
Automatic Validation of Code-ImprovingTransformations?Robert van Engelen, David Whalley, and Xin YuanDept. of Computer Science, Florida State University, Tallahassee, FL 32306-4530fengelen,whalley,xyuang@cs.fsu.eduAbstract. Programmers of embedded systems often develop software inassembly code due to critical speed and/or space constraints and inad-equate support from compilers. Many embedded applications are beingused as a component of an increasing number of critical systems. Whileachieving high performance for these systems is important, ensuring thatthese systems execute correctly is vital. One portion of this process isto ensure that code-improving transformations on a program will notchange the program's semantic behavior. This paper describes a generalapproach for validation of many low-level code-improving transforma-tions made either by a compiler or speci�ed by hand.1 IntroductionSoftware is being used as a component of an increasing number of critical sys-tems. Ensuring that these systems execute correctly is vital. One portion of thisprocess is to ensure that the compiler produces machine code that accuratelyrepresents the algorithms speci�ed at the source code level. This is a formidabletask since an optimizing compiler not only translates the source code to machinecode, it may apply hundreds or thousands of compiler optimizations to even arelatively small program. However, it is crucial to try to get software correctfor many systems. This problem is exacerbated for embedded systems develop-ment, where applications are often either developed in assembly code manuallyor compiler generated assembly is modi�ed by hand to meet speed and/or spaceconstraints. Code improving transformations accomplished manually are muchmore suspect than code generated automatically by a compiler.There has been much work in the area of attempting to prove the correct-ness of compilers [3, 4, 6]. More success has been made in the area of vali-dating compilations rather than the compiler itself [2]. Likewise, there has beenprogress in proving type, memory safeness, and other related properties of a com-pilation [7, 8, 10]. Horwitz attempted to identify semantic di�erences betweensource programs in a simple high-level language containing a limited numberof constructs [5]. In our approach we show the equivalence of the program rep-resentation before and after each improving transformation. While many code-improving transformations may be applied to a program representation, each? Supported by NSF grant CCR-9904943.

r[16]=0;0.
r[17]=HI[_s];
r[19]=r[17]+LO[_s]; r[17]:

1. r[17]=HI[_s]; r[16]=0;
r[19]=r[17]+LO[_s]; r[17]:

2. r[19]=HI[_s]+LO[_s]; r[16]=0;
r[17]=r[16]+r[19]; r[16]:

3.

r[17]=r[16]+r[19]; r[16]:

r[17]=r[16]+r[19]; r[16]:

r[17]=0+HI[_s]+LO[_s]; r[19]=HI[_s]+LO[_s];

0.
r[17]=HI[_s];
r[19]=r[17]+LO[_s]; r[17]:

1. r[17]=HI[_s];
r[19]=r[17]+LO[_s]; r[17]:
r[17]=r[19];

2. r[19]=HI[_s]+LO[_s];
r[17]=r[19];

3. r[17]=HI[_s]+LO[_s]; r[19]=HI[_s]+LO[_s];

r[16]=0; r[16]:

r[17]=r[19];

(b) Merging Effects in New Region(a) Merging Effects in Old RegionFig. 1. Example Merging E�ects within a Single Blockindividual transformation typically consists of only a few changes. Also, if thereis an error, then the compiler writer or assembly programmer would �nd it de-sirable for a system to identify the transformation that introduced the error. Foreach code-improving transformation we only attempt to show the equivalence ofthe region of the program associated with the changes rather than showing theequivalence of the entire program representation. We show equivalence of theregion before and after the transformation by demonstrating that the e�ects theregion will have on the rest of the program will remain the same.2 ImplementationWe validate code-improving transformations in the vpo compiler [1], which usesRTLs (register transfer lists) to represent machine instructions. Each registertransfer is an assignment that represents a single e�ect on a register or memorycell of the machine. Thus, the RTL representation served as a good starting pointfor calculating the semantic e�ects of a region. Merging the RTLs in a regionobtains an order-independent representation of e�ects. Merging also eliminatesthe use of temporaries within the region. Fig. 1 displays an example of merginge�ects. Each RTL is merged into the e�ects one at a time. When the destinationof an e�ect is no longer live, then the e�ect is deleted (the point where a registerdies is depicted to the right of that RTL). For instance, step 2 in Fig. 1(a) deletesthe e�ect that updates r[17] since the register is no longer live. The �nal e�ectsof the old and new regions in Fig. 1 are identical after normalization.We automatically detect changes associated with a transformation by makinga copy of the program representation before each code-improving transformationand comparing the program representation after the transformation with thecopy. Each region consists of a single entry point and one or more exit points.We �nd the closest block in the control-ow graph that dominates all of themodi�ed blocks. This dominating block contains the entry point of the region.A separate set of e�ects is calculated for each exit point from the region. Theold and new regions are considered equivalent only if for each exit point theyhave the same e�ects.

