and update in an energy- and performance-
conscious manner. A TH-IC of similar size to an L0-IC has nearly
the same hit rate and does not suffer a miss penalty since the TH-
IC is not used to fetch an instruction when a miss may occur. In
essence, the TH-IC acts as a filter cache for those instructions that
can be determined to be hits in the TH-IC, while all instructions
that cannot be guaranteed to reside in the TH-IC access the L1-IC
without delay. Additionally, the energy savings is greaterthan using
an L0-IC due to the faster execution time (the TH-IC has no miss
penalty), the reduction in Instruction Translation Lookaside Buffer
(ITLB) accesses (the TH-IC can be accessed on guaranteed hits us-
ing bits from the portion of the virtual address that is unaffected by
the translation to a physical address), as well as the elimination of
tag comparisons on cache hits (since tags are not used to verify a
hit).

One of the key principles in the design of the TH-IC is the idea
of bypassing the TH-IC when it isnot certain that the requested
instruction/line is resident in the TH-IC. This leaves three possi-
bilities when an instruction is fetched: 1) it is a hit in TH-IC, 2) it
resides in TH-IC, but it is not certain, so the L1-IC is directly ac-
cessed the, or 3) it did not reside in TH-IC, and the miss penalty was
avoided by attempting to access it directly from the L1-IC. Only in
the first case will the instruction from the TH-IC be read. When the
instruction is not guaranteed to reside in the TH-IC, the appropriate
tags in both the L1-IC and the TH-IC are checked. The termfalse
miss is adopted in the second case to indicate that the instruction
does actually reside in the TH-IC without being guaranteed to do
so. In this case, no TH-IC line will be evicted.

Figure 3 shows a more detailed view of an instruction fetch
datapath that includes a TH-IC. The TH-IC has been extended to
use additional metadata bits. Note that the amount of metadata in
the TH-IC and a comparably sized L0-IC are similar since the size
of the tags in the TH-IC can be decreased due to the elimination of
the high portion of the tag that is redundant to the tag in the L1-IC
being checked during the same cycle. TH-IC uses a single decision
bit (Fetch From TH-IC) to determine from where to fetch the next

Figure 3. Tagless Hit Instruction Cache

instruction. The last instruction accessed from the TH-IC is also
kept as a pointer inLast Inst.

There are two distinct types of access in the TH-IC or any other
instruction cache for that matter: sequential accesses andtransfers
of control. On a sequential fetch access (branch predicted not-
taken), there are two possible scenarios to consider. If theaccess is
to any instruction other than the last one in a line, then thisdesign
will always choose to fetch the next instruction from the TH-IC,
since it is guaranteed that the next sequential instructionin the same
line will still be available on the subsequent access. If it is the last
instruction in the line that is being fetched instead, then fetching
the next instruction from the TH-IC will occur only if theNext
Sequential bit (NS) is set. This bit signifies that the next modulo
line in the cache is actually the next sequential line in memory.
This is a behavior that line buffers do not support, since they only
hold a single line at a time, and thus must always return to fetch
from the L1-IC when they reach the end of the line.

If the predictor specifies a transfer of control (taken branch, call
or jump), then the TH-IC will make use of theNext Target bit
(NT), one of which is associated with each instruction present in
the small cache. If the current instruction has its NT bit set, then
the transfer target’s line is guaranteed to be available andthus the
next instruction should be fetched from the TH-IC. Note thatthe
tag/ID check is unnecessary, since the NT bit guarantees that this
instruction’s branch target is currently available in the TH-IC. If
the NT bit is not set, then the next instruction should be fetched
from the L1-IC instead, and the TH-IC should be updated so that
the previous instruction’s target is now in the TH-IC. In each TH-
IC line, TLs is a bit vector that refers to the lines that may have
NT transfers that target this line. When a line is replaced, the
corresponding NT bits are invalidated.

3. Analyzing Instruction Residency
within a Small IC

The success that TH-IC has demonstrated in reducing instruction
cache power consumption has led us to examine how the same ap-
proach can be used to identify further opportunities in pipeline opti-
mization. To do this, it is important to understand how instructions

are flowing through the TH-IC. In order to get a better understand-
ing of the abilities of TH-IC, we took a closer look at the eviction
behavior of the individual lines. The first study was designed to
identify how eviction was handled in a 16x4 TH-IC, which was the
most energy efficient configuration found in a previous study[11].
The term 16x4 refers to 16 lines, where each line contains 4 instruc-
tion words. We collected statistics for each line evicted, counting
how many of the other 15 lines have been replaced since the last
time the current cache line was replaced. This information can shed
some light on how the TH-IC is utilized. Figure 4 shows the results
using an average of the MiBench benchmarks [10] described later
in this paper. Conflict misses occur when few lines are displaced
between consecutive evictions of a single line. This is seen(and ex-
pected), but does not constitute the common case. Complete cache
replacement shows the highest individual frequency (22.48%), in-
dicating a fairly large number of capacity misses. This result is not
particularly surprising for such a small cache, but total cache line
replacement of a direct mapped cache suggests a large loop struc-
ture equal to or exceeding twice the size of the TH-IC or frequent
changes in the working set. In either case, we would expect that
the miss behavior should be bimodal with some consecutive TH-IC
line misses as well as long periods of TH-IC hits. This is a nice fea-
ture since it means that long sequences of instruction fetchshould
exhibit the same behavior.

