Reducing the Cost of Conditional Transfers of Control by Ushg
Comparison Specifications

William Kreahling

Western Carolina University
wkreahling@email.wcu.edu

Abstract

A significant portion of a program’s execution cycles aradgfly
dedicated to performing conditional transfers of conthkélich of
the research on reducing the costs of these operations tzsefb
on the branch, while the comparison has been largely igndned
this paper we investigate reducing the cost of comparisoesi-
ditional transfers of control. We decouple the specificatip the
values to be compared from the actual comparison itselfchwvhi
now occurs as part of the branch instruction. The specifinadf
the register or immediate values involved in the comparisac-
complished via a new instruction calledamparison specification
which is loop invariant. Decoupling the specification of ttem-
parison from the actual comparison performed before thadbra
reduces the number of instructions in the loop, which presider-
formance benefits not possible when using conventional edmp
son instructions. Results from applying this techniquehenARM
processor show that both the number of instructions exdcare
execution cycles are reduced.

Categories and Subject Descriptors D.3.4 [Processors Compil-
ers, Optimizations; D.4.7(rganization and Design Real-time
and Embedded Systems

General Terms Algorithms, Measurement, Design, Performance,
Experimentation

Keywords Branch, Compiler, Comparison, Optimization

1. Introduction

A significant portion of executed instructions are dedidatecon-
ditional transfers of control. These instructions conswankarge
number of cycles, cause pipeline flushes when they are mispre
dicted and generally inhibit other code improving transfations.

A conditional transfer of control can be broken into threstidict
parts. First, the comparison determines if the branch ietaken

or not-taken Second, the branch target address is calculated. Third,
the actual transfer of control takes place. While much meselaas
been done on reducing the cost of branch instructions ancatte

of calculating the branch target address, the compariseotiopo

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

LCTES 06 June 14-16, 2006, Ottawa, Canada.
Copyright(© 2006 ACM 1-59593-362-X/06/0006. . . $5.00.

Stephen Hines David Whalley
Gary Tyson

Florida State University
{hines,whalley,tyson }@cs.fsu.edu

has received less scrutiny. This paper presents an apptioatcte-
moves comparison instructions and replaces them with cosgra
specifications using simple architectural modifications.

A conditional transfer of control is traditionally implemited
using two separate instructions: a comparison and a brdareh.
comparison instruction usually sets a register (conditimte, pred-
icate, or general-purpose) whose value will be accessecthéy t
branch instruction to determine the flow of control to follolhe
branch target address is normally encoded within the bramch
struction itself, often as a displacement. The branch uctitn
is also used to indicate the point at which the transfer otrcbn
should occur.

The advantage of using the traditional approach is tharémsit
fer of control can be easily encoded, as there is a separsitecn
tion for the actual comparison. This enables the branchuicson
to contain more bits to specify the branch displacement. dite
advantage is that two instructions have to be fetched anodeelc
delaying the branch instruction fetch and resolution byast one
cycle, and more if the comparison instruction stalls waitfor
source operand values. When a comparison instruction lisdta
(on an in-order, embedded processor), the branch ingtruigtialso
stalled and no prediction can be made until the values reduiy
the comparison instruction are available. In contrastcetien is
not typically stalled when a branch instruction is reachedn
when the values required for the comparison are unavailaile
stead a branch prediction is made and the pesdictedinstruction
is fetched and executed. This eliminates the pipelinesssalllong
as the prediction is correct and the conditional values zaéadble
at branch resolution, which occurs later in the pipeline.

A conditional transfer of control can also be implementadgis
a single instruction that performs both the comparison aadd.
The advantage of this scheme is that there is only one iniiruso
the branch is often reached sooner and thus the branch foedic
is made sooner. However, it is difficult to encode the infdiora
necessary to represent all of the types of comparisons ibithe
available for a single instruction. To encode this inforimatvithin
a single instruction, typically fewer bits are allocatedpecify the
branch target address limiting the range of branches amndior
parisons to an arbitrary constant cannot be made. Most ateded
processors, including the ARM processor used in this stasbyid
this trade-off by relying on two instructions, a comparisoltowed
by a branch, to handle conditional control flow operations.

We propose a technique that uses a single compare and branch
instruction along with a newomparison specificatiomstruction
that decouples the specification of the values to be compwited
the comparison itself. This new technique retains the adgas
from both of the other two approaches without incurring ithiés-
advantages. Comparison specifications define the valuearthto
be compared, but the comparison does not occur until the com-

ID Stage

IF Stage First Half Second Half
IF/ID | ID/EX
-~ Cmp >
nst Regs e
- INS 1
m Mem == - gepgs =

Figure 1. Overview of Modified Decode Stage

pare and branch instruction is reached. With this technitfue
branch instruction is often reached sooner than approacsiag
separate comparison and branch instructions. Becauseacisom
specifications only reference register numbers and nostexgial-
ues, other compiler optimizations, such as loop invariadieano-
tion and common subexpression elimination, can often béeapp
to comparison specifications, in cases that would not beilgess
with traditional comparison instructions. Due to less infation
being encoded within our single compare and branch instnst
our technique does not significantly decrease the brangkttad-
dress range or limit the values that can be compared. White th
approach could be applied to a dynamically scheduled magchin
it is more likely that a comparison instruction would be sthe
uled in parallel with other instructions, reducing the Hésehat
might be obtained. However, this work is ideally suited faarm
statically scheduled embedded systems, as we are remodng m
comparison instructions from the critical path. To testdffective-
ness of our technique, we evaluated a number of benchmanks fr

to lesser known neural methods for branch prediction [8,910,
Even when hardware prediction successfully predicts theonue

of a branch, there may be delays while the branch target sslike
calculated. A branch target buffer acts as a small cachaicong
branch target addresses and when given the address of énpranc
will return the actual target address [11, 8].

