Parametric Timing Analysis

EMILIO VIVANCOSl, CHISTOPHER HEALYZ, FRANK MUELLERs, AND DAVID WHALLEY #
1 Departamento de Sistemas Informaticos y Computacion, Universidad Politecnica de Valencia, 46022-Valencia, Spain
e-mail: vivancos@dsic.upv.es, phone: (+34) 96 387-7354
2 Computer Science Department, Furman Univer§itgenville SC 2613, U.S.A.
e-mail: chris.healy@furman.edu, phone: (864) 294-2233

3 Center for Applied Scientific Computiigawrence Livermar National Laboratory,
P.O. Box 808, L-561, Livermey CA 94551

e-mail: frank.mueller@linl.gg phone: (925) 424-3642

4 Computer Science Department, Florida State Univer&tyahasseeFL 32306-4530, U.S.A.
e-mail: whalley@cs.fsu.edu, phone: (850) 644-3506

ABSTRACT that can be performed in a real-time embedded system.
Embedded systems oftenvieareal-time constraints.Traditional This paper describes Wastatic timing analysis can be used
timing analysis statically determines the maximwecation time to aid in making dynamic scheduling decisioi$ie WCET of a

of a task or a program in a real-time systefnese systems typi- function or a loop is represented as a formula, where dhees

cally depend on the avst-case xecution time of tasks in order to affecting the ®ecution time are parameterized. Such formulas
malke datic scheduling decisions so that tasks can meet their dead€an then be quicklyvaluated at run-time so dynamic scheduling
lines. Statiadetermination of wrst-case xecution times imposes decisions can be made when scheduling a task or choosing algo-
numerous restrictions on real-time programs, which include thatrithms within a task. Benefits of this parametric timing analysis
the maximum number of iterations of each loop must bavkno include expanding the class of applications that can be used in a
statically These restrictions can significantly limit the class of real-time system, improving the accwaaf dynamic scheduling
programs that would be suitable for a real-time embedded systemdecisions, and more effee#i Uilization of system resources.

This paper describesosk-in-progress that uses static timing anal-

ysis to aid in making dynamic scheduling decisioRe. instance, 2. RELATED WORK

different algorithms with varying Vels of accurag may be
selected based on the algoritknpredicted verst-case xecution
time and the time allotted for the tasWe represent the orst-
case gecution time of a function or a loop as a formula, where the
unknovn values affecting thexecution time are parameterized.
This parametric timing analysiproduces formulas that can then
be quickly aluated at run-time so dynamic scheduling decisions
can be made with littleverhead. Benefit®f this work include
expanding the class of applications that can be used in a real-tim
system, improving the accusaof dynamic scheduling decisions,
and more effectie dilization of system resources.

Recently a rumber of research groupsvesaldressed ari-
ous issues in the area of predicting the WCET of real-time pro-
grams. Comentional methods for static analysis vilalkeen
extended from unoptimized programs on simple CISC processors
[PuK89, Par93, HBW92] to optimized programs on pipelined
RISC processors [ZBN93, LBJ94, HWH95], from uncached
architectures to instruction caches [AMW94, LMW95, HBL95]
eand data caches [KMH96, LMW96, WMH97], and from assum-
ing that all paths are feasible to automatically detecting constrains
on paths [HeW99, EnEOQQ]. All of these methods obtain discrete
values to bound the WCET in a non-parametric fashion.

