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ABSTRACT
Embedded systems often have real-time constraints.Traditional
timing analysis statically determines the maximum execution time
of a task or a program in a real-time system.These systems typi-
cally depend on the worst-case execution time of tasks in order to
make static scheduling decisions so that tasks can meet their dead-
lines. Staticdetermination of worst-case execution times imposes
numerous restrictions on real-time programs, which include that
the maximum number of iterations of each loop must be known
statically. These restrictions can significantly limit the class of
programs that would be suitable for a real-time embedded system.
This paper describes work-in-progress that uses static timing anal-
ysis to aid in making dynamic scheduling decisions.For instance,
different algorithms with varying levels of accuracy may be
selected based on the algorithm’s predicted worst-case execution
time and the time allotted for the task.We represent the worst-
case execution time of a function or a loop as a formula, where the
unknown values affecting the execution time are parameterized.
This parametric timing analysisproduces formulas that can then
be quickly evaluated at run-time so dynamic scheduling decisions
can be made with little overhead. Benefitsof this work include
expanding the class of applications that can be used in a real-time
system, improving the accuracy of dynamic scheduling decisions,
and more effective utilization of system resources.

1. INTRODUCTION
Software is being embedded as a component of an increas-

ing number of critical systems. Often embedded systems have
timing constraints that must be met or the system is not consid-
ered functional. Computations that are less precise and on-time
are often considered better than more precise computations that
are late. This type of system is referred to as real time. In order
to verify that real-time systems will meet their deadlines, design-
ers require that the worst-case execution time (WCET) of each
task in a real-time system be known. Theprocess of automati-
cally and statically determining the WCET of a program or task is
called timing analysis. Scheduling decisions are based on each
task’s WCET and the total time in the schedule.Many require-
ments are often imposed on real-time programs so that the WCET
may be predicted.One of these requirements is that the maximum
number of iterations of all loops be known statically. Unfortu-
nately, this requirement significantly limits the class of programs

that can be performed in a real-time embedded system.
This paper describes how static timing analysis can be used

to aid in making dynamic scheduling decisions.The WCET of a
function or a loop is represented as a formula, where the values
affecting the execution time are parameterized. Such formulas
can then be quickly evaluated at run-time so dynamic scheduling
decisions can be made when scheduling a task or choosing algo-
rithms within a task. Benefits of this parametric timing analysis
include expanding the class of applications that can be used in a
real-time system, improving the accuracy of dynamic scheduling
decisions, and more effective utilization of system resources.

2. RELATED WORK
Recently, a number of research groups have addressed vari-

ous issues in the area of predicting the WCET of real-time pro-
grams. Conventional methods for static analysis have been
extended from unoptimized programs on simple CISC processors
[PuK89, Par93, HBW92] to optimized programs on pipelined
RISC processors [ZBN93, LBJ94, HWH95], from uncached
architectures to instruction caches [AMW94, LMW95, HBL95]
and data caches [KMH96, LMW96, WMH97], and from assum-
ing that all paths are feasible to automatically detecting constrains
on paths [HeW99, EnE00]. All of these methods obtain discrete
values to bound the WCET in a non-parametric fashion.

Chapmanet al. [CBW96] used path expressions to com-
bine a source-oriented parametric approach of WCET analysis
with timing annotations, verifying the latter through the former.
Bernatet al. [BeB00] also proposed using algebraic expressions to
represent the WCET of subprograms, where the algebraic expres-
sion is parameterized by some of the subprogram’s parameters.
These approaches are closely related to our work in the sense that
we also utilize a parametric approach for WCET prediction. How-
ev er, our approach differs in a number of ways. Instead of a
source-level analysis that cannot easily take architectural details of
a processor into account, we perform our analysis within an exist-
ing framework of tools operating at a low-level intermediate code,
which is equivalent to machine code. The other approaches rely
on a computational algebra system, like Mathematica or Maple, to
evaluate the algebraic expression representing the WCET with the
goal of making more accurate predictions.However, relying on a
general computational algebra system to calculate the WCET to
make dynamic scheduling decisions in real-time would be unreal-
istic. We instead emphasize the generation of simple formulas
where the WCET can be quickly calculated at run-time.Thus, we
can retain the parametric model beyond static timing analysis for a
multitude of applications ranging from scheduling of tasks to
selection of algorithms within a task.