The use of predication can also reduce branch costs. Ptiedica
is the conditional execution of an instruction based upooadan
source operand, called theredicate Predicated instructions are
fetched regardless of the value of the predicate. When taeipr
cate evaluates tialse the effects of the predicated instructions are
nullified [14]. A compiler optimization calleif-conversionelimi-
nates conditional branches by converting control depegidsinto
data dependencies [1]. While branch instructions are eéted,
the instruction that sets the predicate register remains.

Other techniques reduce branch costs by trying to avoidicert
conditional branches entirely. Methods such as loop ungp|lL, 5]
and loop unswitching [1, 12] involve loop transformatiohattcan

the MiBench suite of programs on an ARM processor and present reduce loop overhead and may reduce the number of branches ex

results showing average reductions of 5.6% instruction®paed
and 5.2% cycles executed.

2. Related Work

There has been a lot of work investigating branch cost réotuct
over the years. Most of this work has focused on reducing the
cost of the branch instruction itself. A very simple and igfn&
forward technique to reduce the cost of branch stalls isléleyed

ecuted. Methods like intraprocedural and interprocedaceaidi-
tional branch elimination duplicate code along paths wieaach
results can be statically determined [13, 4]. All of thesprapches
result in significant code growth, which may not be desirdbte
embedded applications.

3. New Hardware

branch[8]. In architectures that support delayed branches, one or The underlying architecture used for these experimentei&RM

more instructions immediately following a branch instiootare
executed regardless of whether or not the branch is takdayé&
branches have recently become less attractive than thé issnch
target and prediction buffers due to processors supportini-

issue and more complex pipelines.

Branch prediction is a technique that decides which insitsanc
after a branch should be fetched when the branch instruistien-
countered but before the outcome of the comparison is knohis.
decision is usually based on the past behavior of execusettbes.
Using branch prediction, execution of the program does eetlto
stall when a branch instruction is reached. If an incorrectsion is
made about which instruction follows the branch, then a redig-
tion penalty is required to flush the incorrect instructifmasn the
pipeline and fetch the correct instructions. Hardware tigedic-
tion successfully reduces branch costs when it accuratelyigis
the direction a branch will take [8]. There are many diffénmeth-
ods for branch prediction, ranging from single branch poieds,
correlating predictors, tournament predictors, Markogdixtors,

processor [6]. We chose the ARM since this is a popular embed-
ded ISA for which there exists a commonly used simulator,-Sim
pleScalar [2]. The ARM also has separate comparison andhran
instructions and thus was a good fit for our technique. The-bas
line ARM architecture in our experiments has a classic feges
pipeline to which we propose adding a few minor hardware -addi
tions to support comparisons specifications. These haedmadi-
fications are both simpler and require less storage tharsttuisvare
needed for most modern branch predictors. A new comparepn r
ister file is used to store information that indicates theuealto

be compared. Read and write ports for this new register fiée ar
also required, along with hardware allowing forwardingviestn

a comparison specification instruction and a branch instnicA
separate adder, which is common in many machines, is needed f
calculating the branch target address since it is repredess a
displacement from the program counter. With a separater atiide
outcome of the comparison and the branch target addressecan b
calculated in parallel.

Figure 1 provides a high level view of the data path access to branch. A stall occurs at line 2, waiting for the value getedta

the comparison register file. When a branch is encountehed, t
comparison register file is accessed in the first half ofdbeode
stage. The values from the comparison register file are teggis
numbers used to indicate which general-purpose registddstine
actual values to be used in the comparison. The generabperp
register file is accessed in the second half of deeodestage to
obtain the comparison values. The comparison registerdieatso
hold constants, provided they are small enough to fit withénsize
allocated for the comparison register. The values to be eoeap
(whether the contents of a general-purpose register or staan
value) are passed to texecutestage. While the register numbers
of the general-purpose register to be compared (or a cansthue)
are stored in the comparison register, the type of compariso
encoded within the branch instruction itself.

4. Exploiting Comparison Specifications

In this section we provide a description of ttrapspe¢comparison
specification) instruction and a new instruction we catbaanch

where a comparison and branch are performed by the same in-

struction. We also present several code examples genesétied
cmpspec and cbranch instructions. For these experiméstsnip-
spec and cbranch instructions are generated only for thaseles
involving general-purpose integer registers. Conditidrensfers
of control involving floating-point registers are genedhtesing
conventional ARM instructions. The instructions in all thgures
shown in the paper are depicted as register transfer liFIkqR
RTLs are machine and language-independent represerstaifon
machine-specific instructions, used by many compilers ag-an
termediate language, including GCC [15] and VPO (Very Rabeta
Optimizer)[3], which is the compiler used to conduct thisgarch.

