
Reducing the Cost of Conditional Transfers of Control by Using
Comparison Specifications

William Kreahling
Western Carolina University
wkreahling@email.wcu.edu

Stephen Hines David Whalley
Gary Tyson

Florida State University
{hines,whalley,tyson}@cs.fsu.edu

Abstract
A significant portion of a program’s execution cycles are typically
dedicated to performing conditional transfers of control.Much of
the research on reducing the costs of these operations has focused
on the branch, while the comparison has been largely ignored. In
this paper we investigate reducing the cost of comparisons in con-
ditional transfers of control. We decouple the specification of the
values to be compared from the actual comparison itself, which
now occurs as part of the branch instruction. The specification of
the register or immediate values involved in the comparisonis ac-
complished via a new instruction called acomparison specification,
which is loop invariant. Decoupling the specification of thecom-
parison from the actual comparison performed before the branch
reduces the number of instructions in the loop, which provides per-
formance benefits not possible when using conventional compari-
son instructions. Results from applying this technique on the ARM
processor show that both the number of instructions executed and
execution cycles are reduced.

Categories and Subject Descriptors D.3.4 [Processors]: Compil-
ers, Optimizations; D.4.7 [Organization and Design]: Real-time
and Embedded Systems

General Terms Algorithms, Measurement, Design, Performance,
Experimentation

Keywords Branch, Compiler, Comparison, Optimization

1. Introduction
A significant portion of executed instructions are dedicated to con-
ditional transfers of control. These instructions consumea large
number of cycles, cause pipeline flushes when they are mispre-
dicted and generally inhibit other code improving transformations.
A conditional transfer of control can be broken into three distinct
parts. First, the comparison determines if the branch is to be taken
or not-taken. Second, the branch target address is calculated. Third,
the actual transfer of control takes place. While much research has
been done on reducing the cost of branch instructions and thecost
of calculating the branch target address, the comparison portion

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

LCTES ’06 June 14-16, 2006, Ottawa, Canada.
Copyright c© 2006 ACM 1-59593-362-X/06/0006. . . $5.00.

has received less scrutiny. This paper presents an approachthat re-
moves comparison instructions and replaces them with comparison
specifications using simple architectural modifications.

A conditional transfer of control is traditionally implemented
using two separate instructions: a comparison and a branch.The
comparison instruction usually sets a register (conditioncode, pred-
icate, or general-purpose) whose value will be accessed by the
branch instruction to determine the flow of control to follow. The
branch target address is normally encoded within the branchin-
struction itself, often as a displacement. The branch instruction
is also used to indicate the point at which the transfer of control
should occur.

The advantage of using the traditional approach is that the trans-
fer of control can be easily encoded, as there is a separate instruc-
tion for the actual comparison. This enables the branch instruction
to contain more bits to specify the branch displacement. Thedis-
advantage is that two instructions have to be fetched and decoded,
delaying the branch instruction fetch and resolution by at least one
cycle, and more if the comparison instruction stalls waiting for
source operand values. When a comparison instruction is stalled
(on an in-order, embedded processor), the branch instruction is also
stalled and no prediction can be made until the values required by
the comparison instruction are available. In contrast, execution is
not typically stalled when a branch instruction is reached,even
when the values required for the comparison are unavailable. In-
stead a branch prediction is made and the nextpredictedinstruction
is fetched and executed. This eliminates the pipeline stalls as long
as the prediction is correct and the conditional values are available
at branch resolution, which occurs later in the pipeline.

A conditional transfer of control can also be implemented using
a single instruction that performs both the comparison and branch.
The advantage of this scheme is that there is only one instruction so
the branch is often reached sooner and thus the branch prediction
is made sooner. However, it is difficult to encode the information
necessary to represent all of the types of comparisons in thebits
available for a single instruction. To encode this information within
a single instruction, typically fewer bits are allocated tospecify the
branch target address limiting the range of branches and/orcom-
parisons to an arbitrary constant cannot be made. Most embedded
processors, including the ARM processor used in this study,avoid
this trade-off by relying on two instructions, a comparisonfollowed
by a branch, to handle conditional control flow operations.

We propose a technique that uses a single compare and branch
instruction along with a newcomparison specificationinstruction
that decouples the specification of the values to be comparedwith
the comparison itself. This new technique retains the advantages
from both of the other two approaches without incurring their dis-
advantages. Comparison specifications define the values that are to
be compared, but the comparison does not occur until the com-

MemPC

Cmp
Regs

IF Stage First Half
ID Stage

Second Half

GP
Regs

ID/EXIF/ID

Inst

Figure 1. Overview of Modified Decode Stage

pare and branch instruction is reached. With this technique, the
branch instruction is often reached sooner than approachesusing
separate comparison and branch instructions. Because comparison
specifications only reference register numbers and not register val-
ues, other compiler optimizations, such as loop invariant code mo-
tion and common subexpression elimination, can often be applied
to comparison specifications, in cases that would not be possible
with traditional comparison instructions. Due to less information
being encoded within our single compare and branch instructions,
our technique does not significantly decrease the branch target ad-
dress range or limit the values that can be compared. While this
approach could be applied to a dynamically scheduled machine,
it is more likely that a comparison instruction would be sched-
uled in parallel with other instructions, reducing the benefits that
might be obtained. However, this work is ideally suited for many
statically scheduled embedded systems, as we are removing many
comparison instructions from the critical path. To test theeffective-
ness of our technique, we evaluated a number of benchmarks from
the MiBench suite of programs on an ARM processor and present
results showing average reductions of 5.6% instructions performed
and 5.2% cycles executed.

