
Addressing Instruction Fetch Bottlenecks by
Using an Instruction Register File

Stephen Hines Gary Tyson David Whalley
Computer Science Dept.
Florida State University

Tallahassee, FL, 32306-4530
{hines,tyson,whalley}@cs.fsu.edu

Abstract
The Instruction Register File (IRF) is an architectural extension
for providing improved access to frequently occurring instructions.
An optimizing compiler can exploit an IRF by packing an appli-
cation’s instructions, resulting in decreased code size, reduced en-
ergy consumption and improved execution time primarily dueto
a smaller footprint in the instruction cache. The nature of the IRF
also allows the execution of packed instructions to overlapwith
instruction fetch, thus providing a means for tolerating increased
fetch latencies, like those experienced by encrypted ICs aswell
as the presence of low-power L0 caches. Although previous re-
search has focused on the direct benefits of instruction packing,
this paper explores the use of increased fetch bandwidth provided
by packed instructions. Small L0 caches improve energy efficiency
but can increase execution time due to frequent cache misses. We
show that this penalty can be significantly reduced by overlapping
the execution of packed instructions with miss stalls. The IRF can
also be used to supply additional instructions to a more aggressive
execution engine, effectively reducing dependence on instruction
cache bandwidth. This can improve energy efficiency, in addition to
providing additional flexibility for evaluating various design trade-
offs in a pipeline with asymmetric instruction bandwidth. Thus, we
show that the IRF is a complementary technique, operating asa
buffer tolerating fetch bottlenecks, as well as providing additional
fetch bandwidth for an aggressive pipeline backend.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—code generation; compilers; optimization;
E.4 [Coding and Information Theory]: Data Compaction and
Compression—program representation; C.1 [Computer Systems
Organization]: Processor Architectures

General Terms Experimentation, Measurement, Performance

Keywords Instruction Register File, Instruction Packing, L0/Filter
Cache

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

LCTES’07 June 13–16, 2007, San Diego, California, USA.
Copyright c© 2007 ACM 978-1-59593-632-5/07/0006. . . $5.00

1. Introduction
Recent processor design enhancements have increased demands on
the instruction fetch portion of the processor pipeline. Code com-
pression, encryption, and a variety of power-saving cache strate-
gies can each impose performance penalties in order to obtain their
benefits. These penalties are often significant, limiting the applica-
bility of each technique to only those systems in which they are
deemed critically necessary. In order to obtain improved levels of
instruction processing throughput, greater numbers and varieties of
functional units are being placed on chip, resulting in increased de-
mands on instruction fetch.

Instruction packing is a compiler/architectural technique that
seeks to improve the traditional instruction fetch mechanism by
placing the frequently accessed instructions into an instruction reg-
ister file (IRF) [17]. Several of these instruction registers are then
able to be executed by a singlepackedmemory instruction. Such
packed instructions not only reduce the code size of an application,
improving spatial locality, but also allow for reduced energy con-
sumption, since the instruction cache does not need to be accessed
as frequently. The combination of reduced code size and improved
fetch access can also translate into reductions in execution time.
Although the previous research has focused on many of these ex-
plicit benefits of instruction packing, the interaction of employing
instruction registers with other power reduction techniques has not
been fully investigated. Nor has the effect of IRF encoding been
examined on more complex superscalar embedded processors with
more aggressive instruction fetch requirements.

One important area of study, particularly for embedded systems
is reducing the power and energy consumption of instructionfetch
logic. This area is also becoming increasingly important ingeneral-
purpose processor design as well. It has been shown that the L1
instruction fetch logic alone can consume nearly one third of the
total processor power on the StrongARM SA110 [29]. One simple
technique for reducing the overall fetch power consumptionis the
use of a small, direct mapped filter or L0 cache [21]. The L0 cache
is placed before the L1 instruction cache in such a memory hier-
archy. Since the L0 cache is small and direct mapped, it can pro-
vide lower-power access to instructions at the expense of a higher
miss rate. The L0 cache also imposes an extra execution penalty
for accessing the L1 cache, as the L0 cache must be checked first
to avoid the higher cost of accessing the L1 cache. Previous studies
have shown that the fetch energy savings of a 256-byte L0 cache
with an 8-byte line size is approximately 68%, but the execution
time is increased by approximately 46% due to miss overhead [21].

In this paper, we explore the possibility of integrating an instruc-
tion register file into an architecture possessing a small L0instruc-
tion cache. It is our belief that instruction packing can be used to

diminish these performance penalties. The nature of the IRFallows
for an improved overlap between the execution and fetch of in-
structions, since each packed instruction essentially translates into
several lower-cost fetches from the IRF. While the fetch stage of
the pipeline is servicing an L0 instruction cache miss, the proces-
sor can continue decoding and executing instructions from the IRF.
In this way, the IRF can potentially mask a portion of the additional
latency due to a small instruction cache. Although both an L0in-
struction cache and an IRF attempt to reduce overall fetch energy,
we show that these two architectural features are orthogonal and are
able to be combined to further improve fetch energy consumption
as well as reduce performance penalties due to L0 cache misses.
We believe that the IRF can be similarly applied to instruction en-
cryption [31] and/or code compression [26, 10] techniques that also
affect the instruction fetch rate, in an effort to reduce theassociated
performance penalties.

We also investigate the improved fetch of instructions using an
IRF in a superscalar machine with asymmetric instruction band-
width. In these machines, the number of instructions fetched may
be less than the amount of instructions that can be decoded, ex-
ecuted and committed in a single cycle. Although traditional in-
struction fetch may be unable to effectively utilize the increased
execution bandwidth, the IRF allows us to often exploit the addi-
tional bandwidth when needed. This is similar in many ways to
front-end throttling [28, 4, 2], which is a technique that seeks to
reduce processor energy requirements by not aggressively fetch-
ing highly speculative instructions in regions with low instruction
level parallelism (ILP). Whereas pipeline throttling actually limits
the number of instructions fetched and decoded in a single cycle,
the use of an IRF allows the fetch of instructions to remain con-
stant, while supplying additional instructions to decode in regions
of dense packing and high ILP.

This paper makes the following contributions:

• It evaluates the performance potential of employing both in-
struction registers and L0 or filter caches, showing that these
low-power enhancements can be combined in a synergistic
manner to reduce fetch energy more than previous techniques.

• It proposes new pipeline configurations that decouple fetch
width from the width of the remainder of the pipeline. These
new decoupled configurations give the architect greater flexi-
bility in realizing solutions that meet conflicting performance
and energy goals.