3. NUMERIC TIMING ANALYSIS
Figure 1 depicts the overall organization of the existing

numeric timing analysis environment before it was modified to
support parametric analysis.We denote this environment as
numeric since the timing analyzer must produce a number repre-
senting the WCET of a program (i.e., the number of iterations for
each loop must be a number that is known to the timing analyzer).
An optimizing compiler [BeD88] was modified to produce control
flow and branch constraint information as a side effect of the com-
pilation of a file [AMW94, HSR98, HeW99].A static cache sim-
ulator uses the control flow information to construct a control-flow
graph of the program that consists of the call graph and the control
flow of each function. The program control-flow graph is then
analyzed and a caching categorization for each instruction in the
program is produced [AMW94].A separate categorization is
given for each loop level in which the instructions and data refer-
ences are contained.Next, a timing analyzer uses the control flow
and constraint information, caching categorizations, and machine
dependent information (e.g. pipeline characteristics) as input to
make timing predictions [AMW94, HWH95].Given a program’s
control-flow information and instruction caching categorizations
along with the processor’s instruction set information, the timing
analyzer then derives best-case and worst-case estimates for each
path, loop, and function within the program.A timing analysis
tree is constructed, where each node of the tree corresponds to a
loop or function in the function instance graph.Each node is con-
sidered a natural loop, where each function is treated as a loop
executing a single iteration.The nodes in the timing analysis tree
are processed in a bottom-up manner. In other words, the WCET
and BCET for a node are not calculated until the times for all of
its immediate child nodes are known. Thismeans that the timing
analyzer determines the execution time for programs by first ana-
lyzing the innermost loops and functions, and proceeding to
higher level loops and functions until it reachesmain(). Finally,
a graphical user interface is invoked that allows a user to request
predictions for portions of the program [KHR96].
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Figure 1: Overview of Timing Analysis Process

Our numeric timing analyzer requires that the number of
iterations of each loop be known, that the total number of itera-
tions for a nonrectangular loop nest can be calculated, or that a
user provide this information when it is unknown. Figure 2
depicts an abstraction of the loop analysis algorithm that is used.
The algorithm repeatedly selects the longest path through the loop
until a fixed point is reached (i.e., the caching behavior does not
change and the cycles for the worst-case path is guaranteed to
remain the same). The maximum number of times that a worst-
case path is selected is the minimum ofm+1 or n, wherem is the
number of unique paths through the loop andn is the number of
loop iterations. Note that the WCETs for inner loops are

predicted before outer loops, an inner loop is treated as being a
single node in a path of the next level outer loop, and the control
flow is partitioned if the number of paths within a loop exceeds a
specified limit [AlY97]. The correctness of the fixed-point algo-
rithm is discussed in more detail elsewhere [AMW94].

cycles = curr_iter = 0.
DO

curr_iter += 1.
Find the longest pathwcpath.
cycles += wcpath->cycles.

WHILE wcpath’s caching behavior can change
&& curr_iter < n

cycles += wcpath->cycles * (n - curr_iter).

Figure 2: Numeric Loop Analysis Algorithm

4. PARAMETRIC TIMING ANALYSIS
It would be desirable to support parametric timing predic-

tions when the number of iterations for a loop is unknown until
run time. Our goal is to calculate a formula (or closed form) for
the WCET for such a loop, where the formula depends onn, the
number of iterations for that loop.This formula needs to be rela-
tively inexpensive to calculate since it will be used at run-time to
make dynamic decisions concerning the selection of tasks and/or
the selection of algorithms within a task. Rather than always
passing a numeric value representing the number of cycles of
loops and functions up the timing analysis tree, we can instead
pass up a symbolic formula when the number of iterations is
unknown in a loop representing a node in the subtree.

Figure 3 shows an abstraction of the revised loop analysis
algorithm. Thealgorithm iterates until a fixed point is reached
where the caching behavior of the WCET path does not change.
The base cycles that are applied before the final worst-case path
time is known are saved. Equation1 shows that the WCET of a
loop depends on these base cycles and the WCET path time,
which are both constants, and the number of iterations, which is
unknown until run time.

cycles = curr_iter = 0.
DO

curr_iter += 1.
Find the longest pathwcpath.
cycles += wcpath->cycles.

WHILE wcpath’s caching behavior can change
base_cycles =

cycles - (wcpath->cycles * curr_iter).

