| ntroduction

* Phase ordering problem

- Traditional compilers have afixed order in which
optimization phases are applied.

— This problem can be more severe when generating
code for embedded applications.

- VISTA alowsthe user to finely control both the
order and scope of applying optimizations.

Introduction (cont...)

* Enhancing VISTA to make it more proficient at
finding effective optimization sequences
- Getting program performance measures anytime
- Performance driven interactive code tuning

- High level language like constructs to specify
optimization phase orders

- Performance driven automatic code tuning

Outline of the Tak

Overview of VISTA

Getting performance measures in VISTA
Support for interactive code tuning
Support for automatic code tuning
Experimental results

Future work

Conclusions

Overview of VISTA

performance
[edsUrements Executable
flew Lhsert
Instructions Measurement
Code
source Assemb] :
Compiler ¥ - Linked
File l\ ' File File
Program Representation Info. Transformation Info.
Selections | Requests
. saved
User] Wiewer
Display Srate

Getting Performance Measures

Compiler (VPO)

—
i Send Static and Dynamic Frequency Measures
For Current Function
Viewer Request for Save Current Restore Previous
Program State Program State
Measurements
[
Apply Required Read Program
; Transformations Frequency Counts
[
| L
‘ Instrumenty Generate Link and Execute
EASE ‘ Instrumented Assembly File
Code Assembly
| l J
Last Yes
Function
: No
Read Next

Function

Interactive Code Tuning

* VISTA providesthe user with performance
measures during interactive compilation.

* VISTA currently provides two types of
performance counts:

— Satic counts — a count of the number of static
Instructions in that function

— Dynamic counts — a count of the number of
Instructions executed during a particular run of the
program

* VISTA also displays the execution frequency of
each basic block.

Interactive Code Tuning (cont...)

* VISTA provides two options for getting measures
Interactively.

- Get frequency measures
- Start / Stop measurements

Get Freguency Measures

Userlnterface ||;|E|E
Function |init_search Trans Number E -~ |
State after | Total EN 1 | L2 | freq: 48.455%

transformations Mumber Code Size Inst Exec FI2]=HI [1en];
FEegister Assignment =] hlelolgele] rEl=r[E]+L0o[len];
rE]=Rk[r[=]1]1;
r9]l=r[Z0]+.010.0_1;
r[2]1=kRLr[2]1];
r[10]=2;
re]l=r[21{r[10];
r[10]=HI[takle];
rl10]=r[10]+L0[takle]:
r9]=r[9]+r[10];
RIr[211=r[=1:

1 | L3 | freq: 26.43%
rlE]l=r[Z0]+.70.0_1;
rE]l=k[r[E]1];

r[=]=1;

rE]=rE]+r[=2];
r@]=r[Z0]+.70.0_1;
RLr[21]=r(=]1;

1 | LS | freq: 22.111%
rliZ]l=r[Z0]+.10.0_1;
rlE]l=k[r[E]1];

|, |

r[9]=25%;
Ic=r[2]7r[9];
FPC=ICsD,LZ;

1 | | freq: D.0O68%
r[Z]=0;
r9]=r[30]+.10.0_1;
- ; RLr[211=r[=];
Setup Trans Sequen_| Specify Trans by Ha_ | RTLs i PC—L9:
I= == [= | option || Edt
start writing in || seqlaxt | execute from file =

Message: | warning ! Discard the transformations will lose information done | | Help

Start / Stop Measurements

Userlnterface

[

Function |W Trans Number |M

State |aﬁer | Total 256 |

transftormations Mumber Code 5ize InsL Exec
Eegister Assignment o 100 O 100 Q0
Inst Selection ()] 59,52 50,18
Merge Basic Blocks 3 509,52 50,18
Fegister Allocation 57 59.52 = B
Dead YWariahle Elim 32 59.52 59,18
Caomman Subexpr Elim 15 40,47 40,90
Code Motion 3 45,23 40.97
Inst Selection 24 40,47 32.00
Fegister Allocation 24 40,47 32.00
Strength Eeduction 20 40,47 32.00
Fix Entry Exit 37 3 42 .85 32.04

Setup Trans Sequen- | Specify Trans by Ha_ | RTLs

1= | == | = | Option | Bt

start writing in

seqlixx

execute from file

1 | | freq: D483
rl14]=5v[r[14]+-9] ;
ri2]l=r(24];
ST=HI[strlen]+L0[strlien];
r[9]=HI[1en];

Elr[2]+L0[0en]]l=r(2];
r[11]=0;
r[12]=HI[1en];
r[12]=HI[table];
FC=LE;

2 | | freq: 68.736%

rlE]=R[r[12]+L0[Ten]]:
rle]l=r[11]1{2;
rl10]=r[12]+L0[takle];
RLr[2]+r[10]]=r[E];
r[11]=r[11]+1;

3 | | freq: 27.601%

IC=r[11]%255;
PC=ICs0,L2;

4 |
r[11]=0;
r[12]=HI[7en];

w127 _HT M+ -1 a1 -

| freq: D.21455

1]

Message: | Warning 111 Discard the transformations will lose information done

Interactive Code Tuning (cont...)

e Control Statementsin VISTA

- High-level programming language like constructs are
used in VISTA to conditionally invoke an
optimization phase.