4.1 Basic Comparison Specification

Figure 2(a) shows a section of code generated with a typaral ¢
parison instruction and branch instruction. The instarctn line 2
is setting a condition code registdi({) by comparing the values of
the contents of registerd 2] andr [3] . The branch instruction in
line 3 sets the program counter to the address of the nexesggu
instruction after the branch or the address associatedatitiL 6,
depending on the contents of the condition code register.

by the load in line 1. Since the comparison instruction stale
branch instruction is stalled as well. The value needed byEK
stage of the comparison instruction is forwarded from theMME
stage of the load instruction after the stall.

Cycles
inst 0 1 2 3 4 5 6 7
1) load IF ID EX MEM_ WB
2) cmp IF 1D stal EX MEM WB
3) branch IF stal D EX MEM WB

Figure 3. Pipeline Diagram for Load, Traditional Comparison and Bran

The pipeline diagram for the code generated with cmpspec and
cbranch instructions is illustrated in Figure 4. The cmpsipdine
2 does not stall because it only refers to the register nusnbier
the registers involved in the comparison and has no depeieden
with the instructions that actually set the registers. Bytime the
cbranch completes the ID stage, the loaded value is avaifedorh
the MEM stage of the load instruction and is forwarded to tke E
stage of the chranch instruction where the comparison wilio
Similarly there is forwarding from the ID stage of the cmpspe
instruction to the ID stage of the cbranch instruction toidate
which registers are being compared.

Cycles
inst 0o 1 2 3 4 5 6 7

1) load IF D EX MEM_ WB
2) cmpspec IFID_ EX MEM WB
3) cbranch IF D EX MEM WB

Figure 4. Pipeline Diagram for Load, Cmpspec and Chranch

In a conventional system with separate comparison and branc
instructions, it is possible to resolve a branch predictione the

cbranch instructions. The register represents one of the new
comparison registers. The instruction in line 2 stores tegis-

ter numbers indicating which registers hold the valueslimain

the comparison. The cbranch instruction on line 3 accessgster

c[0] to determine which values it should compare. In our new
cbranchinstruction, we reduced the offset field by 4 bits to make
room for the reference to aregister. The offset in thebranch
instructions is still more than sufficient to encode the blrararget
address for the vast majority of embedded applicationdudlirag

all of the benchmarks used in this paper.

1 r[2] =MEM
2 1Cr[2]?r[3];
3 PC=I C<0, L6;

1 r[2] =MEM
2 c[0]=2,3;
3 PC=c[0] <, L6;

(a) Original RTLs (b) New RTLs

Figure 2. Comparison Specification and Cbranch RTLs

4.2 Pipelining Cmpspec and Cbranch Instructions

Figure 3 depicts a pipeline diagram, assuming a classicelt fiv
stage in-order pipeline, for code containing a load, comparand

decode stage). Some processor implementations will waithf®
branch to execute, but others use additional circuitry tdope
early branch resolution. However, with our modificatiore tton-
dition is evaluated when the branch is in the execute stagleeof
pipeline, so early branch resolution is not possible. Tooant
for this, we increase the branch misprediction penalty tierriew
cbranch instruction by one cycle. This accurately refldugsger-
formance when compared to an implementation of the ARM pro-
cessor that incorporates early branch resolution, whikerssti-
mating the relative performance of our enhancement when com
pared with implementations of the ARM processor that do net i
corporate early branch resolution. resolved at the end ef&K
stage of the comparison instruction on line 2. If a misprialicis
made, there is a one cycle misprediction penalty. HowexeFjg-

ure 4 the comparison is resolved at the end of the EX stageeof th
cbranch instruction on line 3. So there is a two cycle misiot&mh
penalty for this pipeline when cbranch instructions aredusgur
experimental results will show that on average the beneditsegl
from using comparison specifications outweigh the higheatig
that occurs on mispredicted cbranches.

4.3 Exploiting Loop-Invariant Code Motion

Other compiler optimizations, such as loop-invariant codsion
and common subexpression elimination can now be succhssful

performed on the new cmpspec instructions in cases wheremo b
efit was possible using traditional comparison instructid@mp-
specs that exist within loops can typically be moved intglpoe-
headers so the cost of the instruction is only incurred winen t
loop is entered, not on every iteration of the loop. Even giotne
values within the registers involved in the comparison nmagnge
from one execution of a comparison to the next, the cmpspec it
self does not change. This holds true whether the comparison
volves two registers or a register and a constant. Figuiesh@vs

a section of code with traditional comparison and branctrucs
tions, while Figure 5(b) shows code generated with a cmpapédc
cbranch instruction. Figure 5(c) depicts the code aftecthpspec
has been moved into the loop preheader. The comparisoneirlin
of Figure 5(a) cannot be moved into the preheader since toe va
of r [2] depends on the load in line 2.

1 L3: 1 L3: 1 c[0]=1,2;

2 r[2]=MEM 2 r[2] =MEM 2 L3

3 ICr[1]?r[2]; 3 c[0]=1,2; 3 r[2]=MEM

4 PC=l C<0, L3; 4 PC=c[0]<,L3; 4 PC=c[0]%,L3;

(a) Original Code (b) With Cmpspec (c) Cmpspec Out of Loop

Figure 5. Moving a Cmpspec Outside of a Loop

When the cmpspec is moved out of the loop, there is still
a benefit when the cbranch stalls. Figure 6 shows the pipeline
diagram for the code in Figure 5(c). Even though the cbrarazh h
to stall waiting for the value of the comparison to becomealyea
it still takes one less cycle than the pipeline diagram shawn
Figure 3 because we are only stalling for the cbranch instmic
not both a comparison instruction and a branch instruc@atting
to the branch instruction sooner, means that the branclicpicdis
also made sooner. In addition, less energy is consumed fewee
instructions are being fetched and executed.