Figure 5 shows both individual and cumulative results for con-
secutive hits in a 16x4 TH-IC. The graph shows values between1
and 255+, with all consecutive streaks over 255 being collected un-
der the 255+ data point. This data reinforces the observed eviction
behavior. We see two distinct spikes in the figure, at 3 instructions
(28.28% ind. and 35.56% cum.) and at 255+ instructions (26.91%
ind.). The spike at 3 instructions shows standard line buffer behav-
ior – a miss on the first instruction in a line followed by 3 consec-
utive hits for the remainder of the line. This is exactly whatwould
occur with a long sequence of sequential fetches. This accounts for
the majority of TH-IC misses resulting in a very clustered sequence
of misses. The other spike (at 255+) indicates that when a longer
sequence of hits occurs, it tends to be much longer. Thus, theTH-IC
is very efficient for capturing simple loop behavior.

Figure 6 similarly shows individual and cumulative resultsfor
consecutive non-misses (guaranteed hits and false misses)with
a 16x4 TH-IC. False misses can be caused by complex control

Figure 4. Line Replacements

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 50 100 150 200 250

T
ot

al
 F

re
qu

en
cy

 (
%

)

Number of Consecutive Hits

Cumulative
Individual

Figure 5. Consecutive Hits

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 50 100 150 200 250

T
ot

al
 F

re
qu

en
cy

 (
%

)

Number of Consecutive Non-misses

Cumulative
Individual

Figure 6. Consecutive Non-misses

flow in small loops. When we plot non-misses, we see an even
greater number of very long instruction sequences residingin the
TH-IC (40.71% 255+ ind.). This shows the TH-IC also does a
respectable job in capturing more complex loop behavior. These
results indicate that filtering instruction references through TH-IC
provides an efficient means of partitioning the instructionstream,
identifying sequences that have very well-structured behavior.

We also experimented with incorporating set associativityinto
TH-IC and LIFE. However, as other studies have shown, increased
associativity does not always improve hit rate. During the course
of these experiments, we found that although we could virtually
eliminate the penalties of set associativity, the set associative TH-
IC performed worse than the direct mapped version. Although
some conflict misses may be avoided, the overall problem stems
from overwriting useful lines twice as frequently as normal. These
very small caches often encounter loops that are just slightly larger

than the cache, leading to worst case behavior for both LRU and
FIFO replacement policies. Even though other studies of very small
caches have used direct mapped purely as a simpler mechanism, our
analysis shows that direct mapped also provides better hit rates. It
appears that set associativity is not useful for very small instruction
caches.

4. Eliminating Unnecessary BTB, BP,
and RAS Accesses

Although L1-IC energy tends to dominate the total energy required
for the instruction fetch pipeline stage, a TH-IC reduces this im-
pact. We will show a TH-IC actually reduces the cache power re-
quirements so that it is less than the power consumed by the rest
of instruction fetch. LIFE is focused on making fetch more energy-
conscious, and thus it becomes increasingly important to reduce
energy consumption in the remaining speculation components (BP,
BTB, RAS) present in instruction fetch. Based on our analysis of
TH-IC residency in the previous section, it is apparent thatother
microarchitectural state involved in fetch can be managed more ef-
ficiently. Preliminary studies with LIFE revealed that 86.75% of the
executed instructions in our benchmarks are non-branch instruc-
tions, which means that access to the BTB, BP, or RAS is unneces-
saryat least 86.75% of the time. Figures 5 and 6 make it clear that
additional information can be kept regarding branch/non-branch
status of instructions, thus making a fetch engine more efficient.

LIFE employs both a conservative strategy and a more ag-
gressive strategy for handling access to speculative components
of instruction fetch. The conservative strategy disables speculation
whenever the next fetched instruction can be guaranteed to not be a
transfer of control. Of the branches that are executed in an instruc-
tion stream, we found that 23.73% are predicted strongly not-taken
(state 00) by our bimodal branch predictor. The more aggressive
strategy will further disable speculation when the next fetched in-
struction is a transfer of control, but has been previously predicted
as strongly not-taken (00). Combined together, the BTB, BP,and
RAS structures need not be accessed for 89.89% of fetched instruc-
tions.

LIFE depends on TH-IC to both supply and manage fetched in-
struction metadata. Figure 7(a) shows the baseline TH-IC metadata
configuration used in this paper. Each line is composed of four in-
structions and their associated NT bits. A single NS and valid bit
are associated with each line and 16 TL bits are used to facilitate
line-based invalidation of NTs. ID is 6 bits long to uniquelyidentify
the corresponding L1-IC line (replacing the longer tag of conven-
tional caches), and only needs to be checked on a potential miss.

In Figure 7(b), a singleNext Sequential Non-Branch bit (NSNB)
has been added to each instruction in the line. On sequentialtransi-
tions both within and across lines, this bit will be set when the next
fetched instruction is not a transfer of control instruction. When-
ever this bit is set and we fetch sequentially, the BP, BTB, and RAS
need not be activated on the following cycle.