Figure 3: Parametric Loop Analysis Algorithm

(1)WCET_loop_time= WCET_path_time* n + base_cycles

If the actual number of iterations exceeds the number of
iterations that are required to reach the point where the parametric
WCET loop time is calculated, then the parametric result should
be comparable to that produced by the numeric timing analyzer
when there is a known number of iterations.If the actual number
of iterations is less than the number of iterations that are required
to reach this point, then there could be an overestimation. For
instance, consider the situation as depicted in Table 1. The for-
mula representing the parametricWCET_loop_time would
11*n+16 since theWCET_path_timeafter the caching behavior
does not change is 11 cycles and the base cycles is 16 (20-11 +
18-11). If the loop iterates only once, then the predicted WCET
would be 27 cycles, while the actual WCET would be 20 cycles.
We could have modified the formula to address dealing with the
special cases for having fewer iterations.However, the resulting
formula would be more complex and the additional cost of



making these checks at run time would likely outweigh the benefit
obtained for a more accurate prediction. Furthermore, if the num-
ber of iterations is small, then the loop will likely have little
impact on the total WCET. If the number of iterations is large,
then there should be very little sacrifice in the accuracy of the pre-
dictions.

How the Path Is Evaluated Path 1 Path 2

20 18Initial Execution Including Cache Misses

11 9After Caching Behavior Does Not Change

Table 1: WCET Path Information for a Hypothetical Loop

The timing analyzer processes inner loops before outer
loops. Anested inner loop is represented as a single block when
processing a path in the outer loop. Rather than representing the
inner loop with a number of cycles, we instead represent the loop
with a symbolic formula when the number of iterations is not stat-
ically known. Thetime for the outer loop path is simply the sym-
bolic sum of the cycles associated with the rest of the path and the
formula representing the inner loop.

The analysis becomes more complicated when one or more
paths in a loop contain a nested loop with a parametric WCET.
Consider the following example shown in Figure 4.There are two
loops, where an inner loop (block 4) is nested in the outer loop
(blocks 2, 3, 4, and 5).Assume the number of iterations for the
inner loop is symbolic. The loop analysis algorithm requires that
the timing analyzer find the longest path in the outer loop, which
may depend on the number of iterations of the inner loop.The
minimum number of iterations for a loop is one since our defini-
tion for the number of loop iterations is the number of times that
the loop header (entry block of the loop) is executed. If the
WCET for path A(2→3→5) is less than the WCET for path
B(2→4→5) when the number of iterations of the inner loop is
one, then path B is chosen. Otherwise, amax() function must be
used to represent the parametric WCET of the outer loop.For
instance, equation 2 shows that the maximum of the two paths
should be selected. Note that the WCET of these paths is after the
caching behavior reaches a steady state and that the base cycles
are the extra cycles before both of these these paths reach that
state. Thefirst value passed tomax for the example in Figure 4
would be numeric and the second would be symbolic.
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6

Figure 4: Example of an Outer Loop with Multiple Paths

WCET_loop_time= max(WCET_path_A_time,
WCET_path_B_time) * n

(2)+ base_cycles

We hav e developed a preliminary implementation of the
parametric timing analyzer. As in the numeric timing analyzer,
certain restrictions are imposed.First, recursive programs are not
allowed since cycles in the call graph would complicate the gener-
ation of unique function instances. Second, indirect calls are not
allowed since an explicit call graph must be generated statically.
Finally, loops must be structured, which means there must be only
a single entry point in the loop.Unlike the numeric timing ana-
lyzer, the parametric timing analyzer does not need to know a con-
stant value for the maximum number of iterations of each loop.
However, the compiler must be able to generate a symbolic
expression that represents the number of loop iterations to be
executed at run-time.

Table 2 describes a small set of test programs that were
used to contrast the results with numeric and parametric timing
analysis. Thesetest programs were all relatively simple since this
preliminary implementation does not yet address the case where
the worst-case path within a loop cannot be selected due to two or
more of the loop paths having a symbolic WCET.

Program Description

Matcnt Counts and sums the nonnegative elements of an inte-
ger matrix.

Matmul Multiplies 2 integer matrices and stores the result in a
third integer matrix.

Stats Calculates the sum, mean, variance, and standard de-
viation and the linear correlation coefficient between
two vectors of numbers.

Summinmax Sum the minimum and maximum of the correspond-
ing elements of two integer vectors.

Sumnegpos Sums the negative, positive, and all elements of an in-
teger vector.

