Supporting User-Friendly Analysis of Timing Constraints

LO KO AND DAVID B. WHALLEY
Department of Computer Science, Florida Sate University, Tallahassee, FL 32306-4019, U.SA.
e-mail: whalley@cs.fsu.edu, phone: (904) 644-3506

MARION G. HARMON
Dept. of Computer and Information Systems, Florida A&M University, Tallahassee, FL 32307-3101, U.SA.
e-mail: harmon@cis.famu.edu, phone: (904) 599-3042

SUMMARY real-time programs includes whether the results are pro-
Real-time programmers have to deal with the problem duced on time. Thus, the timing analysis should be at the
of relating timing constraints associated with source level of the machine instructions or the compiler should
code lines to sequences of machine instructions, This ~ Maintain an accurate mapping between the higé-tnd
paper describes an interface that was developed to assist low-level representations. Thehas been much research in
usersin thistask. Portions of programs can be quickly the area of symbolic debugging of optimized code to main-
selected and the corresponding bounded times, source tain such mappings [Hen82, CMR88, BHS92, AdG93].
code lines, and machine instructions are automatically This paper describes the implementation of a user
displayed. In addition, users are restricted to only interface to support analysis of timing constrainfEhe
selecting portions of the program for which timing approach that was usedvalves performing the timing
bounds can be obtained. The result is a user-friendly analysis on the machine code of a program and depicting
interface that assists programmers in the analysis of the relationship between the machine instructions (i.e.
timing constraints within a program. assembly code) and the corresponding source code lines.

INTRODUCTION OVERVIEW

The design of the timing analysis user iraed
described in this paper included the following goals:
(1) A user should be able to quickly select a portion of the pro-

One contrgersial aspect of real-time systems is
whether timing analysis should be performed at a high

(source code) or @ (machine code) l&l. An advantage gram for timing prediction.

of high-level analysis is that the results of the timing pre- (2) Theuser should only be allowed to select portions of the pro-
dictions can be more easily related to a .uusé@ming gram for which timing bounds can be obtained.

bounds are obtained for each higliddanguage construct, (3) Thecorresponding portions of the source code and machine
which includes statements, loops, and functioithe code lwels of the program selected by the user for timing

assumption is that timing bounds for a specific machine can prediction should be depicted.

be associated with each of these construdtsfortunately, Figure 1 gves an werview of the context in which

current architectural features, such as pipelines and cacheqi,ming predictions are obtainedControl-flow information
preclude a single a priori time associated with a hightle 5 stored as the side effect of the compilation of a filee
language constructin addition, global compiler optimiza- control-flow information is passed to a static cache simula-
tions can affect he a ecific construct is translated and its tor, which constructs the control-flograph of the program
associated timing bounds. While much more accurate tim-that consists of the call graph and the contral fts each
ing bounds can be obtained by performing the analysis afynction. Theprogram control-fla graph is then analyzed
the machine code Ve, it is still important to relate these o, 5 given cache configuration and a categorization of each
timing predictions in a manner that a user can understandjystryctions potential caching behavior is producjeul.ext,
A user needs to kmo the correspondence between j; jming analyzer uses the instruction caching gatza-
sequences of machine instructions and lines of source codgjgng along with the control-o information provided by
This problem is very similar to the one of symbolic the compiler which includes the source lines associated
delugging of optimized codeMary users are willing to with basic blocks, to estimate the best-case amdtvcase
rely on symbolic debugging of unoptimized codeegithat instruction caching performance for each loop and function
the behavior of the unoptimized and optimized programs within the program.Finally, user interface windows are
are semantically equalent. Hovever, correct behavior of ~ displayed allowing one to request the timing bounds for

*This work was supported in part by the Office ofvilaResearch ! Note that at this time only instruction caching heébais ana-
under contract number N0O0014-94-1-0006. lyzed. Work is currently proceeding on analyzing pipelining and data
caching behavior.