We can also extend the utilization of the NSNB bit to accept
transfer of control instructions that are strongly not-taken (approxi-
mately 23.73% of branches). This usage will be referred to asNS00
due to 00 being the strongly not-taken bimodal BP state. In this
configuration, whenever a branch is encountered and a prediction
is made that it is strongly not-taken (state 00), the previous (se-
quential) instruction can set its NSNB bit. When this instruction is
later fetched, the NSNB bit will indicate that no predictionshould
be made. While most branches that reach the strongly not-taken
state remain not-taken, some of the branches would suffer iftheir
prediction remained not-taken while the instruction is in the TH-

Figure 7. LIFE Metadata Configurations

IC. Since additional speculative misses would cause an increase in
cycle count, selective update of NS00 is necessary. On a branch
misprediction, the TH-IC must be accessed to unset the NS00 bit
of the previous sequential instruction since we can no longer guar-
antee that the branch will be predicted as not-taken.

Figure 7(c) is a further enhancement for LIFE that adds a sin-
gle Next Target Non-Branch bit (NTNB) for each instruction in the
line. This bit serves a similar role as NSNB, but it is set for branch
instructions whenever the corresponding target instruction is not
a transfer of control or is strongly not-taken. Most branches do
not target unconditional jumps since compiler optimizations such
as branch chaining can replace such a chain with a single branch.
Conditional branch instructions are also rarely targets, since they
are typically preceded by comparison instructions. Calls are rarely
targets since they are usually preceded by additional instructions to
produce arguments. Finally, returns are rarely targets since registers
are often restored before the return. Thus, NTNB bits are generally
quickly set for each direct transfer of control. Again, thisspecula-
tively reduces the need to access the BP, BTB, and RAS structures.

Adding these metadata bits to the TH-IC requires only a minor
change in the steps to take for line invalidation. When a lineis
evicted, all of its NSNB and NTNB bits must be cleared. One
interesting difference with the invalidation of NSNB versus the
NS is that the previous line’s last NSNB bit need not be cleared.
This is due to the fact that any subsequent fetch after crossing that
line boundary will still not need a BP/BTB/RAS access, as that
instruction will not change branch status whether it was fetched
from L1-IC or TH-IC. This same principle holds for NTNB bits
when NT bits are cleared due to target line evictions. Thus, accesses
to the BP/BTB/RAS structures can sometimes be avoided even
when the L1-IC has to be accessed due to an instruction not being
guaranteed to reside in the TH-IC.

Figure 8 shows an example of using LIFE to fetch a loop. This
example includes both the NSNB and NTNB extensions. We track
the number of BTB/BP/RAS accesses required in addition to the
L1-IC and ITLB accesses. The baseline loop sets the appropriate
NS and NT bits as the instructions are initially fetched fromthe
L1-IC. Each of the instructions in the main loop (2–7) can be guar-
anteed to hit in TH-IC once the NS and NT links have been set, thus
leading to extremely efficient cache behavior during the steady state
operation. NSNB and NTNB bits are set as LIFE gathers informa-
tion about the instructions fetched in the loop. During subsequent
loop executions, the BTB/BP/RAS need only be accessed when in-
struction 7 is fetched, thus leading to only one single speculation
access per loop iteration. Without NTNB bits, the fetch of instruc-

tion 2 would also require a BTB/BP/RAS access, since the branch
transition from instruction 7 could not be guaranteed to target a
non-branch.

Modifying the use of speculative components requires an under-
standing of the regularity in which these components are used and
their results relative to the TH-IC. Figure 9 shows the taxonomy of
branches as they are fetched using LIFE with NSNB, NS00, and
NTNB extensions. This figure clearly demonstrates the correlation
of speculative hardware with the fetch of instructions. We find that
56.48% (45.92% taken + 10.56% not-taken) of all branches will
have their predicted next instruction as a guaranteed hit inthe TH-
IC. Further, 58.61% of all branches will have metadata available
at fetch1. Combined, we find that almost all branches with meta-
data result in a guaranteed hit in the TH-IC. This fact could po-
tentially lead to the discovery of new relevant metadata that could
further influence speculative execution. A somewhat intuitive step
was to enhance LIFE with speculative information. Unfortunately,
as can be seen in Figure 9, 41.39% (11.94% from L1 + 29.45%
first access) of branches either are not fetched from the TH-IC or
do not contain metadata. This means that the smaller structure of
an embedded BTB and BP would be applicable to only 58.61% of
branches. The level of accuracy obtained did not offset the cost of
additional metadata in LIFE and updates to the original hardware
structures. While this result does mean that we cannot eliminate ac-
cesses to the 512-entry bimodal BP and BTB, it does not mean that
new metadata cannot be used to influence the use of these structures
to allow for a reduced speculative miss rate.

In addition to dealing with strongly not-taken branches, one
might also consider having LIFE handle strongly taken conditional
branches (encoded as 11 in the bimodal BP), since they will fre-
quently occur due to loops. For instance, the BTB/BP/RAS struc-
tures are accessed each time instruction 7 in Figure 8 is fetched.
LIFE could enable just the BTB and RAS, while always automati-
cally predicting such branches as taken. To recognize the 11state,
an additional metadata bit (or a special encoding of the existing
bits: NSNB, NTNB, and NT) would have to be introduced to the
TH-IC, thus increasing the average energy for processing any in-
struction. This approach proved unfruitful since brancheswhich are
strongly taken and remain strongly taken account for very few of
the overall instructions executed. Thus, any benefit is outweighed
by the overhead of the additional metadata handling.