The remainder of this paper is organized as follows. First, we
review the prior work on packing instructions into registers. Sec-
ond, we describe how to integrate an instruction register file into
a pipeline design with a small L0 instruction cache. Third, we in-
vestigate the potential of instruction packing in reducinginstruc-
tion fetch bandwidth, while still adequately supplying instructions
to an aggressive pipeline backend. Fourth, we describe our exper-
imental setup and present some results regarding the IRF andim-
proving execution and energy efficiency. Fifth, we examine some
related work on improving the energy and execution efficiency of
instruction fetch. Sixth, we outline some potential topicsfor future
research. Finally, we present our conclusions for the paper.

2. Instruction Packing with an Instruction
Register File

The work in this paper builds upon prior work on packing instruc-
tions into registers [17, 18, 19]. The general idea is to keepfre-
quently accessed instructions in registers, just as frequently used
data values are kept in registers by the compiler through register
allocation. Placing instructions into a register file is a logical exten-
sion for exploiting two forms of locality in the instructionreference

PC

IF Stage

buffer
instruction

First Half of ID Stage

IRF

IMM

IF/ID

Instruction

(L0 or L1)
Cache

Figure 1. Decoding a Packed Instruction

6 bits 5 bits 5 bits 5 bits 5 bits

opcode inst1 inst2 inst3 inst4

5 bits
inst5

1

s paramparam

Figure 2. Packed Instruction Format

stream. It is well known that typically much of the executiontime is
spent in a small portion of the executable code. An IRF can contain
these active regions of the program, reducing the frequencyof ac-
cessing an instruction cache to fetch instructions and saving power.
However, there is another type of locality that can also be exploited
with an IRF. The number of unique instructions used in an applica-
tion is much smaller than the total possible combinations available
with a 32-bit instruction set. Often there is a significant duplica-
tion of instructions, even for small executables. Lefurgy found that
1% of the most frequent instruction words account for 30% of pro-
gram size across a variety of SPEC CINT95 benchmarks [27]. This
shows that conventional instruction encoding is less efficient than
it could be, which is a result of maximizing functionality ofthe
instruction format, while retaining fixed instruction sizeand sim-
ple formats to ease decode. An IRF provides a second method to
specify instructions, with the most common instructions having the
tightest encoding. These instructions are referenced by a small in-
dex, multiples of which can easily be specified in a fixed 32-bit
instruction format.

Two terms are useful in helping to differentiate instructions
when discussing an architecture that supports an IRF. Instructions
referenced from memory are referred to as the memory ISA or
MISA instructions. Likewise, instructions referenced from theIRF
are referred to as the register ISA orRISAinstructions. MISA in-
structions that reference RISA instructions are referred to aspacked
instructions. The ISA is based on the traditional MIPS instruction
set, specifically the PISA target of SimpleScalar [3]. Figure 1 shows
the use of an IRF at the start of the instruction decode stage.It is
also possible to place the IRF at the end of instruction fetchor store
partially decoded instructions in the IRF if the decode stage is on
the critical path of the processor implementation.

Figure 2 shows the special MISA instruction format used to ref-
erence multiple RISA instructions from the IRF. These instructions
are calledtightly packedsince multiple RISA instructions are refer-
enced by a single MISA instruction. Up to five instructions from the
IRF can be referenced using this format. In Figure 1, only a single
instruction is shown as being fetched from the instruction cache and
fed through the IRF, however superscalar designs are also possi-
ble by adding additional read ports to the various structures shown.
Along with the IRF is an immediate table (IMM), containing the 32
most commonly used immediate values in the program. Thus, the
last two fields that could reference RISA instructions can instead
be used to reference immediate values. The number of parameter-
ized immediate values used and which RISA instructions willuse
them is indicated through the use of four opcodes and the 1-bit S
field. The compiler uses a profiling pass to determine the mostfre-

5 bits 5 bits 5 bits 6 bits6 bits 5 bits

shamt functionrdrtrsopcode

Register Format: Arithmetic/Logical Instructions

immediate valuertrsopcode

 Immediate Format: Loads/Stores/Branches/ALU with Imm

6 bits 5 bits 5 bits 16 bits

26 bits6 bits

target addressopcode

Jump Format: Jumps and Calls

(a) Original MIPS Instruction Formats

Register Format with Index to Second Instruction in IRF

opcode rs rt rd function inst

5 bits6 bits5 bits5 bits5 bits6 bits

shamt

6 bits 5 bits 5 bits 11 bits 5 bits

opcode rs rt immediate value inst

Immediate Format with Index to Second Instruction in IRF

Jump Format

opcode target address

26 bits6 bits

(b) Loosely Packed MIPS Instruction Formats

Figure 3. MIPS Instruction Format Modifications

quently referenced instructions that should be placed in the IRF.
The 31 most commonly used instructions are placed in the IRF.
One instruction is reserved to indicate a no-operation (nop) so that
fewer than five RISA instructions can be packed together. Access of
the RISAnopterminates execution of the packed MISA instruction
so no performance penalty is incurred. The compiler uses a sec-
ond pass to pack MISA instructions into the tightly packed format
shown in Figure 2.

In addition to tightly packed instructions, the instruction set is
also extended to support aloosely packedinstruction format. Each
standard MIPS instruction (with few exceptions) has 5 bits made
available for an additional RISA reference. This RISA instruction
is executed following the original MISA instruction. If there is
no useful RISA instruction that can be executed, then IRF entry
0, which corresponds to anop, is used. There is no performance
penalty if the RISA reference is 0, since no instruction willbe
executed from the IRF and fetching will continue as normal. While
the goal of tightly packed instructions is improved fetching of
frequently executed instruction streams, the loosely packed format
helps in capturing the same common instructions when they are on
infrequently executed paths and not surrounded by other packable
instructions. Loose packs are responsible for a significantportion
of the code size reduction when profiling an application statically.

Figure 3 shows the differences between the traditional MIPS
instruction formats and the loosely packed MISA extension.With
R-type instructions, theshamt (shift amount) field can be used
for a RISA reference and the various shifts can be given new
function codes or opcodes. Immediate values in I-type instructions
are reduced from 16 bits to 11 bits to make room for a RISA
reference. Thelui (load upper immediate) instruction is the only
I-type that is adjusted differently, in that it now uses onlya single
register reference and the remaining 21 bits of the instruction for
the upper immediate portion. This is necessary since we still want
a simple method for creating 32 bit constants using thelui with
21 bits for an immediate and another I-type instruction containing
an 11 bit immediate value. J-type instructions are modified slightly
with regards to addresses in order to support partitioning of the IRF.