\ User Timing Requesis

Timingi User
Analyzer | Interface

Timing
Predictions

C Control
Source Flow
Files Information

Static
Cache
Simulato

Cache
Configuration

Caching
Categorizations

Figure 1: Overviwe of Obtaining Timing Predictions

selection in the middle section. The middle section of the
main windav has a specific portion highlighted, which
A timing tree is constructed to simplify the process indicates the current program construct for which best-case
of bounding the timing performance of a prograiach and worst-case timing predictions are displayed in the
node in the tree corresponds to a function or natural looplower part of this section. Portions of the middle section of
instance [AMW94]. A function is analyzed as though it the windav associated with other program constructs can
was a ratural loop that iterates only once when entered. be selected by simply clicking on the appropriate line in
The loops in the timing analysis tree are processed in a botthis section. The bottom section of the main wingaon-
tom-up Bshion. Theentire tree is analyzed before a user is tains buttons that ale the user to select thevig of infor-
allowed to request timing predictions for portions of the mation displayed.Selection of théMore Detail button per
program. mits the user to vie the current program portion in finer
detail. TheBack button is selected when the user desires to
USER INTERRCE back up to a coarsendd of detail. Example®f selecting
Figures 2 and 3 depict the three windows that are these to options will be gven shortly. The Exit button
aways displayed for the timing analysis user irdes. can alvays _be selected to allothe user to xt the applica-
Figure 2 shows the main wingiof the user intedice. The ~ tonataytime.
top section of the main windodisplays a message indicat- Figure 3 shwrs the two ather windows in the user
ing the current action the user can perform with a mouseinterface that are walays displayed. The left windwo con-
tains a display of the source code of the program being ana-
lyzed. Thehighlighted lines are thexecutable source lines

portions of the program.

(o] time.hin that correspond to the highlighted construct in the middle
section of the main winde Wheneer a dfferent con-
Select a function within the progran. struct is selected in the main windathe highlighted lines
in the source and assembly windows are automatically
function nane updated and scrolled to the appropriate positidote that
des the source lines within the display are numberddhis

allows a user to identify constructs that are referenced by
line numbers in the main windo The options at the bot-

main tom of the source windwo will be explained shortly The

right windowv contains a display of the assembly code for
the program.The highlighted assembly lines correspond to
the code generated for the highlighted source liréste

that a comment precedes each basic block that identifies the
block number and the associated source lifidsse com-
ments in the assembly windaand the line numbers in the

Cycles to Execute the ks Function source windw allow a wser to quickly grasp the relation-
Best Casze 1687 Horst Case 3610 . .
: ship between the highye (source code) and Wwslevel
| Exit | |More Detail | | Hack (machine code) representations.

The most straightforard approach for allowing one
to obtain timing predictions fromavious portions of the
program vould be to allw the user to mee p or down a
single node of the timing tree at a time. The authors

Figure 2: Main Windw at Function Level

C Source Code of des.c

Assenbly Code of des,s

line # source code

blk assenbly code

23 43,17,57 .25k
24 static great kns[171:
20 static int initflag=1:

int ii,i,.k:

unsigned long ic.shifter,gethitil:
immense itmp

void cufundy, ksl

if tinitflagy {
initflag=0:
bit[1l=shifter=1L:
For{j=21j<=32¢ j++) bit[j] = {shifter <<= 113

#rizwkey=02:
for{i=lii<=16:i++) kstkey, i, &knz(ild:

5] Zod, 1,704

: 0,
block B (lines 37-38
st Hgh, [Fob]
mow 1.ELD
add Fsp, 0_STARG.X14
zethi Xhitl2143,%1E
add Z1E,ZlollZ143 213
add ¥15,12,%16
add #13,192.%i2
block 7 (lines 38-38)

I1d [l + 41,301
st Hol.[Esp + CLOSTARG + 4]
1d [Zill, %00
st ol [Hsp + ,0_STARGI
mow 14, Eol
moy 10, %ol
call _ks,3
moy E16,¥o2
block 8 (lines 38-38)
add X1E,12.%16
cmp Z16,¥i2
ble L2Z7
add El0,1.¥10
block 9 (lines 40-403

45 for (i=1rid=1Bi++) {

45 ii = fizw == 1% 171 ¢ i3

47 cyfuniitmp,l, knsliil, &ichy

43 ic "= itmp,.r:

43 itmp,r=itmp,1:

50 itmp,l=ic:

51 ¥

52 ic=itmp,r:

53 itmp,r=itmp,13

54 itmp,l=ic?

55 {®outy . r={%out), 1=0L3

56 for (=32, k=Bdr j »=1r j—, k=2 {

a7 Ckoutd,r = (Okoutd,r <<= 1) | gethit{itmp.ipm[j1,.323:
53 koutd,] = ({koutd,l <<= 13 | getbit{itmp,ipmlk], 322
53 ¥

B ¥

Select Path

§§§€.‘(‘,z‘.’§>‘€ E{:sz:eig Disar #i3

Figure 3: Source Code and Assembly Code Windows

realized that most usersowid not be interested in trers-

ing a graph representing the combined call graph and loopygrst case cycles representing thecaition of the entire
nesting structure of the program. Instead, users would Sim'program.

ply want the capability of accessing specified portions of

the program as quickly as possibl@he user intedce
described in this paper has awdfferent methods for
accessing portions of a program.

