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Abstract

Instruction fetch behavior has been shown to be very re@ndrpre-
dictable, even for diverse application areas. In this waerk,propose the
Lookahead Instruction Fetch Engine (LIFE), which is desijto exploit
the regularity present in instruction fetch. The nucleutI&fE is the Tag-
less Hit Instruction Cache (TH-IC), a small cache that és#ie instruction
fetch pipeline stage as it efficiently captures informatdwout both sequen-
tial and non-sequential transitions between instructidns-IC provides
a considerable savings in fetch energy without incurrirg glerformance
penalty normally associated with small filter instructicackes. LIFE ex-
tends TH-IC by making use of advanced control flow metadafarther
improve utilization of fetch-associated structures sugtha branch predic-
tor, branch target buffer, and return address stack. Thasewes are se-
lectively disabled by LIFE when it can be determined thay e unneces-
sary for the following instruction to be fetched. Our resudhow that LIFE
enables further reductions in total processor energy copsan with no
impact on application execution times even for the mostesgive power-
saving configuration. We also explore the use of LIFE metadatguiding
decisions further down the pipeline. Next sequential linefgtch for the
data cache can be enhanced by only prefetching when theettiggin-
struction has been previously accessed in the TH-IC. Thasegty reduces
the number of useless prefetches and thus contributes towng overall
processor efficiency. LIFE enables designers to boostictstn fetch effi-
ciency by reducing energy cost without negatively affegiirerformance.

Categories and Subject Descriptors C.1 [Computer Systems
Organization]: Processor Architectures

General Terms Experimentation, Measurement, Performance

Keywords Lookahead Instruction Fetch Engine (LIFE), Tagless
Hit Instruction Cache (TH-IC), LO/Filter Cache

1. Introduction

Processor design and development requires careful coatate
of execution, power, and area characteristics. The regeings for
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embedded systems are often tighter due to production costs a
reliance on batteries. One active area for exploration ifbexn
ded processor design is instruction fetch. Existing resehas fo-
cused on reducing instruction cache power, which accoontsg-
proximately 27% of the total processor power on the StrongAR
SA110 [16]. There are, however, other components of instmic
fetch that can also have a sizable impact on the processoerpow
characteristics. In particular, speculation logic canocact for a
significant percentage of fetch power consumption even Her t
limited speculation performed in scalar embedded processo
fact, with advances in low power instruction cache desigasé
other fetch components can dominate instruction fetch poere
quirements. This paper describes the Lookahead InstruEgtch
Engine (LIFE), which is a new approach for instruction fetoht
attempts to reduce access to these power-critical spanulagic
structures when it can be determined that such an acceseés-un
essary.

Central to LIFE is the presence of a Tagless Hit Instruction
Cache or TH-IC, which we introduced in prior work [11]. TH-IC
is an improvement upon the traditional notion of an LO or filte
cache (LO-IC) [13]. Both TH-IC and LO-IC are small cached tra
placed before the L1 instruction cache (L1-IC) for the psmof
providing a more energy-efficient access path to frequéetthed
instructions. If the LO-IC experiences a cache miss, theirtstruc-
tion needs to be fetched from the appropriate line in the Cbh
the following cycle. This entails an additional 1-cycle mjenalty
before the appropriate instruction is fetched. Although t-1C
reduces fetch energy requirements, these penalties calt ires
significant performance degradation for many applicatidi$IC
completely eliminates this miss penalty by providing a clirey-
pass to the L1-IC when the instruction to be fetched cannot be
guaranteed to reside in the TH-IC. Guaranteeing instroatache
hits is accomplished through the use of specialized cachadat
bits that represent simple relations between instructiattsn the
TH-IC. LIFE extends TH-IC by incorporating additional meétéa
which can be used to further improve decisions made during in
struction fetch.

LIFE exploits knowledge available in the TH-IC about the hex
instruction to be fetched to selectively bypass specuiatiecha-
nisms present in the fetch pipeline stage. If the next settalen-
struction can bguaranteed to not be a transfer of control instruc-
tion, then the branch predictor (BP), branch target buffg),
and return address stack (RAS) do not need to be activated dur
ing its fetch. Thus LIFE improves utilization of fetch-assied
structures by selectively disabling access. This resuitsductions
in both fetch power and energy consumption, while not ingirea
execution time. The reduction in power is affected by therdi¢
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Figure 1. LIFE Organization

of the TH-IC and the ratio of branch and non-branch instomnti

in the TH-IC. LIFE can further capitalize on common instiant
fetch behavior by detecting transfers of control that wal jre-
dicted as not-taken, which allows bypass of the BTB and RAS on
subsequent fetches since they act as non-branch instridicva A
substantial number of branches resolve as not-taken ancbare
sistent for the entire execution. Identifying those brasctesiding

in the TH-IC that are almost always not-taken enables thedbra
predictor to also be bypassed.

Figure 1 shows the organization of LIFE, which extends the
capabilities of TH-IC with additional metadata for trackithe
branching behavior of instructions. Bold dashed lines es@nt
control of fetch components by LIFE. Depending on the atdla
metadata, LIFE can choose to enable or disable access tpaispr
ate fetch structures during the following instruction fetycle.

