
Efficient Register and Memory Assignment for
Non-orthogonal Architectures via Graph Coloring and

MST Algorithms

Jeonghun Cho Yunheung Paek�
Electrical Engineering & Computer Science Department

Korea Advanced Institute of Science & Technology
Daejon 305-701, Koreafjhcho,ypaekg@soar.kaist.ac.kr David Whalleyy

Computer Science Department
Florida State University

Tallahassee, FL 32306-4530, USA

whalley@cs.fsu.edu

ABSTRACT
Finding an optimal assignment of program variables into reg-
isters and memory is prohibitively difficult in code generation
for application specific instruction-set processors(ASIPs). This
is mainly because, in order to meet stringent speed and power
requirements for embedded applications, ASIPs commonly em-
ploy non-orthogonalarchitectures which are typically char-
acterized by irregular data paths, heterogeneous registers and
multiple memory banks. As a result, existing techniques mainly
developed for relatively regular, orthogonalgeneral-purpose
processors(GPPs) are obsolete for these recently emerging
ASIP architectures. In this paper, we attempt to tackle this
issue by exploiting conventionalgraph coloringandmaximum
spanning tree(MST) algorithms with special constraints added
to handle the non-orthogonality of ASIP architectures. The
results in our study indicate that our algorithm finds a fairly
good assignment of variables into heterogeneous registersand
multi-memories while it runs extremely faster than previous
work that employed exceedingly expensive algorithms to ad-
dress this issue.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—code gener-
ation/ compilers/optimization; C.1.2 [Processor Architectures]:
Multiple Data Stream Architectures—Parallel processors

General Terms
Algorithms�This work is supported in part by Brain Korea 21 project and
Samsung Electronics Co.yThis work is supported in part by NSF contract EIA-
9806525, CCR-9904943, and EIA-0072043.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LCTES’02–SCOPES’02,June 19-21,2002,Berlin,Germany.
Copyright 2002 ACM 1-58113-527-0/02/0006 ...$5.00.

Keywords
Compiler, dual memory, non-orthogonal architecture, memory
assignment, graph coloring, and maximum spanning tree

1. INTRODUCTION
As embedded system designers strive to meet cost and per-

formance goals demanded by the applications, the complex-
ity of processors is ever increasingly optimized for certain ap-
plication domains in embedded systems. Such optimizations
need a process ofdesign space exploration[8] to find hardware
configurations that meet the design goals. The final configura-
tion of a processor resulting from a design space exploration
usually has an instruction set and the data path that are highly
tuned for specific embedded applications. In this sense, they
are collectively calledapplication specific instruction-set pro-
cessors(ASIPs).

An ASIP typically has a non-orthogonal architectre which
can be characterized by irregular data paths containinghet-
erogeneous registersandmultiple memory banks. As an ex-
ample of such an architecture, Figure 1 shows the Motorola
DSP56000, a commercial off-the-shelf ASIP specifically de-
signed fordigital signal processing(DSP) applications. Note
from the data path that the architecture lacks a large num-
ber of centralized general-purposehomogeneousregisters; in-
stead, it has multiple small register files where different files
are distributed and dedicated to different sets of functional
units. Also, note that it employs a multi-memory bank archi-
tecture which consists of program and data memory banks.
In this architecture, two data memory banks are connected
through two independent data buses, while a conventional von
Neumann architecture has only a single memory bank. This
type of memory architecture is supported by many embedded
processors, such as Analog Device ADSP2100, DSP Group
PineDSPCore, Motorola DSP56000 and NEC uPD77016. One
obvious advantage of this architecture is that it can accesstwo
data words in one instruction cycle.

Multi-memory bank architectures have been shown to be
effective for many operations commonly found in embedded
applications, such as N real multiplies:z(i) = x(i)� y(i) i = 1; 2; :::; N
From this example, we can see that the application can oper-
ate at an ideal rate if a processor has two data memory banks

X0 (24)

X1 (24)

Y0 (24)

Y1 (24)

Multiplier

ALU

A (56)

B (56)

Shifter/Limiter

Shifter

YDB

XDB

N0

N1

N2

N3

MUX

Address ALU

R0

R1

R2

R3

R4

R5

R6

R7

N4

N5

N6

N7

Address ALU

MUX

X Memory

Global Data Bus

XAB YAB

Y Memory

AGU

Figure 1: Motorola DSP56000 data path with dual data memory banks X andY

so that two variables,x(i) andy(i), can be fetched simultane-
ously. But, we also can see that this ideal speed of operation
is only possible with one condition: the variables should be
assigned to different data memory banks. For instance, in the
following DSP56000 assembly code implementing the N real
multiplies, arraysx andy are assigned respectively to the two
memory banks X and Y.

move x:(r0)+,x0 y:(r4)+,y0
mpyr x0,y0,a x:(r0)+,x0 y:(r4)+,y0
do #N-1,end
mpyr x0,y0,a a,x:(r1)+ y:(r4)+,y0
move x:(r0)+,x0

end
move a,x:(r1)+

Unfortunately, several existing vendor-provided compilers
that we tested were not able to exploit this hardware featureof
dual data memory banks efficiently; thereby failing to generate
highly optimized code for their target ASIPs. This inevitably
implies that the users for these ASIPs should hand-optimize
their code in assembly to fully exploit dual memory banks,
which makes programming the processors quite complex and
time consuming.

In this paper, we describe our implementation of two core
techniques in the code generation for non-orthogonal ASIPs:
register allocationandmemory bank assignment. Our register
allocation is decoupled into two phases to handle the hetero-
geneous register architecture of an ASIP as follows.

1. Physical registers are classified into a set ofregister classes,
each of which is a collection of registers dedicated to the
same machine instructions; and, our register classifica-
tion algorithm allocates each temporary variable to one
of the register classes.

2. A conventional graph coloring algorithm is slightly mod-
ified to assign each temporary a physical register within
the register class previously allocated to it.

Our memory bank assignment whose goal is to efficiently as-
sign variables to multi-memory banks for ASIPs is also decou-
pled into two phases as follows.

1. A maximum spanning tree(MST) algorithm is used to
find a memory bank assignment for variables.

2. The initial bank assignment by the MST-based algorithm
is improved by the graph coloring algorithm that was
also used for register assignment.

