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Abstract

The Instruction Register File (IRF) is an architecturalession
for providing improved access to frequently occurringlinstions.
An optimizing compiler can exploit an IRF by packing an appli
cation’s instructions, resulting in decreased code siemiced en-
ergy consumption and improved execution time primarily tiue
a smaller footprint in the instruction cache. The naturehef IRF
also allows the execution of packed instructions to oveuldth
instruction fetch, thus providing a means for toleratingréased
fetch latencies, like those experienced by encrypted |Cwels
as the presence of low-power LO caches. Although previous re
search has focused on the direct benefits of instructionipgck
this paper explores the use of increased fetch bandwidthided
by packed instructions. Small LO caches improve energyiefffay
but can increase execution time due to frequent cache mid&es
show that this penalty can be significantly reduced by opeitey
the execution of packed instructions with miss stalls. TRE €an
also be used to supply additional instructions to a moreessiyre
execution engine, effectively reducing dependence omuasbn
cache bandwidth. This can improve energy efficiency, intaatdto
providing additional flexibility for evaluating various sign trade-
offs in a pipeline with asymmetric instruction bandwidtthug, we
show that the IRF is a complementary technique, operating as
buffer tolerating fetch bottlenecks, as well as providimglitional
fetch bandwidth for an aggressive pipeline backend.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guage§ Processors—code generation; compilers; optimization;
E.4 [Coding and Information Theofy Data Compaction and
Compression—program representation; CCorputer Systems
Organization}: Processor Architectures

General Terms Experimentation, Measurement, Performance

Keywords Instruction Register File, Instruction Packing, LO/Filte

Cache
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1. Introduction

Recent processor design enhancements have increaseddsemnan
the instruction fetch portion of the processor pipelined€com-
pression, encryption, and a variety of power-saving cattaes
gies can each impose performance penalties in order tanatbigir
benefits. These penalties are often significant, limitirggapplica-
bility of each technique to only those systems in which they a
deemed critically necessary. In order to obtain improveelteof
instruction processing throughput, greater numbers arieties of
functional units are being placed on chip, resulting iné&ased de-
mands on instruction fetch.

Instruction packing is a compiler/architectural techeichat
seeks to improve the traditional instruction fetch mectenby
placing the frequently accessed instructions into antiestn reg-
ister file (IRF) [17]. Several of these instruction registare then
able to be executed by a singbackedmemory instruction. Such
packed instructions not only reduce the code size of anegijain,
improving spatial locality, but also allow for reduced emecon-
sumption, since the instruction cache does not need to lessed
as frequently. The combination of reduced code size andavejlr
fetch access can also translate into reductions in exectitite.
Although the previous research has focused on many of these e
plicit benefits of instruction packing, the interaction ofifgloying
instruction registers with other power reduction teche&jbas not
been fully investigated. Nor has the effect of IRF encodiegrb
examined on more complex superscalar embedded processiors w
more aggressive instruction fetch requirements.

One important area of study, particularly for embeddedesyst
is reducing the power and energy consumption of instrudgteh
logic. This area is also becoming increasingly importamggneral-
purpose processor design as well. It has been shown thatlthe L
instruction fetch logic alone can consume nearly one thirthe
total processor power on the StrongARM SA110 [29]. One sempl
technique for reducing the overall fetch power consumpisatime
use of a small, direct mapped filter or LO cache [21]. The Lheac
is placed before the L1 instruction cache in such a memony hie
archy. Since the LO cache is small and direct mapped, it can pr
vide lower-power access to instructions at the expense ateh
miss rate. The LO cache also imposes an extra executiontpenal
for accessing the L1 cache, as the LO cache must be checkied firs
to avoid the higher cost of accessing the L1 cache. Previodg&es
have shown that the fetch energy savings of a 256-byte LOecach
with an 8-byte line size is approximately 68%, but the exiecut
time is increased by approximately 46% due to miss overh&Hd [

In this paper, we explore the possibility of integrating lastiuc-
tion register file into an architecture possessing a smaihkfuc-
tion cache. It is our belief that instruction packing can kedito



diminish these performance penalties. The nature of thealRRs
for an improved overlap between the execution and fetch of in
structions, since each packed instruction essentialhstates into
several lower-cost fetches from the IRF. While the fetclystaf
the pipeline is servicing an LO instruction cache miss, tlecgs-
sor can continue decoding and executing instructions fremRF.
In this way, the IRF can potentially mask a portion of the tiddal
latency due to a small instruction cache. Although both ann-0
struction cache and an IRF attempt to reduce overall fetehggn
we show that these two architectural features are orthogokare
able to be combined to further improve fetch energy consiampt

as well as reduce performance penalties due to LO cache snisse

We believe that the IRF can be similarly applied to instrtten-
cryption [31] and/or code compression [26, 10] technighesalso
affect the instruction fetch rate, in an effort to reducedhsociated
performance penalties.