In addition to directing access of fetch structures, thealeh
iors detected by LIFE can also be used to guide decisionsatkat
made in subsequent pipeline stages. Traditional next s¢éiglikne
prefetching (NSLP) schemes often trade off energy effigidoc
improved performance from the data cache [9, 19, 20]. Algou
the previously published TH-IC approach is not suitabledata
caches due to the lack of identifiable access regularityetich be-
havior of an application can yield clues about data accetssrpa.
This behavioral information can then be used to improve NSLP

This paper makes the following contributions:

e We have performed the first study of instruction residency
within small instruction caches.

¢ An enhanced analysis of fetch behavior with a TH-IC motisate
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Figure 2. Traditional LO and Tagless Hit I-Cache Layouts

due to having to actively run the processor for a longer jgeab
time. The inclusion of an LO-IC into a memory system design is
essentially a tradeoff providing a savings in fetch energyhe
expense of longer execution times.

The Tagless Hit Instruction Cache, or TH-IC, that our LIFE re
search in this paper extends is shown in Figure 2(b) and id-an a
ternative configuration [11]. Using just a few specializeetadata
bits, the TH-IC supplies a fetched instruction only when ithe
struction isguaranteed to reside in it. As a side effect of the way
in which guarantees are implemented, tag comparisons keaom
necessary on hits, hence the term “Tagless Hit”. The snl i
the cache and its novel use of metadata are what facilitatesttil-
ity to make guarantees about future cache hits, while stiflining
the ability to operate and update in an energy- and perfoceian
conscious manner. A TH-IC of similar size to an LO-IC has hear
the same hit rate and does not suffer a miss penalty sinceHhe T
IC is not used to fetch an instruction when a miss may occur. In
essence, the TH-IC acts as a filter cache for those instnsctieat
can be determined to be hits in the TH-IC, while all instros
that cannot be guaranteed to reside in the TH-IC access th€ L1
without delay. Additionally, the energy savings is gredt@n using
an LO-IC due to the faster execution time (the TH-IC has nasmis

the need to improve the efficiency of other fetch components Penalty), the reduction in Instruction Translation LodkasBuffer
beyond caches as they become the dominant energy consumergITLB) accesses (the TH-IC can be accessed on guarantesashit

e We propose the Lookahead Instruction Fetch Engine (LIFE),
a microarchitectural enhancement that exploits fetch leegu
ity to better control access to these power-hungry speoulat
resources. Using just 128 bits (2 bits per TH-IC instrudtion
LIFE can eliminate 61.17% of accesses to the speculatieé fet
structures, leading to significant reductions in fetch posre
total energy consumed.

e We also show that the behaviors captured by LIFE can be
effectively used to tune other pipeline optimizations tigh a
case study with NSLP.

2. Background: Tagless Hit Instruc-

tion Cache (TH-IC)

Figure 2(a) shows the traditional layout of a small LO/filtache.
Since the LO-IC is accessed instead of the L1-IC, any miss in
the LO-IC will incur an additional 1-cycle miss penalty pritm
fetching the appropriate line from the L1-IC. Although an-1®
reduces the requirements for fetch energy, these misstjgnedn
accumulate and result in significant performance degrawldtr
some applications. It is important to note that this perfamge loss
will indeed reduce the energy benefit gained by adding théd_0-

ing bits from the portion of the virtual address that is ueeféd by
the translation to a physical address), as well as the editiain of
tag comparisons on cache hits (since tags are not used fg aeri
hit).

One of the key principles in the design of the TH-IC is the idea
of bypassing the TH-IC when it isot certain that the requested
instruction/line is resident in the TH-IC. This leaves #hi@ossi-
bilities when an instruction is fetched: 1) it is a hit in Tig512) it
resides in TH-IC, but it is not certain, so the L1-IC is ditgcic-
cessed the, or 3) it did not reside in TH-IC, and the miss pemals
avoided by attempting to access it directly from the L1-1@)0n
the first case will the instruction from the TH-IC be read. \Wilee
instruction is not guaranteed to reside in the TH-IC, therappate
tags in both the L1-IC and the TH-IC are checked. The tilise
miss is adopted in the second case to indicate that the instructio
does actually reside in the TH-IC without being guaranteeda
s0. In this case, no TH-IC line will be evicted.

Figure 3 shows a more detailed view of an instruction fetch
datapath that includes a TH-IC. The TH-IC has been extenaled t
use additional metadata bits. Note that the amount of mitada
the TH-IC and a comparably sized LO-IC are similar since the s
of the tags in the TH-IC can be decreased due to the elimimafio
the high portion of the tag that is redundant to the tag in thé@
being checked during the same cycle. TH-IC uses a singlsideci
bit (Fetch From TH-IC) to determine from where to fetch the next
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instruction. The last instruction accessed from the THdGlso
kept as a pointer ihast Inst.

There are two distinct types of access in the TH-IC or anyrothe
instruction cache for that matter: sequential accessesransfers
of control. On a sequential fetch access (branch predictad n
taken), there are two possible scenarios to consider. Hthess is
to any instruction other than the last one in a line, thendpisign
will always choose to fetch the next instruction from the T&-
since it is guaranteed that the next sequential instruatitime same
line will still be available on the subsequent access. K ithie last
instruction in the line that is being fetched instead, thetcHing
the next instruction from the TH-IC will occur only if thEext
Sequential bit (NS) is set. This bit signifies that the next modulo
line in the cache is actually the next sequential line in mgmo
This is a behavior that line buffers do not support, sincg thdy
hold a single line at a time, and thus must always return tchfet
from the L1-IC when they reach the end of the line.