1. INTRODUCTION _ Chapmanet_ al. [CBW96] us_ed path xpressions to com- _
)) i) bine a source-oriented parametric approach of WCET analysis
_ Software is being embedded as a component of an increasjth timing annotations, erifying the latter through the former
ing number of critical systems. Often embedded systenie ha Beratet al.[BeB00] also proposed using algebraic expressions to
timing constraints that must be met or the system is not Cons'd'represent the WCET of subprograms, where the algebxpies
ered functional. Computations that are less precise and on-timesjgn is parameterized by some of the subprogggmtameters.
are often considered better than more precise computations thatnese approaches are closely related to our work in the sense that
are late. This type of system is referred to as real time. In order e also utilize a parametric approach for WCET predictiowHo
to verify that real-time systems will meet their deadlines, design- eyg, our approach differs in a number ofays. Instead of a
ers require that the worst-casgeeution time (WCET) of each soyrce-lgel analysis that cannot easily krchitectural details of
task in a real-time system be knmu Theprocess of automati- 5 rocessor into account, we perform our analysis withinxist-e
cally and statically determining the WCET of a program or task is jng framevork of tools operating at avplevel intermediate code,
called timing analysis Scheduling decisions are based on each whijch is equialent to machine code. The other approaches rely
tasks WCET and the total time in the scheduléany require- on a computational algebra systemelMathematica or Maple, to
ments are often imposed on real-time programs so that the WCETey4uate the algebraicxpression representing the WCET with the
may be predictedOne of these requirements is that the maximum goaj of making more accurate predictioriowever, relying on a
number of iterations of all loops be known staticallynfortu- general computational algebra system to calculate the WCET to
nately this requirement significantly limits the class of programs maje dynamic scheduling decisions in real-time would be unreal-
istic. We instead emphasize the generation of simple formulas
where the WCET can be quickly calculated at run-tiffieus, we
can retain the parametric modelybad static timing analysis for a
multitude of applications ranging from scheduling of tasks to
selection of algorithms within a task.

3. NUMERIC TIMING ANALYSIS

Figure 1 depicts theverall organization of the isting
numeric timing analysis environment before iasvmodified to
support parametric analysisWe cdenote this environment as
numeric since the timing analyzer must produce a number repre
senting the WCET of a programe(, the number of iterations for
each loop must be a number that is known to the timing analyzer).
An optimizing compiler [BeD88] was modified to produce control
flow and branch constraint information as a side effect of the com-
pilation of a file [AMW94, HSR98, HeW99]A static cache sim-
ulator uses the control floinformation to construct a control-#lo
graph of the program that consists of the call graph and the contro
flow of each function. The program control-flograph is then

analyzed and a caching categorization for each instruction in the

program is produced [AMW94].A separate categorization is
given for each loop leel in which the instructions and data refer
ences are containedNext, a timing analyzer uses the controlflo
and constraint information, caching aqgeizations, and machine
dependent information (e.g. pipeline characteristics) as input to
malke timing predictions [AMW94, HWH95].Given a program’s
control-flov information and instruction caching cateizations
along with the processarinstruction set information, the timing
analyzer then derés best-case and avst-case estimates for each
path, loop, and function within the program timing analysis
tree is constructed, where each node of the tree corresponds to
loop or function in the function instance gragbach node is con-

predicted before outer loops, an inner loop is treated as being a
single node in a path of thextdevel outer loop, and the control
flow is partitioned if the number of paths within a looxceeds a
specified limit [AlY97]. The correctness of the fixed-point algo-
rithm is discussed in more detail elsewhere [AMW94].

= 0.

cycl es
DO
curr_iter += 1.
Find the | ongest pathwcpat h.
cycl es += wcpat h->cycl es.
VWH LE wcpat h’ s cachi ng behavi or can change
&& curr_iter <n
cycles +=wcpath->cycles * (n - curr_iter).

Figure 2: Numeric Loop Analysis Algorithm

curr_iter

4. PARAMETRIC TIMING ANALYSIS

It would be desirable to support parametric timing predic-
tions when the number of iterations for a loop is unknown until
run time. Our goal is to calculate a formula (or closed form) for
the WCET for such a loop, where the formula depends, dhe
number of iterations for that looplhis formula needs to be rela-
tively inexpensve b calculate since it will be used at run-time to
make dynamic decisions concerning the selection of tasks and/or
the selection of algorithms within a task. Rather thamags
passing a numeric value representing the number of cycles of

sidered a natural loop, where each function is treated as a loogP0PS @nd functions up the timing analysis tree, we can instead
executing a single iterationThe nodes in the timing analysis tree PaSS up @ symbolic formula when the number of iterations is

are processed in a bottom-up manner other words, the WCET
and BCET for a node are not calculated until the times for all of
its immediate child nodes are kmo. Thismeans that the timing
analyzer determines theeeution time for programs by first ana-
lyzing the innermost loops and functions, and proceeding to
higher level loops and functions until it reachesi n() . Finally,

a gaphical user interface isvioked that allows a user to request
predictions for portions of the program [KHR96].

User
c Timing
Source Requests
Files
e — Timing ! User
Control Flow 9,
and Constrain Analyzer | Interfac
Information
Instruction Machine Timin
Caching Dependen "ng
Categorizations | Information| | Predictions

Figure 1: Overviw of Timing Analysis Process

Our numeric timing analyzer requires that the number of
iterations of each loop be known, that the total number of itera-

unknown in a loop representing a node in the subtree.

