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ABSTRACT 
 
As the gap between CPU speed and memory speed widens, it is appropriate to investi-
gate alternative storage systems. Our approach is to use a large data register file that is 
able to hold arrays and other global structures. Windows of registers are utilized for 
efficient access. The performance benefits realized from this approach include faster 
access, fewer instructions executed, and decreased contention within the data cache. 

1 Introduction 
Because the increases in processor speed have outpaced the increases in memory speed, 
the difference between the processor speed and memory speed has continually widened 
over the years. Despite aggressive instruction scheduling, processors are often unable to be 
fully utilized, as they must endure long latencies while waiting for data to be fetched from 
memory. Accordingly, it is appropriate to investigate alternative storage systems. Our 
approach is to use a large data register file (LDRF). There are several, well-known 
advantages of accessing data from registers instead of memory (even if the data actually 
resides in a data cache rather than main memory). These advantages include: faster access 
time, accessing multiple values in a single cycle, reduced power consumption, and 
reduced bandwidth requirement for the first-level data cache. The LDRF, despite its 
increased size, retains these advantages. 

2 The Memory Bottleneck 
The performance of the memory hierarchy has long been a critical factor in the overall 
performance of a computer system. There are 
two primary reasons that this is so: (1) mem-
ory operations comprise a significant portion 
of the overall instruction count (see Figure 1, 
which shows 26%, on average, of instructions 
are memory operations) and (2) memory 
speeds are significantly slower than proces-
sor speeds. Accordingly, many techniques 
have been studied to hide the latency of main 
memory from the processor. However, it is 
not feasible to hide all such latencies. As seen 
in Figure 1, significant performance benefits 
would be realized if all memory operations 
were to complete in the same amount of time 
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Figure 1: Performance Impact of Memory 



as a register operation. While it is not suggested that this is necessarily feasible, it will be 
shown that a large register file could significantly reduce the number of memory 
operations, in favor of register operations, which thereby realizes performance gains.  
 
3 Architecture and Compiler Enhancements 
The LDRF is an architected register file that can efficiently support thousands of registers 
and acts as a storage system that provides data to the traditional register file. Traditionally, 
registers have been constrained to hold the values of local scalar variables, as well as 
temporaries, and have excluded composite structures. Although such a register file can be 
managed very effectively, there are typically only a small number of live scalar variables 
and temporaries at any given point in the execution of an application. In contrast, the 
LDRF supports storage of composite data structures, including both local and global 
arrays and C structs. In addition, aliased data may be stored in the LDRF. Architectural 
and compiler enhancements have been made to ensure that, despite the expanded 
capabilities of the LDRF, it may be accessed in the same amount of time as a traditional 
register file. The LDRF is able to achieve this by: 
 

• Use of register windows, which restrict the available portion of the LDRF to a more 
manageable size. This, in turn, reduces encoding size and helps to retain fast access.  

• Block transfer of registers, which allows for fast access to multiple, sequential LDRF 
registers. This access allows multiple values to be transferred to/from the LDRF 
within a single cycle. 

 
The primary difference between our ap-
proach and earlier register window-
ing[1][2][3] schemes lies in the generality of 
the window manipulation capabilities and 
the ability to promote the wider range of 
application data values to the LDRF, i.e., 
global as well as static local composite 
variables. Many global arrays, particularly 
in numerical applications on embedded 
processors, are well suited for the LDRF. 
Figure 2 depicts the interaction between the 
traditional (visible) register file (VRF) and 
the LDRF. Note that register window 
pointers (RWPs) are used to associate a 
contiguous set of VRF registers with an equal sized set of contiguous LDRF registers. RWP 
assignments cause the LDRF window of registers to be copied, via parallel register moves, 
to the VRF. After loading the registers from the LDRF window to the VRF window, 
subsequent accesses to the registers in the window occur from the VRF in a conventional 
manner. 
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The ideal variable that is a candidate to be passed in the LDRF will possess the following 
qualities: 
 

• Accesses to the data should exhibit high spatial locality – Since accessing each window 
within the LDRF requires an assignment to a RWP, referencing several register 
within a single window amortizes the cost of such assignments. 

• Data should be frequently accessed – Since the data is accessed more efficiently via the 
LDRF, it is advantageous to place frequently accessed data in the LDRF to maxi-
mize the performance benefits. 

• Size of the data must be statically known – The compiler must ensure that the total 
number of bytes allocated to the LDRF does not exceed its size. In addition, by 
statically allocating variables to the LDRF, tag storage is not required, which saves 
space and provides faster access.  

• High Access to Size Ratio – Considering the limited size of the LDRF, the ratio of the 
number of accesses of a given variable to its size is a more useful metric rather than 
simply the number of accesses. 