2. Related Work
There has been a lot of work investigating branch cost reduction
over the years. Most of this work has focused on reducing the
cost of the branch instruction itself. A very simple and straight-
forward technique to reduce the cost of branch stalls is thedelayed
branch [8]. In architectures that support delayed branches, one or
more instructions immediately following a branch instruction are
executed regardless of whether or not the branch is taken. Delayed
branches have recently become less attractive than the use of branch
target and prediction buffers due to processors supportingmulti-
issue and more complex pipelines.

Branch prediction is a technique that decides which instruction
after a branch should be fetched when the branch instructionis en-
countered but before the outcome of the comparison is known.This
decision is usually based on the past behavior of executed branches.
Using branch prediction, execution of the program does not need to
stall when a branch instruction is reached. If an incorrect decision is
made about which instruction follows the branch, then a mispredic-
tion penalty is required to flush the incorrect instructionsfrom the
pipeline and fetch the correct instructions. Hardware branch predic-
tion successfully reduces branch costs when it accurately predicts
the direction a branch will take [8]. There are many different meth-
ods for branch prediction, ranging from single branch predictors,
correlating predictors, tournament predictors, Markov predictors,

to lesser known neural methods for branch prediction [8, 10,9].
Even when hardware prediction successfully predicts the outcome
of a branch, there may be delays while the branch target address is
calculated. A branch target buffer acts as a small cache containing
branch target addresses and when given the address of a branch,
will return the actual target address [11, 8].

The use of predication can also reduce branch costs. Predication
is the conditional execution of an instruction based upon a boolean
source operand, called thepredicate. Predicated instructions are
fetched regardless of the value of the predicate. When the predi-
cate evaluates tofalse, the effects of the predicated instructions are
nullified [14]. A compiler optimization calledif-conversionelimi-
nates conditional branches by converting control dependencies into
data dependencies [1]. While branch instructions are eliminated,
the instruction that sets the predicate register remains.

Other techniques reduce branch costs by trying to avoid certain
conditional branches entirely. Methods such as loop unrolling [1, 5]
and loop unswitching [1, 12] involve loop transformations that can
reduce loop overhead and may reduce the number of branches ex-
ecuted. Methods like intraprocedural and interproceduralcondi-
tional branch elimination duplicate code along paths wherebranch
results can be statically determined [13, 4]. All of these approaches
result in significant code growth, which may not be desirablefor
embedded applications.

3. New Hardware
The underlying architecture used for these experiments is the ARM
processor [6]. We chose the ARM since this is a popular embed-
ded ISA for which there exists a commonly used simulator, Sim-
pleScalar [2]. The ARM also has separate comparison and branch
instructions and thus was a good fit for our technique. The base-
line ARM architecture in our experiments has a classic five-stage
pipeline to which we propose adding a few minor hardware addi-
tions to support comparisons specifications. These hardware modi-
fications are both simpler and require less storage than the hardware
needed for most modern branch predictors. A new comparison reg-
ister file is used to store information that indicates the values to
be compared. Read and write ports for this new register file are
also required, along with hardware allowing forwarding between
a comparison specification instruction and a branch instruction. A
separate adder, which is common in many machines, is needed for
calculating the branch target address since it is represented as a
displacement from the program counter. With a separate adder, the
outcome of the comparison and the branch target address can be
calculated in parallel.

Figure 1 provides a high level view of the data path access to
the comparison register file. When a branch is encountered, the
comparison register file is accessed in the first half of thedecode
stage. The values from the comparison register file are register
numbers used to indicate which general-purpose registers hold the
actual values to be used in the comparison. The general-purpose
register file is accessed in the second half of thedecodestage to
obtain the comparison values. The comparison register file can also
hold constants, provided they are small enough to fit within the size
allocated for the comparison register. The values to be compared
(whether the contents of a general-purpose register or a constant
value) are passed to theexecutestage. While the register numbers
of the general-purpose register to be compared (or a constant value)
are stored in the comparison register, the type of comparison is
encoded within the branch instruction itself.

4. Exploiting Comparison Specifications
In this section we provide a description of thecmpspec(comparison
specification) instruction and a new instruction we call acbranch,
where a comparison and branch are performed by the same in-
struction. We also present several code examples generatedwith
cmpspec and cbranch instructions. For these experiments, the cmp-
spec and cbranch instructions are generated only for those branches
involving general-purpose integer registers. Conditional transfers
of control involving floating-point registers are generated using
conventional ARM instructions. The instructions in all thefigures
shown in the paper are depicted as register transfer lists (RTLs).
RTLs are machine and language-independent representations of
machine-specific instructions, used by many compilers as anin-
termediate language, including GCC [15] and VPO (Very Portable
Optimizer)[3], which is the compiler used to conduct this research.

4.1 Basic Comparison Specification

Figure 2(a) shows a section of code generated with a typical com-
parison instruction and branch instruction. The instruction in line 2
is setting a condition code register (IC) by comparing the values of
the contents of registersr[2] andr[3]. The branch instruction in
line 3 sets the program counter to the address of the next sequential
instruction after the branch or the address associated withlabelL6,
depending on the contents of the condition code register.

