Efficient Register and Memory Assignment for
Non-orthogonal Architectures via Graph Coloring and
MST Algorithms

Jeonghun Cho

Korea Advanced Institute of Science & Technology
Daejon 305-701, Korea

{j hcho, ypaek}@oar . kai st . ac. kr

ABSTRACT

Finding an optimal assignment of program variables inte reg
isters and memory is prohibitively difficult in code genévat
for application specific instruction-set processsSIPs). This

is mainly because, in order to meet stringent speed and power]
requirements for embedded applications, ASIPs commonly em

ploy non-orthogonalarchitectures which are typically char-
acterized by irregular data paths, heterogeneous regjiatet
multiple memory banks. As a result, existing techniquesigai
developed for relatively regular, orthogongéneral-purpose
processors(GPPs) are obsolete for these recently emerging
ASIP architectures. In this paper, we attempt to tackle this
issue by exploiting conventiongtaph coloringandmaximum
spanning tre€MST) algorithms with special constraints added
to handle the non-orthogonality of ASIP architectures. The
results in our study indicate that our algorithm finds a fairl
good assignment of variables into heterogeneous regaters
multi-memories while it runs extremely faster than prewou
work that employed exceedingly expensive algorithms to ad-
dress this issue.

Categories and Subject Descriptors

D.3.4 [Programming Language$: Processors-eode gener-
ation/ compilers/optimizatigrC.1.2 [Processor Architecture:
Multiple Data Stream ArchitecturesParallel processors

General Terms
Algorithms

*This work is supported in part by Brain Korea 21 project and
Samsung Electronics Co.

"This work is supported in part by NSF contract EIA-
9806525, CCR-9904943, and EIA-0072043.

Permission to make digital or hard copies of all or part o thiork for

personal or classroom use is granted without fee providatidbpies are

not made or distributed for profit or commercial advantage #at copies
bear this notice and the full citation on the first page. Toycoiherwise, to
republish, to post on servers or to redistribute to listquies prior specific

permission and/or a fee.
LCTES'02-SCOPES’'03une 19-21,2002,Berlin,Germany.
Copyright 2002 ACM 1-58113-527-0/02/0006$5.00.

Yunheung Paek

Electrical Engineering & Computer Science Department

David Whalley'

Computer Science Department
Florida State University
Tallahassee, FL 32306-4530, USA

whal | ey@s. f su. edu

Keywords

Compiler, dual memory, non-orthogonal architecture, mgmo
assignment, graph coloring, and maximum spanning tree

INTRODUCTION

As embedded system designers strive to meet cost and per-
formance goals demanded by the applications, the complex-
ity of processors is ever increasingly optimized for ceriap-
plication domains in embedded systems. Such optimizations
need a process design space exploratidB] to find hardware
configurations that meet the design goals. The final configura
tion of a processor resulting from a design space explaratio
usually has an instruction set and the data path that aréyhigh
tuned for specific embedded applications. In this sensg, the
are collectively calledpplication specific instruction-set pro-
cessorqASIPs).

An ASIP typically has a non-orthogonal architectre which
can be characterized by irregular data paths contaihietg
erogeneous registermnd multiple memory banksAs an ex-
ample of such an architecture, Figure 1 shows the Motorola
DSP56000, a commercial off-the-shelf ASIP specifically de-
signed fordigital signal processingDSP) applications. Note
from the data path that the architecture lacks a large num-
ber of centralized general-purpoBemogeneouregisters; in-
stead, it has multiple small register files where differelasfi
are distributed and dedicated to different sets of funetion
units. Also, note that it employs a multi-memory bank archi-
tecture which consists of program and data memory banks.
In this architecture, two data memory banks are connected
through two independent data buses, while a conventiomal vo
Neumann architecture has only a single memory bank. This
type of memory architecture is supported by many embedded
processors, such as Analog Device ADSP2100, DSP Group
PineDSPCore, Motorola DSP56000 and NEC uPD77016. One
obvious advantage of this architecture is that it can acvess
data words in one instruction cycle.

Multi-memory bank architectures have been shown to be
effective for many operations commonly found in embedded
applications, such as N real multiplies:

z(t) =a(i) xy(2) i=1,2,...,.N

From this example, we can see that the application can oper-
ate at an ideal rate if a processor has two data memory banks

XDB

YDB

X0 (24)
<1 e X Memory Y Memory

YO (24)

I 1 I I
NO RO R4 N4
- W e ne W s
N2 R2 R6 N6
N3 R3 R7 N7

| —F — |

1 1 1T 1

Global Data Bus

B (56)

AGU

Shifter/Limiter

Figure 1: Motorola DSP56000 data path with dual data memory banks X andy

so that two variables; () andy(s), can be fetched simultane- 2. The initial bank assignment by the MST-based algorithm
ously. But, we also can see that this ideal speed of operation is improved by the graph coloring algorithm that was
is only possible with one condition: the variables should be also used for register assignment.

assigned to different data memory banks. For instancegin th))
following DSP56000 assembly code implementing the N real Our algorithms differ from previous work in that it assigns
multiplies, arrays: andy are assigned respectively to the two variables to heterogeneous registers and multi-memorishan

memory banks X and Y. in separatedecoupledode generation phases, as shown above;
while previous work did it in a single, tightlgoupledphase [13,
nove x:(r0)+,x0 y:(ra)+yo 14]. As will be reported later in this paper, our performance
oo ;&){?éﬁd X:(r0)+,x0 y:(r4)+ y0 results were quite encouraging. First of all, we found that t
npyr x0,y0,a a,x:(rl)+ y:(rd)+y0 code generation time was dramatically reduced by a factor of
nove x:(r0)+,x0 up to four magnitudes of order. This result was somewhat al-
end move ax: (1) + ready expected because our decoupled code generatiorsphase