Figure 3 shows an abstraction of the revised loop analysis
algorithm. Thealgorithm iterates until a fixed point is reached
where the caching behavior of the WCET path does not change.
The base cycles that are applied before the fimabtncase path
time is known are s&d. Equationl shows that the WCET of a
loop depends on these base cycles and the WCET path time,
which are both constants, and the number of iterations, which is
unknown until run time.

cycl es 0.
DO
curr_iter += 1.
Find the | ongest pathwcpath.
cycl es += wcpat h->cycl es.
WH LE wcpat h’ s cachi ng behavi or can change
base_cycles =
cycles - (wcpath->cycles * curr_iter).

Figure 3: Parametric Loop Analysis Algorithm

curr_iter

WCET loop_time=WCET_path time* n + base cycles (1)

If the actual number of iterations exceeds the number of
iterations that are required to reach the point where the parametric
WCET loop time is calculated, then the parametric result should
be comparable to that produced by the numeric timing analyzer
when there is a known number of iteratioristhe actual number

tions for a nonrectangular loop nest can be calculated, or that Pf iterations is less than the number of iterations that are required

user provide this information when it is unkmo Figure 2

depicts an abstraction of the loop analysis algorithm that is used.

to reach this point, then there could be aerestimation. Br
instance, consider the situation as depicted in Table 1. The for

The algorithm repeatedly selects the longest path through the looghula representing the parametri??CET_loop_time would

until a fixed point is reached.¢., the caching behavior does not
change and the cycles for the worst-case path is guaranteed t
remain the same). The maximum number of times thabmstw
case path is selected is the minimumrefl orn, wherem s the
number of unique paths through the loop and the number of
loop iterations. Note that the WCETs for inner loops are

11*n+16 since theNCET_path_timefter the caching betir
goes not change is 1yales and the base cycles is 16 (20-11 +
18-11). Ifthe loop iterates only once, then the predicted WCET
would be 27 cycles, while the actual WCET would be p@es.

We ould hare nodified the formula to address dealing with the
special cases for having fewer iteratiortdowever, the resulting
formula would be more compleand the additional cost of

making these checks at run time woulelikoutweigh the benefit
obtained for a more accurate prediction. Furthermore, if the num-
ber of iterations is small, then the loop will diy have little
impact on the total WCETIf the number of iterations is e,
then there should beewy little sacrifice in the accunaof the pre-
dictions.

How the Path Is Esluated ath 1 | Pah2
Initial Execution Including Cache Misseg 20 18
After Caching Behavior Does Not Change 11 9

Table 1: WCET Path Information for a Hypothetical Loop

The timing analyzer processes inner loops before outer

We have developed a preliminary implementation of the
parametric timing analyzerAs in the numeric timing analyzer
certain restrictions are impose#irst, recursie programs are not
allowed since cycles in the call graplowld complicate the gener
ation of unique function instances. Second, indirect calls are not
allowed since an explicit call graph must be generated statically
Finally, loops must be structured, which means there must be only
a sngle entry point in the loopUnlike the numeric timing ana-
lyzer, the parametric timing analyzer does not need tavkaaon-
stant alue for the maximum number of iterations of each loop.
However, the compiler must be able to generate a symbolic
expression that represents the number of loop iterations to be
executed at run-time.

Table 2 describes a small set of test programs that were
used to contrast the results with numeric and parametric timing

loops. Anested inner loop is represented as a single block whenanalysis. Thestest programs were all refatly simple since this
processing a path in the outer loop. Rather than representing th@reliminary implementation does not yet address the case where
inner loop with a number of cycles, we instead represent the loopthe worst-case path within a loop cannot be selected duetar tw
with a symbolic formula when the number of iterations is not stat- more of the loop paths having a symbolic WCET.

ically known. Thetime for the outer loop path is simply the sym-

bolic sum of the cycles associated with the rest of the path and the

formula representing the inner loop.