If the predictor specifies a transfer of control (taken bramall
or jump), then the TH-IC will make use of thidext Target bit
(NT), one of which is associated with each instruction pnese
the small cache. If the current instruction has its NT bit tetn
the transfer target’s line is guaranteed to be availabletlans the
next instruction should be fetched from the TH-IC. Note et
tag/ID check is unnecessary, since the NT bit guaranteegHisa
instruction’s branch target is currently available in thd-TC. If
the NT bit is not set, then the next instruction should behfetc
from the L1-IC instead, and the TH-IC should be updated sb tha
the previous instruction’s target is now in the TH-IC. In ledtH-

IC line, TLs is a bit vector that refers to the lines that may have
NT transfers that target this line. When a line is replacea, t
corresponding NT bits are invalidated.

3. Analyzing Instruction Residency
within a Small IC

The success that TH-IC has demonstrated in reducing inistnuc

cache power consumption has led us to examine how the same ap-

proach can be used to identify further opportunities in jogeopti-
mization. To do this, it is important to understand how instions

are flowing through the TH-IC. In order to get a better undergt
ing of the abilities of TH-IC, we took a closer look at the diga
behavior of the individual lines. The first study was destybe
identify how eviction was handled in a 16x4 TH-IC, which whse t
most energy efficient configuration found in a previous stiidy.
The term 16x4 refers to 16 lines, where each line containstauc-
tion words. We collected statistics for each line evicteayrgting
how many of the other 15 lines have been replaced since the las
time the current cache line was replaced. This informatamshed
some light on how the TH-IC is utilized. Figure 4 shows theiless
using an average of the MiBench benchmarks [10] descrilded la
in this paper. Conflict misses occur when few lines are diggla
between consecutive evictions of a single line. This is $aprd ex-
pected), but does not constitute the common case. Completec
replacement shows the highest individual frequency (224&-
dicating a fairly large number of capacity misses. This Itdsunot
particularly surprising for such a small cache, but totalhealine
replacement of a direct mapped cache suggests a large lomp st
ture equal to or exceeding twice the size of the TH-IC or feetu
changes in the working set. In either case, we would expedt th
the miss behavior should be bimodal with some consecutivéd'H
line misses as well as long periods of TH-IC hits. This is &éa-
ture since it means that long sequences of instruction fetolld
exhibit the same behavior.

Figure 5 shows both individual and cumulative results far-co
secutive hits in a 16x4 TH-IC. The graph shows values betvieen
and 255+, with all consecutive streaks over 255 being caltean-
der the 255+ data point. This data reinforces the observieti@v
behavior. We see two distinct spikes in the figure, at 3 insions
(28.28% ind. and 35.56% cum.) and at 255+ instructions (26.9
ind.). The spike at 3 instructions shows standard line Ipiénav-
ior — a miss on the first instruction in a line followed by 3 ceos
utive hits for the remainder of the line. This is exactly wheatuld
occur with a long sequence of sequential fetches. This atsdor
the majority of TH-IC misses resulting in a very clusteregusnce
of misses. The other spike (at 255+) indicates that when gelon
sequence of hits occurs, it tends to be much longer. Thu3 HhkZ
is very efficient for capturing simple loop behavior.

Figure 6 similarly shows individual and cumulative restitis
consecutive non-misses (guaranteed hits and false missts)
a 16x4 TH-IC. False misses can be caused by complex control
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flow in small loops. When we plot non-misses, we see an even
greater number of very long instruction sequences resiiirige
TH-IC (40.71% 255+ ind.). This shows the TH-IC also does a
respectable job in capturing more complex loop behavioes€h
results indicate that filtering instruction referencestiyh TH-IC
provides an efficient means of partitioning the instructstream,
identifying sequences that have very well-structured biena

We also experimented with incorporating set associativity
TH-IC and LIFE. However, as other studies have shown, irreéa
associativity does not always improve hit rate. During tberse
of these experiments, we found that although we could Mistua
eliminate the penalties of set associativity, the set aasee TH-
IC performed worse than the direct mapped version. Although
some conflict misses may be avoided, the overall problemsstem
from overwriting useful lines twice as frequently as nornTdlese
very small caches often encounter loops that are just §fitdrger

than the cache, leading to worst case behavior for both LRU an
FIFO replacement policies. Even though other studies of serall
caches have used direct mapped purely as a simpler mechawism
analysis shows that direct mapped also provides betteatsisr It
appears that set associativity is not useful for very smattiuction
caches.

4. Eliminating Unnecessary BTB, BP,
and RAS Accesses

Although L1-IC energy tends to dominate the total energyireql

for the instruction fetch pipeline stage, a TH-IC reduces im-
pact. We will show a TH-IC actually reduces the cache power re
quirements so that it is less than the power consumed by #te re
of instruction fetch. LIFE is focused on making fetch morergy-
conscious, and thus it becomes increasingly important doae
energy consumption in the remaining speculation compsn@e,
BTB, RAS) present in instruction fetch. Based on our analysi
TH-IC residency in the previous section, it is apparent ttaer
microarchitectural state involved in fetch can be managerkraf-
ficiently. Preliminary studies with LIFE revealed that 8874 of the
executed instructions in our benchmarks are non-brandhums
tions, which means that access to the BTB, BP, or RAS is uisrece
saryat least 86.75% of the time. Figures 5 and 6 make it clear that
additional information can be kept regarding branch/ncambh
status of instructions, thus making a fetch engine moreieffic

LIFE employs both a conservative strategy and a more
gressive strategy for handling access to speculative coeris
of instruction fetch. The conservative strategy disabpexslation
whenever the next fetched instruction can be guaranteeat toera
transfer of control. Of the branches that are executed imstnuic-
tion stream, we found that 23.73% are predicted stronglytaictn
(state 00) by our bimodal branch predictor. The more agiyess
strategy will further disable speculation when the nexttied in-
struction is a transfer of control, but has been previoustyligted
as strongly not-taken (00). Combined together, the BTB,aBid,
RAS structures need not be accessed for 89.89% of fetcheddns
tions.