greatly simplified the register and bank assignment problem
overall. Meanwhile, the benchmarking results also showed
Unfortunately, several existing vendor-provided conygile ~ that we generated code that is nearly identical in quality to
that we tested were not able to exploit this hardware featfire the code generated by the coupled approach in almost every
dual data memory banks efficiently; thereby failing to gater ~ Case. _ _
highly optimized code for their target ASIPs. This ineviab Section 2 discusses the ASIP architecture that we are target
implies that the users for these ASIPs should hand-optimize g in this work. Section 3 presents our algorithms, and Sec-
their code in assembly to fully exploit dual memory banks, tion 4 presents our experiments with additional resultsre
which makes programming the processors quite complex and have recently obtained since our earlier preliminary stiidy
time consuming. Section 5 concludes our discussion.
In this paper, we describe our implementation of two core
techniques in the code generation for non-orthogonal ASIPs 2. TARGET MACHINE MODEL
register allocationandmemory bank assignmer@ur register In this section, we characterize the non-orthogonal agchit
allocation is Qecoupleq into two phases to handle the hetero tyre of ASIPs with two properties.
geneous register architecture of an ASIP as follows. .
2.1 Heterogeneous Registers

1. Physical registers are classified into a seegfster classes ~ To more formally define this register architecture, we start
each of which is a collection of registers dedicated to the this section by first presenting the following definitions.
same machine instructions; and, our register classifica-))
tion algorithm allocates each temporary variable to one ~ DEFINITION 1. Given atarget maching/, letl = {i1, i,
of the register classes. ..., in } be the set of all the instructions defined df, and R

2. A conventional graph coloring algorithm is slightly mod- . {r1,72,...,7m} be the set of all its registers. For instruc-
e : . ? . tioni; € I, we define the set of all its operandsp(i;) =
ified to assign each temporary a physical register within is th f all th .
the register class previously allocated to it 101,052, ..., Oji }. AssumeCy, is the set of all the regis-

' ters that can appear at the position of some operénd 1 <

. . - I < k. Then we say here thdt;, forms aregister classfor
Our memory bank assignment whose goal is to efficiently as- . = Y . g

sign variables to multi-memory banks for ASIPs is also decou Instructions; .
pled into two phases as follows. DEFINITION 2. From Definition 1, we defing;, a collec-
tion of distinct register classes for instructiepn as follows:
1. A maximum spanning tre@ST) algorithm is used to Ik _
. . . S;i=J ACu} 1)
find a memory bank assignment for variables. =1

From this. we in turn defing as follows: the ALU operations are divided into data operations and ad-

s=|I" s 5 dress operations. Data ALU operations are performed on a

- szl 7 @) data ALU withdata registerswvhich consist of four 24-bit in-
We say thats is the whole collection of register classes for ~Put registers (X0, X1, YO and Y1) and two 56-bit accumu-

machinel. lators (A and B). Address ALU operations are performed in

the address generation un{fAGU), which calculates mem-

To see the difference of homogeneous and heterogenous®'Y addresses necessary to indirectly address data opeirand
register architectures, first consider the SPARC as an eiamp Memory. Since the AGU operates independently from the data
of a processor with homogenous registers. A typical instruc ALY, address calculations can occur simultaneously witada

tion of the SPARC has three operands ALU operations. o o
op_code reg:,reg;, reg As shown in Figure 1, the AGU is divided into two identi-

where all the 32 registers(r0,r1,,r31) in the register file can cal halves, each of which has an address ALU and two sets of
appear as the first operandg;. In this case, the set of all these ~ 16-bit register files. One set of the register files has fal
registers forms a single register class fyp_code. Since dre§s register¢R0O — R3), and the other also ha; four address
for the other operandseg; andregy, the same 32 registers registers (R4 — R7). The address output multiplexers sglect
can appear, they again form the same class for the instructio the source for the XAB, YAB. The source of each effective
Thus, we have only one register class defined for the instruc- ddress may be the output of the address ALU for indexed ad-

tion op_code. On the other hand, the DSP56000 has an in- dressing or an address register for register-indirectesking.
struction of the form At every cycle, the addresses generated by the ALUs can be

npya regi,reg;,regr used to access two words in parallel in the X and Y memory
which multiplies the first two operands and places the produc Panks, each of which consists of 512-woxd24-bit memory.
in the third operand. The DSP56000 restriatg; andreg; to Possible memory reference modes of the DSP56000 are of
be input registers X0, X1, YO, Y1, anetg; to be accumula- four types: X, Y, L and XY. In X and Y memory reference
tor A or B. In this case, we have two register classes defined Modes, the operand is a single word either from X or Y mem-

for npya: {X0, X1, YO, Y1} atreg; andreg; and{A,B} at ory bank. In L memory reference mode, the operand is a long
rege. word (two words each from X and Y memories) referenced b_y

In the above examples; for op_code andnpya are, re- one operand address. In XY memory reference mode, two in-
spectively,{{r0,...,r31}} and {{X0, X1, YO, Y1} {A,B}}. dependent addresses are used to move two word operands to

We say that a typical processor withgeneral purpose regis- ~ memory simultaneously: one yvord operand is in.X memory,
ters like the SPARC has a homogeneous register architecture @nd the other word operand is in Y memory. Such independent
This is mainly becauss is usually a set of a single element ~MoVves of data in the same cycle are callqzagallel move In
consisting of thex registers for the processor, which, by Def- ~ Figure 1, we can see two data buses XDB and YDB that con-
initions 1 and 2, equivalently means that the sameegis- nect the data path of the DSP56000 to two data memory banks
ters are homogeneous in all the machine instructions. In the X and Y, respectively. Through these buses, a parallel move i
case of DSP56000, however, its registers are dedicated dif- Made between memories and data registers.