For this study, the IRF has been extended to support 4 hardware
windows [18], much in the same way that the SPARC data regis-
ter file is organized [33]. This means that instead of using only 32
instruction registers, there are a total of 128 available physical in-
struction registers. Only 32 of these registers are accessible at any
single point in time however, so the remaining 96 registers can be
kept in a low-power mode in which they retain their values, but
cannot be accessed. On a function call and/or return, the target ad-
dress uses 2 bits to distinguish which instruction window weare
accessing. The function addresses are updated at link-timeaccord-

ing to which window of the IRF they will access. The IMM for each
window is the same, since previous results have shown that 32im-
mediate values are sufficient for parameterizing most instructions
that will exist in an IRF. Using two bits to specify the windowin an
address pointer limits the effective address space available, but we
feel that 16 million instruction words is sufficiently largeenough
for any reasonable embedded application.

3. Integrating an IRF with an L0 Instruction
Cache

There are several intuitive ways in which an IRF and an L0 instruc-
tion cache can interact effectively. First, the overlappedfetch of
packed instructions can help in alleviating the performance penal-
ties of L0 instruction cache misses by giving the later pipeline
stages useful work to do while servicing the miss. Second, the very
nature of instruction packing focuses on the frequent access of in-
structions via the IRF, leading to an overall reduction in the num-
ber of instruction cache accesses. Third, the packing of instructions
reduces the static code size of portions of the working set ofan
application, leading to potentially fewer overall instruction cache
misses.

Figure 4 shows the pipeline diagrams for two equivalent instruc-
tion streams. Both diagrams use a traditional five stage pipeline
model with the following stages: IF — instruction fetch, ID —in-
struction decode, EX — execute, M — memory access, and WB —
writeback. In Figure 4(a), an L0 instruction cache is being used
with no IRF. The first two instructions (Insn1 and Insn2) execute
normally with no stalls in the pipeline. The third instruction is a
miss in the L0 cache, leading to the bubble at cycle 4. The fourth
instruction is unable to start fetching until cycle 5, when Insn3 has
finally finished fetching and made it to the decode stage of the
pipeline. This entire sequence takes 9 cycles to finish executing.

Figure 4(b) shows the same L0 instruction cache being used
with an IRF. In this stream, however, the second and third instruc-
tions (previously Insn2 and Insn3) are packed together intoa single
MISA instruction, and the fourth instruction (third MISA instruc-
tion) is now at the address that will miss in the L0 cache. We see
that the packed instruction is fetched in cycle 2. The packedinstruc-
tion decodes its first RISA reference (Pack2a) in cycle 3, while si-
multaneously we are able to start fetching instruction 4. The cache
miss bubble in cycle 4 is overlapped with the decode of the second
RISA instruction (Pack2b). After the cache miss is serviced, Insn4
is now ready to decode in cycle 5. In this way, sequences of instruc-
tions with IRF references can alleviate stalls due to L0 instruction
cache misses. This stream finishes the same amount of work as the
first stream in only 8 cycles, 1 less cycle than the version without

Figure 4. Overlapping Fetch with an IRF

IRF. Denser sequences of instructions (with more packed instruc-
tions) allow for even greater cache latency tolerance, and can po-
tentially alleviate a significant portion of the latency of accessing
an L2 cache or main memory on an L1 instruction cache miss.

In previous studies, it was shown that approximately 55% of the
non-library instructions fetched in an application can be accessed
from a single 32-entry IRF [17]. This amounts to a significantfetch
energy savings due to not having to access the L1 instructioncache
as frequently. Although the L0 cache has a much lower energy cost
per access than an L1 instruction cache, the IRF will still reduce the
overall traffic to the entire memory hierarchy. Fewer accesses that
reach into the memory hierarchy can also be beneficial as energy
can be conserved by not requiring access of the TLB or even the
L0 cache tag array.

Instruction packing is inherently a code compression technique,
allowing some additional benefits to be extracted from it as well. As
instructions are packed together, the L0 instruction cachecan po-
tentially handle larger working sets at no additional cost.Being that
the L0 cache is fairly small and direct mapped, the compressed in-
struction stream may be extremely beneficial in some cases, allow-
ing for fewer L0 cache misses, which translates into performance
improvements and reduced overall fetch energy consumption. It is
also apparent that other non-pipelinable fetch latencies can sim-
ilarly be ameliorated through the use of an IRF. For example,a
2-cycle L1 instruction cache that is performing code decompres-
sion or decryption would also be able to execute additional packed
instructions while stalling for the remainder of a cache access.

4. Decoupling Instruction Fetch in a Multi-issue
Pipeline

Modern superscalar processor designs often provide similar in-
struction bandwidth throughout the pipeline. In the ideal case, in-
structions should flow readily from one stage to the next. Often the
number and types of functional units available in a given proces-
sor are designed to handle pipeline stalls due to long latency op-
erations. Load-store queues and additional ALUs can allow further
instructions to continue flowing through the pipeline without being
stalled. Although computer architects can vary the number and size
of these functional units in a given pipeline, the maximum number
of instructions that can be fetched, decoded/dispatched, issued, and
committed are often the same.

a) Single Issue Out−of−order Pipeline

b) Multiple Issue Out−of−order Pipeline

c) Asymmetric Bandwidth Out−of−order Pipeline

...

...

Dispatch

Dispatch

Dispatch Issue Execute

ExecuteIssue

ExecuteIssue
IRF

Fetch

Fetch

Fetch

Figure 5. Decoupling Instruction Fetch in an Out-of-Order
Pipeline

This makes sense when considering steady state flow of instruc-
tions through the pipeline, but can become problematic whenac-
counting for the effects of instruction cache misses, branch mispre-
diction recovery, alignment issues, etc. There are points where in-
struction fetch becomes the performance bottleneck for short peri-
ods of time, and in aggregate, these can impact the overall processor
performance. Constraining the fetch width to match the restof the
pipeline imposes an artificial limitation on the design space explo-
ration for a new architecture, particularly for embedded processors
where die area, power consumption, execution time and packaging
costs may be highly restrictive.