We also investigate the improved fetch of instructions gisin
IRF in a superscalar machine with asymmetric instructiondba
width. In these machines, the number of instructions fatahay
be less than the amount of instructions that can be decoded, e
ecuted and committed in a single cycle. Although traditidna
struction fetch may be unable to effectively utilize theregwased
execution bandwidth, the IRF allows us to often exploit thdia
tional bandwidth when needed. This is similar in many ways to
front-end throttling [28, 4, 2], which is a technique thatlke to
reduce processor energy requirements by not aggressizely-f
ing highly speculative instructions in regions with low tingtion
level parallelism (ILP). Whereas pipeline throttling aadty limits
the number of instructions fetched and decoded in a singiecy
the use of an IRF allows the fetch of instructions to remain-co
stant, while supplying additional instructions to decode&gions
of dense packing and high ILP.

This paper makes the following contributions:

e It evaluates the performance potential of employing both in
struction registers and LO or filter caches, showing thasehe
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Figure 1. Decoding a Packed Instruction
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Figure 2. Packed Instruction Format

stream. Itis well known that typically much of the executione is
spent in a small portion of the executable code. An IRF cataion
these active regions of the program, reducing the frequehey-
cessing an instruction cache to fetch instructions andhggvwer.
However, there is another type of locality that can also lpboited
with an IRF. The number of unique instructions used in aniappl
tion is much smaller than the total possible combinatiorzsiable
with a 32-bit instruction set. Often there is a significanplita-
tion of instructions, even for small executables. Lefurgyrfd that
1% of the most frequent instruction words account for 30%rof p
gram size across a variety of SPEC CINT95 benchmarks [27§. Th
shows that conventional instruction encoding is less efficthan

it could be, which is a result of maximizing functionality tife
instruction format, while retaining fixed instruction siaad sim-
ple formats to ease decode. An IRF provides a second method to
specify instructions, with the most common instructiongihgthe

low-power enhancements can be combined in a synergistic tightest encoding. These instructions are referenced Inyadl &-
manner to reduce fetch energy more than previous techniques dex, multiples of which can easily be specified in a fixed 32-bi

« It proposes new pipeline configurations that decouple fetch instruction format.

width from the width of the remainder of the pipeline. These
new decoupled configurations give the architect greatei-flex
bility in realizing solutions that meet conflicting perfoamce
and energy goals.

The remainder of this paper is organized as follows. Firgt, w
review the prior work on packing instructions into registeBec-
ond, we describe how to integrate an instruction registerifito
a pipeline design with a small LO instruction cache. Third, w-
vestigate the potential of instruction packing in reducingtruc-
tion fetch bandwidth, while still adequately supplyingtmugstions
to an aggressive pipeline backend. Fourth, we describexpare
imental setup and present some results regarding the IRFand
proving execution and energy efficiency. Fifth, we examiome
related work on improving the energy and execution effigienfc
instruction fetch. Sixth, we outline some potential togmsfuture
research. Finally, we present our conclusions for the paper

2. Instruction Packing with an Instruction
Register File

The work in this paper builds upon prior work on packing instr
tions into registers [17, 18, 19]. The general idea is to kieep
quently accessed instructions in registers, just as fretueased
data values are kept in registers by the compiler througtstexg
allocation. Placing instructions into a register file is gital exten-
sion for exploiting two forms of locality in the instructiaeference

Two terms are useful in helping to differentiate instrustio
when discussing an architecture that supports an IRFuletsins
referenced from memory are referred to as the memory ISA or
MISAinstructions. Likewise, instructions referenced from HRE
are referred to as the register ISARISAinstructions. MISA in-
structions that reference RISA instructions are refemeaspacked
instructions. The ISA is based on the traditional MIPS instion
set, specifically the PISA target of SimpleScalar [3]. Feglishows
the use of an IRF at the start of the instruction decode stage.
also possible to place the IRF at the end of instruction fetctore
partially decoded instructions in the IRF if the decode stigon
the critical path of the processor implementation.

Figure 2 shows the special MISA instruction format used fo re
erence multiple RISA instructions from the IRF. These instions
are calledightly packedsince multiple RISA instructions are refer-
enced by a single MISA instruction. Up to five instructiorafrthe
IRF can be referenced using this format. In Figure 1, onlynglsi
instruction is shown as being fetched from the instructache and
fed through the IRF, however superscalar designs are akssi-po
ble by adding additional read ports to the various strustarewn.
Along with the IRF is an immediate table (IMM), containingetB2
most commonly used immediate values in the program. Thes, th
last two fields that could reference RISA instructions ceastéad
be used to reference immediate values. The number of paamet
ized immediate values used and which RISA instructions wgé
them is indicated through the use of four opcodes and thé $-bi
field. The compiler uses a profiling pass to determine the fr@st
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Figure 3. MIPS Instruction Format Modifications

quently referenced instructions that should be placed énlRt.
The 31 most commonly used instructions are placed in the IRF.
One instruction is reserved to indicate a no-operati@p)so that
fewer than five RISA instructions can be packed togetheressof

the RISAnopterminates execution of the packed MISA instruction
so no performance penalty is incurred. The compiler usexa se
ond pass to pack MISA instructions into the tightly packeairfat
shown in Figure 2.