Our algorithms differ from previous work in that it assigns
variables to heterogeneous registers and multi-memory banks
in separate,decoupledcode generation phases, as shown above;
while previous work did it in a single, tightly-coupledphase [13,
14]. As will be reported later in this paper, our performance
results were quite encouraging. First of all, we found that the
code generation time was dramatically reduced by a factor of
up to four magnitudes of order. This result was somewhat al-
ready expected because our decoupled code generation phases
greatly simplified the register and bank assignment problem
overall. Meanwhile, the benchmarking results also showed
that we generated code that is nearly identical in quality to
the code generated by the coupled approach in almost every
case.

Section 2 discusses the ASIP architecture that we are target-
ing in this work. Section 3 presents our algorithms, and Sec-
tion 4 presents our experiments with additional results that we
have recently obtained since our earlier preliminary study[5].
Section 5 concludes our discussion.

2. TARGET MACHINE MODEL
In this section, we characterize the non-orthogonal architec-

ture of ASIPs with two properties.

2.1 Heterogeneous Registers
To more formally define this register architecture, we start

this section by first presenting the following definitions.

DEFINITION 1. Given a target machineM , letI = fi1; i2;
...; ing be the set of all the instructions defined onM , andR
= fr1; r2; :::; rmg be the set of all its registers. For instruc-
tion ij 2 I, we define the set of all its operands,Op(ij) =fOj1; Oj2; :::; Ojkg. AssumeCjl is the set of all the regis-
ters that can appear at the position of some operandOjl; 1 �l � k. Then we say here thatCjl forms aregister classfor
instructionij .

DEFINITION 2. From Definition 1, we defineSj , a collec-
tion of distinct register classes for instructionij , as follows:Sj =[kl=1fCjlg: (1)

From this, we in turn defineS as follows:S =[nj=1 Sj : (2)

We say thatS is the whole collection of register classes for
machineM .

To see the difference of homogeneous and heterogenous
register architectures, first consider the SPARC as an example
of a processor with homogenous registers. A typical instruc-
tion of the SPARC has three operands

op code regi; regj; regk
where all the 32 registers(r0,r1,: : :,r31) in the register file can
appear as the first operandregi. In this case, the set of all these
registers forms a single register class forop code. Since
for the other operandsregj andregk, the same 32 registers
can appear, they again form the same class for the instruction.
Thus, we have only one register class defined for the instruc-
tion op code. On the other hand, the DSP56000 has an in-
struction of the form

mpya regi; regj; regk
which multiplies the first two operands and places the product
in the third operand. The DSP56000 restrictsregi andregj to
be input registers X0, X1, Y0, Y1, andregk to be accumula-
tor A or B. In this case, we have two register classes defined
for mpya: fX0, X1, Y0, Y1g at regi andregj andfA,Bg atregk.

In the above examples,Sj for op code andmpya are, re-
spectively,ffr0,: : :,r31gg andffX0, X1, Y0, Y1g,fA,Bgg.
We say that a typical processor withn general purpose regis-
ters like the SPARC has a homogeneous register architecture.
This is mainly becauseS is usually a set of a single element
consisting of then registers for the processor, which, by Def-
initions 1 and 2, equivalently means that the samen regis-
ters are homogeneous in all the machine instructions. In the
case of DSP56000, however, its registers are dedicated dif-
ferently to the machine instructions, which make them par-
tially homogeneous only in the subsets of machine instruc-
tions. For example, we can see that even one instruction like
mpya of DSP56000 has two different sets of homogenous reg-
isters: XYN and AB. We list the whole collection of register
classes defined for DSP56000 in Table 1. In general, we say
that a machine with such complex register classes has a het-
erogeneous register architecture.

ID Register Class Physical Registers
1 XYN X0, X1, Y0, Y1
2 XY X, Y (long word)
3 YR R4 – R7
4 AB Accumulator A, B
5 YN N4 – N7
6 XR R0 – R3
7 XN N0 – N3
8 X X0, X1
9 Y Y0, Y1

Table 1: The register classes for Motorola DSP56000

2.2 Multiple Data Memory Banks
As an example of multi-memory bank ASIPs, we will use

the DSP56000 whose data path was shown in Figure 1, where

the ALU operations are divided into data operations and ad-
dress operations. Data ALU operations are performed on a
data ALU withdata registerswhich consist of four 24-bit in-
put registers (X0, X1, Y0 and Y1) and two 56-bit accumu-
lators (A and B). Address ALU operations are performed in
the address generation unit(AGU), which calculates mem-
ory addresses necessary to indirectly address data operands in
memory. Since the AGU operates independently from the data
ALU, address calculations can occur simultaneously with data
ALU operations.

As shown in Figure 1, the AGU is divided into two identi-
cal halves, each of which has an address ALU and two sets of
16-bit register files. One set of the register files has fourad-
dress registers(R0 – R3), and the other also has four address
registers (R4 – R7). The address output multiplexers select
the source for the XAB, YAB. The source of each effective
address may be the output of the address ALU for indexed ad-
dressing or an address register for register-indirect addressing.
At every cycle, the addresses generated by the ALUs can be
used to access two words in parallel in the X and Y memory
banks, each of which consists of 512-word� 24-bit memory.

Possible memory reference modes of the DSP56000 are of
four types: X, Y, L and XY. In X and Y memory reference
modes, the operand is a single word either from X or Y mem-
ory bank. In L memory reference mode, the operand is a long
word (two words each from X and Y memories) referenced by
one operand address. In XY memory reference mode, two in-
dependent addresses are used to move two word operands to
memory simultaneously: one word operand is in X memory,
and the other word operand is in Y memory. Such independent
moves of data in the same cycle are called aparallel move. In
Figure 1, we can see two data buses XDB and YDB that con-
nect the data path of the DSP56000 to two data memory banks
X and Y, respectively. Through these buses, a parallel move is
made between memories and data registers.