ferently to the machine instructions, which make them par- These architectural features of the DSP56000, like mostroth
tially homogeneous only in the subsets of machine instruc- ASIPS with multi-memory banks, allow a single instruction
tions. For example, we can see that even one instruction like 0 Perform one data ALU operation and two move operations
npya of DSP56000 has two different sets of homogenous reg- N parallel per cyc!e, but only under certain conditions doie
isters: XYN and AB. We list the whole collection of register hardware constraints. In the case of the DSP56000, the fol-
classes defined for DSP56000 in Table 1. In general, we say lowing parallel move conditionshould be met to maximize

that a machine with such complex register classes has a het-the utilization of the dual memory bank architecture: (1§ th
erogeneous register architecture. two words should be addressed from different memory banks;

memory indirect addressing modes using address registers a
used to address the words; and, each address registeradvolv

[ID | Register Clasg Physical Registers in a parallel move must be from a different set among the two
1 XYN X0, X1,Y0, Y1 register files in the AGU. In this implementation, we attempt
g é\é X, Yéljf)ngRV;OFd) to make the parallel move conditions meet in the code so that
p e ACCUMUTator A B as many parallel moves as possible can be generated.
5 YN N4 —N7
g iﬁ Sg:ﬁg 3. REGISTERALLOCATIONAND MEM-
8 X X0, XT ORY BANK ASSIGNMENT
9 Y Y0, Y1 In this section, we detail the code generation phases for

register allocation and memory bank assignment, which were

briefly described in Section 1. To explain step by step how

our code generator produces the final code, we will use the ex-

. ample of DSP56000 assembly code shown in Figure 2. This

2.2 MUItlple Data Memory Banks code can be obtained immediately after the instructioncsele
As an example of multi-memory bank ASIPs, we will use tion phase. Note that it is still in a sequential and unogtedi

the DSP56000 whose data path was shown in Figure 1, whereform. This initial code will be given to the subsequent plsase

Table 1: The register classes for Motorola DSP56000

and optimized for the dual memory architecture of DSP56000,
as described in this section.

MOVE a, r0

MOVE b, rl

MOVE c, r2

MAC r0, rl, r2

MOVE low (r2), low(v)
MOVE high(r2), high(v)
MOVE d, r3

MOVE e, rd

MOVE £, 5

MAC r3, r4, r5

MOVE low (r5), low(w)
MOVE high(r5), high(w)

Figure 2: Example of uncompacted DSP56000 assembly code
produced after instruction selection

3.1 Register Class Allocation

In our compiler, instruction selection is decoupled fromg-re
ister allocation and all other subsequent phases, In faaym
conventional compilers such as gcc, lcc and Zephyr that have

been targeting GPPs, also separate these two phases. tSepara

ing register allocation from instruction selection is telaly
straightforward for a compiler targeting GPPs because GPPs
have homogeneous registers within a single class, or ggssib
just a few classes, of registers; that is, in the instructielec-

tion phase, instructions that need registers are assigmad s
bolic temporaries which, later in the register allocatidrage,

are mapped to any available registers in the same registss.cl

In ASIPs, however, the register classes for each individual
struction may differ, and a register may belong to many diffe
ent register classes (see Table 1).

What all this implies is that the relationship between reg-
isters and instructions is tightly coupled so that when we se
lect an instruction, somehow we should also determine from
which register classes registers are assigned to the atistnu
Therefore,phase-couplind9], a technique to cleverly com-

r2 : AB
r2 : XYN
r2 : XYN
r2 : AB

Between register class allocation and register assignment
the code compactiophase results in not only reduced code
size, but also in exploitation of machine instructions theit-
form parallel operations, such as the one with an add plus a
parallel move. Figure 3 shows the resulting instructions af
ter the code in Figure 2 is compacted. We can see in the
compacted code that one MAC (multiply-and-add) and two
moves are now combined into a single instruction word, and
two moves are combined into one parallel move instruction.
We use the traditiondlst schedulingalgorithm for our code
compaction.

MOVE a,r0 b,rl

MOVE c,r2 d,r3

MAC r0,rl,r2 erd4 fr5

MAC r3,r4,r5 low(r2),low(v)

MOVE high(r2),high(v) low(r5),low(w)
MOVE high(r5),high(w)

Figure 3: Code sequence after compacting the code in Figure 2

3.2 Memory Bank Assignment

After register class allocation and code compaction, each
variable in the resulting code is assigned to one of a set of
memory banks (in this example, bankKsor Y of the DSP56000).
In this section, we present our memory bank assignment tech-
nigue using two well-known algorithms.

3.2.1 Using a MST Algorithm

In the memory bank assignment phase, we use a MST al-
gorithm. The first step of this basic phase is to construct a
weighted undirected graph, which we called iultaneous
reference graph(SRG). The graph contains variables refer-
enced in the code as nodes. An edge (v;,v;) in the SRG

bine these closely related phases, has been the norm for MOSteans that both variableg andv; are referenced within the

compilers generating code for ASIPs. However, this phase-
coupling may create too many constraints for code generatio
thus increasing the compilation time tremendously, as @& th
case of previous work which will be compared with our ap-
proach in Section 4.1.

To relieve this problem in our decoupled approach and still
handle a heterogeneous register structure, we implemented
simple scheme that enforces a relationship that binds these
two separate phases by inserting another phase, catiester
class allocation between them. In this scheme, we represent
a register in two notions: a register class and a registefeum
in the class. In the register class allocation phase, teanigsr
are not allocated physical registers, but a set of possilgis+
ters (that is, a register class) which can be placed as ogeran
of an instruction. Physical registers are selected amoag th
register class for each instruction in a later phase, whieh w
call register assignmentSince the focus of this paper is not
on the register class allocation, we cannot discuss theavhol
algorithm here. Refer to [6] for more details.

The register classes that are allocated for the code in Fig-
ure 2 are shown below. They are associated with each tempo-
rary ri referenced in the code.

ro :
rl .

XYN
XYN

same instruction word in the compacted code. Figure 4(a)
shows an SRG for the code from Figure 3. The weight on
an edge between two variables represents the number of times
the variables are referenced within the same word.