In addition to tightly packed instructions, the instructiset is
also extended to supporti@osely packednstruction format. Each
standard MIPS instruction (with few exceptions) has 5 bitle
available for an additional RISA reference. This RISA instion
is executed following the original MISA instruction. If theis
no useful RISA instruction that can be executed, then IRFyent
0, which corresponds to mop, is used. There is no performance
penalty if the RISA reference is 0, since no instruction vioid
executed from the IRF and fetching will continue as normathilg/
the goal of tightly packed instructions is improved fetchiof
frequently executed instruction streams, the loosely gad¢trmat
helps in capturing the same common instructions when thegpar
infrequently executed paths and not surrounded by othéwjpde
instructions. Loose packs are responsible for a signifipantion
of the code size reduction when profiling an applicationicady.

Figure 3 shows the differences between the traditional MIPS
instruction formats and the loosely packed MISA extensivith
R-type instructions, theshamt(shift amount) field can be used
for a RISA reference and the various shifts can be given new
function codes or opcodes. Immediate values in I-type tietions
are reduced from 16 bits to 11 bits to make room for a RISA
reference. Thdui (load upper immediate) instruction is the only
I-type that is adjusted differently, in that it now uses oalgingle
register reference and the remaining 21 bits of the insomdor
the upper immediate portion. This is necessary since wengtiit
a simple method for creating 32 bit constants usinglthewith
21 bits for an immediate and another I-type instruction aiing
an 11 bit immediate value. J-type instructions are modifiigghly
with regards to addresses in order to support partitionfrigeol RF.

For this study, the IRF has been extended to support 4 haedwar
windows [18], much in the same way that the SPARC data regis-
ter file is organized [33]. This means that instead of usirly 8@
instruction registers, there are a total of 128 availablgsjgal in-
struction registers. Only 32 of these registers are adudesai any
single point in time however, so the remaining 96 registars e
kept in a low-power mode in which they retain their valuest bu
cannot be accessed. On a function call and/or return, tgettad-
dress uses 2 bits to distinguish which instruction windoware
accessing. The function addresses are updated at linkatbow d-

ing to which window of the IRF they will access. The IMM for éac
window is the same, since previous results have shown thiam32
mediate values are sufficient for parameterizing mostucstns
that will exist in an IRF. Using two bits to specify the winddmvan
address pointer limits the effective address space alajlbbt we
feel that 16 million instruction words is sufficiently largmough
for any reasonable embedded application.

3. Integrating an IRF with an LO Instruction

Cache

There are several intuitive ways in which an IRF and an LQrirest
tion cache can interact effectively. First, the overlappetdh of
packed instructions can help in alleviating the perforneapenal-
ties of LO instruction cache misses by giving the later pipel
stages useful work to do while servicing the miss. Secoralyéhny
nature of instruction packing focuses on the frequent acokm-
structions via the IRF, leading to an overall reduction ia tum-
ber of instruction cache accesses. Third, the packing tilicsons
reduces the static code size of portions of the working setnof
application, leading to potentially fewer overall insttioo cache
misses.

Figure 4 shows the pipeline diagrams for two equivalentirmst
tion streams. Both diagrams use a traditional five stagelipge
model with the following stages: IF — instruction fetch, ID in-
struction decode, EX — execute, M — memory access, and WB —
writeback. In Figure 4(a), an LO instruction cache is beisgdi
with no IRF. The first two instructions (Insnl and Insn2) exec
normally with no stalls in the pipeline. The third instrutiis a
miss in the LO cache, leading to the bubble at cycle 4. Thetfiour
instruction is unable to start fetching until cycle 5, whesn3 has
finally finished fetching and made it to the decode stage of the
pipeline. This entire sequence takes 9 cycles to finish éxeru

Figure 4(b) shows the same LO instruction cache being used
with an IRF. In this stream, however, the second and thirtiuns
tions (previously Insn2 and Insn3) are packed togetherdrsingle
MISA instruction, and the fourth instruction (third MISAstruc-
tion) is now at the address that will miss in the LO cache. \We se
that the packed instruction is fetched in cycle 2. The paahkstruc-
tion decodes its first RISA reference (Pack2a) in cycle 3]engii
multaneously we are able to start fetching instruction 4 @ache
miss bubble in cycle 4 is overlapped with the decode of thersc
RISA instruction (Pack2b). After the cache miss is servi¢tesn4
is now ready to decode in cycle 5. In this way, sequences tfins
tions with IRF references can alleviate stalls due to LOruretton
cache misses. This stream finishes the same amount of wdk as t
first stream in only 8 cycles, 1 less cycle than the versiohauit



Cycle 1123 /4|56 /|7 /|89

Insnl IF |ID |EX | M |WB

Insn2 IF [ID |EX | M |WB

Insn3 H ID |[EX | M |WB
Insn4 ID |[EX | M |WB

(a) LO Cache Miss at Insn3

Cycle 112 /3 /4 5|6 |78 9
Insnl IF [ ID |EX | M |WB

Pack22a IF,, DI EX, | M, (WB,

Pack2b -IDh EX, | M, |[WB,
Insn4 IF ID |[EX | M |WB

(b) LO Cache Miss at Insn4 with IRF

Figure 4. Overlapping Fetch with an IRF

IRF. Denser sequences of instructions (with more packeduitts
tions) allow for even greater cache latency tolerance, @mdpo-
tentially alleviate a significant portion of the latency afcassing
an L2 cache or main memory on an L1 instruction cache miss.
In previous studies, it was shown that approximately 55%ef t
non-library instructions fetched in an application can beessed
from a single 32-entry IRF [17]. This amounts to a signifidatth
energy savings due to not having to access the L1 instructiohe
as frequently. Although the LO cache has a much lower enargly ¢
per access than an L1 instruction cache, the IRF will stille the
overall traffic to the entire memory hierarchy. Fewer acessbat
reach into the memory hierarchy can also be beneficial aggner
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Figure 5. Decoupling Instruction Fetch in an Out-of-Order
Pipeline