1 For a branch to be considered as having metadata it must not bethe first
fetch of the given branch. If a TH-IC line eviction occurs andthe branch
leaves the TH-IC, then the next fetch of that branch will be considered its
first fetch since the metadata was cleared.

Steady
State
Loop
Behavior

fetched

inst 1

inst 5

insts 6,7

inst 2

insts 3,4

inst 5

false miss

false miss

miss

miss

hits

hits

result

inst 1

inst 2

inst 3

inst 4

inst 5

inst 6

inst 7

inst 8

...

...

lin
e

1
lin

e
2

metadata set

set line 0 NS bit; set prev NSNB bit

set line 1 NS bit; set inst 4 NSNB bit

set inst 2,3 NSNB bits

inst 6 hit

hitinst 7

inst 2 hit

insts 3,4 hits

set inst 7 NT bit; set inst 7 NTNB bit

set inst 1 NT bit; set inst 1 NTNB bit

set inst 5 NSNB bit

insts 5,6 hits

inst 7 hit

hitinst 8 set inst 7 NSNB bit

L1/ITLB? BTB/BP/RAS?

Figure 8. Reducing BTB/BP/RAS Accesses Example

Figure 9. Branch Taxonomy in TH-IC.

5. Experimental Results with LIFE

In order to evaluate LIFE, we obtained a copy of the previous
research framework for TH-IC [11]. This framework uses the Sim-
pleScalar simulator [2] with Wattch extensions [6] to estimate en-
ergy consumption. Thecc3 clock gating style approximates the
effect of leakage. Under this scheme, inactive portions of the
processor consume 10% of their active energy. We also use the
MIPS/PISA instruction set, although the baseline processor is con-
figured with parameters that are similar to the StrongARM. Table 1
shows the exact configuration parameters that were used in each of
the experiments. The L0-IC and TH-IC are only configured when
specified in the evaluation. We evaluate using just TH-IC andthen
extend it with the LIFE techniques for eliminating BP, BTB, and
RAS accesses. In subsequent graphs, NSNB indicates using the
NSNB bits only to handle instructions that are not transfersof con-
trol, while NS00 corresponds to a configuration that uses theNSNB
bits to handle strongly not-taken branches as well. Finally, NTNB
includes NSNB, NS00, and adds NTNB bits to handle targets that
are not transfers of control.

While the Wattch power model is only an approximation, it is
sufficient for providing reasonably accurate estimates forsimple
cache structures using CACTI [21]. The structures being evalu-
ated in this work (TH-IC, BP, BTB, RAS, L0-IC, L1-IC, ITLB) are
composed primarily of simple regular cache blocks and associated

Table 1. Baseline Configuration
I-Fetch Queue 4 entries
Branch Predictor Bimodal – 512
Branch Target Buffer 512 entries
Branch Penalty 3 cycles
Return Address Stack 8 entries
Fetch/Decode/Issue/Commit 1
Issue Style In order
RUU size 8 entries
LSQ size 8 entries

16 KB
L1 Data Cache 256 lines, 16 B line,

4-way assoc., 1 cycle hit
16 KB

L1 Instruction Cache 256 lines, 16 B line,
4-way assoc., 1 cycle hit

Instruction/Data TLB 32 entries, Fully assoc.,
1 cycle hit

Memory Latency 32 cycles
Integer ALUs 1
Integer MUL/DIV 1
Memory Ports 1
FP ALUs 1
FP MUL/DIV 1

256B
L0 Instruction Cache 16 lines, 16B line,
(when configured) direct mapped, 1 cycle hit

256B
Tagless Hit I-Cache 16 lines, 16B line,
(when configured) direct mapped, 1 cycle hit

Line-based invalidation

tags/metadata. Although L0-IC and TH-IC may differ in function-
ality (tag checks vs. metadata updates), they should remainvery
similar in overall latency and area. Writing of metadata bits can
be viewed as a small register update, since the overall bit length is
often short.

Table 2 shows the subset of MiBench benchmarks that we used
for each of our experiments [10]. MiBench consists of six cate-
gories of applications suitable for the embedded domain in avari-
ety of areas. Each benchmark is compiled and optimized with the
VPO compiler [5], which yields code that is comparable in quality
to GCC. All applications are run to completion using their small
input files (to keep the running times manageable). Large input ex-

Figure 10. Impact of LIFE on Fetch Power

Table 2. MiBench Benchmarks

Category Applications
Automotive Basicmath, Bitcount, Qsort, Susan
Office Ispell, Rsynth, Stringsearch
Consumer Jpeg, Lame, Tiff
Security Blowfish, Pgp, Rijndael, Sha
Network Dijkstra, Patricia
Telecomm Adpcm, CRC32, FFT, Gsm

periments have also been done with TH-IC, and results were very
similar to the smaller input results. We also present results for the
176.gcc benchmark available in SPECInt2000 in order to evaluate
the impact of LIFE on a more complex general purpose applica-
tion. This benchmark is run to completion using its test input file
(cccp.i). We have obtained similar results using the reference input
(expr.i). MiBench results are presented by category along with an
average due to space constraints. All results for176.gcc are dis-
played after the MiBench average. Results are verified for each
benchmark and sanity checks are performed to ensure correctbe-
havior and verify that LIFE does not unfairly use information that
should not be available to it.