These architectural features of the DSP56000, like most other
ASIPs with multi-memory banks, allow a single instruction
to perform one data ALU operation and two move operations
in parallel per cycle, but only under certain conditions dueto
hardware constraints. In the case of the DSP56000, the fol-
lowing parallel move conditionsshould be met to maximize
the utilization of the dual memory bank architecture: (1) the
two words should be addressed from different memory banks;
memory indirect addressing modes using address registers are
used to address the words; and, each address register involved
in a parallel move must be from a different set among the two
register files in the AGU. In this implementation, we attempt
to make the parallel move conditions meet in the code so that
as many parallel moves as possible can be generated.

3. REGISTER ALLOCATION AND MEM-
ORY BANK ASSIGNMENT

In this section, we detail the code generation phases for
register allocation and memory bank assignment, which were
briefly described in Section 1. To explain step by step how
our code generator produces the final code, we will use the ex-
ample of DSP56000 assembly code shown in Figure 2. This
code can be obtained immediately after the instruction selec-
tion phase. Note that it is still in a sequential and unoptimized
form. This initial code will be given to the subsequent phases,

and optimized for the dual memory architecture of DSP56000,
as described in this section.

MOVE a, r0

MOVE b, r1

MOVE c, r2

MAC r0, r1, r2

MOVE low(r2), low(v)

MOVE high(r2), high(v)

MOVE d, r3

MOVE e, r4

MOVE f, r5

MAC r3, r4, r5

MOVE low(r5), low(w)

MOVE high(r5), high(w)

Figure 2: Example of uncompacted DSP56000 assembly code
produced after instruction selection

3.1 Register Class Allocation
In our compiler, instruction selection is decoupled from reg-

ister allocation and all other subsequent phases, In fact, many
conventional compilers such as gcc, lcc and Zephyr that have
been targeting GPPs, also separate these two phases. Separat-
ing register allocation from instruction selection is relatively
straightforward for a compiler targeting GPPs because GPPs
have homogeneous registers within a single class, or possibly
just a few classes, of registers; that is, in the instructionselec-
tion phase, instructions that need registers are assigned sym-
bolic temporaries which, later in the register allocation phase,
are mapped to any available registers in the same register class.
In ASIPs, however, the register classes for each individualin-
struction may differ, and a register may belong to many differ-
ent register classes (see Table 1).

What all this implies is that the relationship between reg-
isters and instructions is tightly coupled so that when we se-
lect an instruction, somehow we should also determine from
which register classes registers are assigned to the instruction.
Therefore,phase-coupling[9], a technique to cleverly com-
bine these closely related phases, has been the norm for most
compilers generating code for ASIPs. However, this phase-
coupling may create too many constraints for code generation,
thus increasing the compilation time tremendously, as in the
case of previous work which will be compared with our ap-
proach in Section 4.1.

To relieve this problem in our decoupled approach and still
handle a heterogeneous register structure, we implementeda
simple scheme that enforces a relationship that binds these
two separate phases by inserting another phase, calledregister
class allocation, between them. In this scheme, we represent
a register in two notions: a register class and a register number
in the class. In the register class allocation phase, temporaries
are not allocated physical registers, but a set of possible regis-
ters (that is, a register class) which can be placed as operands
of an instruction. Physical registers are selected among the
register class for each instruction in a later phase, which we
call register assignment. Since the focus of this paper is not
on the register class allocation, we cannot discuss the whole
algorithm here. Refer to [6] for more details.

The register classes that are allocated for the code in Fig-
ure 2 are shown below. They are associated with each tempo-
rary r i referenced in the code.

r0 : XYN
r1 : XYN

r2 : AB
r2 : XYN
r2 : XYN
r2 : AB

Between register class allocation and register assignment,
the code compactionphase results in not only reduced code
size, but also in exploitation of machine instructions thatper-
form parallel operations, such as the one with an add plus a
parallel move. Figure 3 shows the resulting instructions af-
ter the code in Figure 2 is compacted. We can see in the
compacted code that one MAC (multiply-and-add) and two
moves are now combined into a single instruction word, and
two moves are combined into one parallel move instruction.
We use the traditionallist schedulingalgorithm for our code
compaction.

MOVE a,r0 b,r1

MOVE c,r2 d,r3

MAC r0, r1, r2 e,r4 f,r5

MAC r3, r4, r5 low(r2),low(v)

MOVE high(r2),high(v) low(r5),low(w)

MOVE high(r5),high(w)

Figure 3: Code sequence after compacting the code in Figure 2

3.2 Memory Bank Assignment
After register class allocation and code compaction, each

variable in the resulting code is assigned to one of a set of
memory banks (in this example, banksX orY of the DSP56000).
In this section, we present our memory bank assignment tech-
nique using two well-known algorithms.

3.2.1 Using a MST Algorithm
In the memory bank assignment phase, we use a MST al-

gorithm. The first step of this basic phase is to construct a
weighted undirected graph, which we called thesimultaneous
reference graph(SRG). The graph contains variables refer-
enced in the code as nodes. An edgee = (vj ,vk) in the SRG
means that both variablesvj andvk are referenced within the
same instruction word in the compacted code. Figure 4(a)
shows an SRG for the code from Figure 3. The weight on
an edge between two variables represents the number of times
the variables are referenced within the same word.

a
b

c

d

e

f

v

w
X Y

a

c

e

v

b

d

f

w

(a) SRG

MOVE X:a,r0 Y:b,r1

MOVE X:c,r2 Y:d,r3

MAC r0, r1, r2 X:e,r4 Y:f,r5

MAC r3, r4, r5 low(r2),X:low(v)

MOVE high(r2),X:high(v) low(r5),Y:low(w)

MOVE high(r5),Y:high(w)

(c) Memory Bank Assignment

(b) Assigned Memory Bank

1

1

1

1

Figure 4: Code result after memory bank assignment deter-
mined from its SRG built for the code in Figure 3

According to the parallel move conditions, two variables
referenced in an instruction word must be assigned to different

memory banks in order to fetch them in a single instruction
cycle. Otherwise, an extra cycle would be needed to access
them. Thus, the strategy that we take to maximize the mem-
ory throughput is to assign a pair of variables referenced in
the same word to different memory banks whenever it is pos-
sible. If a conflict occurs between two pairs of variables, the
variables in one pair that appear more frequently in the same
words shall have a higher priority over those in the other pair.
Notice here that the frequency is denoted by the weight in the
SRG.