Figure 2(b) shows the code generated using cmpspec and
cbranch instructions. Thec register represents one of the new
comparison registers. The instruction in line 2 stores two regis-
ter numbers indicating which registers hold the values involved in
the comparison. The cbranch instruction on line 3 accesses register
c[0] to determine which values it should compare. In our new
cbranchinstruction, we reduced the offset field by 4 bits to make
room for the reference to ac register. The offset in thecbranch
instructions is still more than sufficient to encode the branch target
address for the vast majority of embedded applications, including
all of the benchmarks used in this paper.

1 r[2]=MEM;
2 IC=r[2]?r[3];
3 PC=IC<0,L6;

(a) Original RTLs

1 r[2]=MEM;
2 c[0]=2,3;
3 PC=c[0]<,L6;

(b) New RTLs

Figure 2. Comparison Specification and Cbranch RTLs

4.2 Pipelining Cmpspec and Cbranch Instructions

Figure 3 depicts a pipeline diagram, assuming a classical five-
stage in-order pipeline, for code containing a load, comparison and

branch. A stall occurs at line 2, waiting for the value generated
by the load in line 1. Since the comparison instruction stalls, the
branch instruction is stalled as well. The value needed by the EX
stage of the comparison instruction is forwarded from the MEM
stage of the load instruction after the stall.

inst 3 4 5 6 710 2

IF ID EX MEM WBload1)

3)

load

2) IF ID stall EX MEM WB

IF stall ID EX MEM WB

Cycles

cmp

branch

Figure 3. Pipeline Diagram for Load, Traditional Comparison and Branch

The pipeline diagram for the code generated with cmpspec and
cbranch instructions is illustrated in Figure 4. The cmpspec in line
2 does not stall because it only refers to the register numbers of
the registers involved in the comparison and has no dependencies
with the instructions that actually set the registers. By the time the
cbranch completes the ID stage, the loaded value is available from
the MEM stage of the load instruction and is forwarded to the EX
stage of the cbranch instruction where the comparison will occur.
Similarly there is forwarding from the ID stage of the cmpspec
instruction to the ID stage of the cbranch instruction to indicate
which registers are being compared.

Cycles

IF ID EX MEM WBload1)

3)

load

2) IF ID

IF

cmpspec

cbranch

EX MEM WB

ID EX MEM WB

inst 3 410 2 5 6 7

Figure 4. Pipeline Diagram for Load, Cmpspec and Cbranch

In a conventional system with separate comparison and branch
instructions, it is possible to resolve a branch predictiononce the
condition is determined (when the branch instruction is still in the
decode stage). Some processor implementations will wait for the
branch to execute, but others use additional circuitry to perform
early branch resolution. However, with our modification, the con-
dition is evaluated when the branch is in the execute stage ofthe
pipeline, so early branch resolution is not possible. To account
for this, we increase the branch misprediction penalty for the new
cbranch instruction by one cycle. This accurately reflects the per-
formance when compared to an implementation of the ARM pro-
cessor that incorporates early branch resolution, while underesti-
mating the relative performance of our enhancement when com-
pared with implementations of the ARM processor that do not in-
corporate early branch resolution. resolved at the end of the EX
stage of the comparison instruction on line 2. If a misprediction is
made, there is a one cycle misprediction penalty. However, in Fig-
ure 4 the comparison is resolved at the end of the EX stage of the
cbranch instruction on line 3. So there is a two cycle misprediction
penalty for this pipeline when cbranch instructions are used. Our
experimental results will show that on average the benefits gained
from using comparison specifications outweigh the higher penalty
that occurs on mispredicted cbranches.

4.3 Exploiting Loop-Invariant Code Motion

Other compiler optimizations, such as loop-invariant codemotion
and common subexpression elimination can now be successfully

performed on the new cmpspec instructions in cases where no ben-
efit was possible using traditional comparison instructions. Cmp-
specs that exist within loops can typically be moved into loop pre-
headers so the cost of the instruction is only incurred when the
loop is entered, not on every iteration of the loop. Even though the
values within the registers involved in the comparison may change
from one execution of a comparison to the next, the cmpspec it-
self does not change. This holds true whether the comparisonin-
volves two registers or a register and a constant. Figure 5(a) shows
a section of code with traditional comparison and branch instruc-
tions, while Figure 5(b) shows code generated with a cmpspecand
cbranch instruction. Figure 5(c) depicts the code after thecmpspec
has been moved into the loop preheader. The comparison in line 3
of Figure 5(a) cannot be moved into the preheader since the value
of r[2] depends on the load in line 2.

1 L3:
2 r[2]=MEM;
3 IC=r[1]?r[2];
4 PC=IC<0,L3;

(a) Original Code

1 L3:
2 r[2]=MEM;
3 c[0]=1,2;
4 PC=c[0]<,L3;

(b) With Cmpspec

1 c[0]=1,2;
2 L3:
3 r[2]=MEM;
4 PC=c[0]<,L3;

(c) Cmpspec Out of Loop

Figure 5. Moving a Cmpspec Outside of a Loop

When the cmpspec is moved out of the loop, there is still
a benefit when the cbranch stalls. Figure 6 shows the pipeline
diagram for the code in Figure 5(c). Even though the cbranch has
to stall waiting for the value of the comparison to become ready,
it still takes one less cycle than the pipeline diagram shownin
Figure 3 because we are only stalling for the cbranch instruction,
not both a comparison instruction and a branch instruction.Getting
to the branch instruction sooner, means that the branch prediction is
also made sooner. In addition, less energy is consumed sincefewer
instructions are being fetched and executed.

