

Generalizing Parametric Timing Analysis
Joel Coffman1, Christopher Healy1, Frank Mueller2, and David Whalley3

1 Computer Science Dept.
Furman University

Greenville, SC 29613
chris.healy@furman.edu

2 Computer Science Dept.
North Carolina State University

Raleigh, NC 27695-7534
mueller@cs.ncsu.edu

3 Computer Science Dept.
Florida State University

Tallahassee, FL 32306-4530
whalley@cs.fsu.edu

ABSTRACT
In the design of real-time and embedded systems, it is important
to establish a bound on the worst-case execution time (WCET) of
programs to assure via schedulability analysis that deadlines are
not missed. Static WCET analysis is performed by a timing
analysis tool. This paper describes novel improvements to such a
tool, allowing parametric timing analysis to be performed.
Parametric timing analyzers receive an upper bound on the
number of loop iterations in terms of an expression which is used
to create a parametric formula. This parametric formula is later
evaluated to determine the WCET based on input values only
known at runtime. Effecting a transformation from a numeric to a
parametric timing analyzer requires two innovations: 1) a
summation solver capable of summation non-constant expressions
and 2) a polynomial data structure which can replace integers as
the basis for all calculations. Both additions permit other methods
of analysis (e.g. caching, pipeline, constraint) to occur
simultaneously. Combining these techniques allows our tool to
statically bound the WCET for a larger class of benchmarks.

Categories and Subject Descriptors
C.3 [SPECIAL-PURPOSE AND APPLICATION-BASED
SYSTEMS]: REAL-TIME AND EMBEDDED SYSTEMS

General Terms
Verification, Reliability

Keywords
Worst-case execution time (WCET) analysis, parametric timing
analysis

1. INTRODUCTION
 Embedded systems, especially those in safety-critical or hard
real-time environments, typically require that timing constraints
be met. To guarantee these systems will meet deadlines, the
worst-case execution time (WCET) of each program must be
known. The process of determining the WCET of a program is
known as timing analysis. Knowledge of the WCET can be used
to dynamically scale voltage when a scheduler detects future slack
time [1, 6, 7]. This facilitates power savings, an especially
important aspect in embedded systems. Image processing
provides another useful application for parametric timing analysis,
since image dimensions may not be known a priori [10].

 Static timing analysis has traditionally required loops to
contain a constant number of iterations so analyzers may produce
constant worst case execution bounds. Such constraints on input
programs make this form of timing analysis numerical: the
number of loop iterations is constant as is the final result from the
timing analyzer. Parametric timing analysis allows the number of
loop iterations to be unknown at compilation as long as this value
may be written as an expression. Such flexibility expands the
class of programs which may be analyzed. Instead of providing a
constant upper bound for a loop, a symbolic formula is created
using the expression representing the number of loop iterations.
The formula may be evaluated later to obtain the execution time
for any given input [6, 9].
 We enhanced an existing timing analyzer [3, 5, 6, 9] to
support generalized parametric analysis. The conversion required
a three-fold process. First, a summation solver capable of
summing non-constant numbers of iterations was written. Next,
an advanced polynomial data structure was developed to express
parametric formulas. Naturally, the polynomial data structure
should not significantly slow numerical calculations. Finally, the
polynomial class was integrated into the timing analyzer to
replace integers in calculations. Constraint analysis – determining
which paths in a loop can execute on certain iterations – can still
take place with polynomial functionality.
 Although these goals appear simple at first, parametric
benchmarks present special problems to timing analyzers.
Numerical timing analyzers receive a numerical upper bound on
the maximum number of loop iterations that is either
automatically determined by analyzing the program or is input by
the user. Parametric analyzers receive the maximum number of
loop iterations as an expression whose value is unknown at
compilation (e.g. for i = 0 .. n-1 contains n iterations).
Because the expression must be evaluated at runtime, the loop
may not execute even once (e.g. the value of n could be -1).
Such uncertainty means every parametric benchmark implicitly
contains control flow even when the numerical version does not.
 In this paper, we describe a procedure for calculating the
number of iterations of nested loops in terms of loop invariant
parameters. Secondly, the existing timing tool was enhanced so
parametric formulas rather than scalar quantities could be used in
all calculations. Some details of our approach have been omitted
for sake of brevity.