LIFE depends on TH-IC to both supply and manage fetched in-
struction metadata. Figure 7(a) shows the baseline TH-I@Gada¢a
configuration used in this paper. Each line is composed afifeu
structions and their associated NT bits. A single NS andiail
are associated with each line and 16 TL bits are used totkteili
line-based invalidation of NTs. ID is 6 bits long to uniquélgntify
the corresponding L1-IC line (replacing the longer tag afivem-
tional caches), and only needs to be checked on a potengal mi

In Figure 7(b), a singl&lext Sequential Non-Branch bit (NSNB)
has been added to each instruction in the line. On sequénatiesi-
tions both within and across lines, this bit will be set whiea ext
fetched instruction is not a transfer of control instruoti®Vhen-
ever this bit is set and we fetch sequentially, the BP, BTH,RAS
need not be activated on the following cycle.

We can also extend the utilization of the NSNB bit to accept
transfer of control instructions that are strongly notetakapproxi-
mately 23.73% of branches). This usage will be referred t¢%G0
due to 00 being the strongly not-taken bimodal BP state. i th
configuration, whenever a branch is encountered and a pigdic
is made that it is strongly not-taken (state 00), the previ(ae-
quential) instruction can set its NSNB bit. When this instion is
later fetched, the NSNB bit will indicate that no predictisimould
be made. While most branches that reach the strongly netitak
state remain not-taken, some of the branches would suffeeif
prediction remained not-taken while the instruction ishie TH-

ag-
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IC. Since additional speculative misses would cause ae&serin
cycle count, selective update of NS00 is necessary. On albran
misprediction, the TH-IC must be accessed to unset the N800 b
of the previous sequential instruction since we can no loggar-
antee that the branch will be predicted as not-taken.

Figure 7(c) is a further enhancement for LIFE that adds a sin-
gle Next Target Non-Branch bit (NTNB) for each instruction in the
line. This bit serves a similar role as NSNB, but it is set faarizh
instructions whenever the corresponding target insocts not
a transfer of control or is strongly not-taken. Most brarsckie
not target unconditional jumps since compiler optimizagicuch
as branch chaining can replace such a chain with a singletran
Conditional branch instructions are also rarely targetg;esthey
are typically preceded by comparison instructions. Cakisrarely
targets since they are usually preceded by additionalicistns to
produce arguments. Finally, returns are rarely targetesiegisters
are often restored before the return. Thus, NTNB bits aregiy
quickly set for each direct transfer of control. Again, tegecula-
tively reduces the need to access the BP, BTB, and RAS stasctu

Adding these metadata bits to the TH-IC requires only a minor
change in the steps to take for line invalidation. When a ifne
evicted, all of its NSNB and NTNB bits must be cleared. One
interesting difference with the invalidation of NSNB vessthe
NS is that the previous line’s last NSNB bit need not be cleéare
This is due to the fact that any subsequent fetch after crgsbat
line boundary will still not need a BP/BTB/RAS access, ad tha
instruction will not change branch status whether it wasHed
from L1-IC or TH-IC. This same principle holds for NTNB bits
when NT bits are cleared due to target line evictions. Thesesses
to the BP/BTB/RAS structures can sometimes be avoided even
when the L1-IC has to be accessed due to an instruction nog bei
guaranteed to reside in the TH-IC.

Figure 8 shows an example of using LIFE to fetch a loop. This
example includes both the NSNB and NTNB extensions. We track
the number of BTB/BP/RAS accesses required in addition ¢o th
L1-IC and ITLB accesses. The baseline loop sets the appitepri
NS and NT bits as the instructions are initially fetched frtma
L1-IC. Each of the instructions in the main loop (2—7) can barg
anteed to hitin TH-IC once the NS and NT links have been sas$, th
leading to extremely efficient cache behavior during thadyestate
operation. NSNB and NTNB bits are set as LIFE gathers inferma
tion about the instructions fetched in the loop. During swejoeent
loop executions, the BTB/BP/RAS need only be accessed when i
struction 7 is fetched, thus leading to only one single slagicun
access per loop iteration. Without NTNB bits, the fetch aftinc-

tion 2 would also require a BTB/BP/RAS access, since thedbran
transition from instruction 7 could not be guaranteed tgeaia
non-branch.