Cycles
inst 0o 1 2 3 4 5 6 7
load IF ID EX MEM_WB
2) chranch IF ID stal EX MEM WB

Figure 6. Pipeline Diagram for Loop Invariant Comparison Specifmati

Cmpspecs are initially generated by our compiler using @amp
ison registerc[0] since all the cmpspecs are placed immediately
before the cbranch that references them. When moving cropspe
into loop preheaders, the comparison register and comespg
cbranch instructions are sometimes renamed to refererifferant
comparison register. If there are no remaining free corspanieg-
isters, then the cmpspec cannot be moved into the loop pehea
Figure 7(a) shows a section of code where the cmpspecs @dine
and 5 both reference comparison registef] to define the com-
parison that will take place when the instructions on linesnd
6 are executed. While both of these cmpspecs are loop imtaria
and can be moved out of the loop, one of the comparison registe
needs to be renamed, as depicted in Figure 7(b), to avoidfiaton
to avoid a conflict. Figure 7(c) shows the code after loopriave
code motion has moved both cmpspecs into the preheader.

4.4 Exploiting Common Subexpression Elimination

Common subexpression elimination (CSE) is a code improving
transformation that can eliminate instructions that cormpalues

1 L2: 1 L2: 1 c[0]=2,3;

2 ¢[0]=2,3; 2 c[0]=2,3; 2 c[1]=5,12;

3 PC=c[0]==,L6; 3 PC=c[0]==,Ll6; 3 L2:

4 ... 4 ... 4 PC=c[0] ==, L6;
5 c¢[0]=5,12 5 c[1]=5,12; 5 ...

6 PC=c[0]!=,L5 6 PC=c[1]'=L5; 6 PC=c[1]!=, L5;
7 ... 7 ... 7 ...

8 // branch L2 8 // branch L2 8 // branch L2

(a) Before Renaming (b) After Renaming (c) After Code Motion

Figure 7. Renaming Comparison Specifications

that are already available. CSE cannot typically elimitlagstradi-
tional comparison instructions since they perform the @atom-
parison needed by the branch to determine the flow of corarol t
follow. Figure 8(a) shows a section of code containing twenid
tical comparison instructions. CSE cannot be applied tookem
the second comparison in line 4 because the valueq @] or

r[3] may have changed and the comparison is not redundant. In
contrast, cmpspecs are more likely to be eliminated by C&F. F
ure 8(b) shows the section of code generated with cmpspettss|
case the second cmpspec in line 4 is redundant, since it efdy-r
ences register numbers rather than register values. Tieam be
eliminated by CSE as shown in Figure 8(c).

1 1Cr[2]?r[3]; 1 c[0]=2,3; 1 c[0]=2,3;

2 PCAIC<0,L5; 2 PC=c[0]<,L5; 2 PC=c[0]<,LS5;
3 ... 3 ... 3 ...

4 1Cr[2]?2r[3]; 4 c[0]=2,3; 4 PC=c[0] >, L5;
5 PC=I C0, L5; 5 PC=c[0] >, L5;

(a) Original Insts. (b) New Insts. (c) After CSE

Figure 8. Eliminating Redundant Comparison Specifications

In the simplest case, when there are two or more identical
cmpspecs, then all but one may be deleted. However, therédoenay
differences between cmpspecs. Modifications may sometbmes
made to one or more of the cmpspec and/or cbranch instrgction
that CSE may be successfully applied. It may be the casetbi t
are two or more cmpspecs that compare the same registers, but
differ only by the order of the registers. If the conditiorssaciated
with the two cmpspecs are eithet”or * #’ tests, then one cmpspec
can be removed without modification to the correspondingrotin
instructions. Otherwise it may be possible to modify theacich
instruction so that one cmpspec is redundant and can be ezmov
In Figure 9(a), the cmpspecs on lines 1 and 2 (which havedjrea
been moved to the preheader of the loop), differ in the order t
registers are specified. To make the cmpspec in line 2 redtinda
we reverse the order of the registers. To preserve the semaft
the cbranch in line 6 that accesses comparison regi$t8t , the
comparison condition must be altered frontd test to a ‘<’ test
as shown in Figure 9(b). The right hand side (RHS) of the crapsp
in lines 1 and 2 are now identical, so CSE renames the conoparis
register accessed by the cbranch in line 6 fign®] toc[2] and
the cmpspec in line 2 is then removed, as shown in Figure 9(c).