Selecting Portions of a Program
Using the Main Window

The first method for accessing different portions of
the program iwolves clicking theMore Detail button after

selecting the appropriate construct in the middle section of

the main windw. There are four Megls of detail a user is
allowed to viev. The top leel and initial display for the
middle section of the main windois the list of functions
within the program. This top Vel is depicted in Figure 2,
which was shown pxgously in the paper The function

selected by deiult upon initialization of the interface is the
mai n function, which results in displaying the best and

The next lower leel of detail consists of loops as
shavn in Figure 4. The entire function and each loop
within the function are listed in the displaAgan selec-
tion of the function or a loop will cause the corresponding
bounded number ofycles to be displayed and the appropri-
ate lines to be highlighted in the othemtwindows. Note
that by each loop number is its range of source lines and
nesting led within the function to dcilitate identification
by the user.

The next laver level of detail displays paths as
shavn in Figure 5. A path is defined as a unique sequence
of basic blocks connected by controlilotransitions.
Thus, each path is depicted in the main display as a list of
blocks and corresponding source line ranges. Each loop
path starts with the loop header and is terminated by a

block with a transition to the loop header or ait block
outside the loopThe paths at a functiond start with the
initial block in the function and are terminated by blocks

cursor on the subpath starting block and releasing it on the
ending block. Note that a basic block is the finestdeof
detail for which timing predictions may be obtaineA.

containing return instructions. Note that if a path contains basic block may be associated with multiple source lines or
a transition to a header of a more deeply nested loop, thera sngle source line may be associated with multiple basic
the entire child loop is represented as a single step alondlocks. Itwas relatively simple to track the source lines

that path.

[®] time.hin

Select a loop within the function des.

45, 5o

LOOP 5 5+ .o

loop nane source lines nest level
entire function 31,.58 o]
LOOP 1 34..34 1
LooP 2 28.,.38 1
LOOF 3 41, .43 1
; 1
1

Cycles to Execute Loop 4 within des
Best Caze 13081 Horst Caze 25866

| Exit | |Hure Detail | | Back |

Figure 4: Main Windw at Loop Level

[®] time.hin

Select a path within loop 1
of the function main.

path blocks source lines

entire loop 1 717

oath 2

Cycles to Execute Path 1 within Loop 1
Best Case 1419 Horst Caze 1527

| Exit | |Hure Detail | | Back |

Figure 5: Main Windw at Path Level

The final level of detail consists of subpaths as sho
in Figure 6. A subpath is a subset of the blocks within a
path that are connected by controlfloransitions. Asub-
path is selected by pressing the mouséton with the

associated with basic blocks during optimizatiorghe
source lines for each C statement were identified by the
front end of the compiler and are passed to the back end,
which associated a source line range with each basic block.
These ranges of source lines were then maintained when-
eve basic blocks were me&d (i.e. the control flw was
adjusted) during optimizatior7rs. Tracking indvidual
instructions is much more challenging and has been the tar
get of much research associated with debugging optimized
code. Notethat while it would not be difficult to puide
timing bounds at a more fine-grairvéeby allowing selec-

tion of one specific instruction within each of the first and
last blocks in the subpath, a corresponding set of source
lines would be more difficult to identify.

[®] time.bin

Select a subpath within path 1
within loop 1 of the function nain.

blocks source lines
2 g8,.8
3 8..8
5

12,.13 16,.17 loop 3
14 7.7

Cycles to Execute Subpath fron Block 7 To
Block 11 Best Casze B Horst Caze 35

| Exit | é?ﬁss;‘é: [R | Back |

Figure 6: Main Windw at Subpath Le€

Thus, there are fourvels of detail of a program that
a wser can view: functions, loops, paths, and subpaths.
user can quickly choose yaspecifiable portion of the pro-
gram in only four selections in the main windo The
appropriate timing analysis information is extracted for

2 Note that all the instructions within a specific basic block may not
correspond to the associated lines of source caeious global opti-
mizations may mee individual instructions to different blocks (e.g. code
motion, filling delay slots, etc.)For instance, the delay slot of the branch
in block 5 (source lines 36-36) was filled with an instruction from block 10
(source lines 40-41).

each selection by the usetf there is more than one displayed depending upon the number of subpaths that are
instance of the portion selected by the user (i.e. multipleassociated with the highlighted source lines (zero, one, or
instances can occur when the portion of source code can beore than one). The popup shown in Figure 8 is displayed
reached via dférent sequences of calls), then the fastest of when there are multiple subpaths corresponding to the
the best-case times and thewsdst of the worst-case times selected path, as in Figure Rote that if there is no sub-

of the different instances are displayed. path or only one subpath that is associated with the high-
lighted lines, then the user isvgn the option of selecting

the loop or function that most tightly encloses the high-

Selecting Portions of a Program lighted lines.