* if-changes-else

* |f-changes-then-else
e do-while-changes

* while-changes-do

Automatic Code Tuning

* The previous approach requires user knowledge,
Intuition and effort to guide the code
Improvement process.

* We provided two new constructsin VISTA to
support automatic code tuning

- select best sequence
- select best combination

Select Best Seguence

e The user salects two or more different
optimization sequences.

e Each sequence is evaluated by the compiler for its
performance.

* The user can specify weights for static and
dynamic counts to determine the overdll
Improvement.

* The best performing sequence isfound and re-
applied by the compiler.

Select Best Combination

* The user specifies a set of optimization phases.

* The compiler tries to determine the best ordering
of this sequence of phases.

* The compiler forms different combinations of
phases.

e Eachisevauated for performance, depending on
weights specified by the user.

e Only the best performing sequence is re-applied.

Select Best Combination (cont...)

* The compiler finds the next combination to
evaluate based on the search option specified by
the user.

e Search options

- Exhaustive search — All possible combinations are
attempted by the compiler

- Biased sampling search — Compiler uses a genetic
algorithm to probe the search space for an effective
sequence

- Permutation Search — Compiler attempts to evaluate
all permutations of the specified length

Genetic Algorithms

* These are search algorithms designed to mimic the process of
natural selection and evolution in nature.

e Some genetic algorithm terms

- Chromosome — optimization sequence

- Gene— individual optimization phase in a sequence

- Population — set of chromosomes

- Fitness value — performance of that optimization sequence

- Crossover — combination of sequences to form new sequences
- Mutation — individual phases in a sequence are replaced

— Generation — time step for evaluation of sequences in one population
and formation of the next population

Genetic Algorithm Used

e [|nitialization of first population
- Thefirst population of optimization sequences is randomly
generated

%domy\aze
O

population

Genetic Algorithm Used (cont...)

* The performance of each sequence in the
population is evaluated.

e The chromosomes are sorted based on
performance.

* The population is divided into two halves.

e Some chromosomes from the poorly performing
half are deleted.

* The vacancies arefilled using the crossover and
mutation operation.

Genetic Algorithm Used (cont...)

e Crossover operation

— upper half of the first chromosome is combined
with lower half of the second and vice-versa.

Population 1 Population 2

Genetic Algorithm Used (cont...)

* The chromosomes are subjected to mutation.

* The best performing chromosome over all the
generations is maintained.

Experimental Results

A set of experiments were conducted to illustrate the
effectiveness of using VISTA's biased sampling search.

The experiments were conducted on a set of mibench
programs.

The target architecture for the experiments was the
SPARC.

The genetic algorithm was used to find the best sequence
among 14 phases between register assignment and fix
entry exit.

The sequence length was set to 1.25 times the length of
seguence applied during batch compilation.

Experimental Results (cont...)

* |nteractive compilation measures

- An attempt was made to find an optimization
seguence giving equal or better performance than that
given by the batch compiler.

— Genetic algorithm was used to probe the search space.
— The population size was fixed at 20.
— The algorithm was repeated for 100 generations.

- Results were obtained for 3 different criteria, static
count only, dynamic count only and 50% for each
factor.

afielaie yaieashuuls BYS fadl W enaylip Jnaang

1 1 1 1 1 | 1 mm_”_

—r 58710

| — 560

— 560

— 56710

| 7| — %01

m

501

01e3 w00), Ao Buiziwndo o anels o o Buziwgdo O vonepdwes Yajeg aulela) | uoie)duoy yaeg saiea)-uoy o

JUNOY) UOIJONIISU| O13B)S UO J03}4T |[elanQ

afielane yaleasfiuns BUS fiadl W IR unaayug

— 5260

—r 5610

— 560

— 20}

— 501

— 20)

Jeuq o 0n) Ao Buizwndn 0 onweudq opng a0y Buiziundg o vonepdwos) yaeq aajesay @ uoepdwo) yajeg salelay-uopy 0

JUNOY) UOIJONI)SU| d1WwueA uo 193}43 ||elan

Future Work

e Obtaining measurements on a real embedded
systems architecture

e Getting a more accurate measure of the dynamic
performance

e Study the effect of varying the parametersin the
genetic algorithm

e Study the result of performing genetic algorithm
searches on sats of basic blocks in afunction

Conclusion

* We have developed an interactive compilation
system that automatically provides performance
feedback information.

e Structured constructs are provided for specifying
optimization sequences interactively.

e Constructs are provided to automatically select
optimization phase sequences.

* Experiments were performed to illustrate the
effectiveness of using a genetic algorithm to
search for effective optimization sequences.