Figure 5 shows the first few pipeline stages for several out-
of-order configurations. Note that each stage can be furthersub-
divided as necessary (e.g. different cycle times for different func-
tional units). The simplest single issue out-of-order pipeline is
shown in Figure 5a. Figure 5b shows a multiple issue pipeline. As
more functional units become available on chip, heavy demands
can be placed issue, dispatch and fetch. Techniques alreadyex-
ist for appropriately scaling the issue queue [13], howeverthe in-
creasing pressure on instruction fetch could complicate the design.
Multi-ported instruction caches require more energy to operate and
need special techniques to handle the cases where instructions are
fetched from multiple cache lines. The ability of the IRF to regu-
larly extract multiple instructions from each instructioncache ac-
cess makes it feasible to reduce the fetch width of the instruction
cache, instead relying on frequently executed packed instructions
to provide the dispatch stage with a sufficient stream of instructions
to avoid starving a wider backend pipeline. This pipeline configu-
ration is shown in Figure 5c.

By packing multiple instruction references into a single MISA
instruction, it becomes feasible to decouple the configuration of the
fetch pipeline from the design choices of the rest of the pipeline.
This increase in the configuration space provides the processor de-
signer greater flexibility in meeting multiple and often divergent,
design goals. Use of an IRF in an out-of-order pipeline can also
have other positive benefits. The possibility of misspeculation due
to overaggressive fetching will be reduced. This occurs because the

Parameter Low-Power Embedded High-end Embedded

I-Fetch Queue 4 entries 4/8 entries
Branch Predictor Bimodal – 128 Bimodal – 2048
Branch Penalty 3 cycles
Fetch Width 1 1/2/4
Decode Width 1 1/2/3/4
Issue Style In order Out of order
Issue Width 1 1/2/3/4
Commit Width 1 1/2/3/4
RUU size 8 entries 16 entries
LSQ size 8 entries

16 KB 32 KB
L1 Data Cache 256 lines, 16 B line, 4-way assoc. 512 lines, 16 B line, 4-way assoc.

1 cycle hit 1 cycle hit
16 KB 32 KB

L1 Instruction Cache 256 lines, 16 B line, 4-way assoc. 512 lines, 16 B line, 4-way assoc.
1/2 cycle hit 1 cycle hit

256 B
L0 Instruction Cache 32 lines, 8 B line, direct mapped NA

1 cycle hit
256 KB

Unified L2 Cache NA 1024 lines, 64 B line, 4-way assoc.
6 cycle hit

Memory Latency 32 cycles
Integer ALUs 1 1/2/3/4
Integer MUL/DIV 1 1
Memory Ports 1 1/2
FP ALUs 1 1/2/3/4
FP MUL/DIV 1 1

4 windows
32-entry IRF (128 total)IRF/IMM

32-entry Immediate Table
1 Branch/pack

Table 1. Experimental Configurations

IRF-resident instructions are those that are most frequently exe-
cuted, and thus the hot spots of execution will be full of tightly
packed instruction sequences. Conversely, the areas that are infre-
quently executed will tend to exhibit fewer packed instructions and
naturally limit the rate of instruction fetch.

5. Experimental Evaluation
This section contains the methods and results used in evaluating
the IRF for improving instruction fetch. First, we present our ex-
perimental framework and methodology. Second, we combine the
IRF with an L0 instruction cache and a 2-cycle non-pipelinable L1
instruction cache to evaluate the impact on energy and execution
efficiency. Third, we analyze the energy and execution benefits of
decoupling instruction fetch from instruction execution.Finally, we
show the overall reduction in static code size due to instruction
packing with an instruction register file.

5.1 Compilation and Simulation Framework

All programs are compiled using a modified MIPS port of the VPO
compiler [8]. Benchmarks are profiled dynamically and instruc-
tions are selected for packing usingirfprof, a profile-driven IRF
selection and layout tool. Each application is then recompiled and
instructions are packed based on the supplied layout. The layouts
provided for each experiment used four hardware IRF windowsfor
packing [18]. Several IRF-specific optimizations including regis-
ter renaming, instruction scheduling and instruction selection were
performed on all versions of the IRF code to improve code den-
sity and performance [19]. Instructions are packed only within the
code supplied for each benchmark. Although library code is left
unpacked, the dynamic (cycle and energy) results of executing li-
brary code are shown in our experimental data in order to provide a

thorough evaluation. Packing frequently executed libraryroutines
could lead to further improvements in reducing fetch energyand
execution time.

We evaluate the performance of each of our machine models
using the SimpleScalar simulation environment [3]. Power estima-
tion is performed using Version 1.02 of the Wattch extensions [9]
for SimpleScalar. Wattch uses Cacti [34] to model the energyand
timing requirements of various pipeline components. Each simula-
tor is instrumented to collect the relevant data involving instruction
cache and IRF access during program execution. Energy estimates
are based on Wattch’s aggressive clock-gating model (cc3). Under
this scheme, power consumption scales linearly for active units,
while inactive portions of the pipeline dissipate only 10% of their
maximum power. For our study involving an L0 filter cache, the
machine configuration is shown as theLow-Power Embeddedcol-
umn in Table 1. Note that the L0 cache and/or the IRF/IMM are
only configured if they are being evaluated. It is also important
to remember that the L0 cache is not able to be bypassed in this
pipeline structure, so an instruction that misses in the L0 cache but
hits in the L1 cache will require 2 cycles to fetch in the embedded
processor. We also simulate a 2-cycle non-pipelined L1 instruction
cache for several reasons. First, it emulates the worst caseperfor-
mance of an L0 instruction cache (i.e. L0 miss on each instruc-
tion fetched from cache). Second, it can be used to demonstrate
the benefits of instruction packing for other higher-latency instruc-
tion caches that are attempting to reduce power consumption[20],
compress executables [10], or encrypt cache contents [31].

The column labeledHigh-end Embeddeddescribes the machine
configuration for our second study. In this study, there are no L0
caches, but instead a unified L2 cache for instructions and data.
The IRF and IMM configuration remains the same, while most

Figure 6. Execution Efficiency with an L0 or 2 cycle Instruction Cache and an IRF

Category Applications
Automotive Basicmath, Bitcount, Qsort, Susan
Consumer Jpeg, Lame, Tiff
Network Dijkstra, Patricia
Office Ispell, Rsynth, Stringsearch
Security Blowfish, Pgp, Rijndael, Sha
Telecomm Adpcm, CRC32, FFT, Gsm

Table 2. MiBench Benchmarks

other pipeline structures are scaled up for a higher performance em-
bedded processor. This study features many combinations offetch,
decode, issue and commit widths. The decode, issue, and commit
width are always equal to one another, and are always greaterthan
or equal to the fetch width. Fetching is always done using a width
that is a power of 2, since we do not want to artificially increase the
number of stalls due to instruction mis-alignment. Caches are only
able to access a single block in a cycle, so instruction sequences
that span multiple cache lines will require several cycles to fetch.
Functional units for each of our configurations are added as neces-
sary based on the decode/issue/commit width. The instruction fetch
queue is lengthened to 8 entries when the processor reaches afetch
width of 4 instructions.