Modifying the use of speculative components requires aeund
standing of the regularity in which these components ard ase
their results relative to the TH-IC. Figure 9 shows the taop of
branches as they are fetched using LIFE with NSNB, NS00, and
NTNB extensions. This figure clearly demonstrates the tation
of speculative hardware with the fetch of instructions. Vel tihat
56.48% (45.92% taken + 10.56% not-taken) of all branchek wil
have their predicted next instruction as a guaranteed HitarTH-

IC. Further, 58.61% of all branches will have metadata atss!

at fetcH. Combined, we find that almost all branches with meta-
data result in a guaranteed hit in the TH-IC. This fact coutd p
tentially lead to the discovery of new relevant metadata ¢bald
further influence speculative execution. A somewhat iiviistep
was to enhance LIFE with speculative information. Unfoetigty,

as can be seen in Figure 9, 41.39% (11.94% from L1 + 29.45%
first access) of branches either are not fetched from theT ldrl

do not contain metadata. This means that the smaller steuofu

an embedded BTB and BP would be applicable to only 58.61% of
branches. The level of accuracy obtained did not offset tis¢ af
additional metadata in LIFE and updates to the original \ward
structures. While this result does mean that we cannot editaiac-
cesses to the 512-entry bimodal BP and BTB, it does not mesn th
new metadata cannot be used to influence the use of theseigtgic

to allow for a reduced speculative miss rate.

In addition to dealing with strongly not-taken branchese on
might also consider having LIFE handle strongly taken ctioiclal
branches (encoded as 11 in the bimodal BP), since they wil fr
quently occur due to loops. For instance, the BTB/BP/RAScstr
tures are accessed each time instruction 7 in Figure 8 ihddtc
LIFE could enable just the BTB and RAS, while always automati
cally predicting such branches as taken. To recognize trstaté,
an additional metadata bit (or a special encoding of thetiagis
bits: NSNB, NTNB, and NT) would have to be introduced to the
TH-IC, thus increasing the average energy for processiggran
struction. This approach proved unfruitful since branchkibieh are
strongly taken and remain strongly taken account for veny ¢é
the overall instructions executed. Thus, any benefit is eigied
by the overhead of the additional metadata handling.

1For a branch to be considered as having metadata it must rthekfast
fetch of the given branch. If a TH-IC line eviction occurs ahé branch
leaves the TH-IC, then the next fetch of that branch will besidered its
first fetch since the metadata was cleared.
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5. Experimental Results with LIFE

In order to evaluate LIFE, we obtained a copy of the previous
research framework for TH-IC [11]. This framework uses tima-S
pleScalar simulator [2] with Wattch extensions [6] to estimen-
ergy consumption. Thec3 clock gating style approximates the
effect of leakage. Under this scheme, inactive portions hef t

processor consume 10% of their active energy. We also use the

MIPS/PISA instruction set, although the baseline proaeisstmon-
figured with parameters that are similar to the StrongARM&4
shows the exact configuration parameters that were usedlinoéa
the experiments. The LO-IC and TH-IC are only configured when
specified in the evaluation. We evaluate using just TH-IC thied
extend it with the LIFE techniques for eliminating BP, BTBida
RAS accesses. In subsequent graphs, NSNB indicates usng th
NSNB bits only to handle instructions that are not transféison-
trol, while NS00 corresponds to a configuration that usesl®kB

bits to handle strongly not-taken branches as well. FinAllyNB
includes NSNB, NS00, and adds NTNB bits to handle targets tha
are not transfers of control.

While the Wattch power model is only an approximation, it is
sufficient for providing reasonably accurate estimatessfoiple
cache structures using CACTI [21]. The structures beindueva
ated in this work (TH-IC, BP, BTB, RAS, LO-IC, L1-IC, ITLB) ar
composed primarily of simple regular cache blocks and éataat

Table 1. Baseline Configuration

I-Fetch Queue 4 entries
Branch Predictor Bimodal — 512
Branch Target Buffer 512 entries
Branch Penalty 3 cycles
Return Address Stack 8 entries
Fetch/Decode/lssue/Commit 1
Issue Style In order
RUU size 8 entries
LSQ size 8 entries
16 KB
L1 Data Cache 256 lines, 16 B line,
4-way assoc., 1 cycle hit
16 KB
L1 Instruction Cache 256 lines, 16 B line,
4-way assoc., 1 cycle hit
Instruction/Data TLB 32 entries, Fully assoc.,
1 cycle hit
Memory Latency 32 cycles
Integer ALUs 1
Integer MUL/DIV 1
Memory Ports 1
FP ALUs 1
FP MUL/DIV 1
256B
LO Instruction Cache 16 lines, 16B line,
(when configured) direct mapped, 1 cycle hi
256B
Tagless Hit I-Cache 16 lines, 168 line,
(when configured) direct mapped, 1 cycle hi
Line-based invalidation

tags/metadata. Although LO-IC and TH-IC may differ in fuoot
ality (tag checks vs. metadata updates), they should rexeain
similar in overall latency and area. Writing of metadates lwan
be viewed as a small register update, since the overallrmgtheis
often short.