Figure 10 shows the fetch power distribution for each of the var-
ious L0-IC and LIFE configurations. The fetch power bars are split
into I-cache and speculation components, and results are normal-
ized to the overall L1-IC values. The MiBench average results show
that while the L0-IC and TH-IC alone can reduce cache power, they
have a negligible impact on speculation power. The baselinespec-
ulation power is 27.97% of the total fetch power, while caches ac-
count for 72.03%. Adding an L0-IC cuts the cache power to 28.30%
and the speculation power to 27.73%. The reduction in speculation
power is explained by power estimates which are averaged across
all execution cycles. The extra cycles due to L0-IC misses donot
require access to the speculative resources, thus reducingthe av-
erage but keeping the same total. Total energy (discussed later)
will show an increase in energy consumed during execution. TH-
IC reduces cache power to just 21.82% of the original fetch power
with no change in speculation power since branch predictionis un-
modified and total execution time is unchanged. Once TH-IC is
employed, speculation power exceeds the average I-cache access

power, thus providing the motivation for our exploration. LIFE, us-
ing just NSNB bits for non-transfers of control, results in cache
power of 21.87% and a reduction in speculation power to 13.55%.
The cache power is slightly increased from the baseline LIFEwith
TH-IC due to additional NSNB bits and associated upkeep. Al-
lowing strongly not-taken branches (NS00) results in a 13.06%
speculation power and 21.91% cache power. Finally, adding the
NTNB bits reduces the speculation power to 12.34% and the cache
power to 21.95%, for an overall fetch power savings of 65.70%
over the baseline L1-IC. LIFE eliminates an average of 61.17%
of speculative hardware accesses due to being able to exploit the
NSNB/NTNB metadata. Results for176.gcc show slightly reduced
but still significant savings in fetch power for LIFE.

While an L0-IC degrades performance by about 6.44% (with
a 17.67% maximum increase onrijndael), TH-IC and LIFE have
no associated performance penalty. The baseline TH-IC as well
as LIFE with any of the configured NSNB, NS00, or NTNB ex-
tensions do not exhibit any associated performance difference from
the baseline configuration.

Figure 11 shows the benefit of LIFE on total processor energy.
Adding an L0-IC reduces total energy to 79.00%. This is less than
the power savings because total energy accounts for the increase in
execution time caused by the increased L1-IC latency when servic-
ing L0-IC misses. TH-IC cuts total energy to 72.23%, in line with
power analysis since execution time is unaffected. Similarly, LIFE
with NSNB reduces total energy to 65.44%, in line with power esti-
mates. Adding NS00 reduces the total energy to 65.27% and NTNB
yields a final total processor energy of 64.98%. With176.gcc, ap-
plying all the LIFE extensions reduces the total energy to 72.88%.
In all cases, LIFE extensions are able to achieve equivalentpower
reduction in speculation components that TH-IC achieved with the
I-cache/ITLB. The combination of these enhancements yields a
much greater energy savings than any other existing instruction
fetch energy reduction technique evaluated.

Figure 11. Impact of LIFE on Processor Energy

6. Improving Next Sequential Line
Prefetch with LIFE

LIFE is designed to exploit program fetch behavior in an effort to
better utilize pipeline resources. In examining the functionality of
the TH-IC, we found that presence of instructions in the TH-IC
can be used as a simple execution phase predictor. When instruc-
tions are fetched from the TH-IC, they are identified as beingpart
of very regular instruction fetch. This regularity of fetchbehavior
can identify potential optimizations in later pipeline stages either
to improve execution performance or to reduce power consump-
tion. There have been numerous proposed microarchitectural en-
hancements which seek to identify regular resource usage patterns
and scale the pipeline resources to best match the expected require-
ments. LIFE can perform as an efficient early predictor to trigger
these optimizations. Cyclone is a dynamic scheduler that attempts
to reduce the scheduling complexity by implementing a form of
selective instruction replay [7]. LIFE can provide additional infor-
mation about program behavior to such a scheduler while improv-
ing overall processor energy efficiency. Throttling of processor re-
sources is also becoming increasingly important, as portions of the
processor are over-designed and cannot be fully exploited through-
out a program’s entire execution [1, 3, 15]. LIFE provides a simple
mechanism for subsequently fetched instructions to take advantage
of improved resource assignment or scheduling based on previous
execution characteristics.

One area of the pipeline that would seem to benefit the least
from knowledge of instruction fetch behavior is the data cache.
While previous TH-IC results could not extend benefits to the
data cache, LIFE can use the fetch metadata to intelligentlyse-
lect when to apply aggressive optimization techniques for the data
cache. Such optimizations may not be able to be normally applied
for highly constrained processor designs due to their associated
tradeoffs. Prefetching is an example of such an aggressive opti-
mization that attempts to reduce cache miss penalties by using idle
cache cycles to fetch data speculatively from predicted addresses.
When a triggering condition is met, the cache will prefetch an addi-
tional line of data. Although prefetching can improve performance
through reducing cache misses, it significantly increases memory
traffic and may force the early eviction of other cache lines that

are still useful, thus polluting the cache. With next sequential line
prefetching (NSLP), the first non-prefetch access of a line triggers
the next sequential line to be fetched from memory once the cur-
rent cache access operation has finished [9, 19, 20]. By associating
a first access bit with each cache line, a subsequent true use of a
prefetched line triggers the next sequential line to be prefetched.
This technique potentially allows the prefetching to stay one line
ahead of the current accesses. If a line is already availablein the
cache, then the data is not fetched from memory unnecessarily.

