
VISTA: A System for Interactive Code
Improvement

Wankang Zhao, David Whalley,
Robert van Engelen, Xin Yuan, Kyle Gallivan

Florida State University

Baosheng Cai Mark Bailey
Oracle Corporation Hamilton College

Jason Hiser, Jack Davidson
University of Virginia

Douglas Jones
University of Illinois at Urbana-Champaign

Embedded Systems: a Difficult Target
� unusual architectural features

� low overhead looping hardware

� specialized address and arithmetic functions

� highly irregular instruction sets

� stringent application constraints
� real-time deadlines

� absolute memory limitations

� efficient code requires specific user knowledge
� value ranges

� memory disambiguation

� determining loop bounds

 Choices for Coding Embedded
Systems Applications

� high-level language
� difficult to exploit special-purpose hardware

� less control over performance

� assembly language
� difficult to maintain and retarget

� coding is slow

� error prone

� hybrid at the module level
� too coarse grain

Interactive Code Improvement

� Application development in a high-level
language

� Low-level code improvement assisted by
developers
� Selecting the order and scope of traditional

optimization phases

� User-specified code improvements

� User guided code improvement assisted by
the compiler

Related Work

� Compiler debugging
� XVPODB: Boyd, Whalley

� High-level parallelization of programs
� Pat toolkit: Appelbe, Smith, McDowell

� Parafrase-2: Polychronopoulos, Girkar, et al.

� Pittsburgh system: Dow, Chang, Soffa

� SUIF Explorer: Liao, Diwan, Bosch, et al.

 VISTA: Vpo Interactive System
for Tuning Applications

 Features of the Environment

� View the representation of a function at any
optimization point.

� Specify the order and scope of optimization
phases.

� Specify code-improving transformations
manually.

� Visualize performance of the application.
� Reverse previously applied transformations.
� Obtain information from the compiler.
� Specify improvements over multiple sessions.

Viewing the Low-Level
Representation

� Natural level for embedded systems
performance tuning.

� Supports a variety of display options.
� RTLs

� assembly

� control flow

� Eases debugging of compiler errors.
� Provides a better understanding of the code

improvement process to a user.

History of Compilation Phases

Control Flow: A Bird's Eye View

Specifying Compilation Phases

� Gives the user control over the code
improvement process.

� Helps to address the phase ordering problem.
� Phases can be specified to be performed

repeatedly until no more changes are made.
� Can limit the scope of the program

representation where a phase is applied.
� Certain restrictions still have to be enforced.

Phase Order Control

Restricting the Scope of Phases

� set of basic blocks by clicking on each block
� set of loops by clicking on loops in the loop

report

User Specified Improvements

� Often difficult to exploit embedded features.
� User can tune compiler generated code.
� User can make queries to the compiler.

� What registers are live at a given point?

� Which blocks dominate a specified block?

� What loops exist in the function?

� ...

� Useful for prototyping code improvements.

Manually Specifying a
Transformation

Visualizing Performance
� Can obtain performance measurements and

can view them on blocks or loops.

Performance Information
Collection

Traversing Applied
Transformations

� Can apply or undo transformations.
� Allows a user to experiment with different

compilation phase orderings.
� All changes are stored.
� Changes, both compiler and user specified,

are saved to a file.

Transformation History Is Saved

Implementation Issues

� Used Java for the user interface to enhance
its portability.

� Communication between the compiler and
user interface was accomplished using UNIX
sockets.

� Analysis needed for or invalidated by each
optimization phase had to be identified.

� Translators were required to convert a human
specified RTL or assembly instruction into an
encoded RTL.

Future Work

� Patterns for detecting code improvement
opportunities.

� Show performance improvement.
� Support iterative compilation to meet

specified constraints on speed, size, and
power.

� Include a mapping between source and
assembly.

Conclusions

� Useful for effective embedded systems
development.
� Benefits of coding in a high-level language.

� Flexibility of coding in assembly.

� Compiler can exploit user knowledge.

� User can use compiler supplied information.

� Useful for debugging compiler errors.
� Useful for prototyping.