L-a
X |y
b W
\ a b
C v
\ c d
1
e £
d £
e v w
(a) SRG (b) Assigned Memory Bank
MOVE X:a,r0 Y:b, rl
MOVE X:c,r2 Y:d, r3
MAC 10, rl, r2 X:e,r4d Y:f,r5
MAC r3, r4, r5 1low(r2),X:low(v)
MOVE high(r2),X:high(v) low(r5),Y:low(w)
MOVE high (x5),Y:high(w)

(c) Memory Bank Assignment

Figure 4: Code result after memory bank assignment deter-
mined from its SRG built for the code in Figure 3

According to the parallel move conditions, two variables
referenced in an instruction word must be assigned to differ

memory banks in order to fetch them in a single instruction

another NP-complete problem. So, we developed a greedy ap-

cycle. Otherwise, an extra cycle would be needed to access proximation algorithm wittO (| E|+ |V |lg|V'|) time complex-

them. Thus, the strategy that we take to maximize the mem-
ory throughput is to assign a pair of variables referenced in
the same word to different memory banks whenever it is pos-
sible. If a conflict occurs between two pairs of variableg, th

ity, as shown in Figure 6. Since in practi{®| =~ |V'| for our
problem, the algorithm usually runs fastdn(|V'|lg|V'|) time.

In the algorithm, we assume = 2 because virtually no ex-
isting ASIPs have more than two data memory banks. But,

variables in one pair that appear more frequently in the same this algorithm can be easily extended to handle the cases for

words shall have a higher priority over those in the other.pai
Notice here that the frequency is denoted by the weight in the
SRG.

Figure 4(b) shows that the variablesc, ¢, andv are as-
signed to X memory, and the remaining ortesl, f, andw
are to Y memory. This is optimal because all pairs of vari-
ables connected via edges are assigned to different mesnorie
X and Y, thus avoiding extra cycles to fetch variables, as can
be seen from the resulting code in Figure 4(c). In the case of
variablesv andw, we still need two cycles to move each of
them because they are long type variables with double-word
length. However, they also benefit from the optimal memory

assignment as each half of the variables is moved together in

the same cycle.

The memory bank assignment problem that we face in real-
ity is not always as simple as the one in Figure 4. To illustrat
a more realistic and complex case of the problem, consider
Figure 5 where the SRG has five variables.

4

v2 v3
1
vl/“ \ E 1
N I
N VA= V5 va Y
(a) SRG |
V2=—— 3 V2 X
AN N\
v \ - v3 v5 Y
"N v5

1

(b) Maximum Spanning Tree

Figure 5: More complex example of a simultaneous reference
graph and the maximum spanning tree constructed from it

We view the process of assigningnemory banks as that of
dividing the SRG intan disjoint subgraphs; that is, all nodes

n > 2.

In our memory bank assignment algorithm, we first identify
a maximum spanning tre@MST) of the SRG. Given a con-
nected graplG, a spanning treeof G is a connected acyclic
subgraph that covers all nodes@f A MST is a spanning tree
whose total weight of all its edges is not less than those pf an
other spanning trees &f. One interesting property of a span-
ning tree is that it is a bipartite graph as any tree is agtuall
bipartite. So, given a spanning tréefor a graphG, we can
obtain a partition? =<G1, G2> from T by, starting from an
arbitrary node, say, in T', assigning ta7; all nodes an even
distance fromy and toG, those an odd distance from

Based on this observation, our algorithm is designed to first
identify a spanning tree from the SRG, and then, to compute
a partition from it. But we here use a heuristic that chooses
not an ordinary spanning tree but a maximum spanning tree.
The rationale for the heuristic is that, if we build a paditi
from a MST, we can eliminate heavy-weighted edges of the
MST, thereby increasing the chance to reduce the overatl cos
of the resultant partition. Unfortunately, constructingpar-
tition from a MST does not guarantee the optimum solution.
But, according to our earlier preliminary work [5], the ranti
of a MST provides us a crucial idea about how to find a par-
tition with low cost, which is in turn necessary to find a near-
optimal memory bank assignment. For instance, our algarith
can find an optimal partitioning for the SRG in Figure 5.

To find a MST, our algorithm uses Prim’s MST algorithm [11].
Our algorithm is global; that is, itis applied across basicks.
For each node, the following sequence is repeatedly itrate
until all SRG nodes have been marked. In the algorithm, the
edges in thepriority queue(are sorted in the order of their
weights, and an edge with the highest weight is removed first.
When there is more than one edge with the same highest weight,
the one that was inserted first will be removed. Note here that
the simultaneous reference gra@lar is not necessarily con-
nected, as opposed to our assumption made above. Therefore,
we create a set of MSTs one for each connected subgraph

in the same subgraph are assigned a memory bank that corre-0f Gsr. Also, note in the algorithm that at least one of the

sponds to the subgraph. In our compiler, therefore, we try to
obtain an optimal memory bank assignment for a given SRG
by finding apartition of the graph with the minimum cost ac-
cording to Definition 3.

DEFINITION 3. LetG = (V, E) be a connected, weighted
graph wherel” is a set of nodes andl’ is a set of edges. Let
w, be the weight on an edgee E. Suppose that partition
P =<G1,G2,---,Gp> of the graphG dividesG into n
disjoint subgraphsG; = (Vi, E;), 1 < i < n, such that
(vj,vk) € E; if (vj,vk) € E forv; € V; anduy € V;. Then,
the costof the partitionP is defined as

n

P

i=1eckE;
Finding such an optimal partition with the minimum cost is

nodesw andz should always be marked because the edges of
a marked node was always inserted i@) earlier in the algo-
rithm. Figure 5(b) shows the spanned tree obtained after thi
algorithm is applied to the SRG given in Figure 5(a). We can
see that X memory is assigned in even depth and Y memory in
odd depth in this tree.