Although LIFE only keeps track of instruction fetch behavior,
we can exploit this information to have NSLP selectively enabled
or disabled. NSLP works best on sequentially accessed arrays that
exhibit a good deal of spatial locality. Small loops are often used
to iterate through arrays of data, and LIFE can provide a simple
mechanism for detecting such loops. We can use a single bit to
denote whether theinitial line access was a hit or a miss, which we
will refer to as the TH-ICline-hit bit. It is possible for a TH-IC line-
hit access to not be in a small loop, but the majority of cases will
show that this fetch behavior corresponds to small loop execution.
Thus we can enable NSLP when we have a TH-IC line-hit and
disable it on any miss. The TH-IC line-hit information will be
propagated through the pipeline stages with the fetched instruction
and will only be checked if the instruction is a memory access.

Throttling the NSLP mechanism will help to reduce the fre-
quency of useless prefetches. This approach conserves energy and
can also help to reduce cache pollution for benchmarks that typ-
ically do not exhibit good prefetch behaviors. Table 3 presents a
simplified view of the combinations of instruction and data flow
behavior in a pipelined processor. Both instruction and data flow
can be simply characterized as stable or unstable. Stable instruction
flow corresponds to loop behavior where the instruction sequences
are able to be fetched from a small cache. Stable data flow indicates
a data access pattern that exhibits good spatial locality, possibly
improving with prefetching. LIFE and TH-IC provide their great-
est benefits during periods of stable instruction flow as theyrely
on past instruction behavior to make guarantees. NSLP only pro-
vides benefits during periods of stable data flow. When data flow is
unstable, NSLP performs useless prefetches that waste energy and
can evict useful cache lines. The majority of execution timein most
applications will consist of stable instruction flow.

Table 3. Correlating Instruction and Data Flow Behavior
Inst. Flow Data Flow Comments

Stable Stable Typical loop (strided array data accesses)
Stable Unstable Typical loop (pointer-chasing data accesses)
Unstable Stable Does not occur often in practice
Unstable Unstable Transitional code (non-loop)

Table 4. Impact of LIFE with Next Sequential Line Prefetch
Useless Prefetches Execution Time

NSLP LIFE+NSLP NSLP LIFE+NSLP
Automotive 34.52% 31.85% 93.61% 94.39%
Consumer 25.15% 16.27% 97.00% 97.60%
Network 38.02% 25.23% 95.95% 96.14%
Office 49.43% 29.01% 98.05% 98.53%
Security 52.26% 36.99% 99.96% 99.96%
Telecomm 22.36% 27.17% 99.86% 99.88%
MiBench Avg. 36.82% 28.52% 97.54% 97.88%
176.gcc 51.31% 38.17% 97.61% 98.79%

Table 4 summarizes the results of our experiments with LIFE
and next sequential line prefetch. Useless prefetches denotes the
fraction of prefetches that are never accessed by the actualappli-
cation before being evicted. NSLP reduces the overall application
execution times, while LIFE+NSLP can attain most of the benefits
by just selectively prefetching. For MiBench, the number ofuseless
prefetches is reduced by 22.54% when applying NSLP selectively
based on LIFE metadata. With176.gcc, the use of LIFE reduces
the useless prefetches by an additional 25.6%. This translates into
a significant reduction in memory traffic due to data access. Wattch
does not model the off-chip energy consumption of main mem-
ory, so energy results are not included. Simplified energy analysis
based on memory access counts shows that LIFE+NSLP results in
an overall greater system energy savings than NSLP alone.

7. Related Work
There are other small structures that have been used to access a
large percentage of the frequently executed instructions within
an application. Zero overhead loop buffers (ZOLBs) [8], loop
caches [14], and L-caches [4] all target regular fetch patterns that
include small tight loop behavior. These techniques can obtain
similar benefits in reducing the number of speculative accesses of
the BTB/BP/RAS by knowing which instructions can potentially
branch to other code.

Reinman et al. propose a serial prefetch architecture that splits
tag and data accesses into separate pipeline stages for instruction
fetch [18]. By performing tag accesses first, only the relevant data
line from the proper cache way needs to be fetched, saving proces-
sor energy. By fetching ahead with the tags, instruction lines can
be prefetched into a special buffer from which they can laterbe
promoted to the actual instruction cache on a direct fetch request,
thus improving performance. In contrast, LIFE completely elimi-
nates tag accesses for guaranteed hits, and also reduces thenumber
of accesses to other fetch structures relating to speculation, which
serial prefetching cannot do.