Cycles

IF ID EX MEM WBload1) load

2) IF ID

inst 3 4 510 2

cbranch EX MEM WBstall

6 7

Figure 6. Pipeline Diagram for Loop Invariant Comparison Specification

Cmpspecs are initially generated by our compiler using compar-
ison registerc[0] since all the cmpspecs are placed immediately
before the cbranch that references them. When moving cmpspecs
into loop preheaders, the comparison register and corresponding
cbranch instructions are sometimes renamed to reference a different
comparison register. If there are no remaining free comparison reg-
isters, then the cmpspec cannot be moved into the loop preheader.
Figure 7(a) shows a section of code where the cmpspecs on lines 2
and 5 both reference comparison registerc[0] to define the com-
parison that will take place when the instructions on lines 3and
6 are executed. While both of these cmpspecs are loop invariant
and can be moved out of the loop, one of the comparison registers
needs to be renamed, as depicted in Figure 7(b), to avoid a conflict,
to avoid a conflict. Figure 7(c) shows the code after loop invariant
code motion has moved both cmpspecs into the preheader.

4.4 Exploiting Common Subexpression Elimination

Common subexpression elimination (CSE) is a code improving
transformation that can eliminate instructions that compute values

1 L2:
2 c[0]=2,3;
3 PC=c[0]==,L6;
4 ...
5 c[0]=5,12
6 PC=c[0]!=,L5;
7 ...
8 // branch L2

(a) Before Renaming

1 L2:
2 c[0]=2,3;
3 PC=c[0]==,L6;
4 ...
5 c[1]=5,12;
6 PC=c[1]!=,L5;
7 ...
8 // branch L2

(b) After Renaming

1 c[0]=2,3;
2 c[1]=5,12;
3 L2:
4 PC=c[0]==,L6;
5 ...
6 PC=c[1]!=,L5;
7 ...
8 // branch L2

(c) After Code Motion

Figure 7. Renaming Comparison Specifications

that are already available. CSE cannot typically eliminatethe tradi-
tional comparison instructions since they perform the actual com-
parison needed by the branch to determine the flow of control to
follow. Figure 8(a) shows a section of code containing two iden-
tical comparison instructions. CSE cannot be applied to remove
the second comparison in line 4 because the values inr[2] or
r[3] may have changed and the comparison is not redundant. In
contrast, cmpspecs are more likely to be eliminated by CSE. Fig-
ure 8(b) shows the section of code generated with cmpspecs. In this
case the second cmpspec in line 4 is redundant, since it only refer-
ences register numbers rather than register values. Thus, it can be
eliminated by CSE as shown in Figure 8(c).

1 IC=r[2]?r[3];
2 PC=IC<0,L5;
3 ...
4 IC=r[2]?r[3];
5 PC=IC>0,L5;

(a) Original Insts.

1 c[0]=2,3;
2 PC=c[0]<,L5;
3 ...
4 c[0]=2,3;
5 PC=c[0]>,L5;

(b) New Insts.

1 c[0]=2,3;
2 PC=c[0]<,L5;
3 ...
4 PC=c[0]>,L5;

(c) After CSE

Figure 8. Eliminating Redundant Comparison Specifications

In the simplest case, when there are two or more identical
cmpspecs, then all but one may be deleted. However, there maybe
differences between cmpspecs. Modifications may sometimesbe
made to one or more of the cmpspec and/or cbranch instructions so
that CSE may be successfully applied. It may be the case that there
are two or more cmpspecs that compare the same registers, but
differ only by the order of the registers. If the conditions associated
with the two cmpspecs are either ‘=’ or ‘ 6=’ tests, then one cmpspec
can be removed without modification to the corresponding cbranch
instructions. Otherwise it may be possible to modify the cbranch
instruction so that one cmpspec is redundant and can be removed.
In Figure 9(a), the cmpspecs on lines 1 and 2 (which have already
been moved to the preheader of the loop), differ in the order the
registers are specified. To make the cmpspec in line 2 redundant
we reverse the order of the registers. To preserve the semantics of
the cbranch in line 6 that accesses comparison registerc[3], the
comparison condition must be altered from a ‘>’ test to a ‘<’ test
as shown in Figure 9(b). The right hand side (RHS) of the cmpspecs
in lines 1 and 2 are now identical, so CSE renames the comparison
register accessed by the cbranch in line 6 fromc[3] to c[2] and
the cmpspec in line 2 is then removed, as shown in Figure 9(c).