3.2.2 Using a Graph Coloring Algorithm

A graph coloring approach [4] has been traditionally used
for register allocation in many compilers. The central idéa
graph coloring is to partition each variable into separate |
ranges, where each live range is a candidate to be allocated
to a register rather than entire variables. We have found tha
the same idea can be also used to improve the basic memory
bank assignment described in Sectidr2.1by relaxing the
name-related constraints on variables that are to be asign

Input: a simultaneous reference grapts r = (Vsr, Esr)
Output: a setVs g whose nodes are all colored either wikhor Y’

Algorithm :
St + Q < 0; /| St is asetof MSTs an@ is a priority queue
for all nodesv in Vs g do unmarkv;
u < selectunmarked_node.in(Vs r);
/I Return_L if every node inVg g is marked
i < 1; create anew MST7;
while u # L do // Find all MSTs for connected subgraphs®f r
mark u;
E, < the set of all edges incident an
sort the elements dF,, in incresing order
by weights, and add them @;
while Q # 0 do
remove an edge = (w, z) with highest priority fromQ;
if z is unmarkedhen
T; <+ T; U{e}; w < z; break;
fi
if w is unmarkedhen
T; « T; U{e}; u <« w; break;
fi
od
if u is markedthen
/I All nodes in a connected subgraph@f r have been visited
u < selectunmarked_node.in(Vs r);
/I Select a node in another subgraph, if any(df r
addT; to Sr; i++, create a new MST};
fi
od
for all nodesv in Vg g do uncolorv;
for every MSTT; € St do
/I Assign variables ifT’;'s to memory bankX andY
next_visitors_Q « 0;
m < # of nodes inVs g of X-color
— # of nodes inVg g of Y-color;
select an arbitrary nodein T;;
if m > 0then /I More nodes have been X-colored
color v with Y -color;
else /I More nodes have been Y-colored
color v with X -color;
repeat
for every nodeu adjacent taw do
if w is not coloredhen
color u with a color different from the color of;
appendu to next_visitors_Q;
fi
v «— extract one node fromext_visitors_Q;
until all nodes inT7; are colored;
od
m < # of nodes inVg g of X-color
— # of nodes inVg g of Y'-color;
while m > 0 do
/I While there are moreX -colored nodes thaiy"-colored ones
if 3 uncolored noder € Vg g then
colorv with Y-color; m--;
elsebreak;
while m < 0do
/I While there are mor& -colored nodes thai -colored ones
if 3 uncolored noder € Vg g then
colorv with X -color; m++;
elsebreak;
if m = 0then
for any uncolored node in Vs g do
color v alternately withX andY” colors;
return Vsg;

Figure 6: A memory bank assignment algorithm for dual mem-
ories Xand Y

to memory banks.

In this approach, we build an undirected graph, called the
memory bank interference grapio determine which live ranges
conflict and could not be assigned to the same memory bank.
Disjoint live ranges of the same variable can be assigned to
different memory banks after giving a new name to each live
range. This additional flexibility of a graph coloring appoh
can sometimes result in a more efficient allocation of vaesb
to memory banks, as we will show in this section.

Two techniques, calledame splittingand merging have
been newly implemented to help the memory bank assignment
benefit from this graph coloring approach. The example in
Figure 4 is too simple to illustrate this; hence, let us cdesi
another example in Figure 7 that will serve to clarify vagou
features of these techniques.

a b c
MOVE a,r0 b,rl J_ J_ J
MOVE c,r2 d,r3
MAC r0,rl, r2 e,r4 f£,r5

MAC r3,r4, r5 r2,a c,r6

ADD r2,r6, r7 r5,d e,r8
MOVE a,r9 d,rl0 :[
MAC 1r8,r9,rl0
MOVE rlo,d
(a) Result After Code Compaction (b) Live Range of Each Variables
MOVE X:a,r0 Y:b,rl
MOVE X:d,r3 Y:c,r2
_L-a Extracost: 1 X v MAC 1rO,rl,r2 X:f,r5 Y:e,r4
b MAC «r3,r4,r5 r2,X:a Y:c,r6
/ f a b ADD r2,r6,r7 r5,X:d Y:e,r8
1 \1 MOVE X:a, r9
c d c
e ‘ MOVE X:d, rl0
1\ / f e MAC r8,r9,rl0
a1 MOVE r10,x:d
(c) SRG (d) Partitioned Memory (e) Result After Memory Bank Assignment

Figure 7: Code example and data structures to illustrate name
splitting and merging

Figure 7(a) shows an example of code that is generated af-
ter code compaction, and Figure 7(b) depicts the live ranfes
each of the variables. Note that the variatdesdd each have
multiple live ranges. Figures 7(c) and 7(d) show the SRG and
the assignment of variables to memory banks. We can see that
a single parallel move cannot be exploited in the example be-
cause andd were assigned to the same data memory. Finally,
Figure 7(e) shows the resulting code after memory banks are
assigned by using the MST algorithm with the memory parti-
tioning information from Figure 7(d).

Figure 8 shows how name splitting can improve the same
example in Figure 7. Name splitting is a technique that toes
reduce the code size by compacting more memory references
into parallel move instructions. This technique is based on
a well-known graph coloring approach. Therefore, instefad o
presenting the whole algorithm, we will describe the teghei
with an example given in Figure 8. We can see in Figure 8(a)
that each live range of the variable is a candidate for being
assigned to a memory bank. In the example, the two variables
a andd with disjoint live ranges araplit; that is, each live
range of the variables are given different names.

Figures 8(b) and 8(c) show the modified SRG and the im-
proved assignment of variables to memory banks. Figure 8(d)
demonstrates that, by considering live ranges as opposed to
entire variables for bank assignment, we can place the txo li

L

b al a2

<

N

£

\

[S]

1

I

[

a1 a1
(a) Live Range After Local Variable Renaming (b) SRG

MOVE X:al,r0 Y:b, rl
MOVE X:d1l,r3 Y:c,r2
MAC 1r0,rl,r2 X:f,r5 Y:e,r4d
MAC r3,r4,r5 r2,X:a2 Y:c, r6
ADD r2,r6,r7 r5,X:d2 Y:e, r8
MOVE X:a2,r9 Y:d2,rl0
MAC r8,r9,rl0
MOVE rl0,X:d2

(c) Partitioned Memory (d) Result After Name Splitting

Figure 8: Name splitting for local variables

ranges ofd in different memory banks, which allows us to ex-
ploit a parallel move after eliminating one MOVE instrugtio
from the code in Figure 7(e).