2. COMPUTING ITERATIONS
 A stand-alone software package called Emtadel was used to
calculate integral solutions for nested triangular loops. Triangular
means that the induction variable of the inner loop depends on the
induction variable of the outer loop. Consider the code fragment

Copyright is held by the author/owner(s).
LCTES’07 June 13–16, 2007, San Diego, California, USA.

for (x = 0; x < 3; ++x)
 for (y = 0; y <= x; ++y)
 statement;

.

. .

. . .
ACM 978-1-59593-632-5/07/0006.
 The dots to the right indicate the number of iterations of the inner

mailto:chris.healy@furman.edu
mailto:mueller@cs.ncsu.edu
mailto:whalley@cs.fsu.edu

loop for each value of x. Because the number of iterations is non-
constant, the minimum, maximum, and average number of
iterations must be calculated. The software package could handle
any level of loop nesting and could determine if the number of
loop iterations is zero even when it is not immediately apparent by
examining the original loops.
 For the example presented above, the equivalent summation
would be

 (1) ∑ ∑
= =

=
2

0 0

))1((_
x

x

y

iterationstotal

which equals 6. The minimum number of iterations of the inner
loop is 1, the maximum is 3, and the average is 2. The average
number of iterations of the inner loop is calculated by dividing the
sum (6) by the total number of iterations of the outer loop (3).
The concept of representing the number of loop iterations as a
summation was motivated by the work of Sakellariou [8].
 Averaging the number of iterations considers the possibility
of the inner loop being zero-trip or partially zero-trip. A zero-trip
loop derives its name from the fact that a summation whose lower
bound exceeds its upper bound evaluates to zero. Hence, a zero-
trip loop does not execute the loop body. A partially zero-trip
loop fails to execute the loop body on some iterations. If the
condition of the inner loop in the example presented above was y
< x (instead of y ≤ x), the inner loop would be partially zero-trip.
On the first iteration of the outer loop, x would be zero and the
inner loop would not execute. On the second and later iterations,
the inner loop would execute. Hence, the inner loop would be
partially zero-trip in the modified example. Using the average
number of iterations for triangular loops achieves tight WCET
bounds.
 Using rational numbers in the calculations allows even more
accuracy when averaging the number of iterations of triangular
loop nests. In the previous example, changing the conditional
expression of the outer loop to x ≤ 3 (instead of x < 3) would
mean that the total number of iterations would be 10. Dividing by
the total number of iterations of just the outer loop (4) provides
the average number of iterations (2 ½). Representing the number
of iterations as an integral quantity would mean that the inner
loop’s average number of iterations would be 3. Hence, a rational
representation further tightens WCET bounds.
 We use a C compiler called vpo, which creates a control flow
information file during compilation [2]. The timing analyzer
obtains loop specific information from this control flow file. This
data includes the iterating (induction) variable and iteration
information consisting of the minimum and maximum number of
iterations (provided these are scalar quantities) or the initial, limit,
and increment value of the induction variable [4]. If a parametric
loop is nested within another parametric loop, the outer loop's
iteration information is also reported. This allows a group of
summations representing the loop structure to be generated.
Emtadel handles the evaluation of the loop summations.
 By means of an example, we can illustrate some of the
complexities of calculating symbolic solutions when loops may be
zero-trip. One example that requires a condition to be placed on
the final answer is

for (i = 1; i <= z; i++)
 for (j = 7; j <= i; j++)
 for (k = 5; k <= i; k++)
 sum++;

where z is once again a function parameter. Emtadel generates a

summation equivalent to the sigma notation

 (2) ∑ ∑ ∑
= = =

=
z

i

i

j

i

k

iterationstotal
1 7 5

)))1(((_

The innermost summation will evaluate to zero on all iterations
where i < 5. Similarly, the middle summation will also be
partially zero-trip. Emtadel is able to store such conditions on its
intermediate calculations, and final answer is