Sometimes a cmpspec can be made redundant when it refer-
ences the same register as another cmpspec and the consfants
enced differ by one. Figure 10(a) illustrates such an exanigie
‘#’ shown in the cbranch instructions means that the seconatval
from the cmpspec should be interpreted as a constant vadti@, n
register number. The RHS of the cmpspecs in line 1 and 2 both
reference the same register and the constants differ onignby
Since the branch in line 6, which corresponds to the cmpapec i
line 2, performs a<’ test, the cbranch can be modified to<|’*
test so that the value can be compared to O instead of 1, asaishow

_ . 1 c[2]=2,3;

1 c[2]=2,3; 2 c[3]=2 3 1 c[2]=2 3

2 ¢[3]=83,2; Lo :

3 L2 s Pemc(25,16 & oo :
4 PC=c[2] >, L6; g cf2l> Le; 2 PC=c[2] >, L6;
5 ... D . D .
6 PC=c[3]> L5, & PECldl< LS : PC=c[2] < LS;
8 /] branch L2 8 // branch L2 7 // branch L2

(b) Reversed
Condition

(a) Original Code (c) After CSE

Figure 9. Reversing a Branch Condition and Performing CSE

in Figure 10(b). Once the branch is modified, the two cmpspees
identical and the cmpspec in line 2 becomes redundant ah8evil
removed, as shown in Figure 10(c).

c[2]=2,0;
c[3]=2,1;
L2:

1 c[2]=2,0;

2

3
PC=c[2] #>, L6; 4

5

6

7

c[3]=2,0;
L2:
PC=c|[2] #>, L6;

c[2] =2, 0;
L2:
PC=c[2] #>, L6;

PC=c[2] #<=, L5:

PC=c[3] #<, L5; 6 PC=c[3] #<=, L5:

NoO gbhWNRE

// . branch L2
(c) After CSE

O~NO O WNRE

H.branch L2 8 H.branch L2

(a) Original Code (b) After Modification

Figure 10. Making Two Cmpspecs Use the Same Constant

Figure 11(a) shows a section of code containing two similar
cmpspecs. The specification in line 1 compares the values con
tained in two general-purpose register$ 2] andr[1]), while
the specification in line 4 compares a register to a constanev
(r[2] and 1). The bit pattern for both of these cmpspecs is
identical, since it is the type of cbranch instruction thalicates
how the bits are interpreted. The value of constants betWeEh
referenced in cmpspec instructions have the same encoslirgga
isters 0-15. Thus, CSE can remove the cmpspec in line 4, asisho
in Figure 11(b).

1 c[4]=2 1,
= - 1 C[4] :2’ l’
2 PC=c[4] <=, L6; 2 PC=c[4] <=, L6;
PP 3 ...
4 c[4]=2,1,
5 P£3=1:[4] #==, L5; 4 PC=c[4] #==, L5;
’ ’ 5 -
6 ...

(a) Identical Bit Pattern (b) After CSE

Figure 11. Applying CSE to Cmpspecs with a Register and a Constant

5. Overhead of Using Comparison Specifications

For the sake of simplicity, we decided to use a scratch/maixt
calling convention for comparison registers that is theesasmthe
one for general-purpose registers on the ARM. When codenisrge
ated, non-scratch registers that are used within a funetiesaved
and restored using the stack. The ARM has pseudo-instnsctitat
store multiple general-purpose registers onto the staclyescre-
ated a new instruction that follows the same format to loabisiore
the new comparison registers. Comparison registers oglyine 16
bits to store the information needed by a cbranch instraocto the
new load and store instruction actually loads or stores wvopar-
ison registers at once. Comparison registers, like geiperglose
registers, need to be saved and restored when a contexhswitc
curs.

6. Experimental Environment

For these experiments we needed a way to simulate the esecuti
of a program containing cmpspecs and cbranch instructions o
machine with the proposed hardware. To simulate the exatuti
of the ARM with the hardware additions, we chose the ARM
port of the SimpleScalar simulator [2]. For ARM simulations
used the defaulkscale configuration which defines a five-stage
in-order pipeline, with a 128-entry bimodal branch prealiciVe
modified the simulator as well as the corresponding toolsh(su
as the GNU assembler), to incorporate our new instructidos.
generate ARM code with our new instructions, we used the Very
Portable Optimizer (VPO) compiler [3].

To perform code improving transformations involving compa
ison specifications, the base instruction set for the ARMthodne
enchanced. Instructions were needed to assign valuesef@oth-
parison registers as well as save and restore the new caopari
registers in memory. New cbranch instructions were alsaege
Along with the new instructions, an encoding had to be dexedo
for the comparison registers themselves.

Comparison registers hold register numbers for genenglgse
registers containing the values to be used in the comparison
cases where the second value to be compared is a constant and
the constant is small enough, it is encoded directly in th@a-co
parison register. Figure 12 illustrates our encoding far ¢bm-
parison registers. The bits in positions 15-12 indicaterdugster
number for the first general-purpose register involved endbm-
parison. The remaining 12 bits (11-0) can either be intégpras a
constant or a register number for the second general-peimegss-
ter involved in the comparison. The ARM uses 12-bit interratd
fields in many instructions, including the originathpinstruction.
How these bits are interpreted is encoded into the branttuoi®n
that accesses the comparison register. For example, thatketn
0001000000001000 can be used to indicate that we are comparing
the values in registens[1] andr [8] or that we are comparing
the value in register [1] with the constan8. Using this encod-
ing scheme allows more opportunities for common subexjmess
elimination to remove redundant cmpspecs.