Figure 4(b) shows that the variablesa,
, e, andv are as-
signed to X memory, and the remaining onesb, d, f , andw
are to Y memory. This is optimal because all pairs of vari-
ables connected via edges are assigned to different memories
X and Y, thus avoiding extra cycles to fetch variables, as can
be seen from the resulting code in Figure 4(c). In the case of
variablesv andw, we still need two cycles to move each of
them because they are long type variables with double-word
length. However, they also benefit from the optimal memory
assignment as each half of the variables is moved together in
the same cycle.

The memory bank assignment problem that we face in real-
ity is not always as simple as the one in Figure 4. To illustrate
a more realistic and complex case of the problem, consider
Figure 5 where the SRG has five variables.

v1

v2 v3

v5v4
1

3

4

1

4

4
2 v1

v3

v4

v5

X

Y

X

Y

(b) Maximum Spanning Tree

v1

v2 v3

v5v4
1

3

4

1

4

4
2

v2

(a) SRG

Figure 5: More complex example of a simultaneous reference
graph and the maximum spanning tree constructed from it

We view the process of assigningnmemory banks as that of
dividing the SRG inton disjoint subgraphs; that is, all nodes
in the same subgraph are assigned a memory bank that corre-
sponds to the subgraph. In our compiler, therefore, we try to
obtain an optimal memory bank assignment for a given SRG
by finding apartition of the graph with the minimum cost ac-
cording to Definition 3.

DEFINITION 3. LetG = (V;E) be a connected, weighted
graph whereV is a set of nodes andE is a set of edges. Letwe be the weight on an edgee 2 E. Suppose that apartitionP =<G1; G2; � � � ; Gn> of the graphG dividesG into n
disjoint subgraphsGi = (Vi; Ei), 1 � i � n, such that(vj ; vk) 2 Ei if (vj ; vk) 2 E for vj 2 Vi andvk 2 Vi. Then,
thecostof the partitionP is defined asnXi=1 Xe2Ei we.
Finding such an optimal partition with the minimum cost is

another NP-complete problem. So, we developed a greedy ap-
proximation algorithm withO(jEj+jV jlgjV j) time complex-
ity, as shown in Figure 6. Since in practicejEj � jV j for our
problem, the algorithm usually runs fast inO(jV jlgjV j) time.
In the algorithm, we assumen = 2 because virtually no ex-
isting ASIPs have more than two data memory banks. But,
this algorithm can be easily extended to handle the cases forn > 2.

In our memory bank assignment algorithm, we first identify
a maximum spanning tree(MST) of the SRG. Given a con-
nected graphG, a spanning treeof G is a connected acyclic
subgraph that covers all nodes ofG. A MST is a spanning tree
whose total weight of all its edges is not less than those of any
other spanning trees ofG. One interesting property of a span-
ning tree is that it is a bipartite graph as any tree is actually
bipartite. So, given a spanning treeT for a graphG, we can
obtain a partitionP =<G1; G2> from T by, starting from an
arbitrary node, sayu, in T , assigning toG1 all nodes an even
distance fromu and toG2 those an odd distance fromu.

Based on this observation, our algorithm is designed to first
identify a spanning tree from the SRG, and then, to compute
a partition from it. But we here use a heuristic that chooses
not an ordinary spanning tree but a maximum spanning tree.
The rationale for the heuristic is that, if we build a partition
from a MST, we can eliminate heavy-weighted edges of the
MST, thereby increasing the chance to reduce the overall cost
of the resultant partition. Unfortunately, constructing apar-
tition from a MST does not guarantee the optimum solution.
But, according to our earlier preliminary work [5], the notion
of a MST provides us a crucial idea about how to find a par-
tition with low cost, which is in turn necessary to find a near-
optimal memory bank assignment. For instance, our algorithm
can find an optimal partitioning for the SRG in Figure 5.

To find a MST, our algorithm uses Prim’s MST algorithm [11].
Our algorithm is global; that is, it is applied across basic blocks.
For each node, the following sequence is repeatedly iterated
until all SRG nodes have been marked. In the algorithm, the
edges in thepriority queueQ are sorted in the order of their
weights, and an edge with the highest weight is removed first.
When there is more than one edge with the same highest weight,
the one that was inserted first will be removed. Note here that
the simultaneous reference graphGSR is not necessarily con-
nected, as opposed to our assumption made above. Therefore,
we create a set of MSTs one for each connected subgraph
of GSR. Also, note in the algorithm that at least one of the
nodesw andz should always be marked because the edges of
a marked nodeu was always inserted inQ earlier in the algo-
rithm. Figure 5(b) shows the spanned tree obtained after this
algorithm is applied to the SRG given in Figure 5(a). We can
see that X memory is assigned in even depth and Y memory in
odd depth in this tree.

3.2.2 Using a Graph Coloring Algorithm
A graph coloring approach [4] has been traditionally used

for register allocation in many compilers. The central ideaof
graph coloring is to partition each variable into separate live
ranges, where each live range is a candidate to be allocated
to a register rather than entire variables. We have found that
the same idea can be also used to improve the basic memory
bank assignment described in Section3.2.1by relaxing the
name-related constraints on variables that are to be assigned

Input : a simultaneous reference graphGSR = (VSR; ESR)
Output : a setVSR whose nodes are all colored either withX orY
Algorithm :ST Q ;; // ST is a set of MSTs andQ is a priority queue

for all nodesv in VSR do unmarkv;u selectunmarked node in(VSR);
// Return? if every node inVSR is markedi 1; create a new MSTTi ;

while u 6= ? do // Find all MSTs for connected subgraphs ofGSR
marku;Eu the set of all edges incident onu;
sort the elements ofEu in incresing order

by weights, and add them toQ;
while Q 6= ; do

remove an edgee = (w; z) with highest priority fromQ;
if z is unmarkedthenTi Ti [feg; u z; break;
fi
if w is unmarkedthenTi Ti [feg; u w; break;
fi

od
if u is markedthen
// All nodes in a connected subgraph ofGSR have been visitedu selectunmarked node in(VSR);