The analysis becomes more complicated when one or more

paths in a loop contain a nested loop with a parametric WCET
Consider the following example shown in FigureThere are tw
loops, where an inner loop (block 4) is nested in the outer loop
(blocks 2, 3, 4, and 5)Assume the number of iterations for the
inner loop is symbolic. The loop analysis algorithm requires that
the timing analyzer find the longest path in the outer loop, which
may depend on the number of iterations of the inner |otpe
minimum number of iterations for a loop is one since our defini-
tion for the number of loop iterations is the number of times that
the loop header (entry block of the loop) iseauted. If the
WCET for path AR-3-5) is less than the WCET for path
B(2-4-5) when the number of iterations of the inner loop is
one, then path B is chosen. Otherwisenax()function must be
used to represent the parametric WCET of the outer |dap.
instance, equation 2 shows that the maximum of the gaths

Program Description

Matcnt Counts and sums the nowgative dements of an inter
ger matrix.

Matmul Multiplies 2 integer matrices and stores the result|in a
third integer matrix.

Stats Calculates the sum, mearariance, and standard de-
viation and the linear correlation coefficient between
two vectors of numbers.

Summinmax | Sum the minimum and maximum of the correspgnd-
ing elements of tev integer vectors.

Sumnegpos | Sums the rgetive, positive, and all elements of an in-
teger vector.

Table 2: Test Programs

Table 3 shavs the results of predictingxecution time
using the tw types of techniquesFor these programs we pre-
dicted pipeline and instruction cache performarfg@mulais the
formula returned by the parametric timing analyzer and it repre-

should be selected. Note that the WCET of these paths is after theents the parameterized predictedcation time of the program.

caching behdor reaches a steady state and that the badesc

In order to gauate the accurgoof the parametric timing analysis

are the etra cycles before both of these these paths reach thatapproach, we made each of the loops in these test programs iterate

state. Thdirst value passed tmaxfor the example in Figure 4
would be numeric and the second would be symbolic.

Figure 4: Example of an Outer Loop with Multiple Paths

WCET loop_time = maxW CET_path_A time,
WCET_path B _time) * n
+ base cycles

)

the same number of timeJhus,n Itersrepresents the number of
loop iterations for each loop in the program ankpresents that
value in the formulas. The power ofrepresents the loop nesting
level and the factor represents thectes spent at thatuel. Note
that most of the programs had multiple loops at each nestidg le
For example, 160° represents that 160/des is the sum of the
cycles that would occur in a single iteration of all the loops at
nesting leel 2 in the program.If the number of iterations of v
different loops in a loop nest tif, then the formula would reflect
this as a multiplication of thesadtors. Br instance, if the matrix

in Matcnthadm rows andn columns, wheren # n, then the for
mula would be (168+267)+857. TheObserved Cyclesvere
obtained by using an integrated pipeline and instruction cache
simulator and this value represents the cycles in Keeuéon
using worst-case input datarhe Numeric Analysisepresents the
results using the previous version of the timing analyatere

the number of iterations of each loop must be a number that is
known to the timing analyzerThe Parametric Analysisepresents
cycles where the number of iterations was unknown until run
time. TheEstimated Cyclesand Ratio represent the predicted
number of cycles by the timing analyzer and ratio toQbserved
Cycles The estimated parametrigyades were obtained by plug-
ging the number of iterations into the formula returned by the

n Observed Numeric Analysis Paametric Analysis
Program Brmula Iters Cycles Estimate@ycles | Ratio| Estimated Cycles Ratio
1 1,206 1,207 1.001] 1,284 | 1.065
2 10 18,954 19,523 1.030 19,527 1.030
Matent 160°+26M+857 | 100 | 1,622,034 1,627,553 1.003 1,627,557 1.003
3 5 1 1,432 1,460 1.020 1,724 1.204
Matmul 337+31M"+53+851 10 62,182 70,137 1.128 70,151 | 1.128
100 33,725,782 36,153,837 1.072 36,153,851 1.072
1 2,885 2,912 1.009 3,008 | 1.043
Stats 1046+1959 10 12,290 12,449 1.013 12,449 | 1.013
100 106,340 106,859 1.005 106,859 1.005
1 139 140 1.007 140 1.007
Summinmax 1A+123 10 283 293 1.035 293 1.035
100 1,723 1,823 1.058 1,823 1.058
1 104 107 1.029 107 1.029
Sumngpos 13+94 10 203 224 1.103 224 1.103
100 1,193 1,394 1.168 1,394 1.168

Table 3: Results

parametric timing analyzerThe results she that the parametric
analysis is less accurate when loopgeha éngle iteration. This

is due to the caching behar of the WCET path not reaching a

fixed point, as described in Figure Blowever, the parametric
analysis is almost as accurate as the numeric analysis when the
number of iterations increases. 2