This makes sense when considering steady state flow of éastru
tions through the pipeline, but can become problematic waten
counting for the effects of instruction cache misses, branispre-
diction recovery, alignment issues, etc. There are poisrevin-
struction fetch becomes the performance bottleneck fort giewi-
ods of time, and in aggregate, these can impact the ovecaiépsor
performance. Constraining the fetch width to match theaétte

can be conserved by not requiring access of the TLB or even the pipeline imposes an artificial limitation on the design spexplo-

LO cache tag array.

Instruction packing is inherently a code compression tiegha)
allowing some additional benefits to be extracted from it a. ks
instructions are packed together, the LO instruction casmepo-
tentially handle larger working sets at no additional cBsing that
the LO cache is fairly small and direct mapped, the compcesse
struction stream may be extremely beneficial in some cabew;a
ing for fewer LO cache misses, which translates into peréorce
improvements and reduced overall fetch energy consumgtias
also apparent that other non-pipelinable fetch latencas sm-
ilarly be ameliorated through the use of an IRF. For example,
2-cycle L1 instruction cache that is performing code deca®yp
sion or decryption would also be able to execute additionaked
instructions while stalling for the remainder of a cacheeasc

4. Decoupling Instruction Fetch in a Multi-issue
Pipeline
Modern superscalar processor designs often provide sinmita
struction bandwidth throughout the pipeline. In the idesde; in-
structions should flow readily from one stage to the nexte®the
number and types of functional units available in a givercpso
sor are designed to handle pipeline stalls due to long Istepe
erations. Load-store queues and additional ALUs can allothér
instructions to continue flowing through the pipeline withbeing
stalled. Although computer architects can vary the numbédrsize
of these functional units in a given pipeline, the maximurmber
of instructions that can be fetched, decoded/dispatcksded, and
committed are often the same.

ration for a new architecture, particularly for embeddeakcpssors
where die area, power consumption, execution time and pauka
costs may be highly restrictive.

Figure 5 shows the first few pipeline stages for several out-
of-order configurations. Note that each stage can be fughkr
divided as necessary (e.g. different cycle times for défferfunc-
tional units). The simplest single issue out-of-order e is
shown in Figure 5a. Figure 5b shows a multiple issue pipekse
more functional units become available on chip, heavy deiman
can be placed issue, dispatch and fetch. Techniques aleady
ist for appropriately scaling the issue queue [13], howekierin-
creasing pressure on instruction fetch could complicatedtdsign.
Multi-ported instruction caches require more energy taagmeand
need special techniques to handle the cases where instrsictie
fetched from multiple cache lines. The ability of the IRF &émyu-
larly extract multiple instructions from each instructioache ac-
cess makes it feasible to reduce the fetch width of the iotnu
cache, instead relying on frequently executed packeduictsbns
to provide the dispatch stage with a sufficient stream ofiicsions
to avoid starving a wider backend pipeline. This pipelinafigu-
ration is shown in Figure 5c.

By packing multiple instruction references into a singleSWl
instruction, it becomes feasible to decouple the configumaif the
fetch pipeline from the design choices of the rest of the lpipe
This increase in the configuration space provides the psocetke-
signer greater flexibility in meeting multiple and often eligent,
design goals. Use of an IRF in an out-of-order pipeline cao al
have other positive benefits. The possibility of misspetauadue
to overaggressive fetching will be reduced. This occursibse the



Parameter

Low-Power Embedded

High-end Embedded

I-Fetch Queue 4 entries 4/8 entries
Branch Predictor Bimodal — 128 Bimodal — 2048
Branch Penalty 3 cycles
Fetch Width 1 1/2/4
Decode Width 1 1/2/3/4
Issue Style In order Out of order
Issue Width 1 1/2/3/4
Commit Width 1 1/2/3/4
RUU size 8 entries 16 entries
LSQ size 8 entries
16 KB 32KB
L1 Data Cache 256 lines, 16 B line, 4-way asso¢. 512 lines, 16 B line, 4-way assoc
1 cycle hit 1 cycle hit
16 KB 32KB
L1 Instruction Cache| 256 lines, 16 B line, 4-way assog¢. 512 lines, 16 B line, 4-way assoc
1/2 cycle hit 1 cycle hit
256 B
LO Instruction Cache| 32 lines, 8 B line, direct mapped NA
1 cycle hit
256 KB
Unified L2 Cache NA 1024 lines, 64 B line, 4-way assoc¢.
6 cycle hit
Memory Latency 32 cycles
Integer ALUs 1 1/2/3/4
Integer MUL/DIV 1 1
Memory Ports 1 1/2
FP ALUs 1 1/2/3/4
FP MUL/DIV 1 1
4 windows
IRE/IMM 32-entry IRF (128 total)

32-entry Immediate Table

1 Branch/pack

Table 1. Experimental Configurations

IRF-resident instructions are those that are most freduenxe-

cuted, and thus the hot spots of execution will be full of tigh
packed instruction sequences. Conversely, the areasrthatfee-

quently executed will tend to exhibit fewer packed instiarcs and
naturally limit the rate of instruction fetch.