Using the M ouse on the Sour ce Window

The other method for accessing a portion of the pro-
gram is to directly select lines of source code using the
mouse as depicted in Figure First, the user clicks on the
Select Path button at the bottom of the source code win-
dow. Next, the user highlights the lines which must be
within the path to be timed. This highlighting is accom-

There are nmultiple paths corresponding
to the lines you highlighted,

Please either cancel or select the best
caze or the worst case,

plished by clicking the left mouseution on the desired [Cancel | [Best Case | |Horst Cass |
source lines as shown in Figure A user may quickly

obtain the best-case ananst-case timing predictions for a Figure 8: Popup Winde after Selecting Lines
segment of code by selecting only dwsource lines. The with Multiple Paths

user can clear a specific highlighted line by clicking the
right mouse btton on that line. The user can also clear all
the highlighted lines selected so far by clicking €lear

All button. Finally the user can also cancel the selection o
a path by clicking theCancel button.

Figures 9 and 10 shothe best and worst case set of
source lines that were displayed associated with the options
i to be selected in Figure 8, respeeiy. Fgure 9 shows the
highlighted lines after the user selects towthe best case

C Source Code of des.c C Source Code of des.c

line # source code
15 32,24,16,8,5

line # source code

»17,9,1,09,61,43, 35,

7,49,41,32,25
15 22,24,16,8,57,49,41,33,25,17,9,1,59,51 42,35
18 27,19.11,3,61,53.45,37,.29,21 13, 5,63,565.47.39, [} | 15 a1 2 et e de 2r o o1 1w b e e a0
16 27,19,11,3,61,53,45,37,29,21,12,5,63,55, 47,39,
17 31,23,15,7k;
; _ 17 31,823,157
18 static char ipm[E5]= 18 ctatic char ipMIESI=
19 40,40,8,48,16,56,24,64,32,39,7 47,15,
13 10,40,8,48,16,596,24,64,32,39,7,47,15,
20 5h,23,63,31,38,6,46,14,54,22 62,30, 37,540, 13,
20 55,23,63,31,38,6, 46,14 54,22 62, 30,37,5, 45,13,
21 53,21.61,29,36.4,44,12.52,20,60,28,35, 343,11,
2 1195997 34.2.42 10,5018 58,96 33.1.41.9 21 53,21,61,29,36,4, 44,12, 52,20,60,28, 35,3, 43,11,
"""""""" 22 51,19,59,.27,34,2,42,10,50,18,58,26,.33,1, 41,9,
23 43,1757, 2611
X 23 49,17,57 25k
24 static great kns[171: .
o i _ 24 static great kns[171:
25 static int initflag=1; P
L 25 static int initflag=1:
26 int ii,i..k: o6 int 11,10,k
7 unsigned long ic,shifter,getbit{}: iR
. 9 : 4 g 27 unsigned long ic,shifter,astbit{}s
28 immense itmp; ; .
29 uoid cufunil, keid: & lmense itnp:
% drum s, R 29 woid cyfunty, ks(is

if (initflag) £

32 initFlag=:]

i - . 32 initflag=03
Ey ?é:5§35?§i§§ztjf&3 bitlj] = (shifter <= 133 E hitf1ochifter=ils
=) i - ’ 34 For(j=2;j<=32z j++» bit[j] = (shifter <<= 1):
36 if (knewkeyr £ H
ET #neukey=03
= for{i=1:i<=16:i++) kslkey, 1. dkns[il);