5. USING PARAMETRIC WCET PREDICTIONS

One may ask hw can a symbolic formula representing a
parametric WCET for a loop or function actually be uséd.
scheduler can dynamically adjust priorities based on a parametric
estimate of the WCET of a task. In addition, iud be benefi-
cial to male dynamic decisions within a real-time task based on
an estimate of the remainingeeution time. Multiple versions of
algorithms could be deloped that sole the same problem with
different degrees of precision andeeution time. Paametric
WCET prediction can potentially allothe selection of an algo-
rithm with higher precision due to tighter WCET predictions.
Likewise, parametric WCET analysis may be used to determine
an appropriate number of iterations for algorithms that progres-
sively improve the precision of calculations.€., imprecise com-
putations). Thdunctions providing the parametric WCET can be
provided as call-backs to the operating system. Once the parame-
ters, such as the number of loop iterationsehaen supplied by
the application, the scheduler may inspect the time budget to
determine hw to schedule the remainder of a taskxecution.

If code within a task is generated to represent the symbolic
WCET formula during the parametric timing analysis, then it
would seem that this code would affect the previously determined
timing predictions due to changing the addresses of the instruc-
tions and potentially the caching belm. Rather than inserting
the code for the symbolic WCET formula directly into the source
code at the point it is used, we decided tmlwe a finction that
evduates the symbolic WCET formula and we append these func-
tions to the end of the progranwe ilustrate the approach with
an example gen in Hgure 5, where the timing analysis is accom-
plished in stages as the parametric formulas are generated and
later evaluated. Inthis example function 4 is generated by the
timing analyzer to calculate the WCET of loop 3, whose number
of iterations is unknown until run time.

1)

—~

3)

(4)

A call to a function is inserted that returns the WCET for a
specified loop or a function based on a parameter indicat-
ing the number of loop iterations that becomes known at
run time. The instructions that are associated with the call

and that use the return value after the call are generated
during the initial compilationFor instance, in Figure 5(a)
function #1 calls function #4 to obtain the WCET of loop
#3, which contains a symbolic number of iterations.

The timing analyzer generates the source code for the
called function into a separate file when processing the
specified loop or function whose time needs to be calcu-
lated at run time.For instance, Figure 5(b) shows that
after loop #3 has been parametrically analyzed, the code
for function #4 has been generated. Note that the timing
analysis tree representing the loops and functions in the
program is processed in a bottom agHion. Thecode in
function 1 irvoking the generated function is naiakiated

until after the generated function is producddhe static
cache simulator can initially assume that a call to an
unknavn function ivalidates the entire cacherigure 6
shavs an @ample of the source code of such a generated
function. Thisfunction returns the number of cycles asso-
ciated with the formula gen in Table 3 for theMatcnt
program.

The generated function is compiled and is placed at the
end of the recutable. Thdormula representing the sym-
bolic WCET need not be simplified by the timing ana-
lyzer. Most optimizing compilers perform constant fold-
ing, strength reduction, and other optimizations that will
automatically simplify the symbolic WCET produced by
the timing analyzer By placing the generated function
after the rest of the program, the other instruction
addresses in the program are deeted. Lilewise, the
predicted caching behavior of the previously analyzed
functions and loops are also unaffected since we are pro-
cessing the tree in a bottom-up order.

Thetiming analyzer is reiwoked to resume the analysis of
the program, which includes calculating the WCET of the
generated function and the codedking such a function.

For instance, Figure 5(c) shows that the generated func-
tion #4 has been numerically analyzed and Figure 5(d)
shaws that function #1 has been parametrically analyzed,
which includes the numeric WCET required foeeuting
function #4.

function 1 function 1
not yet not yet
analyzed analyzed
/" S /’\
loop 2 loop 3 , function4 loop 2 loop 3 function 4
numerically not yet | not yet | numerically parametrically numerically
analyzed analyzed L Generated analyzed analyzed analyzed
(a) Loop #3 Contains a Symbolic Number of Iterations (c) Generated Function |s Analyzed
function 1 function 1
not yet parametrically
analyzed analyzed
loop 2 loop 3 function 4 loop 2 loop 3 function 4
numerically parametrically sour ce code numerically parametrically numerically
analyzed analyzed generated analyzed analyzed analyzed
(b) Loop #3 1s Analyzed and a WCET Function |s Generated (d) Function Containing Code Calling Generated Function Is Analyzed