5. Experimental Evaluation

This section contains the methods and results used in evajua
the IRF for improving instruction fetch. First, we present @x-
perimental framework and methodology. Second, we comltiee t
IRF with an LO instruction cache and a 2-cycle non-pipeliedil
instruction cache to evaluate the impact on energy and &recu
efficiency. Third, we analyze the energy and execution benefi
decoupling instruction fetch from instruction executigmally, we
show the overall reduction in static code size due to in§oc
packing with an instruction register file.

5.1 Compilation and Simulation Framework

All programs are compiled using a modified MIPS port of the VPO
compiler [8]. Benchmarks are profiled dynamically and instr
tions are selected for packing usiimgprof, a profile-driven IRF
selection and layout tool. Each application is then rectedpand
instructions are packed based on the supplied layout. Hoaiis
provided for each experiment used four hardware IRF windows
packing [18]. Several IRF-specific optimizations inclugliregis-
ter renaming, instruction scheduling and instructionc@e were
performed on all versions of the IRF code to improve code den-
sity and performance [19]. Instructions are packed onlyiwithe
code supplied for each benchmark. Although library codeeit |
unpacked, the dynamic (cycle and energy) results of exagliti
brary code are shown in our experimental data in order toigec

thorough evaluation. Packing frequently executed libratines
could lead to further improvements in reducing fetch eneagg
execution time.

We evaluate the performance of each of our machine models
using the SimpleScalar simulation environment [3]. Povetinga-
tion is performed using Version 1.02 of the Wattch extensif@}
for SimpleScalar. Wattch uses Cacti [34] to model the enargy
timing requirements of various pipeline components. Eatluia-
tor is instrumented to collect the relevant data involvingtiuction
cache and IRF access during program execution. Energyasgm
are based on Wattch’s aggressive clock-gating mazted) (Under
this scheme, power consumption scales linearly for activiesu
while inactive portions of the pipeline dissipate only 10¢4heir
maximum power. For our study involving an LO filter cache, the
machine configuration is shown as thew-Power Embeddedol-
umn in Table 1. Note that the LO cache and/or the IRF/IMM are
only configured if they are being evaluated. It is also imaort
to remember that the LO cache is not able to be bypassed in this
pipeline structure, so an instruction that misses in theddhe but
hits in the L1 cache will require 2 cycles to fetch in the entdetl
processor. We also simulate a 2-cycle non-pipelined LIuotbn
cache for several reasons. First, it emulates the worsterfer-
mance of an LO instruction cache (i.e. LO miss on each instruc
tion fetched from cache). Second, it can be used to demoastra
the benefits of instruction packing for other higher-latemstruc-
tion caches that are attempting to reduce power consumfjn
compress executables [10], or encrypt cache contents [31].

The column labeledligh-end Embeddedescribes the machine
configuration for our second study. In this study, there ard.@
caches, but instead a unified L2 cache for instructions atal da
The IRF and IMM configuration remains the same, while most
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Figure 6. Execution Efficiency with an LO or 2 cycle Instruction Cacimel@an IRF

[ Category | Applications |
Automotive | Basicmath, Bitcount, Qsort, Susan
Consumer | Jpeg, Lame, Tiff
Network Dijkstra, Patricia
Office Ispell, Rsynth, Stringsearch
Security Blowfish, Pgp, Rijndael, Sha
Telecomm Adpcm, CRC32, FFT, Gsm

Table 2. MiBench Benchmarks

other pipeline structures are scaled up for a higher pedaooa em-
bedded processor. This study features many combinatidiesobf,
decode, issue and commit widths. The decode, issue, and itomm
width are always equal to one another, and are always greetier
or equal to the fetch width. Fetching is always done usingdttwi
that is a power of 2, since we do not want to artificially inae#e
number of stalls due to instruction mis-alignment. Cachliesoaly
able to access a single block in a cycle, so instruction sempse
that span multiple cache lines will require several cyctetetch.
Functional units for each of our configurations are addeccass:
sary based on the decode/issue/commit width. The insbrugich
queue is lengthened to 8 entries when the processor reabbies a
width of 4 instructions.

we are representing a 2-cycle non-pipelinable L1 instomctiache,
while 2cycle+IRF represents this configuration with an IRF. Ex-
ecution results are presented as normalized instructiensyzle
(IPC) as measured by SimpleScalar. Energy results are lmsed
the overall total processor energy consumption.