We use a subset of the MiBench embedded benchmark suite [16]
for each experiment. The MiBench suite consists of six categories,
each designed to exhibit application characteristics representative
of a typical workload in that particular domain. Several of these
benchmarks (Jpeg, Gsm, Pgp, Adpcm) are similar benchmarks to
those found in the MediaBench suite [23] used in the originaleval-
uation of L0 caches. Table 2 shows the exact benchmarks that were
used in the evaluation. For each benchmark with multiple data sets,
we selected the small inputs to keep the running time of a full
simulation manageable.

5.2 Tolerating L0 Instruction Cache Latency

Each of the graphs in this subsection use the following conventions.
All results are normalized to the baseline case for the particular
processor model, which uses an L1 instruction cache with no L0
instruction cache or IRF. The labelBaseline+IRFcorresponds to
adding an IRF but no L0 cache. The labelL0 corresponds to adding
an L0 instruction cache, but no IRF.L0+IRF corresponds to the ad-
dition of an L0 instruction cache along with an IRF. With2cycle,

we are representing a 2-cycle non-pipelinable L1 instruction cache,
while 2cycle+IRF represents this configuration with an IRF. Ex-
ecution results are presented as normalized instructions per cycle
(IPC) as measured by SimpleScalar. Energy results are basedon
the overall total processor energy consumption.

Figure 6 shows the execution efficiency of various combina-
tions of an L0 or 2 cycle instruction cache and an IRF. Adding an
IRF to the baseline processor actually yields a net IPC improve-
ment of 1.04%, primarily due to the code fitting better into the
L1 instruction cache. An L0 cache degrades the IPC by 12.89%
on average, while adding an IRF cuts this penalty to 6.14%. The
6.75% improvement from adding the IRF to an L0 cache config-
uration is greater than the original IPC improvement provided by
adding the IRF to the baseline processor. These benefits are due
to the smaller cache footprint provided by instruction packing, as
well as the overlap of fetch stalls with useful RISA instructions.
The Rijndael and Gsm benchmarks are even able to surpass the
baseline performance with no L0 cache, yielding IPCs of 126.11%
and 102.13% respectively. The 2 cycle implementation reduces IPC
to 49.73% of its original value, while adding an IRF increases
IPC to 78.28%, nearly a 57% improvement. Several of the auto-
motive category benchmarks experience diminished performance
when adding an IRF, due to their dependence on library routines
which are not packed. However, it is clear that the IRF can be used
to mask some of the performance issues involved in complex fetch
configurations that involve low-power components, compression or
even encryption.

The energy efficiency of the varied IRF, L0 and 2 cycle in-
struction cache configurations are shown in Figure 7. Addingan
IRF to the baseline processor yields an average energy reduction
of 15.66%. The L0 cache obtains an overall reduction of 18.52%,
while adding the IRF improves the energy reduction to 25.65%.
The additional energy savings in the final case are due to two fac-
tors. First, fetching instructions via the IRF requires less energy
than fetching from the L0 instruction cache, and second, theability
of the IRF to tolerate L0 cache misses improves the overall exe-
cution time of the application. When dealing with the 2 cyclein-
struction cache, the overall energy is increased by 17.63%.It is
important to note that the Wattch model places a heavy emphasis
on the clock gating of unused pipeline units, hence the reason for
the energy consumption only increasing by 5-25% for the extended
running times. Adding an IRF to this configuration, however,re-

Figure 7. Energy Efficiency with an L0 or 2 cycle Instruction Cache and an IRF

Figure 8. Execution Efficiency for Asymmetric Pipeline Band-
width

duces the overall energy consumption to 88.19% of the baseline,
which is only slightly higher than the configuration of a 1-cycle L1
instruction cache with IRF.

The fetch energy characteristics of the IRF and L0 instruction
cache are also very interesting. The baseline processor fetch en-
ergy consumption can be reduced by 33.57% with the introduction
of an IRF. An L0 instruction cache instead reduces the fetch energy
consumption by 60.61%, while adding both yields an overall fetch
energy reduction of 70.71%. This savings can be extremely bene-
ficial for embedded systems that have a significant portion oftheir
total processor energy expended during instruction fetch.

5.3 Effectively Utilizing Asymmetric Pipeline Bandwidth

Each of the graphs in this subsection use the following conventions.
All results are normalized to the baseline processor model,which
has a single instruction fetch, decode, issue and commit bandwidth.
This is the leftmost bar presented in each of the graphs. The graph
is plotted linearly by instruction fetch width, followed bythe ex-
ecute width (decode/issue/functional units/commit width) as a tie-
breaker. Black bars are used to denote configurations that donot
have an IRF, while gray bars indicate the presence of an IRF.

Figure 9. Energy Efficiency for Asymmetric Pipeline Bandwidth

Figure 8 shows the normalized IPC over all benchmarks for
the various configurations of the fetch and execution engine. The
configurations without an IRF are often able to make some use of
the additional functional unit bandwidth (1/1 to 1/2, 2/2 to2/3),
however they plateau quickly and are unable to use any additional
available bandwidth (1/2 through 1/4, 2/3 to 2/4). The IRF versions,
alternately, are able to improve steadily compared to the previous
IRF configuration, except in the 1/4+IRF case. This configuration
is overly aggressive, as the IRF is unable to supply 4 instructions
per cycle for execution. Branches and other parameterized RISA
instructions occupy two slots in the packed instruction format,
thus limiting the maximum number of instructions fetchablevia
a single MISA instruction. Additionally, the IRF selectionheuristic
is a greedy one, and we will never be able to produce all tightly
packed instructions with 4–5 slots completely full. This limits even
the IRF’s ability to supply instructions to this overly aggressive
backend, but additional fetch bandwidth more than makes up for
this limitation in more complex configurations (2/3+IRF, 2/4+IRF).
Overall however, the IRF configurations have an average IPC that is
15.82% greater than corresponding configurations without an IRF.