23 3
jtnp.r=itmp, 1=0L*
41 for (j=32,keBd:j>=1rj- k=) {

42 itmp,r = (itmp,r <<= 1} | getbit{inp,ip[1,32} e ey e .
83 itmp.1 = (itmp.1 <¢= 13 | getbitfinp, ip[k],32}s 3§ ;tﬂp‘l N (itﬂg’; ZZ; i; : g:tﬁ;tﬁ;ﬂg’;ﬁ{§§’§§§:
" :) ’ T
_ m ¥
45 for (i=1#i<=1B3i++) £ =1ti<=1R*
" ii= fisw == 17470 ¢ i3 32 ForiililEii;lﬁilz+g ir—i s i)
47 eyfunéitnp, 1, knsl11l, sicds a7 cyfunditnp. 1, knsliil, tic)
48 ic 7= itmp.r: 48 ic "= 1tmp‘r: ! ’
43 itmp,r=itnp,l: 49 itng r:jtm,; i
50 itmp,l=ict i) itm 'l'ic' w
51 3 51 o
52 ?c:itmpfr: 52 ic=itmp,r:
[Solosy Park | [Aocept| [Cancel| [Clear ALL | D Select Fath | (fceept | [Cameel] | Clear 8L
Figure 7: Selecting a Path via the Source Code Window Figure 9: Best Case Path from Source Lines

Once the user has highlighted the source lines of Selected in Figure 7

interest, then the timing bounds can be obtained by clicking
on theAccept button. Atthis point one of three popups is

timing of the path selectedNote that instructions associ-
ated with other source lines mayvhao be eecuted as

well. Thebasic block associated with source line 36 has to

be ecuted to be able to reach line 40 from line }ike-
wise, other lines may ke © be &ecuted since their corre-

sponding machine instructions are in a selected basic block.

For instance, the initialization of the for loop at line 41 is in

the same basic block as the assignment statement at line 40.

Automatically including line 41 in thisxample illus-

trates that the user interface restricts the user to only select-

ing portions of the program for which timing predictions
can be obtainedThe timing analyzer only tracks source
lines to a basic blockVel. Thus,it must include all source
lines associated with a basic block ifyasf the source lines
within that block are selected.

Figure 10 shars the highlighted lines after the user
selects to vie the worst case timing of the path selected.
Note this time both if statements are enterg@tie popup
shavn in Figure 8 will remain on the screen until the user
selects theancel option. Thisallows the user to repeatedly
view both options without reselecting the path.

C Source Code of des.c
line # source code
15 32,24,16,8,57..49,41,33,25,17,9,1,59,51,.43,35,
16 27,19,11,3,61.53,45,37,29,21,13,5,63,55,47, 39,
17 31,253,157
18 static char ipm[B5]=
13 10,40,8,48,16.56,24 64,32,39,7 .47 15,
20 55,23,63,31,38,6,46,14, 54,22, B2,30,37,5, 45,13,
21 53,21,61,29,36,4,44,12,52,20,60,28,35, 3, 43,11,
22 51,19,53,27,34,2,42,10,50,18,58,26,33,1, 41,8,
23 49,17,57,26)2
24 static great kns[171:
25 static int initflag=l:
26 int ii,i.j.k:
27 unzigned long ic.shifter gethit{}s
28 immense itmp:
23 void cyfundd, ksid:
30

L} —, } L
itmp,r = {itmp,r <<= 1} | gethit{inp,.ip[j1,323:

42

43 itmp.1 = Citmp,1 <<= 1) | gethit{inp,ip[k], 32):
44 *

45 for (i=liid=16:i++) {

45 iio= disw == 17171 ¢ i)
47 cufuntitmp,l, knsliil, &ic:
48 ic "= itwp,r:

49 itmp,r=itmp,1:

50 itmp,l=icy

51 ¥

52 ic=itmp,r;

Select Fath §§m‘.§:;>€.§ é(kmmci. Clear #11

Figure 10: Worst Case Path from Source Lines
Selected in Figure 7

Figure 11 shas the selection of amf -t hen-
el se construct. Aghe popup indicates in Figure 12, there
is no single path that cameeute both the hen andel se
portions. Notein this case the user isvgn the option of
selecting the entire function, which immediately encloses

the selected source lines.

C Source Code of des,c

line # source code
43 ic "= itmp,r:
49 itmp,r=itmp,1:
5 itmp, l=ics
51
52 ic=itmp,r:
53 itmp,r=itmp, 12
o4 itmp, l=ict
55 Chout) r={kout) 1=0L s
56 for {j=32,k=B4: j »= 1 j——, k-3 £
87 {kout),r = (fkoutd,r {{= 13 | getbit{itmp.ipn[j].32}:
58 Chout),1 = COkout),] <<= 1) | getbit{itmp,ipmlk], 320z
59 ¥
g0 r
61
62 unsigned long getbitisource.bitno,nbits?
B3 immense source:
64 int bitho.nbits:
P
71
72 woid ketkey.n,knd
3 immense key:
74 great skn:
B int nt
F
7 static immense icdy
73 static char ipcllB?1={0,57.49,41,33,25,17.9,1,58,50,
79 42,34,26.18.10,2,55,51,43,35,27 19.11,3 60,
80 §2,44,36,63,55,47,.39,31,23,15,7,62,.54 46,38,
a1 30,22,14,6,61,53,45,57,29,21,13,5,20,20,12, 43
g2 static char ipc2[431={0,14.17.11,24,1,5,3.28,15,6.21,
83 10,22,19,12,4,26,8,16,7,27,20,13,2,41,52,31,
84 37.47,55,30,40,51 45,33, 48,44,49,39,56, 34,
85 53,46,42,50,38,29, 323