Figure 6 shows the execution efficiency of various combina-
tions of an LO or 2 cycle instruction cache and an IRF. Adding a
IRF to the baseline processor actually yields a net IPC ingro
ment of 1.04%, primarily due to the code fitting better inte th
L1 instruction cache. An LO cache degrades the IPC by 12.89%
on average, while adding an IRF cuts this penalty to 6.14%. Th
6.75% improvement from adding the IRF to an LO cache config-
uration is greater than the original IPC improvement predidy
adding the IRF to the baseline processor. These benefitsuare d
to the smaller cache footprint provided by instruction pagkas
well as the overlap of fetch stalls with useful RISA instians.
The Rijndael and Gsm benchmarks are even able to surpass the
baseline performance with no LO cache, yielding IPCs of 1%
and 102.13% respectively. The 2 cycle implementation reslieC
to 49.73% of its original value, while adding an IRF increase
IPC to 78.28%, nearly a 57% improvement. Several of the auto-
motive category benchmarks experience diminished pegnca
when adding an IRF, due to their dependence on library resitin

We use a subset of the MiBench embedded benchmark suite [16]which are not packed. However, it is clear that the IRF candsglu

for each experiment. The MiBench suite consists of six aateg,
each designed to exhibit application characteristicsesmrtative

of a typical workload in that particular domain. Several loége
benchmarks (Jpeg, Gsm, Pgp, Adpcm) are similar benchmarks t
those found in the MediaBench suite [23] used in the origéval-
uation of LO caches. Table 2 shows the exact benchmarks trat w
used in the evaluation. For each benchmark with multipla dats,

we selected the small inputs to keep the running time of a full
simulation manageable.

5.2 Tolerating LO Instruction Cache Latency

Each of the graphs in this subsection use the following cotiwes.

All results are normalized to the baseline case for the Qe
processor model, which uses an L1 instruction cache with®o L
instruction cache or IRF. The labBlaseline+IRFcorresponds to
adding an IRF but no LO cache. The lahélcorresponds to adding
an LO instruction cache, but no IRED+IRF corresponds to the ad-
dition of an LO instruction cache along with an IRF. WRhycle

to mask some of the performance issues involved in comptek fe
configurations that involve low-power components, comgm@sor
even encryption.

The energy efficiency of the varied IRF, LO and 2 cycle in-
struction cache configurations are shown in Figure 7. Adding
IRF to the baseline processor yields an average energytieduc
of 15.66%. The LO cache obtains an overall reduction of 1%.52
while adding the IRF improves the energy reduction to 25.65%
The additional energy savings in the final case are due toawo f
tors. First, fetching instructions via the IRF requiresslemergy
than fetching from the LO instruction cache, and secondakfilgy
of the IRF to tolerate LO cache misses improves the overalt ex
cution time of the application. When dealing with the 2 cyicle
struction cache, the overall energy is increased by 17.68%.
important to note that the Wattch model places a heavy enphas
on the clock gating of unused pipeline units, hence the reémo
the energy consumption only increasing by 5-25% for thereded
running times. Adding an IRF to this configuration, however,
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Figure 8. Execution Efficiency for Asymmetric Pipeline Band-
width

duces the overall energy consumption to 88.19% of the eseli
which is only slightly higher than the configuration of a leleyL 1
instruction cache with IRF.

The fetch energy characteristics of the IRF and LO instoncti
cache are also very interesting. The baseline processtr ést-
ergy consumption can be reduced by 33.57% with the intréaluct
of an IRF. An LO instruction cache instead reduces the fetengy
consumption by 60.61%, while adding both yields an overtit
energy reduction of 70.71%. This savings can be extremetg-be
ficial for embedded systems that have a significant porticheif
total processor energy expended during instruction fetch.

5.3 Effectively Utilizing Asymmetric Pipeline Bandwidth

Each of the graphs in this subsection use the following cotiwes.
All results are normalized to the baseline processor madakh
has a single instruction fetch, decode, issue and commilviaaith.
This is the leftmost bar presented in each of the graphs. Tdpghg
is plotted linearly by instruction fetch width, followed lilie ex-
ecute width (decode/issue/functional units/commit width a tie-
breaker. Black bars are used to denote configurations thabtlo
have an IRF, while gray bars indicate the presence of an IRF.

Figure 9. Energy Efficiency for Asymmetric Pipeline Bandwidth

Figure 8 shows the normalized IPC over all benchmarks for
the various configurations of the fetch and execution endgihe
configurations without an IRF are often able to make some fise o
the additional functional unit bandwidth (1/1 to 1/2, 2/2248),
however they plateau quickly and are unable to use any adéditi
available bandwidth (1/2 through 1/4, 2/3 to 2/4). The IRBi@ns,
alternately, are able to improve steadily compared to tegipus
IRF configuration, except in the 1/4+IRF case. This confitjona
is overly aggressive, as the IRF is unable to supply 4 ingtns
per cycle for execution. Branches and other parameterii8& R
instructions occupy two slots in the packed instructiomfat,
thus limiting the maximum number of instructions fetchabie
a single MISA instruction. Additionally, the IRF selectibeuristic
is a greedy one, and we will never be able to produce all fightl
packed instructions with 4-5 slots completely full. Thisilis even
the IRF’s ability to supply instructions to this overly aggsive
backend, but additional fetch bandwidth more than makesoup f
this limitation in more complex configurations (2/3+IRF2IRF).
Overall however, the IRF configurations have an averagetBg
15.82% greater than corresponding configurations withouR&.