Table 2: Test Programs

Table 3 shows the results of predicting execution time
using the two types of techniques.For these programs we pre-
dicted pipeline and instruction cache performance.Formula is the
formula returned by the parametric timing analyzer and it repre-
sents the parameterized predicted execution time of the program.
In order to evaluate the accuracy of the parametric timing analysis
approach, we made each of the loops in these test programs iterate
the same number of times.Thus,n Iters represents the number of
loop iterations for each loop in the program andn represents that
value in the formulas. The power ofn represents the loop nesting
level and the factor represents the cycles spent at that level. Note
that most of the programs had multiple loops at each nesting level.
For example, 160n2 represents that 160 cycles is the sum of the
cycles that would occur in a single iteration of all the loops at
nesting level 2 in the program.If the number of iterations of two
different loops in a loop nest differ, then the formula would reflect
this as a multiplication of these factors. For instance, if the matrix
in Matcnt hadm rows andn columns, wherem ≠ n, then the for-
mula would be (160n+267)m+857. TheObserved Cycleswere
obtained by using an integrated pipeline and instruction cache
simulator and this value represents the cycles in the execution
using worst-case input data.TheNumeric Analysisrepresents the
results using the previous version of the timing analyzer, where
the number of iterations of each loop must be a number that is
known to the timing analyzer. TheParametric Analysisrepresents
cycles where the number of iterations was unknown until run
time. The Estimated Cyclesand Ratio represent the predicted
number of cycles by the timing analyzer and ratio to theObserved
Cycles. The estimated parametric cycles were obtained by plug-
ging the number of iterations into the formula returned by the



Numeric Analysis Parametric Analysisn Observed
Iters Cycles EstimatedCycles Ratio Estimated Cycles Ratio

Program Formula

1 1,206 1,207 1.001 1,284 1.065
10 18,954 19,523 1.030 19,527 1.030

100 1,622,034 1,627,553 1.003 1,627,557 1.003Matcnt 160n2+267n+857

1 1,432 1,460 1.020 1,724 1.204
Matmul 33n3+310n2+530n+851 10 62,182 70,137 1.128 70,151 1.128

100 33,725,782 36,153,837 1.072 36,153,851 1.072

1 2,885 2,912 1.009 3,008 1.043
Stats 1049n+1959 10 12,290 12,449 1.013 12,449 1.013

100 106,340 106,859 1.005 106,859 1.005

1 139 140 1.007 140 1.007
Summinmax 17n+123 10 283 293 1.035 293 1.035

100 1,723 1,823 1.058 1,823 1.058

1 104 107 1.029 107 1.029
Sumnegpos 13n+94 10 203 224 1.103 224 1.103

100 1,193 1,394 1.168 1,394 1.168

Table 3: Results

parametric timing analyzer. The results show that the parametric
analysis is less accurate when loops have a single iteration. This
is due to the caching behavior of the WCET path not reaching a
fixed point, as described in Figure 3.However, the parametric
analysis is almost as accurate as the numeric analysis when the
number of iterations increases.

5. USING PARAMETRIC WCET PREDICTIONS
One may ask how can a symbolic formula representing a

parametric WCET for a loop or function actually be used.A
scheduler can dynamically adjust priorities based on a parametric
estimate of the WCET of a task. In addition, it would be benefi-
cial to make dynamic decisions within a real-time task based on
an estimate of the remaining execution time. Multiple versions of
algorithms could be developed that solve the same problem with
different degrees of precision and execution time. Parametric
WCET prediction can potentially allow the selection of an algo-
rithm with higher precision due to tighter WCET predictions.
Likewise, parametric WCET analysis may be used to determine
an appropriate number of iterations for algorithms that progres-
sively improve the precision of calculations (i.e., imprecise com-
putations). Thefunctions providing the parametric WCET can be
provided as call-backs to the operating system. Once the parame-
ters, such as the number of loop iterations, have been supplied by
the application, the scheduler may inspect the time budget to
determine how to schedule the remainder of a task’s execution.

If code within a task is generated to represent the symbolic
WCET formula during the parametric timing analysis, then it
would seem that this code would affect the previously determined
timing predictions due to changing the addresses of the instruc-
tions and potentially the caching behavior. Rather than inserting
the code for the symbolic WCET formula directly into the source
code at the point it is used, we decided to invoke a function that
evaluates the symbolic WCET formula and we append these func-
tions to the end of the program.We illustrate the approach with
an example given in Figure 5, where the timing analysis is accom-
plished in stages as the parametric formulas are generated and
later evaluated. Inthis example function 4 is generated by the
timing analyzer to calculate the WCET of loop 3, whose number
of iterations is unknown until run time.