Sometimes a cmpspec can be made redundant when it refer-
ences the same register as another cmpspec and the constantsrefer-
enced differ by one. Figure 10(a) illustrates such an example. The
‘#’ shown in the cbranch instructions means that the second value
from the cmpspec should be interpreted as a constant value, not a
register number. The RHS of the cmpspecs in line 1 and 2 both
reference the same register and the constants differ only byone.
Since the branch in line 6, which corresponds to the cmpspec in
line 2, performs a ‘<’ test, the cbranch can be modified to a ‘≤’
test so that the value can be compared to 0 instead of 1, as shown

1 c[2]=2,3;
2 c[3]=3,2;
3 L2:
4 PC=c[2]>,L6;
5 ...
6 PC=c[3]>,L5;
7 ...
8 // branch L2

(a) Original Code

1 c[2]=2,3;
2 c[3]=2,3;
3 L2:
4 PC=c[2]>,L6;
5 ...
6 PC=c[3]<,L5;
7 ...
8 // branch L2

(b) Reversed
Condition

1 c[2]=2,3;
2 L2:
3 PC=c[2]>,L6;
4 ...
5 PC=c[2]<,L5;
6 ...
7 // branch L2

(c) After CSE

Figure 9. Reversing a Branch Condition and Performing CSE

in Figure 10(b). Once the branch is modified, the two cmpspecsare
identical and the cmpspec in line 2 becomes redundant and will be
removed, as shown in Figure 10(c).

1 c[2]=2,0;
2 c[3]=2,1;
3 L2:
4 PC=c[2]#>,L6;
5 ...
6 PC=c[3]#<,L5;
7 ...
8 // branch L2

(a) Original Code

1 c[2]=2,0;
2 c[3]=2,0;
3 L2:
4 PC=c[2]#>,L6;
5 ...
6 PC=c[3]#<=,L5;
7 ...
8 // branch L2

(b) After Modification

1 c[2]=2,0;
2 L2:
3 PC=c[2]#>,L6;
4 ...
5 PC=c[2]#<=,L5;
6 ...
7 // branch L2

(c) After CSE

Figure 10. Making Two Cmpspecs Use the Same Constant

Figure 11(a) shows a section of code containing two similar
cmpspecs. The specification in line 1 compares the values con-
tained in two general-purpose registers (r[2] andr[1]), while
the specification in line 4 compares a register to a constant value
(r[2] and 1). The bit pattern for both of these cmpspecs is
identical, since it is the type of cbranch instruction that indicates
how the bits are interpreted. The value of constants between0-15
referenced in cmpspec instructions have the same encoding as reg-
isters 0-15. Thus, CSE can remove the cmpspec in line 4, as shown
in Figure 11(b).

1 c[4]=2,1;
2 PC=c[4]<=,L6;
3 ...
4 c[4]=2,1;
5 PC=c[4]#==,L5;
6 ...

(a) Identical Bit Pattern

1 c[4]=2,1;
2 PC=c[4]<=,L6;
3 ...
4 PC=c[4]#==,L5;
5 ...

(b) After CSE

Figure 11. Applying CSE to Cmpspecs with a Register and a Constant

5. Overhead of Using Comparison Specifications
For the sake of simplicity, we decided to use a scratch/nonscratch
calling convention for comparison registers that is the same as the
one for general-purpose registers on the ARM. When code is gener-
ated, non-scratch registers that are used within a functionare saved
and restored using the stack. The ARM has pseudo-instructions that
store multiple general-purpose registers onto the stack, so we cre-
ated a new instruction that follows the same format to load and store
the new comparison registers. Comparison registers only require 16
bits to store the information needed by a cbranch instruction, so the
new load and store instruction actually loads or stores two compar-
ison registers at once. Comparison registers, like general-purpose
registers, need to be saved and restored when a context switch oc-
curs.

6. Experimental Environment
For these experiments we needed a way to simulate the execution
of a program containing cmpspecs and cbranch instructions on a
machine with the proposed hardware. To simulate the execution
of the ARM with the hardware additions, we chose the ARM
port of the SimpleScalar simulator [2]. For ARM simulationswe
used the defaultxscaleconfiguration which defines a five-stage
in-order pipeline, with a 128-entry bimodal branch predictor. We
modified the simulator as well as the corresponding tools (such
as the GNU assembler), to incorporate our new instructions.To
generate ARM code with our new instructions, we used the Very
Portable Optimizer (VPO) compiler [3].

To perform code improving transformations involving compar-
ison specifications, the base instruction set for the ARM hadto be
enchanced. Instructions were needed to assign values for the com-
parison registers as well as save and restore the new comparison
registers in memory. New cbranch instructions were also needed.
Along with the new instructions, an encoding had to be developed
for the comparison registers themselves.

Comparison registers hold register numbers for general-purpose
registers containing the values to be used in the comparison. In
cases where the second value to be compared is a constant and
the constant is small enough, it is encoded directly in the com-
parison register. Figure 12 illustrates our encoding for the com-
parison registers. The bits in positions 15-12 indicate theregister
number for the first general-purpose register involved in the com-
parison. The remaining 12 bits (11-0) can either be interpreted as a
constant or a register number for the second general-purpose regis-
ter involved in the comparison. The ARM uses 12-bit intermediate
fields in many instructions, including the originalcmpinstruction.
How these bits are interpreted is encoded into the branch instruction
that accesses the comparison register. For example, the bitpattern
0001000000001000 can be used to indicate that we are comparing
the values in registersr[1] andr[8] or that we are comparing
the value in registerr[1] with the constant8. Using this encod-
ing scheme allows more opportunities for common subexpression
elimination to remove redundant cmpspecs.