The energy efficiency of the various configurations of asymmet-
ric pipeline bandwidth are shown in Figure 9. Results are presented

Figure 10. Energy-Delay2 for Asymmetric Pipeline Bandwidth

as normalized energy to the 1/1 baseline processor configuration.
Note that the Wattch model places a heavy emphasis on the clock
gating of unused pipeline units. Since the running time of the more
complex configurations is lower, the total energy is correspond-
ingly reduced as compared to the baseline processor. The results
show that increasing the execution width by one additional instruc-
tion can yield more efficient energy usage (1/1 to 1/2, 1/1+IRF to
1/2+IRF, 2/2+IRF to 2/3+IRF), but greater increases in all other
cases are not beneficial. Overall though, the energy resultsshow
that IRF configurations can be as much as 22% more energy effi-
cient (1/3+IRF, 1/4+IRF) than corresponding configurations with-
out an IRF. On average, the IRF configurations utilize 12.67%less
energy than corresponding non-IRF configurations.

Figure 10 shows the energy-delay squared (ED
2) for the var-

ious asymmetric fetch and execution bandwidth configurations.
Energy-delay squared is an important metric for exploring the pro-
cessor design space. As expected, this graph is similar to the IPC
results shown in Figure 8, as the configurations without an IRF con-
tinue to have problems with keeping the additional functional units
of the pipeline busy (1/2 through 1/4, 2/3 to 2/4). The IRF config-
urations see a small increase (1.64%) inED

2, when moving from
a 1/3+IRF to 1/4+IRF, primarily due to the increased energy re-
quirements of this configuration. Without this data point, however,
the IRF configurations smoothly scale for the varied combinations
of fetch and execute bandwidth available in the processor pipeline.
On average, the relative decrease inED

2 for using the IRF con-
figurations over the non-IRF versions is 25.21%. In addition, by
decoupling instruction fetch and instruction execution, acomputer
architect has greater freedom to explore an increased number of
processor configurations with a wider variety of energy/execution
characteristics.

5.4 Reducing Static Code Size

Instruction packing can also reduce the static code size of an ap-
plication. Figure 11 shows the normalized code size for eachof
the packed executables used in our experiments. Since we do not
pack instructions in library routines, we have removed their impact
on the static code size results. Overall, however we are ableto re-
duce the actual compiled executable size by 17.12% on average.
Many of the security benchmarks experience significant reductions
in static code size, since the majority of their code is dominated by
similar encryption and decryption routines composed of thesame
fundamental instruction building blocks. These instructions can be
placed in the IRF and referenced in various combinations to con-
struct the necessary functionality for each similar routine. The con-

Figure 11. Reducing Static Code Size with an IRF

sumer and office benchmarks are not as easily packed, since they
often consist of many routines that are accessed infrequently during
normal usage. However, they are still able to achieve a significant
level of compression due to packing with multiple windows.

6. Related Work
Instruction and data caches are often separated for performance
reasons, particularly with respect to handling the diversebehavior
and request patterns for each. Another approach to reducingcache
energy requirements is to further subdivide the instruction cache
into categories based on execution frequency [6, 7]. Frequently
executed sections of code are placed into a smaller, low-power L-
cache that is similar in structure to the L0 cache discussed in this
paper. The bulk of the remaining code is only accessible through
the standard L1 instruction cache. Code segments for each cache
are separated in the executable, and a hardware register denotes the
boundary between addresses that are serviced by the L-cacheand
addresses that are serviced by the L1 cache. The splitting ofthese
lookups provides a substantial reduction in the L-cache miss rate. A
512-byte L-cache provides a 15.5% reduction in fetch energy, while
also obtaining a small reduction in execution time due to improved
hit rate. However, the L-cache scheme is limited in that it cannot
easily scale to support longer access times from an L1 instruction
cache.

Lee et al. proposed using a small cache for executing small
loops with no additional transfers of control besides the loop
branch [24]. Instructions are normally fetched from the L1 cache,
but a short backward branch (sbb) triggers the loop cache to be-
gin filling. If the same sbb is then taken on the next loop iteration,
instructions can be fetched from the small loop cache structure in-
stead of the L1 cache. When there is a different taken transfer of
control, or the loop branch is not taken, the loop cache returns to
its inactive state and resumes fetching normally from the L1in-
struction cache. Since the loop cache is tagless and small (usually
8-32 instructions), the total fetch energy can be reduced byapprox-
imately 15%. The loop cache was later extended to support longer
loops by adding the ability to partially store and fetch portions
of a loop [25]. Another improvement to the loop cache is the use
of preloading and hybridization [15]. Preloading allows the loop
cache to contain the same instructions for the life of the applica-
tion, while hybridization refers to a loop cache that can operate in
a dynamic mode as well as preloaded. A hybrid loop cache can
reduce the total instruction fetch energy by 60-70%. A previous
study has also shown that an IRF can interact very favorably with

a loop cache, providing fetch energy reductions that neither could
achieve separately [18].

An alternate method for mitigating the performance penaltyof
L0 caches is to provide a bypass that allows direct reading from
the L1 cache in some cases. It has been shown that with a simple
predictor, the L0 cache performance penalty can be dropped to
0.7% on a 4-way superscalar machine with only a small increase
in fetch energy [32]. However, L0 caches are primarily used for
reducing the fetch energy of embedded systems, which fetch and
execute no more than one instruction per cycle.

The zero overhead loop buffer (ZOLB) is another hardware
technique for reducing instruction fetch energy for small loops [12].
The main difference between a ZOLB and a loop cache is that a
ZOLB is explicitly loaded using special instructions regarding the
number of instructions in the loop and the number of iterations to
execute. Similar to the loop cache, the ZOLB is limited in size, and
can have no other transfers of control beyond the loop branch. Ad-
ditionally, information regarding the number of iterations executed
by the loop must be known at the time the loop is entered. Although
the primary benefit of the ZOLB is fetch energy reduction, it can
also provide small improvements in execution time, since loop vari-
able increment and compare instructions are no longer necessary.