 25
6

115
2
9

3
1 23 −+−= zzziterations (3)

if z ≥ 7. If z is less than 7, the summation evaluates to zero.
 This symbolic approach allows the timing analyzer to input
loop variable information directly instead of having to form
equations independently. The improvement replaces a significant
portion of code contained within the timing analyzer and
improves encapsulation. Additionally, any condition(s) placed on
the final solution allows the timing analyzer itself to place
conditions on the validity of its final answer.

3. ANALYSIS USING SYMBOLIC
FORMULAS
 The summation solver Emtadel requires a polynomial data
structure to calculate and represent the symbolic solution of a
summation. The timing analyzer also uses polynomials to
compute parametric results. We adopt the following definition of
polynomials: a polynomial contains one or more terms combined
using addition. A term consists of zero or more variables each
raised to a power. Each term is multiplied by either a constant
(any rational number) or a polynomial chain. A polynomial chain
allows the timing analyzer to express a parametric formula as the
maximum (or minimum) of two or more polynomials. This
functionality is required when the largest (or smallest) of a group
of polynomials cannot be known until the values of variables are
substituted into the expressions.
 A polynomial chain allows both Min and Max expressions.
One reason for this functionality is completeness – the polynomial
class as a whole was designed to be stand-alone. But the primary
reason is actually the timing analysis algorithm. Although one
normally thinks of WCET as a maximum of several possible
values (see Table 1), intermediate steps may require calculating a
minimum. Thus, it is possible to find a Min(…) expression as
part of the WCET.
 As the polynomial class was written, classes from C++
standard template library – namely vectors – were used to
maximize performance. The additional overhead of the
polynomial class does not degrade the performance of the timing
analyzer. Even timing the benchmark Matmult (see Table 1)
which has fifteen timing nodes still completes in less than three
seconds on a Sun Ultra 10 workstation. (The Sun Ultra 10
workstation used during the test contains an UltraSPARC IIi
processor running at 440 MHz and 256 MB of memory.)
Polynomials may be simplified after each operation which means
successive operations complete more quickly.

4. RESULTS
 We selected several test programs to demonstrate the
effectiveness of Emtadel and the enhanced timing analyzer. For
sake of brevity, only a few benchmarks are shown in this paper.
Parametric benchmarks are identical to scalar ones except that the
limit values of loops are parameters passed into the function. The
main function receives a different command line argument for

each different loop limit. The argument is a left shift amount
which means 20, 21, …, 29 are all valid numbers of maximum
iterations. This approach introduces the minimum amount of
extra code into the benchmark’s source. We chose these numbers
for convenience in testing; the timing analyzer is not limited to
benchmarks which contain an unknown number of iterations
which are powers of two.
 Table 1 shows the results some benchmark programs. The
column estimated cycles gives the execution time predicted by the
timing analyzer. Observed cycles was obtained by using the
integrated instruction cache and pipeline simulator which received
worst case input data.
 All of the benchmarks implicitly contain control flow

information because they have been parameterized. The timing
analyzer performs additional control flow constraint analysis as
previous described in [3]. Had this analysis not been performed,
the benchmark Summinmax (which contains an infeasible path)
would have an additional overestimation of 5 percent. Although
multiple paths exist in each timing node, only the benchmark
Integral reports its final answer as the Max of two distinct
polynomials. In the intermediate steps, the other benchmarks also
calculated a symbolic solution using Max expression.
Nonetheless, the polynomial data structure was able to determine
in these other cases that one of the polynomials was always larger
than the other. Hence, the smaller polynomial expression has
been subsumed by the larger.