15-12 11-4 3-0
reg num unused reg num
reg num constant

Figure 12. Encoding for Comparison Registers

A total of 4 new instructions were added to the ISA for the
ARM to be able to properly use comparison specifications. These
instructions are shown in Table 1. Themovc, which is the cmpspec
instruction, assigns two values to a single comparison register. The
first value is a register number for the general-purpose register that
contains the first value to be used in the comparison. The second
value can be interpreted as either a register number for a general-
purpose register that contains the second value of the comparison,
or the value of a constant to be used in the comparison. Thecbr
is a cbranch instruction that references a comparison register to
look up two values in general-purpose registers to be compared.
The cbri is the same as thecbr instruction, except it interprets
the comparison register as a register number and a constant.The
[l/s]cfd is a CISC instruction that takes a list of comparison registers
and either stores or loads them to the location in memory pointed to
by theregargument, which is usually the stack pointer. It is similar
to other CISC ARM instructions that load or store a list of general-
purpose registers. The first three instructions replace thenormal
ARM comparison and branch instructions.

New Instructions
1 movc<creg>,index1,val;
2 cbr<creg><rel op>, <label>;
3 cbri <creg><rel op>, <label>;
4 [l/s]cfd <reg>,{register list};

Table 1. New Instructions to Support Comparison Specifications

7. Implementation Issues
A problem we encountered when developing the encoding of our
instructions for this technique was that our cmpspec instructions
sometimes interfered with compiler analysis that was needed for
other optimization phases. A cmpspec specifies the numbers of
general-purpose registers that will be used in a comparison. We
first represented cmpspecs as shown in Line 1 of Figure 13. It
was quickly discovered that this representation interfered with live
variable analysis. Although we are specifying which registers are
involved in the comparison, they do not have to be live at the
time the cmpspec is executed. Instead, they must be live when
the cbranch is executed. Remember that cmpspecs are many times
moved into loop preheaders, and thus interfered with calculating
correct live ranges for general-purpose registers.

1 c[2]=r[5],r[6];
2 c[2]=5,6;

Figure 13. Different Representations of a Cmpspec RTL

To solve this problem we modified the cmpspec RTLs so that
only the index of the registers involved in the comparison are
specified as shown in line 2 of Figure 13. This representationsolved
the majority of problems that arose with live variable analysis.
However, it presented a new challenge. If either of the general-
purpose registers indicated in the cmpspec, in this exampler[5]
or r[6], are renamed after the cmpspec is generated, the references
to those registers would not be renamed in the cmpspec itselfsince
the existing analysis does not recognize them as registers.To solve
this problem, we modified the cmpspec RTLs before any compiler
phase that might rename registers, so that the references contained
within the cmpspec would also be renamed. Once renaming is
finished, the cmpspec RTLs were modified back so the references to
the general-purpose registers would not affect live variable analysis
for the general-purpose registers.

Traditional comparisons and branches were converted to code
using comparison specifications late in the compilation process. in
the compilation process. This was done so that comparison speci-
fications did not interfere with any other existing code improving
transformations. Once the new comparison specification transfor-
mation was performed, other code improving transformations, such
as loop-invariant code motion and common subexpression elimina-
tion were re-run to determine if there were any new opportunities
for optimization. The steps taken for the comparison specification
code improving transformation is shown (as pseudo-code) inFig-
ure 14.

8. Results
Our technique using comparison specifications was tested for a
large subset of benchmarks from the MiBench suite of bench-
marks [7], described in Table 2. At present, we are not able touse
the remaining benchmarks from the MiBench Suite under the Sim-
pleScalar ARM port due to configuration problems with the bench-
marks. The benchmarks were compiled with the VPO compiler and

1 Transform conditional transfers of control
to use comparison specifications

2 Perform live variable analysis
3 Perform loop invariant code motion
4 Modify Cmpspec and Cbranches to enable CSE
5 While opportunities for CSE exist do
6 perform CSE
7 Translate RTLs to assembly code

Figure 14. Pseudo-code for Comparison Specification Code Im-
proving Transformation

SimpleScalar was used to simulate execution of programs on ama-
chine that contains hardware to support comparison registers.

Name Description
adpcm adaptive pulse modulation encoder
basicmath simple math calculations
bitcount bit manipulations
blowfish block encryption
crc32 cyclic redundancy check
dijkstra shortest path problem
fft fast Fourier transform
ijpeg image compression
ispell spell checker
lame MP3 encoder
patricia routing using reduced trees
qsort quick sort of strings
rsynth text-to-speech analysis
sha exchange of cryptographic keys
stringsearch search words
susan image recognition
tiff convert a color TIFF image to b/w

Table 2. Benchmarks Tested

Code was generated using comparison specification instructions
and dynamic instruction counts and cycle times were obtained. The
top bars in Figure 15 show both the percentage of instructions saved
using the new comparison specifications as well as the the over-
head involved with saving and restoring the comparison registers.
For these experiments instruction counts were measured in micro-
ops, which is the basic unit of execution on the ARM. Most ARM
instructions take 1 micro-op to complete. However, some of the
ARM CISC instructions, which include both the existing [ld/st]m
instruction and the newly added [l/s]cfd instruction, can take mul-
tiple micro-ops. The average savings for dynamic instructions was
roughly 5.6%, while the overhead involved to save and restore the
comparison register was roughly 0.9%. The greatest savingscame
from adpcmwith a savings of roughly 18%. Theispell benchmark
actually executed around 4% more instructions. One cause ofthis
increase is due to the overhead involved with saving and restoring
the comparison registers. The overhead for ispell was the largest of
any of our tested benchmarks at around 9%. The majority of sav-
ings in dynamic instruction counts comes from loop-invariant code
motion, which is about 5.3%, while the remaining savings, about
0.3%, comes from common subexpression elimination.