The energy efficiency of the various configurations of asytaAme
ric pipeline bandwidth are shown in Figure 9. Results arsgmed
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Figure 10. Energy-Delay for Asymmetric Pipeline Bandwidth

as normalized energy to the 1/1 baseline processor confiigura
Note that the Wattch model places a heavy emphasis on thke cloc
gating of unused pipeline units. Since the running time efrttore
complex configurations is lower, the total energy is coroasp
ingly reduced as compared to the baseline processor. Thésres
show that increasing the execution width by one additiamstiuc-

tion can yield more efficient energy usage (1/1 to 1/2, 1/FH®&
1/2+IRF, 2/2+IRF to 2/3+IRF), but greater increases in &tieo
cases are not beneficial. Overall though, the energy reshitte/
that IRF configurations can be as much as 22% more energy effi-
cient (1/3+IRF, 1/4+IRF) than corresponding configuradiovith-

out an IRF. On average, the IRF configurations utilize 12.658%
energy than corresponding non-IRF configurations.

Figure 10 shows the energy-delay squar&dg) for the var-
ious asymmetric fetch and execution bandwidth configunatio
Energy-delay squared is an important metric for explorimggro-
cessor design space. As expected, this graph is similaettP@
results shown in Figure 8, as the configurations without &hdéh-
tinue to have problems with keeping the additional funaiamits
of the pipeline busy (1/2 through 1/4, 2/3 to 2/4). The IRFfapn
urations see a small increase (1.64%yim?, when moving from
a 1/3+IRF to 1/4+IRF, primarily due to the increased enemgy r
quirements of this configuration. Without this data poimwever,
the IRF configurations smoothly scale for the varied conimna
of fetch and execute bandwidth available in the procesgmlipie.
On average, the relative decreaseFim? for using the IRF con-
figurations over the non-IRF versions is 25.21%. In addition
decoupling instruction fetch and instruction executionpaputer
architect has greater freedom to explore an increased nuafibe
processor configurations with a wider variety of energycexien
characteristics.

5.4 Reducing Static Code Size

Instruction packing can also reduce the static code sizen@fpa
plication. Figure 11 shows the normalized code size for exch
the packed executables used in our experiments. Since wetdo n
pack instructions in library routines, we have removedrtimepact

on the static code size results. Overall, however we aretabrie-
duce the actual compiled executable size by 17.12% on awverag
Many of the security benchmarks experience significantatolus

in static code size, since the majority of their code is dat&d by
similar encryption and decryption routines composed ofséime
fundamental instruction building blocks. These instroesi can be
placed in the IRF and referenced in various combinationote ¢
struct the necessary functionality for each similar roeitifhe con-

Figure 11. Reducing Static Code Size with an IRF

sumer and office benchmarks are not as easily packed, siege th
often consist of many routines that are accessed infretyguning
normal usage. However, they are still able to achieve afsignit
level of compression due to packing with multiple windows.

6. Related Work

Instruction and data caches are often separated for peafaren
reasons, particularly with respect to handling the divéxeieavior
and request patterns for each. Another approach to redueittte
energy requirements is to further subdivide the instructache
into categories based on execution frequency [6, 7]. Fretue
executed sections of code are placed into a smaller, lonepaw
cache that is similar in structure to the LO cache discussetis
paper. The bulk of the remaining code is only accessibleutfiro
the standard L1 instruction cache. Code segments for eatte ca
are separated in the executable, and a hardware registetedehe
boundary between addresses that are serviced by the L-aadhe
addresses that are serviced by the L1 cache. The splittitiesé
lookups provides a substantial reduction in the L-cache naite. A
512-byte L-cache provides a 15.5% reduction in fetch enevijije
also obtaining a small reduction in execution time due toroved
hit rate. However, the L-cache scheme is limited in that rrea
easily scale to support longer access times from an L1 ictsbru
cache.

Lee et al. proposed using a small cache for executing small
loops with no additional transfers of control besides theplo
branch [24]. Instructions are normally fetched from the latlee,
but a short backward branch (sbb) triggers the loop cacheto b
gin filling. If the same sbb is then taken on the next loop tiera
instructions can be fetched from the small loop cache stradh-
stead of the L1 cache. When there is a different taken trangfe
control, or the loop branch is not taken, the loop cache nettw
its inactive state and resumes fetching normally from ther-1
struction cache. Since the loop cache is tagless and snsathi{y
8-32 instructions), the total fetch energy can be reduceabipyox-
imately 15%. The loop cache was later extended to suppogelon
loops by adding the ability to partially store and fetch jmrs
of a loop [25]. Another improvement to the loop cache is the us
of preloading and hybridization [15]. Preloading allows tloop
cache to contain the same instructions for the life of thdiegp
tion, while hybridization refers to a loop cache that canrafein
a dynamic mode as well as preloaded. A hybrid loop cache can
reduce the total instruction fetch energy by 60-70%. A mesi
study has also shown that an IRF can interact very favoratity w



a loop cache, providing fetch energy reductions that neitbald
achieve separately [18].