Table 2 shows the subset of MiBench benchmarks that we used
for each of our experiments [10]. MiBench consists of sixeeat
gories of applications suitable for the embedded domainvara
ety of areas. Each benchmark is compiled and optimized \vith t
VPO compiler [5], which yields code that is comparable inlgya
to GCC. All applications are run to completion using theiraim
input files (to keep the running times manageable). Largetiagp-
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Figure 10. Impact of LIFE on Fetch Power

Table 2. MiBench Benchmarks

[ Category | Applications |
Automotive | Basicmath, Bitcount, Qsort, Susan
Office Ispell, Rsynth, Stringsearch
Consumer | Jpeg, Lame, Tiff
Security Blowfish, Pgp, Rijndael, Sha
Network Dijkstra, Patricia
Telecomm Adpcm, CRC32, FFT, Gsm

periments have also been done with TH-IC, and results wese ve
similar to the smaller input results. We also present redolt the
176.gcc benchmark available in SPECInt2000 in order to evaluate
the impact of LIFE on a more complex general purpose applica-
tion. This benchmark is run to completion using its test irfde
(ccep.i). We have obtained similar results using the refeggnput
(expr.i). MiBench results are presented by category aloitly &n
average due to space constraints. All resultsiféé.gcc are dis-
played after the MiBench average. Results are verified foh ea
benchmark and sanity checks are performed to ensure cteect
havior and verify that LIFE does not unfairly use informatidat
should not be available to it.

Figure 10 shows the fetch power distribution for each of e v
ious LO-IC and LIFE configurations. The fetch power bars ali s
into I-cache and speculation components, and results ameaho
ized to the overall L1-IC values. The MiBench average resiibw
that while the LO-IC and TH-IC alone can reduce cache pouey; t
have a negligible impact on speculation power. The bassiiee-
ulation power is 27.97% of the total fetch power, while cache-
count for 72.03%. Adding an LO-IC cuts the cache power to@% 3
and the speculation power to 27.73%. The reduction in sp&oul
power is explained by power estimates which are averagesscr
all execution cycles. The extra cycles due to LO-IC misseaato
require access to the speculative resources, thus redtienay-
erage but keeping the same total. Total energy (discussen la
will show an increase in energy consumed during executibfy. T
IC reduces cache power to just 21.82% of the original fetahguo
with no change in speculation power since branch predidsiom-
modified and total execution time is unchanged. Once TH-IC is
employed, speculation power exceeds the average |-cadessac

power, thus providing the motivation for our explorationFE, us-

ing just NSNB bits for non-transfers of control, results exche
power of 21.87% and a reduction in speculation power to 28.55
The cache power is slightly increased from the baseline MiEE&
TH-IC due to additional NSNB bits and associated upkeep. Al-
lowing strongly not-taken branches (NS00) results in a @&0
speculation power and 21.91% cache power. Finally, addieg t
NTNB bits reduces the speculation power to 12.34% and thieecac
power to 21.95%, for an overall fetch power savings of 65.70%
over the baseline L1-IC. LIFE eliminates an average of 6417
of speculative hardware accesses due to being able to expdoi
NSNB/NTNB metadata. Results f&76.gcc show slightly reduced
but still significant savings in fetch power for LIFE.

While an LO-IC degrades performance by about 6.44% (with
a 17.67% maximum increase oijndael), TH-IC and LIFE have
no associated performance penalty. The baseline TH-IC #s we
as LIFE with any of the configured NSNB, NS00, or NTNB ex-
tensions do not exhibit any associated performance diféerérom
the baseline configuration.

Figure 11 shows the benefit of LIFE on total processor energy.
Adding an LO-IC reduces total energy to 79.00%. This is lbasit
the power savings because total energy accounts for thegiselin
execution time caused by the increased L1-IC latency whesicse
ing LO-IC misses. TH-IC cuts total energy to 72.23%, in linghw
power analysis since execution time is unaffected. SitgjlaiFE
with NSNB reduces total energy to 65.44%, in line with powsi-e
mates. Adding NSOO reduces the total energy to 65.27% andBNTN
yields a final total processor energy of 64.98%. Wi#i®.gcc, ap-
plying all the LIFE extensions reduces the total energy t88%.

In all cases, LIFE extensions are able to achieve equivalener
reduction in speculation components that TH-IC achievet thie
I-cache/ITLB. The combination of these enhancements gield
much greater energy savings than any other existing ingiruc
fetch energy reduction technique evaluated.
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6. Improving Next Sequential Line

Prefetch with LIFE

LIFE is designed to exploit program fetch behavior in an effo
better utilize pipeline resources. In examining the fumadiity of
the TH-IC, we found that presence of instructions in the TH-I
can be used as a simple execution phase predictor. Whendnstr
tions are fetched from the TH-IC, they are identified as b@iad

of very regular instruction fetch. This regularity of fetbkhavior
can identify potential optimizations in later pipeline g¢a either
to improve execution performance or to reduce power consump
tion. There have been numerous proposed microarchité@uora
hancements which seek to identify regular resource usagerps
and scale the pipeline resources to best match the expecteile-
ments. LIFE can perform as an efficient early predictor tgger
these optimizations. Cyclone is a dynamic scheduler thairgits

to reduce the scheduling complexity by implementing a fofm o
selective instruction replay [7]. LIFE can provide additi infor-
mation about program behavior to such a scheduler whiledwpr
ing overall processor energy efficiency. Throttling of mssor re-
sources is also becoming increasingly important, as potid the
processor are over-designed and cannot be fully explditedigh-
out a program’s entire execution [1, 3, 15]. LIFE providesnagde
mechanism for subsequently fetched instructions to takarsege

of improved resource assignment or scheduling based oippeev
execution characteristics.