(1) A call to a function is inserted that returns the WCET for a
specified loop or a function based on a parameter indicat-
ing the number of loop iterations that becomes known at
run time. The instructions that are associated with the call

and that use the return value after the call are generated
during the initial compilation.For instance, in Figure 5(a)
function #1 calls function #4 to obtain the WCET of loop
#3, which contains a symbolic number of iterations.

(2) The timing analyzer generates the source code for the
called function into a separate file when processing the
specified loop or function whose time needs to be calcu-
lated at run time.For instance, Figure 5(b) shows that
after loop #3 has been parametrically analyzed, the code
for function #4 has been generated. Note that the timing
analysis tree representing the loops and functions in the
program is processed in a bottom up fashion. Thecode in
function 1 invoking the generated function is not evaluated
until after the generated function is produced.The static
cache simulator can initially assume that a call to an
unknown function invalidates the entire cache.Figure 6
shows an example of the source code of such a generated
function. Thisfunction returns the number of cycles asso-
ciated with the formula given in Table 3 for theMatcnt
program.

(3) The generated function is compiled and is placed at the
end of the executable. Theformula representing the sym-
bolic WCET need not be simplified by the timing ana-
lyzer. Most optimizing compilers perform constant fold-
ing, strength reduction, and other optimizations that will
automatically simplify the symbolic WCET produced by
the timing analyzer. By placing the generated function
after the rest of the program, the other instruction
addresses in the program are unaffected. Likewise, the
predicted caching behavior of the previously analyzed
functions and loops are also unaffected since we are pro-
cessing the tree in a bottom-up order.

(4) Thetiming analyzer is reinvoked to resume the analysis of
the program, which includes calculating the WCET of the
generated function and the code invoking such a function.
For instance, Figure 5(c) shows that the generated func-
tion #4 has been numerically analyzed and Figure 5(d)
shows that function #1 has been parametrically analyzed,
which includes the numeric WCET required for executing
function #4.
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Figure 5: Example of Using Parametric Timing Predictions

int WCET_loop(int n)
{

return (160*n + 267)*n+857;
}

Figure 6: Example of a Generated Function
Calculating the WCET of a Loop

In summary, this approach allows for the timing analysis to
be accomplished in stages.Parametric formulas are produced
when needed and source code functions representing these formu-
las are generated. These generated functions are then compiled,
analyzed, and revised timing predictions are made. This process
continues until a formula can be produced for the entire program
or task.

6. FUTURE WORK
There are several types of problems that we have yet to

address in our parametric timing analysis. Sometimes the number
of iterations executed by a loop can vary since it may depend on
the value of an outer loop counter variable. Ourapproach to
resolve this in the numeric timing analysis was to formulate a non-
rectangular loop nest in terms of summations and solve the result-
ing equation [HSR00]. If the range of all of the loop variables in
the nonrectangular loop nest cannot be bounded, then the summa-
tions can still be formulated and an equation in a closed form can
still often be generated when performing parametric timing analy-
sis.

Likewise constraints on branches can limit the paths that
can be taken in a program. Automatically detecting these con-
straints can result in tighter WCET predictions [HeW99].We
need to formulate an equation when such branch constraints are
present and the number of loop iterations is only known at run
time.

Finally, we need to implement the approach described in
Section 5. This will involve modifying the timing analyzer to rec-
ognize the names of special function calls indicating that they
should return the WCET of functions or loops.We will also have
to change the environment shown in Figure 1 to repeatedly invoke
the compiler, static simulator, and timing analyzer as new func-
tions are generated and then subsequently analyzed.

7. CONCLUSIONS
We hav edescribed how static timing analysis can be used

to aid in making dynamic scheduling decisions.We hav eshown
how a symbolic formula can be produced to represent the WCET
for a loop when the number of loop iterations cannot be deter-
mined until run-time. While more complex cases should be
addressed, preliminary results for some simple programs were
given indicating that the approach for parametric timing analysis
is almost as accurate as a completely numeric approach when the
number of iterations in a loop exceeds the number of iterations
required to reach a point where the WCET caching behavior is in
a steady state.We also outlined how these parametric WCETs
could be used without affecting the timing predictions of the loops
and functions that were previously analyzed. The benefits of para-
metric timing analysis include expanding the class of applications
that can be used in a real-time system, improving the accuracy of
dynamic scheduling decisions, and more effective utilization of
system resources.
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