Figure 5: Example of Using Parametric Timing Predictions

int WCET_| oop(int n) 7. CONCLUSIONS
{ We havedescribed he static timing analysis can be used
) return (160*n + 267)*n+857; to aid in making dynamic scheduling decisioMe haveshown
;] how a ymbolic formula can be produced to represent the WCET
Figure 6: Example of a Generated Function for a loop when the number of loop iterations cannot be deter
Calculating the WCET of a Loop mined until run-time. While more complecases should be

In summarvthis aooroach allows for the timing analvsis to addressed, preliminary results for some simple programs were
u ythis app W iming ysl given indicating that the approach for parametric timing analysis

b?] accomdplldshec:j n stages?.(jaa][netrtl_c formulas atr_e ptrr?duc?d is almost as accurate as a completely numeric approach when the
when heeded anc source code tunctions representing these Tormuy,, e of jterations in a loop exceeds the number of iterations

las are generated. These generated functions are then compileqequired to reach a point where the WCET caching \dehis in
analyzed, ano_l wsed timing predictions are made. Th_|s process o geady state.We dso outlined hw these parametric WCETs
continues until a formula can be produced for the entire program 14 pe used without fkcting the timing predictions of the loops

or task. and functions that were previously analyzed. The benefits of para-
metric timing analysis includexpanding the class of applications
6. FUTURE WORK that can be used in a real-time system, improving the agcafac
There are seral types of problems that we Ve yet to dynamic scheduling decisions, and moréedive uilization of

address in our parametric timing analysis. Sometimes the numbesystem resources.
of iterations &ecuted by a loop canavy since it may depend on
the value of an outer loop counteariable. Ourapproach to ACKNOWLEDGEMENTS

resol\e this in the numeric timing analysisas to formulate a non- This research was supported in part by the Spanish CICYI
_rectangulgir loop nest in terms of summations andss!b_b/ resu!t- grant TAP98-0333-C03-01 and the National ScieneenBation

ing equation [HSRO0O]. If the range of all of the loggrigbles in rants EIA-9806525, CCR-9904943 and EIA-007204Bhe

the nonrectangular loop nest cannot be bounded, then the summ vork performed by Frank Mueller as under the auspices of the

thns can still be formulated and an equatlon ina (_:Iosec_i form can; g Departmenof Energy by Uniersity of California Lavrence
still often be generated when performing parametric timing analy- Livermore National Laboratory under contract

SIS No. W-7405-Eng-48.
Likewise constraints on branches can limit the paths that

can be taken in a program. Automatically detecting these con-g REFERENCES

straints can result in tighter WCET predictions [HeW9%Ye

need to formulate an equation when such branch constraints aréAY97] N. Al-Yagoubi, Reducing Timing Analysis Compity

present and the number of loop iterations is only known at run by Partitioning Contol Flow, Masters Project,
time. Florida State Uniersity, Tallahassee, FL (1997).
Finally, we reed to implement the approach described in [AMW94] R. Arnold, F Mueller, D. Whalley, and M. Harmon,
Section 5. This will imolve modifying the timing analyzer to rec- “Bounding Worst-Case Instruction Cache Perfor
ognize the names of special function calls indicating that the mance,"Proceedings of theifteenth IEEE Realime
should return the WCET of functions or loopé/e will also have Systems Symposiumpp. 172-181 (December 1994).

to change the eironment shown in Figure 1 to repeatedlydke [BeD88] M. E. Benitez and J. WDavidson, ‘A Portable
the compiler satic simulatoy and timing analyzer as mefunc- Global Optimizer and Linkr Procéedings of the

tions are generated and then subsequently analyzed. SIGPLAN '88 Symposium ondgramming Languge
Design and Implementation pp. 329-338 (June

[BeBOO]

[CBWO9E6]

[EnEOQ]

[HBW92]

[HSROO]

[HSR98]

[Hew99]

[HWH95]

[HBLO5]

[KMH96]

[KHR96]

[LMW96]

[LMW95]

[LBJ94]

1988).

G.Bernat and A. Burns,An Approach to Symbolic
Worst-Case Execution Time Analys$is25th IFAC
Warkshop on Real-Time Bgramming (May, 2000).
R.Chapman, A. Burns, and A.&Nings, “Combining
Static Worst-Case ifhing Analysis and Program
Proof,” Real-Tme System&1(2) pp.145-171 (1996).