There has been some previous work on reducing the energy con-
sumption of the BTB. Utilizing banked BP organization alongwith
a prediction probe detection to identify cache lines containing no
conditional branches was evaluated by Parikh et al. [17]. This study
showed that careful layout of BP resources and a course granular-
ity bypass capability can make much larger BPs feasible froma
total energy perspective. Just as there are fewer bits of metadata
to manage in a TH-IC versus an L1-IC to guarantee hits, it is also

more efficient to avoid accesses to the BP/BTB/RAS by tracking
this information in a small TH-IC versus a larger structure for the
entire BTB. A leakage power reduction technique has also been
used to turn off entries in the BP and BTB if they are not accessed
for a specified number of cycles [12]. The counters used will limit
the amount of energy savings. Yang et al. reduce BTB energy con-
sumption by altering the instruction set and producing setup code to
store the distance to the next branch instruction from the beginning
of each basic block in a small branch identification unit [22]. The
BTB is not accessed until the next branch is encountered. While re-
ducing energy consumption, this approach requires alteration of the
executable to store the branch distance information and a counter
to detect when the next branch will be encountered.

8. Future Work
There are a number of different ways that LIFE can be tuned for
other fetch stage configurations. The size of the BP and BTB can
be varied. It is likely that LIFE will support a larger BP and BTB to
reduce the number of branch mispredictions while still retaining
energy efficiency since the number of accesses to these larger
components are significantly reduced. It would also be interesting
to use a correlating branch predictor with LIFE. Since the current
design of LIFE, when using the NS00 configuration, involves an
update to the metadata in the case of a misprediction, other or even
new metadata may be updated simultaneously without the overhead
of the TH-IC access.

In this paper we have limited our changes to the fetch stage and
data cache portions of the pipeline. This makes sense for embed-
ded processors since they tend to have simple pipeline organization
after fetch. Since both TH-IC and LIFE have no impact on pro-
cessor performance, we predict that their use in high performance,
general purpose processors could yield positive results. Total en-
ergy reduction will not be as great as for embedded architectures
since a greater portion of the power budget is used by later (more
complex) pipeline stages, but since any reduction comes without
performance penalty, inclusion of LIFE is still warranted.For these
complex pipelines, LIFE can be used to improve resource schedul-
ing decisions. We already explored a case involving next sequential
line prefetch, showing that LIFE can act as a filter, identifying small
loops with repetitive, consistent execution behavior. Theability to
identify repeated instruction sequences very early in the pipeline
can also affect the design of dynamic instruction scheduling, data
forwarding, instruction wakeup logic and other power intensive
portions of pipeline execution. New designs for these structures can
exploit the regularity of instruction execution for LIFE-accessed
instructions to reduce power consumption or even to enhanceper-
formance since improved scheduling decisions can be cachedin
the later pipeline stages for these instructions. Basically, LIFE can
be used to identify those phases of program execution that exhibit
very structured, consistent execution patterns. These phases can
then be exploited in various other stages of the pipeline architec-
ture to throttle back resources to reduce power consumptionor to
iteratively capture best resource allocation to improve performance
(or both). We believe that the ability to partition the instruction ex-
ecution into (at least) two very different execution behaviors opens
up new research opportunities in many areas of processor design.

9. Conclusions
As power has become a first class design constraint, architects con-
tinue to exploit regularity in application behavior to improve pro-
cessor designs. In this paper we have demonstrated how instruction

fetch power utilization can be improved by exploiting thosepor-
tions of the program execution that exhibit well-defined, repetitive
behavior. The goal of the LIFE extensions to the processor fetch
logic is to identify repetitive code sequences and cache enough in-
formation about their prior behavior to control access to the BP,
BTB, and RAS structures. LIFE eliminates access to these struc-
tures an average of 61.17% of the time, resulting in a total savings
of 63.33% on instruction fetch power and an additional savings of
9.42% on total processor energy beyond what is achievable with
TH-IC alone. All of these improvements are made with no increase
in execution time and require only 128 additional metadata bits (2
bits per TH-IC instruction). Furthermore, we showed that this en-
hanced knowledge of instruction fetch behavior can guide other
pipeline decisions, particularly for handling aggressiveoptimiza-
tions like next sequential line prefetch. By focusing on theloops
detected by LIFE, we were able to reduce the number of useless
data prefetches while still maintaining the majority of theperfor-
mance benefit afforded by prefetching. Other throttling techniques
may benefit similarly from the phase behaviors detected by LIFE.
The design complexity of TH-IC and LIFE is minimal, with an area
cost comparable to similar conventional filter caches usinga few
simple index structures to maintain the metadata required to con-
trol resource allocation. LIFE can easily be incorporated into any
processor pipeline, requiring only minor additions to the fetch stage
and the routing of branch outcomes to update the LIFE metadata.
We believe that the techniques presented in this paper can become
a common design choice for both low-power embedded processors
as well as high-performance general purpose processors. This will
become even more important as multicore architects focus their ef-
forts towards further reducing per core power consumption.

Acknowledgments
We thank the anonymous reviewers for their constructive comments
and suggestions. This research was supported in part by NSF grants
CCR-0312493, CCF-0444207, and CNS-0615085.

References
[1] A RAGÓN, J. L., GONZÁLEZ , J.,AND GONZÁLEZ , A. Power-aware

control speculation through selective throttling. InProceedings of
the 9th International Symposium on High-Performance Computer
Architecture (Washington, DC, USA, 2003), IEEE Computer Society,
pp. 103–112.