An alternate method for mitigating the performance penaity
LO caches is to provide a bypass that allows direct readioin fr

the L1 cache in some cases. It has been shown that with a simple

predictor, the LO cache performance penalty can be dropped t
0.7% on a 4-way superscalar machine with only a small inereas
in fetch energy [32]. However, LO caches are primarily used f
reducing the fetch energy of embedded systems, which fetdh a
execute no more than one instruction per cycle.

The zero overhead loop buffer (ZOLB) is another hardware
technique for reducing instruction fetch energy for snaiids [12].
The main difference between a ZOLB and a loop cache is that a
ZOLB is explicitly loaded using special instructions regjag the
number of instructions in the loop and the number of iterstito
execute. Similar to the loop cache, the ZOLB is limited iresand
can have no other transfers of control beyond the loop brahdh
ditionally, information regarding the number of iteratsoexecuted
by the loop must be known at the time the loop is entered. Algho
the primary benefit of the ZOLB is fetch energy reduction,ahc
also provide small improvements in execution time, sinog heari-
able increment and compare instructions are no longer sages

One power-saving method that has been successfully applied
the area of high-performance processors is the conceppefipe
gating or front-end throttling [28]. These techniques k@ithe en-
ergy expenditure of a processor by actively suppressindeticé
of wrong-path instructions. When a low-confidence brancénis
countered in the pipeline, instruction fetch and potelytiastruc-
tion decode are stalled for a number of cycles. Energy isdsave
by not having to fetch, decode and eventually flush thesenpote
tial wrong-path instructions. Many heuristics have beerettped
using branch confidence [2], and instruction flow metrica{4de-
termine the proper times for throttling back the fetch baiaithv
Sherwood et al. improve throttling selection by dynamicalio-
filing regions at run-time [30]. Annavaram et al. have simyla
proposed an EPI (energy per instruction) throttling teghaifor
reducing energy consumption during periods of low ILP [1].

7. Future Work

There exist many avenues suitable for exploration in thigdesf
high-performance, low-power instruction fetch mecharsisitol-
erating increased fetch latencies is one strength of the hBW-
ever, the instruction selection and packing algorithmsehagt
been tuned specifically to focus on reducing LO cache miséges.
ious heuristics can be used to select IRF candidates in desar
of a program where an LO cache miss is likely to occur. Similar
heuristics can be developed to support instruction packmg-
bined with other architectural features that affect fettlecy. For
instance, the IRF can be integrated with a more energy efficie
pipeline backend using asymmetric-frequency clustehgyhich
attempts to distribute instructions to execution enginék vary-
ing performance/energy characteristics. Packed ingbrudensity
could also be used to differentiate code sequences witlngaigv-
els of ILP, by adjusting the criteria for IRF selection angkiag.
There are also several popular techniques that incur perfor
mance penalties due to reduced spatial locality, which nesgtibe
to be offset by the addition of an IRF. Techniques such asguioc
ral abstraction [14, 11, 10], and echo factoring [22] seelethuce
the code size of an application by replacing common seqgenifce
instructions with calls to extracted subroutines. Howgther added
function calls and returns can greatly impact the spatizdlity of
an application, in addition to requiring more instructidosexe-
cute normally. The IRF can be applied similarly in these sase
reduce the impact that the cache misses and additionalgutea
instructions have on a compressed executable’s perfognanc

8. Conclusion

In this paper we examined how an instruction register fil@inc
porated into an instruction set architecture interact$ wiicro-
architectural components in both low-power and high-pentmnce
embedded processors. In addition, the use of instructickipg,
which is a fundamental component of the IRF micro-architext
allows for significant reductions in the overall static cadee of an
application.

When energy is the overriding design parameter, we have eval
uated the interactions between a small low-power LO insitoc
cache and an IRF. The use of an IRF and associated packed in-
structions allows a portion of the fetch miss latency of anin-0
struction cache to be tolerated, increasing the overalld€.75%
on average. Additionally, both the LO cache and the IRF ctar4in
act such that the total energy consumption is further redlbgean
additional 5.78% on average.

For high-performance embedded systems, the introduction o
the IRF can reduce pressure on instruction fetch by enabiinig-
ple instructions to be referenced in each packed instmiétiched
from the instruction cache. This results in a performanaesbm
those portions of the program where performance is limitgd b
fetch bandwidth, such as when recovering from a branch mispr
diction and needing to quickly fill the reorder buffer to edrmore
instruction level parallelism. Our results show that addam IRF
can improve IPC and energy consumption not only for single is
sue architectures, but also for multi-issue designs by arege of
15.82% and 12.67%, respectively. The use of the IRF als ghe
processor architect the ability to scale back the fetchwidtor-
der to meet tighter power constraints, while relying on drextly
packed instructions to feed a more aggressive back-endingpe
This provides greater flexibility in the overall pipelinesign to
meet all design goals.

We showed that it is possible to improve performance, reduce
code size and reduce energy consumption by adding an IRF to an
existing architecture. These improvements are found &t eots
of the processor design spectrum — low-power single-isgue i
order and high-performance multiple-issue out-of-oradebedded
processors. Thus, the IRF serves to decouple instructioheca
access from the processor backend, making both low-powgr an
high-performance embedded processors more efficient.
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