Loops can be processed innermost �rst. The e�ects of each node at the sameloop level are calculated only after all of its non-back edge predecessors havebeen processed. Merging the e�ects across loop nesting levels requires calculatingthe e�ects of an entire loop. One issue that we address is the represenation of arecurrence, which involves the use of a variable or register that is set on a previousloop iteration. An induction variable is one example of a simple recurrence.We modi�ed the vpo compiler with calls to Ctadel to normalize e�ects.The Ctadel system [11] is an extensible rule-based symbolic manipulation pro-gram. The merging and subsequent normalization of e�ects results in canonicalrepresentations that enable a structural comparison to show that e�ects are se-mantically identical. The canonical representations of the e�ects correspondingto the exit points of old and new regions are compared by vpo to determinethat the semantic e�ect of the transformed region of code is unchanged. Theequivalence of the modi�ed region is a su�cient condition for the correctness ofa transformation, but it not a necessary condition.The symbolic normalization of e�ects is illustrated by an example depicted inFig. 2. The calculation of e�ects proceeds from the dominating block of the region(B1). The guarding conditions that result from conditional control ow arepropagated down and used to guard RTLs. The �nal e�ects accurately describethe semantics of the region of code. Clearly, block B5 is unreachable code. Thevpo compiler applies dead-code elimination to remove block B5. The e�ect ofthe code after the transformation has been applied is unchanged (not shown).Hence, the dead-code elimination optimization is validated.3 Results and ConclusionsA variety of types of transformations in the vpo compiler have been validatedusing our approach, including algebraic simpli�cation of expressions, basic blockreordering, branch chaining, common subexpression elimination, constant fold-ing, constant propagation, unreachable code elimination, dead store elimination,evaluation order determination, �lling delay slots, induction variable removal,instruction selection, jump minimization, register allocation, strength reduction,and useless jump elimination.Table 1 shows some test programs that we have compiled while validatingcode-improving transformations. The third column indicates the number of im-proving transformations that were applied during the compilation of each pro-gram. The fourth column represents the percentage of transformations that weare able to validate. The only transformations that we cannot validate are thosewith regions that span basic blocks at di�erent loop nesting levels since the abil-ity to represent e�ects containing entire loops is in a development stage. The �fthcolumn represents the average static number of instructions for each region asso-ciated with all code-improving transformations during the compilation. The �nalcolumn denotes the ratio of compilation times when validating programs versusa normal compilation. The overhead is due to the application of sometimes tensof thousands of rewrite rules to normalize e�ects after a single transformation.

PC=IC>0,B6;

r[10]=0;r[10]=-1;
PC=B7;

PC=B7;
r[10]=1;

PC=IC:0,B4;

PC=IC<0,B8;
IC=r[8]?0; r[8]

r[11]=-r[10];

. . .