// Select a node in another subgraph, if any, ofGSR
addTi toST ; i++; create a new MSTTi ;

fi
od
for all nodesv in VSR do uncolorv;
for every MSTTi 2 ST do

// Assign variables inTi ’s to memory banksX andYnext visitors Q ;;m # of nodes inVSR of X-color� # of nodes inVSR of Y -color;
select an arbitrary nodev in Ti ;
if m > 0 then // More nodes have been X-colored

colorv with Y -color;
else // More nodes have been Y-colored

colorv with X-color;
repeat

for every nodeu adjacent tov do
if u is not coloredthen

coloru with a color different from the color ofv;
appendu tonext visitors Q;

fiv extract one node fromnext visitors Q;
until all nodes inTi are colored;

odm # of nodes inVSR of X-color� # of nodes inVSR of Y -color;
while m > 0 do
// While there are moreX-colored nodes thanY -colored ones

if 9 uncolored nodev 2 VSR then
colorv with Y -color; m--;

elsebreak;
while m < 0 do
// While there are moreY -colored nodes thanY -colored ones

if 9 uncolored nodev 2 VSR then
colorv with X-color; m++;

elsebreak;
if m = 0 then

for any uncolored nodev in VSR do
colorv alternately withX andY colors;

return VSR;

Figure 6: A memory bank assignment algorithm for dual mem-
ories X and Y

to memory banks.
In this approach, we build an undirected graph, called the

memory bank interference graph, to determine which live ranges
conflict and could not be assigned to the same memory bank.
Disjoint live ranges of the same variable can be assigned to
different memory banks after giving a new name to each live
range. This additional flexibility of a graph coloring approach
can sometimes result in a more efficient allocation of variables
to memory banks, as we will show in this section.

Two techniques, calledname splittingand merging, have
been newly implemented to help the memory bank assignment
benefit from this graph coloring approach. The example in
Figure 4 is too simple to illustrate this; hence, let us consider
another example in Figure 7 that will serve to clarify various
features of these techniques.

a
b

c

d

e

f

X Y

a

d

f

b

c

e

1

1

1

MOVE a,r0 b,r1

MOVE c,r2 d,r3

MAC r0,r1, r2 e,r4 f,r5

MAC r3,r4, r5 r2,a c,r6

ADD r2,r6, r7 r5,d e,r8

MOVE a,r9 d,r10

MAC r8,r9,r10

MOVE r10,d

1

1

1

a b c d e fa b c d e f

Extra cost : 1

(a) Result After Code Compaction (b) Live Range of Each Variables

(c) SRG (d) Partitioned Memory

MOVE X:a,r0 Y:b,r1

MOVE X:d,r3 Y:c,r2

MAC r0,r1,r2 X:f,r5 Y:e,r4

MAC r3,r4,r5 r2,X:a Y:c,r6

ADD r2,r6,r7 r5,X:d Y:e,r8

MOVE X:a,r9

MOVE X:d,r10

MAC r8,r9,r10

MOVE r10,X:d

(e) Result After Memory Bank Assignment

Figure 7: Code example and data structures to illustrate name
splitting and merging

Figure 7(a) shows an example of code that is generated af-
ter code compaction, and Figure 7(b) depicts the live rangesof
each of the variables. Note that the variablesa andd each have
multiple live ranges. Figures 7(c) and 7(d) show the SRG and
the assignment of variables to memory banks. We can see that
a single parallel move cannot be exploited in the example be-
causea andd were assigned to the same data memory. Finally,
Figure 7(e) shows the resulting code after memory banks are
assigned by using the MST algorithm with the memory parti-
tioning information from Figure 7(d).

Figure 8 shows how name splitting can improve the same
example in Figure 7. Name splitting is a technique that triesto
reduce the code size by compacting more memory references
into parallel move instructions. This technique is based on
a well-known graph coloring approach. Therefore, instead of
presenting the whole algorithm, we will describe the technique
with an example given in Figure 8. We can see in Figure 8(a)
that each live range of the variable is a candidate for being
assigned to a memory bank. In the example, the two variables
a andd with disjoint live ranges aresplit; that is, each live
range of the variables are given different names.

Figures 8(b) and 8(c) show the modified SRG and the im-
proved assignment of variables to memory banks. Figure 8(d)
demonstrates that, by considering live ranges as opposed to
entire variables for bank assignment, we can place the two live

a1
b

c

d1

e

f

X Y

a1

a2

d1

e

b

c

d2

f

1

1

1

1

1

1

a2

d2

a2 b c d1 e fa1 d2

(a) Live Range After Local Variable Renaming (b) SRG

(c) Partitioned Memory

MOVE X:a1,r0 Y:b,r1

MOVE X:d1,r3 Y:c,r2

MAC r0,r1,r2 X:f,r5 Y:e,r4

MAC r3,r4,r5 r2,X:a2 Y:c, r6

ADD r2,r6,r7 r5,X:d2 Y:e,r8

MOVE X:a2,r9 Y:d2,r10

MAC r8,r9,r10

MOVE r10,X:d2

(d) Result After Name Splitting

Figure 8: Name splitting for local variables

ranges ofd in different memory banks, which allows us to ex-
ploit a parallel move after eliminating one MOVE instruction
from the code in Figure 7(e).

Although name splitting helps us to further reduce the code
size, it may increase the data space, as we monitored in Fig-
ure 8. To mitigate this problem, wemergenames after name
splitting. Figure 9 shows how the data space for the same ex-
ample can be improved using name merging. In the earlier
example, we splita into two namesa1 anda2 according to
the live ranges fora, and these new names were assigned to
the same memory bank. Note that these live ranges do not
conflict. This means that they can in turn be assigned to the
same location in memory.

X Y

a

d1

e

b(d2)

c

f

a b c d1 e f

(a) Live Range After

Local Variable Merging

(b) Partitioned Memory

Figure 9: Name merging for local variables

Not only can the compiler merge nonconflicting live ranges
of the same variable, as in the case of the variablea, but it can
also merge nonconflicting live ranges of different variables.
We see in Figure 9(b) that two namesb andd2 are merged to
save one word in Y memory.