are still useful, thus polluting the cache. With next sedjiaétine
prefetching (NSLP), the first non-prefetch access of a liggérs
the next sequential line to be fetched from memory once tie cu
rent cache access operation has finished [9, 19, 20]. Byiatisoc
a first access bit with each cache line, a subsequent truefuse o
prefetched line triggers the next sequential line to begtckied.
This technique potentially allows the prefetching to stag dine
ahead of the current accesses. If a line is already availakitee
cache, then the data is not fetched from memory unnecessaril
Although LIFE only keeps track of instruction fetch behayio
we can exploit this information to have NSLP selectivelytdad
or disabled. NSLP works best on sequentially accessedsatinay
exhibit a good deal of spatial locality. Small loops are oftesed
to iterate through arrays of data, and LIFE can provide a leimp
mechanism for detecting such loops. We can use a single bit to
denote whether thigitial line access was a hit or a miss, which we
will refer to as the TH-1Qine-hit bit. It is possible for a TH-IC line-
hit access to not be in a small loop, but the majority of casiis w
show that this fetch behavior corresponds to small loop i@,
Thus we can enable NSLP when we have a TH-IC line-hit and
disable it on any miss. The TH-IC line-hit information wilkeb
propagated through the pipeline stages with the fetcherdiztion
and will only be checked if the instruction is a memory access
Throttling the NSLP mechanism will help to reduce the fre-
quency of useless prefetches. This approach conservegyearet
can also help to reduce cache pollution for benchmarks ypat t
ically do not exhibit good prefetch behaviors. Table 3 pntsea

One area of the pipeline that would seem to benefit the least simplified view of the combinations of instruction and dat@nfl

from knowledge of instruction fetch behavior is the dataheac
While previous TH-IC results could not extend benefits to the
data cache, LIFE can use the fetch metadata to intelligesaty
lect when to apply aggressive optimization techniquesterdata
cache. Such optimizations may not be able to be normallyiegpl
for highly constrained processor designs due to their &ssot
tradeoffs. Prefetching is an example of such an aggresgitie o
mization that attempts to reduce cache miss penalties by ilie
cache cycles to fetch data speculatively from predictedesies.
When a triggering condition is met, the cache will prefetataddi-
tional line of data. Although prefetching can improve perfance
through reducing cache misses, it significantly increasesony
traffic and may force the early eviction of other cache lirfest t

behavior in a pipelined processor. Both instruction anch diatv
can be simply characterized as stable or unstable. Stadttedtion
flow corresponds to loop behavior where the instruction erges
are able to be fetched from a small cache. Stable data flowdateti
a data access pattern that exhibits good spatial localigsiply
improving with prefetching. LIFE and TH-IC provide theirezt-
est benefits during periods of stable instruction flow as tledy
on past instruction behavior to make guarantees. NSLP awly p
vides benefits during periods of stable data flow. When dataiflo
unstable, NSLP performs useless prefetches that wastgyemed
can evict useful cache lines. The majority of execution timmmost
applications will consist of stable instruction flow.



Table 3. Correlating Instruction and Data Flow Behavior
Inst. Flow [ Data Flow | Comments |

Stable Stable Typical loop (strided array data accesses)
Stable Unstable Typical loop (pointer-chasing data accesses)
Unstable Stable Does not occur often in practice

Unstable Unstable Transitional code (non-loop)

Table 4. Impact of LIFE with Next Sequential Line Prefetch

Useless Prefetches Execution Time
NSLP | LIFE+NSLP NSLP | LIFE+NSLP
Automotive 34.52% 31.85% 93.61% 94.39%
Consumer 25.15% 16.27% 97.00% 97.60%
Network 38.02% 25.23% 95.95% 96.14%
Office 49.43% 29.01% 98.05% 98.53%
Security 52.26% 36.99% 99.96% 99.96%
Telecomm 22.36% 27.17% 99.86% 99.88%
MiBench Avg. || 36.82% 28.52% 97.54% 97.88%
176.gcc 51.31% 38.17% 97.61% 98.79%

Table 4 summarizes the results of our experiments with LIFE

and next sequential line prefetch. Useless prefetchesteteioe
fraction of prefetches that are never accessed by the aampydit
cation before being evicted. NSLP reduces the overall egiin
execution times, while LIFE+NSLP can attain most of the fiehe
by just selectively prefetching. For MiBench, the numbeunséless
prefetches is reduced by 22.54% when applying NSLP setgtiv
based on LIFE metadata. Witty6.gcc, the use of LIFE reduces
the useless prefetches by an additional 25.6%. This tri@ssiato
a significant reduction in memory traffic due to data accessta

does not model the off-chip energy consumption of main mem-

ory, so energy results are not included. Simplified energ}yais

based on memory access counts shows that LIFE+NSLP results i

an overall greater system energy savings than NSLP alone.

7. Related Work

There are other small structures that have been used tosaaces

large percentage of the frequently executed instructioitliw
an application. Zero overhead loop buffers (ZOLBs) [8], doo
caches [14], and L-caches [4] all target regular fetch padtéhat
include small tight loop behavior. These techniques caminbt
similar benefits in reducing the number of speculative azesf
the BTB/BP/RAS by knowing which instructions can poteryial
branch to other code.