The bottom bars in Figure 15 show the percentage of execu-
tion cycles saved. Execution cycles and dynamic instruction counts
do not have a one-to-one correspondence. Different instructions re-
quire a different number of cycles to complete. The cycles needed
for an instruction to complete can also vary since an instruction
can sometimes stall waiting for its operands to become ready. Our
experiments show that a large portion of the savings in execution

Figure 15. Percentage of Instructions and Cycles Executed

cycles comes from not having to stall the pipeline when a cmpspec
instruction is reached, in those cases where a stall does occur using
a traditional comparison instructions. A smaller percentage of the
savings comes from applying optimizations, such as loop-invariant
code motion and common subexpression elimination on the new
cmpspec instructions, even though applying these optimizations
substantially reduced the number of instructions executed. Most
of the benchmarks showed a reduction in execution cycles needed
for a successful program run. However,ispell and qsort both re-
quired more cycles to complete execution. The average savings for
cycles executed is roughly 5.2%, ranging from a 3% loss (qsort)
to a 17% gain (stringsearch). Separate tests were run to determine
how much loop invariant code motion and common subexpression
elimination contributed to the improvement. The results show that
about 0.20% of the improvement comes from loop invariant code
motion and 0.40% comes from common subexpression elimination.
Even though loop-invariant code motion and common subexpres-
sion elimination do not have a great impact on execution cycles,
fewer instructions are fetched, decoded and executed, which should
reduce energy consumption.

While most of the benchmarks tested showed an improvement
in both dynamic instruction counts and execution cycles, two of the
benchmarks,ispell andqsort, actually required more execution cy-
cles to complete. Analysis of the benchmarks show the main reason
for this loss was the higher misprediction penalty requiredfor the
cbranch instructions. Table 3 compares the average savingsin in-
structions, cycles and the misprediction rates for the benchmarks
using a bimodal predictor and a gshare predictor. For the gshare
predictor we used second level table sizes of 256, 512 and 1024
entries with 7 bits of global history. This table shows that using
modern, more efficient branch predictors can improve the bene-
fits gained from this technique. However, the advantages of us-
ing comparison specifications still outweighed the disadvantages of
the higher misprediction penalty even with the poorer performing

bimodal branch predictor since the number of cycles was signifi-
cantly reduced. The reason for the overall performance benefit is
that branch misprediction rates are relatively low and there is often
a cycle saved using comparison specifications each time a condi-
tional transfer of control is encountered.

bimodal gshare
128 256 512 1024

Instructions Reduced 5.6% 5.7% 5.7% 5.8%
Cycles Reduced 5.2% 5.2% 5.4% 6.0%

Misprediction Rate 10% 9.9% 8.1% 6.9%

Table 3. Benefits Using Alternate Branch Prediction Method

9. Future Work
The pipeline design studied in this paper computes the condition
when the branch instruction executes. This does not allow early
resolution of the branch instruction. However, the condition test
can occur as soon as the operands are available enabling the test
to overlap with instructions that modify registers specified in the
conditional test. By computing tests any time registers involved
in the condition specification are modified, it may be possible to
implement early branch resolution, thereby reducing the branch
misprediction penalty.

We believe that profiling could be used to better guide compiler
optimizations such as loop-invariant code motion when theyare
applied to cmpspecs. Occasionally there are cases when saves and
restores of comparison registers are executed more often than the
cbranch instructions that use these registers, such as whatoccurred
in ispell. Profiling would allow us to detect these cases and refrain
from applying loop-invariant code motion on cmpspecs [causing

the use of nonscratch comparison registers] in cases where it will
not help reduce the number of cycles executed.

We believe that with better analysis there are more opportuni-
ties to be gained by performing CSE on cmpspecs. For example,
consider two cmpspecs (where one dominates the other) that com-
pare two differing sets of registers as illustrated in Figure 16(a).
The cmpspecs in lines 2 and 6 are similar but they compare differ-
ent registers. However, since the live range of registers 5 and 7 do
not overlap, register 7 from the second comparison can be renamed
to register 5 as shown in Figure 16(b). Now the two cmpspecs are
identical and the one in line 6 can be removed by CSE as shown in
Figure 16(c).

1 r[5]=MEM;
2 c[3]=4,5;
3 PC=c[3]<=,L6;
4 //r[5] dies
5 r[7]=MEM;
6 c[3]=4,7;
7 PC=c[3]==,L5;
8 ...

(a) Compares With
Different Registers

1 r[5]=MEM;
2 c[3]=4,5;
3 PC=c[3]<=,L6;
4 // r[5] dies
5 r[5]=MEM;
6 c[3]=4,5;
7 PC=c[3]==,L5;
8 ...