15-12 11-4 3-0
reg num| unused[reg num
reg num constant

Figure 12. Encoding for Comparison Registers

A total of 4 new instructions were added to the ISA for the
ARM to be able to properly use comparison specificationss&he
instructions are shown in Table 1. Thwv¢ which is the cmpspec
instruction, assigns two values to a single comparisorstegiThe
first value is a register number for the general-purposestegihat
contains the first value to be used in the comparison. Thenseco
value can be interpreted as either a register number for erglen
purpose register that contains the second value of the a@sopa
or the value of a constant to be used in the comparison.cbhe
is a cbranch instruction that references a comparisontezdis
look up two values in general-purpose registers to be costpar
The cbri is the same as thebr instruction, except it interprets
the comparison register as a register number and a con3tat.
[/s]cfdis a CISC instruction that takes a list of comparison registe
and either stores or loads them to the location in memorytedito
by theregargument, which is usually the stack pointer. It is similar
to other CISC ARM instructions that load or store a list of giext-
purpose registers. The first three instructions replacenthenal
ARM comparison and branch instructions.

New Instructions
movc <creg>,index1,val;
cbr <creg><rel_op>, <labeb>;
cbri <creg><rel_op>, <labeb>;
[I/s]cfd <reg>,{register lis};

1 Transformconditional transfers of control
to use conparison specifications

Performlive variable analysis

Perform | oop invariant code notion

Modi fy Cnpspec and Cbranches to enabl e CSE

Wi | e opportunities for CSE exist do

per f orm CSE
Transl ate RTLs to assenbly code

B WIN -

NOoO g~ WN

Table 1. New Instructions to Support Comparison Specifications

7. Implementation Issues Figure 14. Pseudo-code for Comparison Specification Code Im-
A problem we encountered when developing the encoding of our proving Transformation

instructions for this technique was that our cmpspec iottns

sometimes interfered with compiler analysis that was nédde)))

other optimization phases. A cmpspec specifies the numiers o SimpleScalar was used to simulate execution of programsheara
general-purpose registers that will be used in a comparigan chine that contains hardware to support comparison registe

first represented cmpspecs as shown in Line 1 of Figure 13. It

was quickly discovered that this representation intedevigh live Name Descr_lptlon .
variable analysis. Although we are specifying which remgistare adpcm adaptive pulse modulation encodpr
involved in the comparison, they do not have to be live at the b_asmmath s!mple r_nath palculatlons
time the cmpspec is executed. Instead, they must be live when bitcount bit manipulations
the cbranch is executed. Remember that cmpspecs are maeg/ tim blowfish bloc_k encryption
moved into loop preheaders, and thus interfered with cating cre32 cyclic redundancy check
correct live ranges for general-purpose registers. dijkstra shortest path problem
fft fast Fourier transform
ijpeg image compression
1 c[2]=r[5],r[6]; ispell spell checker
2 c[2]=5,6; lame MP3 encoder
patricia routing using reduced trees
Figure 13. Different Representations of a Cmpspec RTL ?:;r::h ?eu;;:_ lt(os-(s)ge(gcsr:r;lrr‘%slysis
To solve this problem we modified the cmpspec RTLs so that :Pr?ngsearch gé;?gk?sv%gscryptographlc keys
only the index of the registers involved in the comparisoa ar susan image recognition
specified as shown in line 2 of Figure 13. This representatidved tiff convert a color TIFF image to b

the majority of problems that arose with live variable asay
However, it presented a new challenge. If either of the gdner
purpose registers indicated in the cmpspec, in this examiple Table 2. Benchmarks Tested
or r[6], are renamed after the cmpspec is generated, the references
to those registers would not be renamed in the cmpspec $isek
the existing analysis does not recognize them as regidieolve
this problem, we modified the cmpspec RTLs before any compile
phase that might rename registers, so that the referennéssirad
within the cmpspec would also be renamed. Once renaming is
finished, the cmpspec RTLs were modified back so the refes¢ace N - ! X
the general-purpose registers would not affect live végiahalysis ops, which is the basic unit of execution on the ARM. Most ARM
for the general-purpose registers. instructions _take 1 ‘micro-op to_ complete. Howeve_r, _somehef t
Traditional comparisons and branches were converted te cod ARM CISC instructions, which include both the existing fim
using comparison specifications late in the compilatiorcess. in instruction and the newly added [I/s]cfd instruction, caket mul-
the compilation process. This was done so that compariseci-sp UPI€ micro-ops. The average savings for dynamic instanstiwas
fications did not interfere with any other existing code impng roughly 5.6%, while the overhead involved to save and restue
transformations. Once the new comparison specificatiorstoa- comparison register was roughly 0.9%. The greatest saciage
mation was performed, other code improving transformatiench ~ rom adpcmwith a savings of roughly 18%. Thspell benchmark
as loop-invariant code motion and common subexpressioirel: actually executed around 4% more instructions. One caugsf
tion were re-run to determine if there were any new oppotiesi Increase is due to the overhead involved with saving andriest
for optimization. The steps taken for the comparison spetifin the comparison registers. The overhead for ispell was tigesaof

code improving transformation is shown (as pseudo-cod&)gn any of our tested benchmarks at around 9%. The majority of sav
ure 14. ings in dynamic instruction counts comes from loop-invatrizode

motion, which is about 5.3%, while the remaining savingguib
3 Results 0.3%, comes from common subexpression elimination.