Although name splitting helps us to further reduce the code
size, it may increase the data space, as we monitored in Fig-
ure 8. To mitigate this problem, waergenames after name
splitting. Figure 9 shows how the data space for the same ex-
ample can be improved using name merging. In the earlier
example, we split into two namesal anda2 according to
the live ranges fon, and these new names were assigned to
the same memory bank. Note that these live ranges do not
conflict. This means that they can in turn be assigned to the
same location in memory.

J X Y
a (bd2)
dl l¢]
I I e £

(a) Live Range After (b) Partitioned Memory

Local Variable Merging
Figure 9: Name merging for local variables

Not only can the compiler merge nonconflicting live ranges
of the same variable, as in the case of the variablaut it can
also merge nonconflicting live ranges of different variable
We see in Figure 9(b) that two namiesndd2 are merged to
save one word in Y memory.

The key idea of name splitting and merging is to consider
live ranges, instead of entire variables, as candidates b
signed to memory banks. As can be seen in above examples,
the compiler can potentially reduce both the number of exe-
cuted instructions by exploiting parallel moves and the bem
of memory words required.

We have shown in this work that applying graph coloring
techniques when assigning variables to memory banks has a
greater potential for improvement than applying these -tech
nigues for register assignment. The reason is that the numbe
of memory banks is typically much smaller than the number of
registers; thereby, the algorithm for name splitting andgne
ing has practically polynomial time complexity even though
name splitting and merging basically use a theoretically NP

complete graph coloring algorithm. That is, asymptoticall
the time required for name splitting and merging scales at
worst case a®2™ for dual data memory banks. This is yet
much faster than conventional graph coloring for registier a
cation, whose time complexity i©(nm™) wherem is typi-
cally more than 32 for GPPs. It has already been empirically
proven that in practice, register allocation with such hign-
plexity runs in polynomial time thanks to numerous heucksti
such as pruning. So does name splitting and merging, as we
will demonstrate in Section 4.

3.3 Register Assignment

After memory banks are determined for each variable in the
code, physical registers are assigned to the code. For this,
we again use the graph coloring algorithm with special con-
straints added to handle non-orthogonal architecturesexTo
plain these constraints, recall that we only allocatedstegi
classes to temporaries earlier in the register class aitta
phase. For register assignment, each temporary is assigned
one physical register among those in the register class allo
cated to the temporary. For example, the temporarin Fig-
ure 4 shall be replaced by one register among four candidates
X0, X1,Y0 andY'1, because Table 1 indicates that they are
in register class 1, which is currently allocated-tbas shown
in Section 3.1.

In addition to register class constraints, register assigm
also needs to consider additional constraints for cerigieg
of instructions. For instance, register assignment fotrirs
tions containing a parallel move, such as those in Figure 4,
must meet the following architectural constraints on duaim
ory banks: data from each memory bank should be moved to a
predefined set of registers. This constraint is also duegtigrt
to the heterogeneous register architecture of ASIPs. Back i
the example from Figure 4, the variaklén the parallel move
with 70 is allocated to memonkX. Therefore, only registers
eligible for 0 are confined taX0 and X'1. If these physi-
cal registers are already assigned to other instructitnes) &
register spill will occur.

Satisfying all these constraints on register classes amd-me
ory banks, our graph coloring algorithm assigned tempesari
to physical registers in the code. Figure 10 shows the liegult
code after register assignment is applied to the code shown i
Figure 4(c). We can see in Figure 10 that memory references in
the code represented symbolically in terms of variable rame
like a andb are now converted into real ones using addressing
modes provided in the machine. This conversion was done in
the memory offset assignment phase that comes after registe
assignment. In this final phase, we applied an algorithm-simi
lar to themaximum weighted paf(MWP) algorithm originally
proposed by Leupers and Marwede [7].

MOVE X: (rl)+,x0 Y: (r5)+,Y0
MOVE X:(rl)+,A Y: (r5)+,Y1
MAC X0, YO, A X:(rl)+,X1 Y:(xr5)+,B

MAC X1, Y1, B AQ0,X: (rl)+

MOVE Al,X: (rl) BO,Y: (r5)+
MOVE Bl,Y: (r5)

Figure 10: Resulting code after register assignment and memory
offset assignment

4. COMPARATIVE EMPIRICAL STUD-
IES

that the sizes of our output code are comparable to those of
To evaluate the performance of our memory bank assign- their code overall. In fact, for seven benchmarks out of the
ment algorithm, we implemented the algorithm and conducted twelve, our output code is smaller than SPAM code. These re-
experiments with benchmark suites on a DSP56000 [10]. The sults indicate that our memory bank assignment algorithes is
performance is measured in two metrics: size and time. In effective as their simultaneous reference allocation rittym
this section, we report the performance obtained in ouriexpe in most cases.

iments, and compare our results with other work. . G .
P 4.3 Comparison of Compilation Time
4.1 Comparison with Previous Work While both compilers demonstrate comparable performance

Not until recently had code generation for ASIPs received in code size, the difference of compilation times is sigaifi
much attention from the main stream of conventional compile as depicted in Figure 12. According to their literature [1a]
research. One prominent example of a compiler study target- €xperiments of SPAM were conducted on Sun Microsystems
ing ASIPs may be that of Araujo and Malik [2] who proposed Ultra Enterprise featuring eight processors and 1GB RAM.
a linear-time optimal algorithm for instruction selectioagis- Unfortunately, we could not find exactly the same machine
ter allocation, and instruction scheduling for expressiees. that they used. Instead, we experimented on the same Sun Mi-
Like most other previous studies for ASIPs, their algorithm Crosystems Ultra Enterprise but with two processors and 2GB
was not designed specifically for the multi-memory bank ar- RAM.
chitectures. To the best of our knowledge, the earliestystud |00 -
that addressed this problem @gisterand memory bank as- o000 M
signments that of Saghir et al. [12]. However, our work dif-
fers from theirs because we target ASIPs with heterogeneous
registers while theirs assume processors with a large numbe
of centralized general-purpose registers. By the samentoke