[2] AUSTIN, T., LARSON, E., AND ERNST, D. SimpleScalar: An
infrastructure for computer system modeling.IEEE Computer 35
(February 2002), 59–67.

[3] BANIASADI , A., AND MOSHOVOS, A. Instruction flow-based front-
end throttling for power-aware high-performance processors. In
Proceedings of the 2001 international symposium on Low power
electronics and design (New York, NY, USA, 2001), ACM Press,
pp. 16–21.

[4] BELLAS, N. E., HAJJ, I. N., AND POLYCHRONOPOULOS, C. D.
Using dynamic cache management techniques to reduce energyin
general purpose processors.IEEE Transactions on Very Large Scale
Integrated Systems 8, 6 (2000), 693–708.

[5] BENITEZ, M. E.,AND DAVIDSON, J. W. A portable global optimizer
and linker. InProceedings of the SIGPLAN’88 conference on
Programming Language Design and Implementation (1988), ACM
Press, pp. 329–338.

[6] BROOKS, D., TIWARI , V., AND MARTONOSI, M. Wattch: A
framework for architectural-level power analysis and optimizations.
In Proceedings of the 27th annual International Symposium on

Computer Architecture (New York, NY, USA, 2000), ACM Press,
pp. 83–94.

[7] ERNST, D., HAMEL , A., AND AUSTIN, T. Cyclone: A broadcast-free
dynamic instruction scheduler with selective replay. InProceedings of
the 30th annual International Symposium on Computer Architecture
(New York, NY, USA, 2003), ACM, pp. 253–263.

[8] EYRE, J.,AND BIER, J. DSP processors hit the mainstream.IEEE
Computer 31, 8 (August 1998), 51–59.

[9] GINDELE, J. Buffer block prefetching method.IBM Tech Disclosure
Bulletin 20, 2 (July 1977), 696–697.

[10] GUTHAUS, M. R., RINGENBERG, J. S., ERNST, D., AUSTIN,
T. M., MUDGE, T., AND BROWN, R. B. MiBench: A free,
commercially representative embedded benchmark suite.IEEE 4th
Annual Workshop on Workload Characterization (December 2001).

[11] HINES, S., WHALLEY, D., AND TYSON, G. Guaranteeing
hits to improve the efficiency of a small instruction cache. In
Proceedings of the 40th annual ACM/IEEE International Symposium
on Microarchitecture (December 2007), IEEE Computer Society,
pp. 433–444.

[12] HU, Z., JUANG, P., SKADRON, K., CLARK , D., AND MARTONOSI,
M. Applying decay strategies to branch predictors for leakage energy
savings. InProceedings of the International Conference on Computer
Design (September 2002), pp. 442–445.

[13] K IN , J., GUPTA, M., AND MANGIONE-SMITH , W. H. Filtering
memory references to increase energy efficiency.IEEE Transactions
on Computers 49, 1 (2000), 1–15.

[14] LEE, L., MOYER, B., AND ARENDS, J. Instruction fetch energy
reduction using loop caches for embedded applications withsmall
tight loops. InProceedings of the International Symposium on Low
Power Electronics and Design (1999), pp. 267–269.

[15] MANNE, S., KLAUSER, A., AND GRUNWALD , D. Pipeline gating:
speculation control for energy reduction. InProceedings of the
25th annual International Symposium on Computer Architecture
(Washington, DC, USA, 1998), IEEE Computer Society, pp. 132–
141.

[16] MONTANARO, J., WITEK , R. T., ANNE, K., BLACK , A. J.,
COOPER, E. M., DOBBERPUHL, D. W., DONAHUE, P. M., ENO, J.,
HOEPPNER, G. W., KRUCKEMYER, D., LEE, T. H., LIN , P. C. M.,
MADDEN, L., MURRAY, D., PEARCE, M. H., SANTHANAM , S.,
SNYDER, K. J., STEPHANY, R., AND THIERAUF, S. C. A 160-
mhz, 32-b, 0.5-W CMOS RISC microprocessor.Digital Tech. J. 9, 1
(1997), 49–62.

[17] PARIKH , D., SKADRON, K., ZHANG, Y., BARCELLA , M., AND

STAN , M. Power issues related to branch prediction. InProceedings
of the International Symposium on High Performance Computer
Architecture (February 2002), pp. 233–244.

[18] REINMAN , G., CALDER, B., AND AUSTIN, T. M. High performance
and energy efficient serial prefetch architecture. InISHPC ’02: Pro-
ceedings of the 4th International Symposium on High Performance
Computing (London, UK, 2002), Springer-Verlag, pp. 146–159.

[19] SMITH , A. J. Cache memories.ACM Comput. Surv. 14, 3 (1982),
473–530.

[20] SRINIVASAN , V., DAVIDSON, E. S.,AND TYSON, G. S. A prefetch
taxonomy.IEEE Trans. Comput. 53, 2 (2004), 126–140.

[21] WILTON , S. J.,AND JOUPPI, N. P. CACTI: An enhanced cache
access and cycle time model.IEEE Journal of Solid State Circuits
31, 5 (May 1996), 677–688.

[22] YANG, C., AND ORAILOGLU , A. Power efficient branch prediction
through early identification of branch addresses. InProceedings of the
International Conference on Compilers, Architecture, and Synthesis
for Embedded Systems (October 2006), pp. 169–178.