(b) After Renaming

1 r[5]=MEM;
2 c[3]=4,5;
3 PC=c[3]<=,L6;
4 // r[5] dies
5 r[5]=MEM;
6 PC=c[3]==,L5;
7 ...

(c) After CSE

Figure 16. CSE by Renaming Registers

We also believe that using comparison specifications would be
even more beneficial with 16-bit architectures, like the Thumb,
since there are fewer bits available to encode the comparison and
branch instructions. Comparison specifications could be used to en-
code information about the branch instruction that would facilitate
branching. Information about the values involved in the compari-
son and the type of comparison could be encoded in a compari-
son register. The comparison register could also be used to extend
the range of instructions that a branch could reach since theentire
branch target displacement does not have to be encoded within the
branch instruction itself.

10. Conclusions
While most techniques used to reduce the cost of conditionaltrans-
fers of control focus on the branch, this paper presents a novel ap-
proach that reduces the cost by focusing on the comparison. The
specification of the comparison is decoupled from the actualcom-
parison of the values. In many cases, execution cycles are decreased
since the processor does useful work during the cmpspec, while it
may stall during a conventional comparison instruction. Inaddi-
tion, conventional compiler optimizations can be more easily ap-
plied on cmpspecs than conventional comparisons. Unlike compar-
ison instructions, cmpspecs can usually be moved outside ofloops
by loop-invariant code motion because they do not have dependen-
cies with the instructions that produce the values used in the com-
parison. Likewise, redundant cmpspec instructions can be removed
in many cases when CSE cannot be applied to typical comparison
instructions. The results show significant reduction in execution cy-
cles of 5.2% and a 5.6% reduction in dynamic instructions.

Acknowledgments
We thank the anonymous reviewers for their constructive comments
and suggestions. This research was supported in part by NSF grants
EIA-0072043, CCR-0208892, CCR-0312493, and CCF-0444207.

References
[1] A LLEN , F. E., AND COCKE, J. A catalogue of optimizing

transformations. InDesign and Optimization of Compilers, R. Rustin,
Ed. Prentice-Hall, Englewood Cliffs, NJ, USA, 1971, pp. 1–30.

[2] AUSTIN, T., LARSON, E., AND ERNST, D. SimpleScalar: An
infrastructure for computer system modeling.Computer 35, 2 (Feb.
2002), 59–67.

[3] BENITEZ, M. E.,AND DAVIDSON, J. W. A portable global optimizer
and linker. InProceedings of the SIGPLAN ’88 Conference on
Programming Language Design and Implementation(Atlanta, GA,
USA, June 1988), ACM Press, pp. 329–338.

[4] BODÍK , R., GUPTA, R., AND SOFFA, M. L. Interprocedural
conditional branch elimination. InProceedings of the SIGPLAN ’97
Conference on Programming Language Design and Implementation
(New York, June 15–18 1997), vol. 32, 5 ofACM SIGPLAN Notices,
ACM Press, pp. 146–158.

[5] DONGARRA, J. J., AND HINDS, A. R. Unrolling loops in
FORTRAN. Software, Practice and Experience 9, 3 (Mar. 1979),
219–226.

[6] FURBER, S. ARM System-on-Chip Architecture, second ed. Addison-
Wesley Longman, Harlow, Essex CM20 2JE, England, 2000. Also
available in Japanese translation,ARM Processor, C Q Publishing
Co., Ltd. ISBN 4-7898-3351-8.

[7] GUTHAUS, M. R., RINGENBERG, J. S., ERNST, D., AUSTIN,
T. M., MUDGE, T., AND BROWN, R. B. MiBench: A free,
commercially representative embedded benchmark suite.IEEE 4th
Annual Workshop on Workload Characterization(December 2001).

[8] HENNESSY, J., AND PATTERSON, D. Computer Architecture: A
Quantitative Approach., second ed. Morgan Kaufmann Publishers
Inc., San Francisco, CA, 1996.

[9] JIMENEZ, D., AND L IN , C. Neural methods for dynamic branch
prediction. InACM Transactions on Computer Systems(Nov. 2002),
vol. 20, ACM, pp. 369–397.

[10] MCFARLING , S. Combining branch predictors. Tech. Rep. TN-36,
Digital Equipment Corporation, Western Research Lab, June1993.

[11] MCFARLING , S., AND HENNESSY, J. Reducing the cost of
branches. InProc. 13th Annual International Symposium on
Computer Architecture, Computer Architecture News(June 1986),
ACM, pp. 396–403. Published as Proc. 13th Annual International
Symposium on Computer Architecture, Computer Architecture News,
volume 14, number 2.

[12] MUCHNICK, S. S. Advanced compiler design and implementation.
Morgan Kaufmann Publishers, 2929 Campus Drive, Suite 260, San
Mateo, CA 94403, USA, 1997.

[13] MUELLER, F.,AND WHALLEY, D. B. Avoiding conditional branches
by code replication. InProceedings of the SIGPLAN ’95 Conference
on Programming Language Design and Implementation(La Jolla,
CA, June 1995), ACM Press, pp. 56–66.

[14] PARK , J. C. H.,AND SCHLANSKER, M. S.On predicated execution.
Hewlett Packard Laboratories, 1991.

[15] STALLMAN , R. M. Using and porting the GNU compiler collection,
Feb. 22 2001.