: The bottom bars in Figure 15 show the percentage of execu-
Our technique using comparison specifications was teste@d fo tion cycles saved. Execution cycles and dynamic instroa@unts
large subset of benchmarks from the MiBench suite of bench- do not have a one-to-one correspondence. Different ingingre-
marks [7], described in Table 2. At present, we are not ablesé& quire a different number of cycles to complete. The cyclesded
the remaining benchmarks from the MiBench Suite under the Si for an instruction to complete can also vary since an insoc
pleScalar ARM port due to configuration problems with thedben can sometimes stall waiting for its operands to become re2dy
marks. The benchmarks were compiled with the VPO compildr an experiments show that a large portion of the savings in di@tu

Code was generated using comparison specification ingtngct
and dynamic instruction counts and cycle times were obdiifiee
top bars in Figure 15 show both the percentage of instrusgamed
using the new comparison specifications as well as the the ove
head involved with saving and restoring the comparisonstets.
For these experiments instruction counts were measuredciom

B Instructions [| Overhead [] Cycles ‘

adpem 2
basicmath 2
bitcount 3
blowfish
cre32 2
dijkstra 3
fit
peg 3
ispell
lame
patricia 3
gsort 3
rsynth
sha 3
stringsearch
susan
tiff -
average :

75 80 85 90 95 100 105

Figure 15. Percentage of Instructions and Cycles Executed

cycles comes from not having to stall the pipeline when a greps bimodal branch predictor since the number of cycles wasifsign

instruction is reached, in those cases where a stall does osing cantly reduced. The reason for the overall performancefliéae
a traditional comparison instructions. A smaller percgataf the that branch misprediction rates are relatively low anddligoften
savings comes from applying optimizations, such as loopriant a cycle saved using comparison specifications each time di-con

code motion and common subexpression elimination on the new tional transfer of control is encountered.
cmpspec instructions, even though applying these optiiniza

substantially reduced the number of instructions executéabt bimodal gshare

of the benchmarks showed a reduction in execution cycledatke 128 256 512 | 1024
for a successful program run. Howevéepell and gsort both re- Instructions Reduced 5.6% | 5.79% | 5.7% | 5.8%
quired more cycles to complete execution. The average gabm Cycles Reduced 529% | 52% | 5.4% | 6.0%
cycles executed is roughly 5.2%, ranging from a 3% lasol) Misprediction Rate | 10% | 9.9% | 8.1% | 6.9%

to a 17% gaingtringsearch. Separate tests were run to determine
how much loop invariant code motion and common subexpressio
elimination contributed to the improvement. The resultsvgthat Table 3. Benefits Using Alternate Branch Prediction Method
about 0.20% of the improvement comes from loop invariantecod

motion and 0.40% comes from common subexpression elimimati

Even though loop-invariant code motion and common subexpre

sion elimination do not have a great impact on executionesycl 9. Future Work

fewer instructions are fetched, decoded and executedhvghiculd
reduce energy consumption.

While most of the benchmarks tested showed an improvement
in both dynamic instruction counts and execution cycles,dfthe
benchmarksispell andqgsort, actually required more execution cy-
cles to complete. Analysis of the benchmarks show the maisore
for this loss was the higher misprediction penalty requiirdthe
cbranch instructions. Table 3 compares the average sawirigs
structions, cycles and the misprediction rates for the heracks
using a bimodal predictor and a gshare predictor. For thargsh
predictor we used second level table sizes of 256, 512 and 102
entries with 7 bits of global history. This table shows thaing
modern, more efficient branch predictors can improve theeben
fits gained from this technique. However, the advantagessef u
ing comparison specifications still outweighed the disathges of
the higher misprediction penalty even with the poorer penfog

The pipeline design studied in this paper computes the tondi
when the branch instruction executes. This does not allaly ea
resolution of the branch instruction. However, the coodittest
can occur as soon as the operands are available enablingsthe t
to overlap with instructions that modify registers spedifie the
conditional test. By computing tests any time registerolved

in the condition specification are modified, it may be possibol
implement early branch resolution, thereby reducing trendin
misprediction penalty.

We believe that profiling could be used to better guide coanpil
optimizations such as loop-invariant code motion when they
applied to cmpspecs. Occasionally there are cases whes aage
restores of comparison registers are executed more oftenttie
cbranch instructions that use these registers, such asosbatred
in ispell. Profiling would allow us to detect these cases and refrain
from applying loop-invariant code motion on cmpspecs [tayus

the use of nonscratch comparison registers] in cases whe i
not help reduce the number of cycles executed.
We believe that with better analysis there are more oppbrtun

Acknowledgments

We thank the anonymous reviewers for their constructivernents
and suggestions. This research was supported in part by NBEg

ties to be gained by performing CSE on cmpspecs. For example, g1 0072043, CCR-0208892, CCR-0312493, and CCF-0444207.

consider two cmpspecs (where one dominates the other)dhat ¢
pare two differing sets of registers as illustrated in Fig6(a).

The cmpspecs in lines 2 and 6 are similar but they comparerdiff
ent registers. However, since the live range of registersds/ado

not overlap, register 7 from the second comparison can lzared

to register 5 as shown in Figure 16(b). Now the two cmpspees ar
identical and the one in line 6 can be removed by CSE as shown in
Figure 16(c).