The key idea of name splitting and merging is to consider
live ranges, instead of entire variables, as candidates to be as-
signed to memory banks. As can be seen in above examples,
the compiler can potentially reduce both the number of exe-
cuted instructions by exploiting parallel moves and the number
of memory words required.

We have shown in this work that applying graph coloring
techniques when assigning variables to memory banks has a
greater potential for improvement than applying these tech-
niques for register assignment. The reason is that the number
of memory banks is typically much smaller than the number of
registers; thereby, the algorithm for name splitting and merg-
ing has practically polynomial time complexity even though
name splitting and merging basically use a theoretically NP-

complete graph coloring algorithm. That is, asymptotically
the time required for name splitting and merging scales at
worst case asn2n for dual data memory banks. This is yet
much faster than conventional graph coloring for register allo-
cation, whose time complexity isO(nmn) wherem is typi-
cally more than 32 for GPPs. It has already been empirically
proven that in practice, register allocation with such highcom-
plexity runs in polynomial time thanks to numerous heuristics
such as pruning. So does name splitting and merging, as we
will demonstrate in Section 4.
3.3 Register Assignment

After memory banks are determined for each variable in the
code, physical registers are assigned to the code. For this,
we again use the graph coloring algorithm with special con-
straints added to handle non-orthogonal architectures. Toex-
plain these constraints, recall that we only allocated register
classes to temporaries earlier in the register class allocation
phase. For register assignment, each temporary is assigned
one physical register among those in the register class allo-
cated to the temporary. For example, the temporaryr0 in Fig-
ure 4 shall be replaced by one register among four candidatesX0, X1, Y 0 andY 1, because Table 1 indicates that they are
in register class 1, which is currently allocated tor0 as shown
in Section 3.1.

In addition to register class constraints, register assignment
also needs to consider additional constraints for certain types
of instructions. For instance, register assignment for instruc-
tions containing a parallel move, such as those in Figure 4,
must meet the following architectural constraints on dual mem-
ory banks: data from each memory bank should be moved to a
predefined set of registers. This constraint is also due partially
to the heterogeneous register architecture of ASIPs. Back in
the example from Figure 4, the variablea in the parallel move
with r0 is allocated to memoryX. Therefore, only registers
eligible for r0 are confined toX0 andX1. If these physi-
cal registers are already assigned to other instructions, then a
register spill will occur.

Satisfying all these constraints on register classes and mem-
ory banks, our graph coloring algorithm assigned temporaries
to physical registers in the code. Figure 10 shows the resulting
code after register assignment is applied to the code shown in
Figure 4(c). We can see in Figure 10 that memory references in
the code represented symbolically in terms of variable names
like a andb are now converted into real ones using addressing
modes provided in the machine. This conversion was done in
the memory offset assignment phase that comes after register
assignment. In this final phase, we applied an algorithm simi-
lar to themaximum weighted path(MWP) algorithm originally
proposed by Leupers and Marwede [7].

MOVE X:(r1)+,X0 Y:(r5)+,Y0

MOVE X:(r1)+,A Y:(r5)+,Y1

MAC X0, Y0, A X:(r1)+,X1 Y:(r5)+,B

MAC X1, Y1, B A0,X:(r1)+

MOVE A1,X:(r1) B0,Y:(r5)+

MOVE B1,Y:(r5)

Figure 10: Resulting code after register assignment and memory
offset assignment

4. COMPARATIVE EMPIRICAL STUD-
IES

To evaluate the performance of our memory bank assign-
ment algorithm, we implemented the algorithm and conducted
experiments with benchmark suites on a DSP56000 [10]. The
performance is measured in two metrics: size and time. In
this section, we report the performance obtained in our exper-
iments, and compare our results with other work.

4.1 Comparison with Previous Work
Not until recently had code generation for ASIPs received

much attention from the main stream of conventional compiler
research. One prominent example of a compiler study target-
ing ASIPs may be that of Araujo and Malik [2] who proposed
a linear-time optimal algorithm for instruction selection, regis-
ter allocation, and instruction scheduling for expressiontrees.
Like most other previous studies for ASIPs, their algorithm
was not designed specifically for the multi-memory bank ar-
chitectures. To the best of our knowledge, the earliest study
that addressed this problem ofregisterandmemory bank as-
signmentis that of Saghir et al. [12]. However, our work dif-
fers from theirs because we target ASIPs with heterogeneous
registers while theirs assume processors with a large number
of centralized general-purpose registers. By the same token,
our approach also differs from theRAWproject at MIT [3]
since their memory bank assignment techniques neither as-
sume heterogeneous registers. nor even ASIPs.

Most recently, this problem was extensively addressed in a
project, calledSPAM, conducted by researchers at Princeton
and MIT [1, 14]. In fact, SPAM is the only closely related
work that is currently available to us. Therefore, in this work,
we compared our algorithm with theirs by experimenting with
the same set of benchmarks targeting the same processor.

4.2 Comparison of Code Size
In Figure 11, we list the benchmarks that were compiled

by both the SPAM compiler and ours. These benchmarks are
from theADPCMandDSPStone[15] suites. For some reason,
we could not port SPAM successfully on our machine plat-
form. So, the numbers for SPAM in the figure are borrowed
from their literature [14] in a comparison with our experimen-
tal result.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

fir
2d

im

co
nv

ol
ut

io
n

co
m
pl

ex
_m

ul
tip

ly

iir
_b

iq
ua

d_
N
_s

ec
tio

ns

le
as

t_
m
ea

n_
sq

ua
re

m
at

ri
x_

m
ul

tip
ly

_1

ad
ap

t_
qu

an
t

ad
ap

t_
pr

ed
ic

t_
1

ia
dp

t_
qu

an
t

sc
al

e_
fa

ct
or

_1

sp
ee

d_
co

nt
ro

l_
2

to
ne

_d
et

ec
to

r_
1

Benchmarks

S
iz

e
R

at
io

Figure 11: Ratios of our code sizes to SPAM code sizes

The figure displays the size ratios of our code to SPAM
code; that is, SPAM code size is 1 and our code size is nor-
malized against SPAM code size. In the figure, we can see

that the sizes of our output code are comparable to those of
their code overall. In fact, for seven benchmarks out of the
twelve, our output code is smaller than SPAM code. These re-
sults indicate that our memory bank assignment algorithm isas
effective as their simultaneous reference allocation algorithm
in most cases.