  
The compiler and simulator collect metrics and perform subsequent analysis on these 
metrics to provide recommendations, to the programmer, as to which variables are best 
suited to the LDRF. SimpleScalar was used to collect performance statistics.  
 
In our current research, the compiler used is a port of VPO (Very Portable Optimizer) for 
the MIPS architecture. Currently, it is the programmer’s responsibility to allocate data to 
reside in the LDRF by use of directives within the high-level source code. To allow the 
programmer to assign variables to the LDRF, two new source-level keywords are 
introduced: 
 

• gregister – a new storage class specifier that dictates to the compiler that the variable 
is to be placed in the LDRF.  

• gpointer – a new type qualifier, which is used when creating a pointer to a variable 
that has been declared to reside in the LDRF.  

 
To ensure program correctness, semantic checks have been implemented in the compiler; 
i.e., a pointer declared as a gpointer may only point to a variable that resides in the LDRF. 
Similarly, a variable that resides in the LDRF may only be pointed to, or aliased by, a 
pointer declared as a gpointer. To ensure that the programmer has not over-allocated the 
LDRF, the linker verifies that the size of the data allocated to the LDRF, across all files that 
comprise a program, does not exceed the size of the LDRF.  
 
Several compiler optimizations have been implemented to improve the code that refer-
ences LDRF registers. Initially, the compiler has one RWP assignment for each LDRF 
access. Two areas for improvement are to reduce the number of RWP assignments and to 
increase the number of registers that makeup a RWP. Code duplication transformations, 
such as loop unrolling, are one such means to increase the number of registers accessed 
within a window.  More specifically, a loop that sequentially access one or more LDRF 
arrays within it will have accesses to sequential LDRF registers when unrolled. The 



sequential LDRF access instructions may be coalesced, into 
a single instruction, to increase the number of registers that 
make up the RWP as well to reduce the code bloat endemic 
to loop unrolling. Figure 3 demonstrates the intermediate 
(Register Transfer List [RTL]) code that is generated for a 
loop that adds one global array to another. Note that the 
loop has been unrolled two times. The global arrays, a and 
b, have been declared to reside in the LDRF. To represent a 
register in the LDRF, a G[address] notation is introduced; to 
represent a register window, a w register is introduced. 
Data movement to/from the LDRF is represented by a 
single RTL with two effects: the first indicates the starting 
position in the VRF and the position to which it is mapped 
in the LDRF (i.e., r[5]=G[r[11]]); the second indicates which RWP is under consideration 
and is assigned the number of registers in the window (i.e., w[0]=1). In Figure 3, the data 
movement is made more efficient by coalescing sequential LDRF accesses into a window 
spanning two registers.  
 
Preliminary results show that the LDRF is a promising area of research. Two metrics that 
can be used as an indicator of the usefulness of the LDRF – number of cycles and number 
of memory operations – show marked reductions within select benchmarks of the 
Mibench benchmark suite. Specifically, using cycle accurate simulation via SimpleScalar’s 
sim-outorder, the number of cycles was reduced by an average of 10.11% and the number 
of memory operations was reduced by an average of 43.56%. A third metric – the number 
of bytes allocated to the LDRF – is useful to gain perspective on the amount of data that 
has been placed within the LDRF to achieve the associated benefits. With respect to the 
previously mentioned results, from 420 bytes to 40KB were allocated to the LDRF to 
achieve these reductions, with the majority requiring less than 2KB of LDRF storage. While 
these results are preliminary, they demonstrate the viability of a large data register file. 
Future work will identify and exploit opportunities to utilize windows spanning several 
registers; investigate the size of the LDRF needed to capture the majority of eligible 
variables; and broaden the types of variables that are eligible for promotion to the LDRF. 
Each of these aspects is expected to increase the benefits realized by the LDRF. 
 
4 Conclusions  
The large data register file (LDRF) is a viable alternative storage area for frequently 
referenced data. In particular, it provides a mechanism to store composite data structures, 
such as arrays and structs, in a storage area that provides register-like access times. Prelim-
inary results suggest that the LDRF yields appreciable performance benefits. Without such 
a storage area, these data structures are relegated to the first-level data cache, which access 
via loads and stores and incur longer latencies even in the case of cache hits. 
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 r[11]=a; 
 r[13]=b; 
L2: 
 r[5..6]=G[r[11]..r[11]+4]];w[0]=2; 
 r[7..8]=G[r[13]..r[13]+4];w[1]=2; 
 r[5]=r[5]+r[7]; 
 r[6]=r[6]+r[8]; 
 G[r[11]..r[11]+4]=r[5];w[0]=2; 
 r[11]=r[11]+8; 
 r[13]=r[13]+8; 
 r[1]=r[13]<r[4]; 
  PC=r[1]!r[0],L2; 

Figure 3. RTL Code for a Loop that 
Adds Elements of Two Arrays 


