
Introduction

� Phase ordering problem

� Traditional compilers have a fixed order in which 
optimization phases are applied.

� This problem can be more severe when generating 
code for embedded applications.

� VISTA allows the user to finely control both the 
order and scope of applying optimizations.



Introduction (cont...)

� Enhancing VISTA to make it more proficient at 
finding effective optimization sequences

� Getting program performance measures anytime

� Performance driven interactive code tuning

� High level language like constructs to specify 
optimization phase orders

� Performance driven automatic code tuning



Outline of the Talk

� Overview of VISTA

� Getting performance measures in VISTA

� Support for interactive code tuning

� Support for automatic code tuning

� Experimental results

� Future work

� Conclusions



Overview of VISTA



Getting Performance Measures



Interactive Code Tuning

� VISTA provides the user with performance 
measures during interactive compilation.

� VISTA currently provides two types of 
performance counts:

� Static counts – a count of the number of static 
instructions in that function

� Dynamic counts – a count of the number of 
instructions executed during a particular run of the 
program

� VISTA also displays the execution frequency of 
each basic block.



Interactive Code Tuning (cont...)

� VISTA provides two options for getting measures 
interactively.

� Get frequency measures

� Start / Stop measurements



Get Frequency Measures



Start / Stop Measurements



Interactive Code Tuning (cont...)

� Control Statements in VISTA

� High-level programming language like constructs are 
used in VISTA to conditionally invoke an 
optimization phase.

� if-changes-else

� if-changes-then-else

� do-while-changes

� while-changes-do



Automatic Code Tuning

� The previous approach requires user knowledge, 
intuition and effort to guide the code 
improvement process.

� We provided two new constructs in VISTA to 
support automatic code tuning

� select best sequence

� select best combination



Select Best Sequence

� The user selects two or more different 
optimization sequences.

� Each sequence is evaluated by the compiler for its 
performance.

� The user can specify weights for static and 
dynamic counts to determine the overall 
improvement.

� The best performing sequence is found and re-
applied by the compiler.



Select Best Combination

� The user specifies a set of optimization phases.

� The compiler tries to determine the best ordering 
of this sequence of phases.

� The compiler forms different combinations of 
phases.

� Each is evaluated for performance, depending on 
weights specified by the user.

� Only the best performing sequence is re-applied.



Select Best Combination (cont...)

� The compiler finds the next combination to 
evaluate based on the search option specified by 
the user.

� Search options

� Exhaustive search – All possible combinations are 
attempted by the compiler

� Biased sampling search – Compiler uses a genetic 
algorithm to probe the search space for an effective 
sequence

� Permutation Search – Compiler attempts to evaluate 
all permutations of the specified length



Genetic Algorithms

� These are search algorithms designed to mimic the process of 
natural selection and evolution in nature.

� Some genetic algorithm terms

� Chromosome – optimization sequence

� Gene – individual optimization phase in a sequence

� Population – set of chromosomes

� Fitness value – performance of that optimization sequence

� Crossover – combination of sequences to form new sequences 

� Mutation – individual phases in a sequence are replaced

� Generation – time step for evaluation of sequences in one population 
and formation of the next population



Genetic Algorithm Used

� Initialization of first population

� The first population of optimization sequences is randomly 
generated



Genetic Algorithm Used (cont...)

� The performance of each sequence in the 
population is evaluated.

� The chromosomes are sorted based on 
performance.

� The population is divided into two halves.

� Some chromosomes from the poorly performing 
half are deleted.

� The vacancies are filled using the crossover and 
mutation operation.



Genetic Algorithm Used (cont...)

� Crossover operation

� upper half of the first chromosome is combined 
with lower half of the second and vice-versa.



Genetic Algorithm Used (cont...)

� The chromosomes are subjected to mutation.

� The best performing chromosome over all the 
generations is maintained.



Experimental Results

� A set of experiments were conducted to illustrate the 
effectiveness of using VISTA's biased sampling search.

� The experiments were conducted on a set of mibench 
programs.

� The target architecture for the experiments was the 
SPARC.

� The genetic algorithm was used to find the best sequence 
among 14 phases between register assignment and fix 
entry exit.

� The sequence length was set to 1.25 times the length of 
sequence applied during batch compilation.



Experimental Results (cont...)

� Interactive compilation measures

� An attempt was made to find an optimization 
sequence giving equal or better performance than that 
given by the batch compiler.

� Genetic algorithm was used to probe the search space. 

� The population size was fixed at 20.

� The algorithm was repeated for 100 generations.

� Results were obtained for 3 different criteria, static 
count only, dynamic count only and 50% for each 
factor.







Future Work

� Obtaining measurements on a real embedded 
systems architecture

� Getting a more accurate measure of the dynamic 
performance

� Study the effect of varying the parameters in the 
genetic algorithm

� Study the result of performing genetic algorithm 
searches on sets of basic blocks in a function



Conclusion

� We have developed an interactive compilation 
system that automatically provides performance 
feedback information.

� Structured constructs are provided for specifying 
optimization sequences interactively.

� Constructs are provided to automatically select 
optimization phase sequences.

� Experiments were performed to illustrate the 
effectiveness of using a genetic algorithm to 
search for effective optimization sequences.