1 r[5]=ME

R b T Y

Reisuer i I

s ri7j=hem 4 17 rISL dies T e gies

6 c[3]=4,7; 5 r[SI=MEM 5 r[5] =MEM

7 Pe=c[3]==15; & S35 6 pe=ciay==, L5,

8 77 7 PC=c[3] ==, L5; 7 TS
(a) Compares With (c) After CSE

Different Registers (b) After Renaming

Figure 16. CSE by Renaming Registers

We also believe that using comparison specifications woeld b
even more beneficial with 16-bit architectures, like the by
since there are fewer bits available to encode the compasrd
branch instructions. Comparison specifications could ke tsen-
code information about the branch instruction that woutdlitate
branching. Information about the values involved in the pant
son and the type of comparison could be encoded in a compari-
son register. The comparison register could also be usexté¢adk
the range of instructions that a branch could reach sincerntise
branch target displacement does not have to be encodedhwhthi
branch instruction itself.

10. Conclusions

While most techniques used to reduce the cost of conditioaas-
fers of control focus on the branch, this paper presents al g+
proach that reduces the cost by focusing on the comparigom. T
specification of the comparison is decoupled from the actoai-
parison of the values. In many cases, execution cycles areated
since the processor does useful work during the cmpspete whi
may stall during a conventional comparison instructionatiti-
tion, conventional compiler optimizations can be more lgagp-
plied on cmpspecs than conventional comparisons. Unlikepeo-
ison instructions, cmpspecs can usually be moved outsitt®ps
by loop-invariant code motion because they do not have dkgren
cies with the instructions that produce the values usedarctim-
parison. Likewise, redundant cmpspec instructions caeimeved

in many cases when CSE cannot be applied to typical compariso
instructions. The results show significant reduction ircei®n cy-
cles of 5.2% and a 5.6% reduction in dynamic instructions.

References

[1] ALLEN, F. E., AND COCKE, J. A catalogue of optimizing
transformations. IiDesign and Optimization of CompilerR. Rustin,
Ed. Prentice-Hall, Englewood Cliffs, NJ, USA, 1971, pp. -3

[2] AuUsTIN, T., LARSON, E., AND ERNST, D. SimpleScalar: An
infrastructure for computer system modelirgomputer 352 (Feb.
2002), 59-67.

BENITEZ, M. E.,AND DAVIDSON, J. W. A portable global optimizer
and linker. InProceedings of the SIGPLAN '88 Conference on
Programming Language Design and Implementatjétianta, GA,
USA, June 1988), ACM Press, pp. 329-338.

Bobik, R., GUPTA, R., AND SOFFA, M. L. Interprocedural
conditional branch elimination. IRroceedings of the SIGPLAN '97
Conference on Programming Language Design and Implementat
(New York, June 15-18 1997), vol. 32, 5ACM SIGPLAN Notices
ACM Press, pp. 146-158.

DONGARRA, J. J.,AND HINDS, A. R. Unrolling loops in
FORTRAN. Software, Practice and Experience 3 (Mar. 1979),
219-226.

FURBER, S. ARM System-on-Chip Architectuseecond ed. Addison-
Wesley Longman, Harlow, Essex CM20 2JE, England, 2000. Also
available in Japanese translatigkiRM ProcessqrC Q Publishing
Co., Ltd. ISBN 4-7898-3351-8.

GUTHAUS, M. R., RINGENBERG, J. S., RNST, D., AUSTIN,
T. M., MUDGE, T., AND BROWN, R. B. MiBench: A free,
commercially representative embedded benchmark sIHEE 4th
Annual Workshop on Workload Characterizati@iecember 2001).

HENNESSY, J.,AND PATTERSON, D. Computer Architecture: A
Quantitative Approach.second ed. Morgan Kaufmann Publishers
Inc., San Francisco, CA, 1996.

JIMENEZ, D., AND LIN, C. Neural methods for dynamic branch
prediction. INACM Transactions on Computer SystefiNsv. 2002),
vol. 20, ACM, pp. 369-397.

[10] MCFARLING, S. Combining branch predictors. Tech. Rep. TN-36,
Digital Equipment Corporation, Western Research Lab, J1993.

[3

—

[4

fla.aer

5

—_

[7

—

)

[9

—

[11] MCFARLING, S., AND HENNESSY J. Reducing the cost of
branches. InProc. 13th Annual International Symposium on
Computer Architecture, Computer Architecture Ne\lisne 1986),
ACM, pp. 396-403. Published as Proc. 13th Annual Internatio
Symposium on Computer Architecture, Computer Architectiews,
volume 14, number 2.

[12] MucHNICK, S. S. Advanced compiler design and implementation
Morgan Kaufmann Publishers, 2929 Campus Drive, Suite 280, S
Mateo, CA 94403, USA, 1997.

[13] MUELLER, F.,AND WHALLEY, D. B. Avoiding conditional branches
by code replication. IfProceedings of the SIGPLAN '95 Conference
on Programming Language Design and Implementafioa Jolla,
CA, June 1995), ACM Press, pp. 56-66.

[14] PARK, J. C. H.,AND SCHLANSKER, M. S.On predicated execution
Hewlett Packard Laboratories, 1991.

[15] StALLMAN, R. M. Using and porting the GNU compiler collection,
Feb. 22 2001.