4.3 Comparison of Compilation Time
While both compilers demonstrate comparable performance

in code size, the difference of compilation times is significant,
as depicted in Figure 12. According to their literature [14], all
experiments of SPAM were conducted on Sun Microsystems
Ultra Enterprise featuring eight processors and 1GB RAM.
Unfortunately, we could not find exactly the same machine
that they used. Instead, we experimented on the same Sun Mi-
crosystems Ultra Enterprise but with two processors and 2GB
RAM.

1

10

100

1000

10000

100000

fir
2d

im

co
nv

ol
ut

io
n

co
m
pl

ex
_m

ul
tip

ly

iir
_b

iq
ua

d_
N
_s

ec
tio

ns

le
as

t_
m

ea
n_

sq
ua

re

m
at
rix

_m
ul

tip
ly
_1

ad
ap

t_
qu

an
t

ad
ap

t_
pr

ed
ic
t_

1

iad
pt

_q
ua

nt

sc
ale

_f
ac

to
r_

1

sp
ee

d_
co

nt
ro

l_
2

to
ne

_d
et
ec

to
r_

1

Benchmarks

C
o

m
p

ila
ti

o
n
 T

im
e

R
at

io

Figure 12: Ratios (in log scale) of compilation times of our com-
piler to those of the SPAM compiler

We can see in the figure that our compilation times were
roughly three to four orders of magnitude faster. Despite the
differences of machine platforms, therefore, we believe that
such large difference of compilation times clearly demonstrates
the advantage of our approach over theirs in terms of compila-
tion speed.

Our comparative experiments show evidence that the com-
pilation time of SPAM may increase substantially for large ap-
plications, as opposed to ours. We have found that the long
compilation time in the SPAM compiler results from the fact
that they use acoupledapproach that attempts to deal with
register and memory bank assignment in a single, combined
step, where several code generation phases are coupled and si-
multaneously considered to address the issue. That is, in their
approach, variables are allocated to physical registers atthe
same time they are assigned the memory banks.

To support their coupled approach, they build aconstraint
graph that represents multiple constraints under which an op-
timal solution to their problem is sought. Unfortunately, these
multiple constraints in the graph turn their problem into a typ-
ical multivariate optimum problem which is tractable only by
an NP-complete algorithm. In this coupled approach, mul-
tivariate constraints are unavoidable as various constraints on
many heterogeneous registers and multi-memory banks should
be all involved to find an optimal reference allocation simulta-
neously. As a consequence, to avoid using such an expensive
algorithm, they inevitably resorted to a heuristic algorithm,
calledsimulated annealing, based on a Monte Carlo approach.
However, even with this heuristic, we have observed from their

literature [13, 14] that their compiler still had to take more
than 1000 seconds even for a moderately sized program. This
is mainly because the number of constraint in their constraint
graph rapidly becomes too large and complicated as the code
size increases.

We see that the slowdown in compilation is obviously caused
by the intrinsic complexity of their coupled approach. In con-
trast, our compilation times stayed short even for larger bench-
marks. We credit this mainly to ourdecoupledapproach which
facilitated our application of various fast heuristic algorithms
that individually conquer each subproblem encountered in the
code generation process for the dual memory bank system.
More specifically, in our approach, register allocation is de-
coupled from code compaction and memory bank assignment;
thereby, the binding of physical registers to temporaries comes
only after code has been compacted and variables assigned to
memory banks.

Some could initially expect a degradation of our output code
quality due to the limitations newly introduced by consider-
ing physical register binding separately from memory bank as-
signment. However, we conclude from these results that care-
ful decoupling may alleviate such drawbacks in practice while
maximizing the advantages in terms of compilation speed, which
is often a critical factor for industry compilers.

4.4 Comparison of Execution Speed
To estimate the impact of code size reduction on the running

time, we generated three versions of the code as follows.

uncompacted The first version is our uncompacted code, such
as shown in Figure 2, generated immediately after the
instruction selection phase.

compiler-optimized The uncompacted code is optimized for
DSP56000 by using the techniques in Section 3 to pro-
duce the code like the one in Figure 10.

hand-optimized The uncompacted code is optimized by hand.
We hand-optimized the same code that the compiler used
as the input so that the hand-optimized one may provide
us with the upper limit of the performance of the bench-
marks on DSP56000.

Their execution times are compared in Figure 13 where the
ratios of speedup improvement produced by both compiler-
optimization and hand-optimization compared to the speedup
produced by the uncompacted code. For instance, the compiler-
optimized code forcomplex multiply achieves speedup of
about 23% over the uncompacted code while the hand-optimized
code achieves additional speedup of 9%, which is tantamount
to 32% in total over the uncompacted code.

In Figure 13, we can see that the average speedup of our
compiler-optimized code over the uncompacted code is about
7%, and that of hand-optimized code over the compiler-optimized
code is 8%. These results indicate that the compiler has achieved
roughly the half of the speedup we could get by hand optimiza-
tion. Although these numbers may not be satisfactory, the re-
sults also indicate that, in six benchmarks out of the twelve,
our compiler has achieved the greater part of the performance
gains achieved by hand optimization.

Of course, we also have several benchmarks, such asfir2dim,
convolution andleast mean square, in which our com-
piler has much room for improvement. According to our anal-
ysis, the main cause that creates such difference in execution

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

fir
2d

im

co
nv

ol
ut

io
n

co
m

pl
ex

_m
ul

tip
ly

iir
_b

iq
ua

d_
N

_s
ec

tio
ns

le
as

t_
m

ea
n_

sq
ua

re

m
at

rix
_m

ul
tip

ly
_1

ad
ap

t_
qu

an
t

ad
ap

t_
pr

ed
ic

t_
1

ia
dp

t_
qu

an
t

sc
al

e_
fa

ct
or

_1

sp
ee

d_
co

nt
ro

l_
2

to
ne

_d
et

ec
to

r_
1

Benchmarks

S
p

ee
d

u
p

Hand

Compiler

Figure 13: Speedups of the execution times of both compiler-
optimized and hand-optimized code over the execution time of un-
optimized code

time between the compiler-generated code and the hand op-
timized code is the incapability of our compiler to efficiently
handle loops. To illustrate this, consider the example in Fig-
ure 14, which shows a typical example where software pipelin-
ing is required to optimize the loop.