Table 1: Results for Parametric Test Programs

Program Formula n iterations Observed Cycles
Estimated

Cycles Ratio

16 20,026 20,066 1.002Integral Max((153/2)n2 – n + (193/2),
(153/2)n2 + (49/2)n + 90) 128 1,256,562 1,256,602 1.000

16 175,399 175,929 1.003
Matmult 31n3 + 186n2 + 61n + 361

64 8,891,095 8,892,585 1.000

16 9,702 9,929 1.023
Sprsin 36n2 + 33n + 185

128 592,774 594,233 1.002

16 318 329 1.035
Summinmax 16n + 73

128 2,110 2,121 1.005

5. CONCLUSION
The contributions of this paper are twofold. First, we describe a
generalized procedure for computing summations that represent
the number of iterations of nested loops. This approach can
handle scalar as well as multi-variate quantities and express the
number of iterations in terms of loop invariant parameters.
Second, we significantly enhanced an existing timing tool so that
it represent both the number of iterations as well as the WCET of
code segments in terms of generalized polynomial expressions
rather than simply a scalar number of cycles. We then enhanced
its loop analysis algorithm to take advantage of our new
polynomial representation and accurate loop iteration
computations. The result is that we are now able to statically
bound the WCET for a larger class of benchmarks.

6. ACKNOWLEGEMENTS
This work was supported in part by NSF grants CCR-0312695,
CCR-0312493, and CCR-0312531.

7. REFERENCES
[1] Aydin, H., Melhem, R., Mosse, D., and Mejia-Alvarez, P.,

“Power-Aware Scheduling for Periodic Real-Time Tasks,”
IEEE Transactions on Computers, 53, 5 (May 2004), pp. 584
– 600.

[2] Benitez, M.E., and Davidson, J.W., “A Portable Global
Optimizer and Linker,” Proceedings of the SIGPLAN ’88
Symposium on Programming Language Design and
Implementation, June 1988, pp. 77 – 98.

[3] Healy, C., and Whalley, D., “Automatic Detection and
Exploitation of Branch Constraints for Timing Analysis,”
IEEE Transactions on Software Engineering, August 2002,

pp. 763 – 781.
[4] Healy, C., Automatic Utilization of Constraints for Timing

Analysis, Ph.D. Thesis, Florida State University, 1999.
[5] Ko, L., Al-Yaqoubi, N., Healy, C., Ratliff, E., Arnold, R.,

Whalley, D., and Harmon, M., “Timing Constraint
Specification and Analysis,” Software Practice and
Experience, January 1999, pp. 77 – 98.

[6] Mohan, S., Mueller, F., Hawkins, W., Root, M., Healy, C.,
and Whalley, D., “ParaScale: Exploiting Parametric Timing
Analysis for Real-Time Schedulers and Dynamic Voltage
Scaling,” Proceedings of the IEEE Real-Time Systems
Symposium, December 2005, pp. 233 – 242.

[7] Pillai, P., and Shin, K., “Real-Time Dynamic Voltage
Scaling for Low-Power Embedded Operating Systems,”
Proceedings of the 18th ACM symposium on Operating
Systems Principles, 2001, pp. 89 – 102.

[8] Sakellariou, R., Symbolic Evaluation of Sums for
Parallelising Compilers, Wissenchaft & Technik Verlag,
Proceedings of the 15th IMACS World Congress on
Scientific Computation, Modeling and Applied Mathematics,
1997.

[9] Vivancos, E., Healy, C., Mueller F., and Whalley, D.,
“Parametric Timing Analysis,” Proceedings of the ACM
SIGPLAN Workshop on Languages, Compilers and Tools for
Embedded Systems, June 2001, pp. 88 – 93.

[10] Zinner, C., and Kubinger, W., “ROS-DMA: a DMA Double
Buffering Method for Embedded Image Processing with
Resource Optimized Slicing,” Proceedings of the 12th IEEE
Real-Time and Embedded Technology and Applications
Symposium, April 2006, pp. 361 – 372.

	1. INTRODUCTION
	2. COMPUTING ITERATIONS
	3. ANALYSIS USING SYMBOLIC FORMULAS
	4. RESULTS
	5. CONCLUSION
	6. ACKNOWLEGEMENTS
	7. REFERENCES