J.Engblom and A. Ermedahl, “Modeling Comple
Flows for Worst-Case Execution Time Analysis,
Proceedings of the IEEE Real-Time Systems Sympo-
sium (November 2000).

M. G. Harmon, TP. Baker and D. B. Whallg, “A
Retagetable Technique for Predicting ébution
Time,” Proceedings of the Thirteenth IEEE Reah&
Systems Symposiumpp. 68-77 (December 1992).

C.Healy M. S6din, V. Rustagi, D. Whallg, and R.
van Engelen, “Supporting Timing Analysis by Auto-
matic Bounding of Loop IteratiorisReal-Tme Sys-
tems pp. 121-148 (May 2000).

C.A. Healy M. Sjédin, V. Rustagi, and D. B. Whal-
ley, “Bounding Loop lterations forifhing Analysis;
Proceedings of the IEEE Real-Timecfinolgy and
Applications Symposiunpp. 12-21 (June 1998).

C.A. Healy and D. B. Whalle “Tighter Timing Pre-
dictions by Automatic Detection and Exploitation of
Value-Dependent ConstrairitsProceedings of the
IEEE Real-ime Echnola@y and Applications Sympo-
sium pp. 79-88 (June 1999).

C. A. Healy D. B. Whalley, and M. G. Harmon,
“Integrating the Timing Analysis of Pipelining and
Instruction Caching, Proceedings of the Sixteenth
IEEE Real-Tme Systems Symposiumpp. 288-297
(December 1995).

Y. Hur, Y. H. Bae, S. S. Lim, S. K. Kim, B. D. Rhee,
S. L. Min, C. Y Park, H. Shin, and C. S. Kim, “bVst
Case Timing Analysis of RISC Processors:
R3000/R3010 Case StytiyProceedings of the Six-
teenth |IEEE Real-Time Systems Sympasiypp.
308-321 (December 1995).

S. Kim, S. L. Min, and R. Ha, “Efficient Wfst-Case
Timing Analysis of Data CachirigProceedings of
the IEEE Real-Time e€Ehnolgy and Applications
Symposium(June 1996).

L. Ko, C. Healy E. Ratliff, R. Arnold, D. Whallg,
and M. Harmon, “Supporting the Specification and
Analysis of Timing ConstraintsProceedings of the
IEEE Real-Tme ®chnolgy and Applications Sympo-
sium pp. 170-178 (June 1996).

Y. Li, S. Malik, and A. Wolfe, “Cache Modeling for
Real-Time Software: Bgond Direct Mapped Instruc-
tion Cache$, Proceedings of the IEEE Reahie
Systems Symposiump. 254-263 (December 1996).
Y. S. L, S. Malik, and A. Wolfe, “Efficient Microar
chitecture Modeling andd®h Analysis for Realime
Software,” Proceedings of the Sixteenth IEEE Real-
Time Systems Symposjumpp. 298-307 (December
1995).

S.S. Lim, Y. H. Bae, G. TJang, B. D. Rhee, S. L.
Min, C. Y. Park, H. Shin, K. Brk, and C. S. Kim,An

[Par93]

[PUK89]

[WMH97]

[ZBNO3]

Accurate Worst Case Timing Analysis Technique for
RISC ProcessofsProceedings of the Fifteenth IEEE
Real-Tme Systems Symposiumpp. 97-108 (Decem-
ber 1994).

C.Y. Park, “Predicting Program Execution Times by
Analyzing Static and Dynamic ProgramatRs,” Real-
Time Systen§(1) pp. 31-61 (March 1993).

P Puschner and C. ¢za, “Calculating the Maximum
Execution Time of Real-Time Prograrhfkeal-Time
Systemd4(2) pp. 159-176 (September 1989).

R. T. White, FE Mueller, C. A. Healy, D. B. Whalley,
and M. G. Harmon, “Timing Analysis for Data
Caches and Set-Associati Caches,"Proceedings of
the IEEE Real-Time eEhnolgy and Applications
Symposiumpp. 192-202 (June 1997).

N. Zhang, A. Burns, and M. Nicholson, “Pipelined
Processors and Worst Case ExecutiomeB,” Real-
Time Systent&(4) pp. 319-343 (October 1993).