DO #16, L10

MOV X:a,X0 Y:b,Y0

MPY X0,Y0,A X:c,X1 Y:d,Y1

…

ADD X1,Y1,A

MOV A,X:e

L10

(a) Compiled Compacted Code by Our Approach

DO #16, L10

MOV X:a,X0 Y:b,Y0

MPY X0,Y0,A X:c,X1 Y:d,Y1

…

ADD X1,Y1,A

MOV A,X:e

L10

(a) Compiled Compacted Code by Our Approach

MOV X:a,X0 Y:b,Y0

DO #15, L10

MPY X0,Y0,A X:c,X1 Y:d,Y1

…

ADD X1,Y1,A X:a,X0 Y:b,Y0

MOV A,X:e

L10

…

(b) Hand-Optimized Compacted Code

Figure 14: Compaction Difference Between Our Compiled Code
and Hand-Optimized Code

Notice in the example that a parallel move for variablesa

andb cannot be compacted into the instruction word contain-
ing ADD because there is a dependence betweenMPY and them.
However, after placing one copy of the parallel move into the
preamble of the loop, we can now merge the move withADD.
Although this optimization may not reduce the total code size,
it eliminates one instruction within the loop, which undoubt-
edly would reduce the total execution time noticeably.

This example informs us that, since most of the execution
time is spent in loops, our compiler cannot match hand opti-
mization in run time speed without more advanced loop opti-
mizations, such as software pipelining, based on rigorous de-
pendence analysis. Currently, this issue remains for our future
research.

5. SUMMARY AND CONCLUSION
In this paper, we proposed a decoupled approach for sup-

porting a dual memory architecture, where the six code gen-
eration phases are performed separately. We also presented
name splittingandmergingas additional techniques. By com-
paring our work with SPAM, we analyzed the pros and cons of
our decoupled approach as opposed to their coupled approach.
The comparative analysis of the experiments revealed that our
compiler achieved comparable results in code size; yet, ourde-
coupled structure of code generation simplified our data allo-
cation algorithm for dual memory banks, which allows the al-
gorithm to run reasonably fast. The analysis also revealed that

exploiting dual memory banks by carefully assigning scalar
variables to the banks brought about the speedup at run time.

However, the analysis exposed several limitations of the cur-
rent techniques as well. For instance, while our approach was
limited to only scalar variables, we expect that memory bank
assignment for arrays can achieve a large performance en-
hancement because most computations are performed on ar-
rays in number crunching programs. This is actually illus-
trated in Figures 11 and 13, where even highly hand-optimized
code could not make a significant performance improvement
in terms of speed although we made a visible difference in
terms of size. This is mainly because the impact of scalar vari-
ables on the performance is relatively low as compared with
the space they occupy in the code. Another limitation would
be to perform memory bank assignment on arguments passed
via memory to functions. This would require interprocedural
analysis since the caller must know the memory access pat-
terns of the callee for passing arguments. Also, certain loop
optimization techniques, like those listed in Section 4.4,need
to be implemented to further improve execution time of the
output code.

6. REFERENCES
[1] G. Araujo, S. Devadas, K. Keutzer, S. Liao, S. Malik,

A. Sudarsanam, S. Tjiang, and A. Wang.Challenges in
Code Generation for Embedded Processors, pages
48–64. In Marwedel and Goossens [9], 1995.

[2] G. Araujo and S. Malik. Code Generation for
Fixed-point DSPs.ACM Transactions on Design
Automation of Electronic Systems, 3(2):136–161, April
1998.

[3] R. Barua, W. Lee, S. Amarasinghe, and A. Agarwal.
Compiler Support for Scalable and Efficient Memory
Systems.IEEE Transactions on Computers, Nov. 2001.

[4] G. Chaitan. Register Allocation and Spilling via Graph
Coloring. InProceedings of the SIGPLAN Symposium
on Compiler Construction, pages 201–207, June 1982.

[5] J. Cho, J. Kim, and Y. Paek. Efficient and Fast
Allocation of On-chip Dual Memory Banks. In6th
Workshop on Interaction between Compilers and
Computer Architectures, Feb. 2002.

[6] S. Jung and Y. Paek. The Very Portable Optimizer for
Digital Signal Processors. InInternational Conference
on Compilers, Architectures and Synthesis for
Embedded Systems, pages 84–92, Nov. 2001.

[7] R. Leupers and P. Marwedel. Algorithms for Address
Assignment in DSP Code Generation. InInternaltional
Conference on Computer-Aided Design, 1996.

[8] C. Liem.Retargetable Compilers for Embedded Core
Processors. Kluwer Academic Publishers, 1997.

[9] P. Marwedel and G. Goossens, editors.Code Generation
for Embedded Processors. Kluwer Academic
Publishers, 1995.

[10] Motorola Inc., Austin, TX.DSP56000 24-Bit Digital
signal Processor Family Manual, 1995.

[11] R. Prim. Shortest Connection Networks and Some
Generalizations.Bell Systems Technical Journal,
36(6):1389–1401, 1957.

[12] M. A. R. Saghir, P. Chow, and C. G. Lee. Exploiting
Dual Data-Memory Banks in Digital Signal Processors.

ACM SIGOPS Operating Systems, pages 234–243,
1996.

[13] A. Sudarsanam.Code Optimization Libraries For
Retargetable Compilation For Embedded Digital Signal
Processors. PhD thesis, Princeton University
Department of EE, May 15, 1998.

[14] A. Sudarsanam and S. Malik. Simultaneous Reference
Allocation in Code Generation for Dual Data Memory
Bank ASIPs.ACM Transactions on Design Automation
of Electronic Systems, 5(2):242–264, April 2000.

[15] V. Zivoljnovic, J.M. Velarde, C. Schager, and H. Meyr.
DSPStone - A DSP oriented Benchmarking
Methodology. InProceedings of International
Conference on Signal Processing Applications and
Technology, 1994.