One power-saving method that has been successfully appliedin
the area of high-performance processors is the concept of pipeline
gating or front-end throttling [28]. These techniques reduce the en-
ergy expenditure of a processor by actively suppressing thefetch
of wrong-path instructions. When a low-confidence branch isen-
countered in the pipeline, instruction fetch and potentially instruc-
tion decode are stalled for a number of cycles. Energy is saved
by not having to fetch, decode and eventually flush these poten-
tial wrong-path instructions. Many heuristics have been developed
using branch confidence [2], and instruction flow metrics [4]to de-
termine the proper times for throttling back the fetch bandwidth.
Sherwood et al. improve throttling selection by dynamically pro-
filing regions at run-time [30]. Annavaram et al. have similarly
proposed an EPI (energy per instruction) throttling technique for
reducing energy consumption during periods of low ILP [1].

7. Future Work
There exist many avenues suitable for exploration in the design of
high-performance, low-power instruction fetch mechanisms. Tol-
erating increased fetch latencies is one strength of the IRF, how-
ever, the instruction selection and packing algorithms have not
been tuned specifically to focus on reducing L0 cache misses.Var-
ious heuristics can be used to select IRF candidates in the areas
of a program where an L0 cache miss is likely to occur. Similar
heuristics can be developed to support instruction packingcom-
bined with other architectural features that affect fetch latency. For
instance, the IRF can be integrated with a more energy efficient
pipeline backend using asymmetric-frequency clustering [5], which
attempts to distribute instructions to execution engines with vary-
ing performance/energy characteristics. Packed instruction density
could also be used to differentiate code sequences with varying lev-
els of ILP, by adjusting the criteria for IRF selection and packing.

There are also several popular techniques that incur perfor-
mance penalties due to reduced spatial locality, which may be able
to be offset by the addition of an IRF. Techniques such as procedu-
ral abstraction [14, 11, 10], and echo factoring [22] seek toreduce
the code size of an application by replacing common sequences of
instructions with calls to extracted subroutines. However, the added
function calls and returns can greatly impact the spatial locality of
an application, in addition to requiring more instructionsto exe-
cute normally. The IRF can be applied similarly in these cases, to
reduce the impact that the cache misses and additionally executed
instructions have on a compressed executable’s performance.

8. Conclusion
In this paper we examined how an instruction register file incor-
porated into an instruction set architecture interacts with micro-
architectural components in both low-power and high-performance
embedded processors. In addition, the use of instruction packing,
which is a fundamental component of the IRF micro-architecture,
allows for significant reductions in the overall static codesize of an
application.

When energy is the overriding design parameter, we have eval-
uated the interactions between a small low-power L0 instruction
cache and an IRF. The use of an IRF and associated packed in-
structions allows a portion of the fetch miss latency of an L0in-
struction cache to be tolerated, increasing the overall IPCby 6.75%
on average. Additionally, both the L0 cache and the IRF can inter-
act such that the total energy consumption is further reduced by an
additional 5.78% on average.

For high-performance embedded systems, the introduction of
the IRF can reduce pressure on instruction fetch by enablingmulti-
ple instructions to be referenced in each packed instruction fetched
from the instruction cache. This results in a performance boost in
those portions of the program where performance is limited by
fetch bandwidth, such as when recovering from a branch mispre-
diction and needing to quickly fill the reorder buffer to extract more
instruction level parallelism. Our results show that adding an IRF
can improve IPC and energy consumption not only for single is-
sue architectures, but also for multi-issue designs by an average of
15.82% and 12.67%, respectively. The use of the IRF also gives the
processor architect the ability to scale back the fetch width in or-
der to meet tighter power constraints, while relying on frequently
packed instructions to feed a more aggressive back-end pipeline.
This provides greater flexibility in the overall pipeline design to
meet all design goals.

We showed that it is possible to improve performance, reduce
code size and reduce energy consumption by adding an IRF to an
existing architecture. These improvements are found at both ends
of the processor design spectrum — low-power single-issue in-
order and high-performance multiple-issue out-of-order embedded
processors. Thus, the IRF serves to decouple instruction cache
access from the processor backend, making both low-power and
high-performance embedded processors more efficient.

Acknowledgments
We thank the anonymous reviewers for their constructive comments
and suggestions. This research was supported in part by NSF grants
EIA-0072043, CCR-0208892, CCR-0312493, CCF-0444207, and
CNS-0615085.

References
[1] A NNAVARAM , M., GROCHOWSKI, E., AND SHEN, J. Mitigating

amdahl’s law through epi throttling. InProceedings of the 2005
ACM/IEEE International Symposium on Computer Architecture
(2005), IEEE Computer Society, pp. 298–309.

[2] A RAGÓN, J. L., GONZÁLEZ , J., AND GONZÁLEZ , A. Power-
aware control speculation through selective throttling. In HPCA
’03: Proceedings of the 9th International Symposium on High-
Performance Computer Architecture(Washington, DC, USA, 2003),
IEEE Computer Society, pp. 103–112.

[3] AUSTIN, T., LARSON, E., AND ERNST, D. SimpleScalar: An
infrastructure for computer system modeling.IEEE Computer 35
(February 2002), 59–67.

[4] BANIASADI , A., AND MOSHOVOS, A. Instruction flow-based front-
end throttling for power-aware high-performance processors. In
ISLPED ’01: Proceedings of the 2001 international symposium on

Low power electronics and design(New York, NY, USA, 2001),
ACM Press, pp. 16–21.

[5] BANIASADI , A., AND MOSHOVOS, A. Asymmetric-frequency
clustering: a power-aware back-end for high-performance processors.
In ISLPED ’02: Proceedings of the 2002 international symposium
on Low power electronics and design(New York, NY, USA, 2002),
ACM Press, pp. 255–258.

[6] BELLAS, N., HAJJ, I., POLYCHRONOPOULOS, C., AND STA-
MOULIS, G. Energy and performance improvements in a micropro-
cessor design using a loop cache. InProceedings of the 1999 Interna-
tional Conference on Computer Design(October 1999), pp. 378–383.

[7] BELLAS, N. E., HAJJ, I. N., AND POLYCHRONOPOULOS, C. D.
Using dynamic cache management techniques to reduce energyin
general purpose processors.IEEE Transactions on Very Large Scale
Integrated Systems 8, 6 (2000), 693–708.

[8] BENITEZ, M. E.,AND DAVIDSON, J. W. A portable global optimizer
and linker. InProceedings of the SIGPLAN’88 conference on
Programming Language Design and Implementation(1988), ACM
Press, pp. 329–338.