1

3

4

2

r[8]>=0/\r[8]!=0

r[8]>=0

r[8]>=0

B1

B2

B4 B3

B5 B6

B7

B8

r[8]>=0/\r[8]=0

r[8]>=0/\r[8]=0/\r[8]>0 r[8]>=0/\r[8]=0/\r[8]<=0

r[8]<0

51. At (1) from block B5 after merging: r[10] = f�1 if r[8] � 0^ r[8] = 0^ r[8] > 0g2. At (2) from block B6 after merging: r[10] = f0 if r[8] � 0 ^ r[8] = 0 ^ r[8] � 0g3. At (3) from block B3 after merging: r[10] = f1 if r[8] � 0 ^ r[8] 6= 0g4. After combining the e�ects of the blocks B5, B6, and B3 we obtainr[10] = (1 if r[8] � 0 ^ r[8] 6= 00 if r[8] � 0 ^ r[8] = 0 ^ r[8] � 0�1 if r[8] � 0 ^ r[8] = 0 ^ r[8] > 0) simplify= � 1 if r[8] > 00 if r[8] = 0�5. Merging the above e�ects with the e�ects of block B7 yieldsr[10] = � 1 if r[8] > 00 if r[8] = 0� ; r[11] = �� 1 if r[8] > 00 if r[8] = 0� simplify= ��1 if r[8] > 00 if r[8] = 0�6. Merging the (empty) e�ects at transition (5) with the e�ects at transition (4) weobtain the e�ects of the region of coder[10] =8<:�1 if r[8] > 00 if r[8] = 0� if r[8] � 0r[10] if r[8] < 09=; simplify= (1 if r[8] > 00 if r[8] = 0r[10] if r[8] < 0)r[11] =8<:��1 if r[8] > 00 if r[8] = 0� if r[8] � 0r[11] if r[8] < 09=; simplify= (�1 if r[8] > 00 if r[8] = 0r[11] if r[8] < 0)where the guard condition r[8] � 0 is derived by forming the disjunction of the guardconditions on the incoming edges to block B7, which is the simpli�ed form of(r[8] � 0 ^ r[8] 6= 0) _ (r[8] � 0 ^ r[8] = 0 ^ r[8] � 0) _ (r[8] � 0 ^ r[8] = 0 ^ r[8] > 0)Fig. 2. Example Normalization of E�ectsHowever, this overhead would probably be acceptable, as compared to the costof not detecting potential errors. Validation can also be selectively applied on asubset of transformations to reduce the overall compilation time.To summarize our conclusions, we have demonstrated that it is feasible touse our approach to validate many conventional code-improving transformations.Unlike an approach that requires the compiler writer to provide invariants foreach di�erent type of code-improving transformation [9], our general approachwas applied to all of these transformations without requiring any special informa-tion. We believe that our approach could be used to validate many hand-speci�edtransformations on assembly code by programmers of embedded systems.

Table 1. BenchmarksProgram Description #Trans #Validated Region Overheadackerman Ackerman's numbers 89 100.0% 3.18 13.64arraymerge merge two sorted arrays 483 89.2% 4.23 63.89banner poster generator 385 90.6% 5.42 34.13bubblesort bubblesort on an array 342 85.4% 6.10 34.37cal calendar generator 790 91.1% 5.16 105.64head displays the �rst few lines of �les 302 89.4% 8.42 152.64matmult multiplies 2 square matrices 312 89.7% 5.55 28.97puzzle benchmark that solves a puzzle 1928 78.5% 5.85 128.98queens eight queens problem 296 85.8% 6.79 73.65sieve �nds prime numbers 217 80.6% 6.85 21.90sum checksum and block count of a �le 235 91.9% 8.62 195.19uniq �lter out repeated lines in a �le 519 91.1% 4.21 163.26Average 492 88.6% 5.87 84.64References[1] M. E. Benitez and J. W. Davidson. A Portable Global Optimizer and Linker. InProceedings of the SIGPLAN '88 Symposium on Programming Language Designand Implementation, pages 329{338, June 1988.[2] A. Cimatti and et. al. A Provably Correct Embedded Veri�er for the Certi�ca-tion of Safety Critical Software. In International Conference on Computer AidedVeri�cation, pages 202{213, June 1997.[3] P. Dybjer. Using Domain Algebras to Prove the Correctness of a Compiler. LectureNotes in Computer Science, 182:329{338, 1986.[4] J. Guttman, J. Ramsdell, and M. Wand. VLISP: a Veri�ed Implementation ofScheme. Lisp and Symbolic Computation, 8:5{32, 1995.[5] S. Horwitz. Identifying the Semantic and Textual Di�erences between Two Ver-sions of a Program. In Proceedings of the ACM SIGPLAN Conference on Pro-gramming Language Design and Implementation, pages 234{245, 1990.[6] F. Morris. Advice on Structuring Compilers and Proving Them Correct. InProceedings of the ACM Symposium on Principles of Programming Languages,pages 144{152, 1973.[7] G. Necula. Proof-Carrying Code. In Proceedings of the ACM Symposium onPrinciples of Programming Languages, pages 106{119, January 1997.[8] G. Necula and P. Lee. The Design and Implementation of a Certifying Compiler.In Proceedings of the ACM SIGPLAN Conference on Programming Language De-sign and Implementation, pages 333{344, 1998.[9] M. Rinard and D. Marinov. Credible Compilation with Pointers. In Proceedingsof the FLoC Workshop on Run-Time Result Ver�cation, 1999.[10] D. Tarditi, J. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. TIL: A Type-Directed Optimizing Compiler for ML. In Proceedings of the ACM SIGPLANConference on Programming Language Design and Implementation, pages 181{192, 1996.[11] R. van Engelen, L. Wolters, and G. Cats. Ctadel: A generator of multi-platformhigh performance codes for pde-based scienti�c applications. In Proceedings of the10th ACM International Conference on Supercomputing, pages 86{93, May 1996.