1000 |

100 [

10 |

Compilation Time Ratio

our approach also differs from thHRAW project at MIT [3] . 11

since their memory bank assignment techniques neither as- S oo . v s N .

sume heterogeneous registers. nor even ASIPs. &S & QV»\& & & &
Most recently, this problem was extensively addressed in a Sy & STSS & 5

project, calledSPAM conducted by researchers at Princeton & & ¢ v S

and MIT [1, 14]. In fact, SPAM is the only closely related Benchmarks

work that is Currently available to us. Therefore, in thlS!’lNO Figure 12: Ratios (m |og Sca|e) of Comp”ation times of our com-

we compared our algorithm with theirs by experimenting with pijler to those of the SPAM compiler

the same set of benchmarks targeting the same processor.

. . We can see in the figure that our compilation times were

4.2 Comparison of Code Size roughly three to four orders of magnitude faster. Despite th
In Figure 11, we list the benchmarks that were compiled differences of machine platforms, therefore, we beliewat th

by both the SPAM compiler and ours. These benchmarks are such large difference of compilation times clearly demates

from theADPCMandDSPSton¢l5] suites. For some reason, the advantage of our approach over theirs in terms of compila

we could not port SPAM successfully on our machine plat- tion speed.

form. So, the numbers for SPAM in the figure are borrowed Our comparative experiments show evidence that the com-

from their literature [14] in a comparison with our experime pilation time of SPAM may increase substantially for large a

tal result. plications, as opposed to ours. We have found that the long
compilation time in the SPAM compiler results from the fact
18 p that they use @oupledapproach that attempts to deal with

:i register and memory bank assignment in a single, combined

s - step, where several code generation phases are coupled and s
1 | multaneously considered to address the issue. That isein th

Q08 approach, variables are allocated to physical registetheat

% 06 same time they are assigned the memory banks.

04 To support their coupled approach, they buildanstraint

02 % graphthat represents multiple constraints under which an op-
0 timal solution to their problem is sought. Unfortunatelyese

& ,\‘> multiple constraints in the graph turn their problem intyp-t

& ical multivariate optimum problem which is tractable only b

S an NP-complete algorithm. In this coupled approach, mul-

tivariate constraints are unavoidable as various comgan

many heterogeneous registers and multi-memory bankshoul

be all involved to find an optimal reference allocation sitaul

neously. As a consequence, to avoid using such an expensive
The figure displays the size ratios of our code to SPAM algorithm, they inevitably resorted to a heuristic algumit,

code; that is, SPAM code size is 1 and our code size is nor- calledsimulated annealingbased on a Monte Carlo approach.

malized against SPAM code size. In the figure, we can see However, even with this heuristic, we have observed frorir the

10

Rati

N Benchmarks

Figure 11: Ratios of our code sizes to SPAM code sizes

literature [13, 14] that their compiler still had to take raor
than 1000 seconds even for a moderately sized program. This
is mainly because the number of constraint in their constrai
graph rapidly becomes too large and complicated as the code
size increases.

We see that the slowdown in compilation is obviously caused
by the intrinsic complexity of their coupled approach. Imeo
trast, our compilation times stayed short even for largeche
marks. We credit this mainly to odlecoupledapproach which
facilitated our application of various fast heuristic aigiams
that individually conquer each subproblem encounteretién t
code generation process for the dual memory bank system.
More specifically, in our approach, register allocation & d
coupled from code compaction and memory bank assignment;
thereby, the binding of physical registers to temporara@aes

1.6

B Hand
O Compiler

1.4

1.2

1
0.8
0.6

o
5

=]
54
o
o

2]

Benchmarks

Figure 13: Speedups of the execution times of both compiler-

only after code has been compacted and variables assigned taptimized and hand-optimized code over the execution timefan-

memory banks.

Some could initially expect a degradation of our output code
quality due to the limitations newly introduced by consider
ing physical register binding separately from memory bagik a
signment. However, we conclude from these results that care
ful decoupling may alleviate such drawbacks in practicelevhi
maximizing the advantages in terms of compilation speed;hwh
is often a critical factor for industry compilers.

4.4 Comparison of Execution Speed

To estimate the impact of code size reduction on the running
time, we generated three versions of the code as follows.

uncompacted The first version is our uncompacted code, such
as shown in Figure 2, generated immediately after the
instruction selection phase.

compiler-optimized The uncompacted code is optimized for
DSP56000 by using the techniques in Section 3 to pro-
duce the code like the one in Figure 10.

hand-optimized The uncompacted code is optimized by hand.
We hand-optimized the same code that the compiler used
as the input so that the hand-optimized one may provide
us with the upper limit of the performance of the bench-
marks on DSP56000.

Their execution times are compared in Figure 13 where the
ratios of speedup improvement produced by both compiler-
optimization and hand-optimization compared to the sppedu

produced by the uncompacted code. Forinstance, the campile
optimized code foronpl ex_mul ti pl y achieves speedup of

about 23% over the uncompacted code while the hand-optimize

code achieves additional speedup of 9%, which is tantamount
to 32% in total over the uncompacted code.

In Figure 13, we can see that the average speedup of our
compiler-optimized code over the uncompacted code is about
7%, and that of hand-optimized code over the compiler-ogtih
code is 8%. These results indicate that the compiler haswaethi
roughly the half of the speedup we could get by hand optimiza-
tion. Although these numbers may not be satisfactory, the re
sults also indicate that, in six benchmarks out of the twelve
our compiler has achieved the greater part of the performanc
gains achieved by hand optimization.

