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Embedded Systems: a Difficult  Target 
� unusual architectural features

� low overhead looping hardware

� specialized address and arithmetic functions

� highly irregular instruction sets

� stringent application constraints
� real-time deadlines

� absolute memory limitations

� efficient code requires specific user knowledge
� value ranges

� memory disambiguation

� determining loop bounds



 Choices for Coding Embedded 
Systems Applications 

� high-level language
� difficult  to exploit special-purpose hardware

� less control over performance

� assembly language
� difficult  to maintain and retarget

� coding is slow

� error prone

� hybrid at the module level
� too coarse grain



Interactive Code Improvement

� Application development in a high-level 
language

� Low-level code improvement assisted by 
developers
� Selecting the order and scope of traditional 

optimization phases

� User-specified code improvements

� User guided code improvement assisted by 
the compiler



Related Work

� Compiler debugging
� XVPODB: Boyd, Whalley

� High-level parallelization of programs
� Pat toolkit: Appelbe, Smith, McDowell

� Parafrase-2: Polychronopoulos, Girkar, et al.

� Pittsburgh system: Dow, Chang, Soffa

� SUIF Explorer: Liao, Diwan, Bosch, et al.



 VISTA: Vpo Interactive System 
for Tuning Applications



 Features of the Environment

� View the representation of a function at any 
optimization point.

� Specify the order and scope of optimization 
phases.

� Specify code-improving transformations 
manually.

� Visualize performance of the application.
� Reverse previously applied transformations.
� Obtain information from the compiler.
� Specify improvements over multiple sessions.



Viewing the Low-Level 
Representation

� Natural level for embedded systems 
performance tuning.

� Supports a variety of display options.
� RTLs

� assembly

� control flow

� Eases debugging of compiler errors.
� Provides a better understanding of the code 

improvement process to a user.



History of Compilation Phases



Control Flow: A Bird's Eye View



Specifying Compilation Phases

� Gives the user control over the code 
improvement process.

� Helps to address the phase ordering problem.
� Phases can be specified to be performed 

repeatedly until no more changes are made.
� Can limit  the scope of the program 

representation where a phase is applied.
� Certain restrictions still have to be enforced.



Phase Order Control



Restricting the Scope of Phases

� set of basic blocks by clicking on each block
� set of loops by clicking on loops in the loop 

report



User Specified Improvements

� Often difficult  to exploit embedded features.
� User can tune compiler generated code.
� User can make queries to the compiler.

� What registers are live at a given point?

� Which blocks dominate a specified block?

� What loops exist in the function?

� ...

� Useful for prototyping code improvements.



Manually Specifying a 
Transformation



Visualizing Performance
� Can obtain performance measurements and 

can view them on blocks or loops.



Performance Information 
Collection



Traversing Applied 
Transformations

� Can apply or undo transformations.
� Allows a user to experiment with different 

compilation phase orderings.
� All  changes are stored.
� Changes, both compiler and user specified, 

are saved to a file.



Transformation History Is Saved



Implementation Issues

� Used Java for the user interface to enhance 
its portability.

� Communication between the compiler and 
user interface was accomplished using UNIX  
sockets.

� Analysis needed for or invalidated by each 
optimization phase had to be identified.

� Translators were required to convert a human 
specified RTL or assembly instruction into an 
encoded RTL.



Future Work

� Patterns for detecting code improvement 
opportunities.

� Show performance improvement.
� Support iterative compilation to meet 

specified constraints on speed, size, and 
power.

� Include a mapping between source and 
assembly.



Conclusions

� Useful for effective embedded systems 
development.
� Benefits of coding in a high-level language.

� Flexibility of coding in assembly.

� Compiler can exploit user knowledge.

� User can use compiler supplied information.

� Useful for debugging compiler errors.
� Useful for prototyping.