[9] BROOKS, D., TIWARI , V., AND MARTONOSI, M. Wattch: A
framework for architectural-level power analysis and optimizations.
In ISCA ’00: Proceedings of the 27th annual International Symposium
on Computer architecture(New York, NY, USA, 2000), ACM Press,
pp. 83–94.

[10] COOPER, K., AND MCINTOSH, N. Enhanced code compression for
embedded risc processors. InProceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation
(May 1999), pp. 139–149.

[11] DEBRAY, S. K., EVANS, W., MUTH, R., AND DESUTTER, B.
Compiler techniques for code compaction.ACM Transactions on
Programming Languages and Systems 22, 2 (March 2000), 378–415.

[12] EYRE, J.,AND BIER, J. DSP processors hit the mainstream.IEEE
Computer 31, 8 (August 1998), 51–59.

[13] FOLEGNANI, D., AND GONZÁLEZ , A. Energy-effective issue logic.
In Proceedings of the 28th annual International Symposium on
Computer architecture(New York, NY, USA, 2001), ACM Press,
pp. 230–239.

[14] FRASER, C. W., MYERS, E. W., AND WENDT, A. L. Analyzing
and compressing assembly code. InProceedings of the SIGPLAN ’84
Symposium on Compiler Construction(June 1984), pp. 117–121.

[15] GORDON-ROSS, A., COTTERELL, S., AND VAHID , F. Tiny
instruction caches for low power embedded systems.Trans. on
Embedded Computing Sys. 2, 4 (2003), 449–481.

[16] GUTHAUS, M. R., RINGENBERG, J. S., ERNST, D., AUSTIN,
T. M., MUDGE, T., AND BROWN, R. B. MiBench: A free,
commercially representative embedded benchmark suite.IEEE 4th
Annual Workshop on Workload Characterization(December 2001).

[17] HINES, S., GREEN, J., TYSON, G., AND WHALLEY, D. Improving
program efficiency by packing instructions into registers.In
Proceedings of the 2005 ACM/IEEE International Symposium on
Computer Architecture(2005), IEEE Computer Society, pp. 260–
271.

[18] HINES, S., TYSON, G., AND WHALLEY, D. Reducing instruction
fetch cost by packing instructions into register windows. In
Proceedings of the 38th annual ACM/IEEE International Symposium
on Microarchitecture(November 2005), IEEE Computer Society,
pp. 19–29.

[19] HINES, S., WHALLEY, D., AND TYSON, G. Adapting compilation
techniques to enhance the packing of instructions into registers.
In Proceedings of the International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems(October 2006),
pp. 43–53.

[20] K IM , N. S., FLAUTNER, K., BLAAUW , D., AND MUDGE, T.
Drowsy instruction caches: Leakage power reduction using dynamic
voltage scaling and cache sub-bank prediction. InProceedings of the
35th annual ACM/IEEE International Symposium on Microarchitec-
ture (Los Alamitos, CA, USA, 2002), IEEE Computer Society Press,
pp. 219–230.

[21] K IN , J., GUPTA, M., AND MANGIONE-SMITH , W. H. The filter
cache: An energy efficient memory structure. InProceedings of the
1997 International Symposium on Microarchitecture(1997), pp. 184–
193.

[22] LAU , J., SCHOENMACKERS, S., SHERWOOD, T., AND CALDER,
B. Reducing code size with echo instructions. InProceedings of
the 2003 International Conference on Compilers, Architectures and
Synthesis for Embedded Systems(2003), ACM Press, pp. 84–94.

[23] LEE, C., POTKONJAK, M., AND MANGIONE-SMITH , W. H.
MediaBench: A tool for evaluating and synthesizing multimedia
and communicatons systems. InMICRO 30: Proceedings of the 30th
annual ACM/IEEE International Symposium on Microarchitecture
(Washington, DC, USA, 1997), IEEE Computer Society, pp. 330–
335.

[24] LEE, L., MOYER, B., AND ARENDS, J. Instruction fetch energy
reduction using loop caches for embedded applications withsmall
tight loops. InProceedings of the International Symposium on Low
Power Electronics and Design(1999), pp. 267–269.

[25] LEE, L., MOYER, B., AND ARENDS, J. Low-cost embedded
program loop caching — revisited. Tech. Rep. CSE-TR-411-99,
University of Michigan, 1999.

[26] LEFURGY, C., BIRD, P., CHEN, I.-C., AND MUDGE, T. Improving
code density using compression techniques. InProceedings of the
1997 International Symposium on Microarchitecture(December
1997), pp. 194–203.

[27] LEFURGY, C. R. Efficient execution of compressed programs. PhD
thesis, University of Michigan, 2000.

[28] MANNE, S., KLAUSER, A., AND GRUNWALD , D. Pipeline gating:
speculation control for energy reduction. InProceedings of the
1998 ACM/IEEE International Symposium on Computer Architecture
(1998), IEEE Computer Society, pp. 132–141.

[29] MONTANARO, J., WITEK , R. T., ANNE, K., BLACK , A. J.,
COOPER, E. M., DOBBERPUHL, D. W., DONAHUE, P. M., ENO, J.,
HOEPPNER, G. W., KRUCKEMYER, D., LEE, T. H., LIN , P. C. M.,
MADDEN, L., MURRAY, D., PEARCE, M. H., SANTHANAM , S.,
SNYDER, K. J., STEPHANY, R., AND THIERAUF, S. C. A 160-
mhz, 32-b, 0.5-W CMOS RISC microprocessor.Digital Tech. J. 9, 1
(1997), 49–62.

[30] SHERWOOD, T., SAIR , S., AND CALDER, B. Phase tracking and
prediction.SIGARCH Comput. Archit. News 31, 2 (2003), 336–349.

[31] SHI , W., LEE, H.-H. S., GHOSH, M., LU, C., AND BOLDYREVA ,
A. High efficiency counter mode security architecture via prediction
and precomputation. InProceedings of the 2005 ACM/IEEE
International Symposium on Computer Architecture(2005), IEEE
Computer Society, pp. 14–24.

[32] TANG, W., VEIDENBAUM , A. V., AND GUPTA, R. Architectural
adaptation for power and performance. InProceedings of the 2001
International Conference on ASIC(October 2001), pp. 530–534.

[33] WEAVER, D., AND GERMOND, T. The SPARC Architecture Manual,
1994.

[34] WILTON , S. J.,AND JOUPPI, N. P. CACTI: An enhanced cache
access and cycle time model.IEEE Journal of Solid State Circuits
31, 5 (May 1996), 677–688.