Of course, we also have several benchmarks, suthrasli m
convol uti on andl east _-nean_squar e, in which our com-
piler has much room for improvement. According to our anal-
ysis, the main cause that creates such difference in exacuti

optimized code

time between the compiler-generated code and the hand op-
timized code is the incapability of our compiler to efficignt
handle loops. To illustrate this, consider the example gt Fi
ure 14, which shows a typical example where software pipelin
ing is required to optimize the loop.
MoV

DO #15, L10
MPY X0,Y0,A

1a,X0 Y:ib,Y0
DO #16,
MoV X:a,X0 Y:b,Y0
MPY X0,Y0,A X:c,X1 Y:d,Yl

L10

X:c,X1 Y:d,Y1

ADD X1,Y1,A X
MoV
110

1a,X0 Y:ib,Y0
ADD X1,Y1,A sXre
MoV

L10
(a) Compiled Compacted Code by Our Approach

A,X:e

(b) Hand-Optimized Compacted Code

Figure 14: Compaction Difference Between Our Compiled Code
and Hand-Optimized Code

Notice in the example that a parallel move for variakdes
andb cannot be compacted into the instruction word contain-
ing ADD because there is a dependence betvigdrand them.
However, after placing one copy of the parallel move into the
preamble of the loop, we can now merge the move wibb.
Although this optimization may not reduce the total code siz
it eliminates one instruction within the loop, which undéub
edly would reduce the total execution time noticeably.

This example informs us that, since most of the execution
time is spent in loops, our compiler cannot match hand opti-
mization in run time speed without more advanced loop opti-
mizations, such as software pipelining, based on rigorais d
pendence analysis. Currently, this issue remains for duréu
research.

5. SUMMARY AND CONCLUSION

In this paper, we proposed a decoupled approach for sup-
porting a dual memory architecture, where the six code gen-
eration phases are performed separately. We also presented
name splittingandmergingas additional techniques. By com-
paring our work with SPAM, we analyzed the pros and cons of
our decoupled approach as opposed to their coupled approach
The comparative analysis of the experiments revealed tivat o
compiler achieved comparable results in code size; yetdeur
coupled structure of code generation simplified our data all
cation algorithm for dual memory banks, which allows the al-
gorithm to run reasonably fast. The analysis also revelad t

exploiting dual memory banks by carefully assigning scalar

variables to the banks brought about the speedup at run time.

However, the analysis exposed several limitations of tite cu
rent techniques as well. For instance, while our approach wa
limited to only scalar variables, we expect that memory bank

assignment for arrays can achieve a large performance en-

[13]

hancement because most computations are performed on ar{14]
rays in number crunching programs. This is actually illus-
trated in Figures 11 and 13, where even highly hand-optichize

code could not make a significant performance improvement

in terms of speed although we made a visible difference in 15
terms of size. This is mainly because the impact of scalar var

ables on the performance is relatively low as compared with

the space they occupy in the code. Another limitation would

be to perform memory bank assignment on arguments passed

via memory to functions. This would require interprocedura

analysis since the caller must know the memory access pat-

terns of the callee for passing arguments. Also, certaip loo
optimization techniques, like those listed in Section Aged

to be implemented to further improve execution time of the
output code.

6.
(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]
9]

[10]

[11]

[12]

REFERENCES

G. Araujo, S. Devadas, K. Keutzer, S. Liao, S. Malik,
A. Sudarsanam, S. Tjiang, and A. Wa@hallenges in
Code Generation for Embedded Processpeges
48-64. In Marwedel and Goossens [9], 1995.

G. Araujo and S. Malik. Code Generation for
Fixed-point DSPSACM Transactions on Design
Automation of Electronic Systen®2):136—-161, April
1998.

R. Barua, W. Lee, S. Amarasinghe, and A. Agarwal.
Compiler Support for Scalable and Efficient Memory
SystemslEEE Transactions on Computefdov. 2001.
G. Chaitan. Register Allocation and Spilling via Graph
Coloring. InProceedings of the SIGPLAN Symposium
on Compiler Constructiorpages 201-207, June 1982.
J. Cho, J. Kim, and Y. Paek. Efficient and Fast
Allocation of On-chip Dual Memory Banks. IBth
Workshop on Interaction between Compilers and
Computer Architectureg-eb. 2002.

S. Jung and Y. Paek. The Very Portable Optimizer for
Digital Signal Processors. limternational Conference
on Compilers, Architectures and Synthesis for
Embedded Systemsages 84-92, Nov. 2001.

R. Leupers and P. Marwedel. Algorithms for Address
Assignment in DSP Code Generation.iternaltional
Conference on Computer-Aided Desiga96.

C. Liem. Retargetable Compilers for Embedded Core
ProcessorsKluwer Academic Publishers, 1997.

P. Marwedel and G. Goossens, editd@t®de Generation
for Embedded Processoisluwer Academic
Publishers, 1995.

Motorola Inc., Austin, TXDSP56000 24-Bit Digital
signal Processor Family Manual 995.

R. Prim. Shortest Connection Networks and Some
GeneralizationsBell Systems Technical Journal
36(6):1389-1401, 1957.

M. A. R. Saghir, P. Chow, and C. G. Lee. Exploiting
Dual Data-Memory Banks in Digital Signal Processors.

ACM SIGOPS Operating Systermpages 234-243,

1996.

A. SudarsananCode Optimization Libraries For
Retargetable Compilation For Embedded Digital Signal
ProcessorsPhD thesis, Princeton University
Department of EE, May 15, 1998.

A. Sudarsanam and S. Malik. Simultaneous Reference
Allocation in Code Generation for Dual Data Memory
Bank ASIPsACM Transactions on Design Automation
of Electronic System$&(2):242-264, April 2000.

V. Zivoljnovic, J.M. Velarde, C. Schager, and H. Meyr.
DSPStone - A DSP oriented Benchmarking
Methodology. InProceedings of International
Conference on Signal Processing Applications and
Technology1994.