Reinman et al. propose a serial prefetch architecture thits s
tag and data accesses into separate pipeline stages forctitst
fetch [18]. By performing tag accesses first, only the raiédata
line from the proper cache way needs to be fetched, savirgepro
sor energy. By fetching ahead with the tags, instructioadinan
be prefetched into a special buffer from which they can later
promoted to the actual instruction cache on a direct fetghest,
thus improving performance. In contrast, LIFE completdiyne
nates tag accesses for guaranteed hits, and also reducesitber
of accesses to other fetch structures relating to speeonlatthich
serial prefetching cannot do.

more efficient to avoid accesses to the BP/BTB/RAS by tragkin
this information in a small TH-IC versus a larger structuse the
entire BTB. A leakage power reduction technique has alsam bee
used to turn off entries in the BP and BTB if they are not acegss
for a specified number of cycles [12]. The counters used imiiit |
the amount of energy savings. Yang et al. reduce BTB enengy co
sumption by altering the instruction set and producingsetde to
store the distance to the next branch instruction from tigéninéng

of each basic block in a small branch identification unit [Zje
BTB is not accessed until the next branch is encounteredle/é
ducing energy consumption, this approach requires ailberaf the
executable to store the branch distance information andiaten
to detect when the next branch will be encountered.

8. Future Work

There are a number of different ways that LIFE can be tuned for
other fetch stage configurations. The size of the BP and BTB ca
be varied. Itis likely that LIFE will support a larger BP andB to
reduce the number of branch mispredictions while still iréta
energy efficiency since the number of accesses to theser large
components are significantly reduced. It would also be ésting

to use a correlating branch predictor with LIFE. Since theent
design of LIFE, when using the NS00 configuration, involvas a
update to the metadata in the case of a misprediction, otleen
new metadata may be updated simultaneously without thénesdr

of the TH-IC access.

In this paper we have limited our changes to the fetch stade an
data cache portions of the pipeline. This makes sense foeémb
ded processors since they tend to have simple pipeline iaatam
after fetch. Since both TH-IC and LIFE have no impact on pro-
cessor performance, we predict that their use in high pedace,
general purpose processors could yield positive resuttsl En-
ergy reduction will not be as great as for embedded architest
since a greater portion of the power budget is used by latergm
complex) pipeline stages, but since any reduction comesowit
performance penalty, inclusion of LIFE is still warrant&dr these
complex pipelines, LIFE can be used to improve resourcetgsthe
ing decisions. We already explored a case involving nexieetigl
line prefetch, showing that LIFE can act as a filter, idermifysmall
loops with repetitive, consistent execution behavior. @haity to
identify repeated instruction sequences very early in ipeline
can also affect the design of dynamic instruction schedulitata
forwarding, instruction wakeup logic and other power isiga
portions of pipeline execution. New designs for these #tines can
exploit the regularity of instruction execution for LIFE@essed
instructions to reduce power consumption or even to enhpace
formance since improved scheduling decisions can be caiched
the later pipeline stages for these instructions. BagicalFE can
be used to identify those phases of program execution thibiex
very structured, consistent execution patterns. Thesseshean
then be exploited in various other stages of the pipelinbitac-
ture to throttle back resources to reduce power consumptida
iteratively capture best resource allocation to improvéquenance
(or both). We believe that the ability to partition the ingttion ex-
ecution into (at least) two very different execution bebasiopens

There has been some previous work on reducing the energy con-UP New research opportunities in many areas of processigndes

sumption of the BTB. Utilizing banked BP organization alarith

a prediction probe detection to identify cache lines cong no
conditional branches was evaluated by Parikh et al. [17F Study
showed that careful layout of BP resources and a course lgranu
ity bypass capability can make much larger BPs feasible faom
total energy perspective. Just as there are fewer bits cidatt
to manage in a TH-IC versus an L1-IC to guarantee hits, itde al

9. Conclusions

As power has become a first class design constraint, arthiten-
tinue to exploit regularity in application behavior to inope pro-
cessor designs. In this paper we have demonstrated howdtistr



fetch power utilization can be improved by exploiting thqmms-
tions of the program execution that exhibit well-definegetiive
behavior. The goal of the LIFE extensions to the procesdchfe
logic is to identify repetitive code sequences and cachegmnm-
formation about their prior behavior to control access t® BP,
BTB, and RAS structures. LIFE eliminates access to these-str
tures an average of 61.17% of the time, resulting in a totahga
of 63.33% on instruction fetch power and an additional sgwiof

9.42% on total processor energy beyond what is achievalite wi

TH-IC alone. All of these improvements are made with no insee
in execution time and require only 128 additional metadéta(@
bits per TH-IC instruction). Furthermore, we showed thé &n-
hanced knowledge of instruction fetch behavior can guiderot
pipeline decisions, particularly for handling aggressiggimiza-
tions like next sequential line prefetch. By focusing on libeps

detected by LIFE, we were able to reduce the number of useless (11]

data prefetches while still maintaining the majority of {merfor-
mance benefit afforded by prefetching. Other throttlindrtegues
may benefit similarly from the phase behaviors detected IBRELI
The design complexity of TH-IC and LIFE is minimal, with arear
cost comparable to similar conventional filter caches usirigw
simple index structures to maintain the metadata requvezbh-
trol resource allocation. LIFE can easily be incorporatetd any
processor pipeline, requiring only minor additions to thieh stage

and the routing of branch outcomes to update the LIFE metadat

We believe that the techniques presented in this paper conise

a common design choice for both low-power embedded processo

as well as high-performance general purpose processaiswilth
become even more important as multicore architects fo@isefh
forts towards further reducing per core power consumption.
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