Belwon Pabh |Hccapt| |Cancel| | Clear ALl |

Figure 11: Selecting an Infeasible Path

There is no path corresponding to the
lines you highlighted,

Please either cancel or select the entire
function,

Cancel

Figure 12: Popup Windw after Selecting
an Infeasible Path

Entire Function

Figure 13 shows the selection of source lines that
correspond to a single pattkigure 14 shows the popup
window that appears after selecting the palithe user has
the option of viewing that path or the entire function.
Notice that the user has selected lines partially within a
loop and outside of the loopThis selection illustrates
another of the limitations of the timing analysidny path
that enters a loop is assumed t@ceite the entire loop.
Figure 15 shows that additional highlighted lines are
included after the path has been selecteihes 166-168
are automatically included since the entire loop is assumed
to have keen aecuted. Asillustrated preiously in Figures
7 and 9, only selections that correspond to entire basic
blocks are alleed. Lines172-176 are included since its
corresponding instructions are in the same basic block as
the instructions associated with line 171.

C Source Code of des.c

line # source code

152
164
155
156
157
158
159
160 great ie:

181 unzigned long itmp,ietmpl, ietnp2;
162 char iec[31:

183 int jj,irow.icol.iss,j. 1.m:

164

165 ie.r=ie.c=ie]=01

166 for {j=16,1=32,m=48: j>=1s j—, 1— w3 {

167 ig,r = (ie,r <<=1) | (hitliet[j1] & ir 7 1 3 Q3¢
168 ie,c = {ie,c €<=1) | (hit[iet[11] & ir 7 13

£J | thitlietlnl] &

172 ie.] "= k.12

174 ietmpl={{unzigned long} ie,c << 1E}+{unzigned long} ie,r:

175 ietmp2={{unsigned long} ie,l << 8+ {{unzigned long} ie,c > 8)
176 for Ci=l.m=33j<=ds je+mred {

177 iecljl=ietmpl & Onc3FL:
178 iecml=ietmp2 & Ox3fL:
17 ietmpl = G
180 ietmp2 3= B
181 ¥
182 itmp=0Ls
182 for L3j=8:3d7=1:44-- £
104 J =ieclijls
188 irou={0j & Oxld < 10+ & 0xBO) B> B
186 ieol=((j & 0x2) <€ 21+(j & Oxd)
187 UG & 0B Bx 2340 & 0x10) 2 40
188 izz=iszlicolllirowl(jjls
183 itmp = (itmp <<= 4» | ibinlis=1:
190 ¥
Select Pabh |Hccept‘ |Eancel| ‘ Clear ALl |

its invocation.

Figure 13: Selecting a Single Path

There is one subpath corresponding to
the lines you highlighted,

Please either cancel or select the subpath
or the entire function,

Cancel | Subpath | |Entire Function

Figure 14: Popup Windw after Selecting Lines
Associated with a Single Path

IMPLEMENTATION

The implementation of the timing intede includes
obtaining information from the timing analysis tree and
graphically presenting timing predictions to a user.

Obtaining I nfor mation from the
Timing Analysis Tree

The user interface is notvioked until the timing

analysis tree is already constructdeiach node within this
tree represents a loop or function. Each of these nodes are
distinguished by function instances, where a function is
uniquely identified by the sequence of call sites required for
Ifthe user requests a timing prediction for a

function or a loop, then this information can be obtained

C Source Code of des.c

line # source code

153
154
155
156
157
158
154
160 great ie:

161 unzighed long itmp,ietmpl,ietmpl2y
162 char iecldl:

163 int jj.irow.icol,iss,j, l.m:

177 1ec[,]] 1etmp1 & ix3fL:
1va ieclml=ietmp2 & Ox3fL:
179 ietmpl ¥= B
180 ietmp2 »»= By
181 ¥
182 itmp=0L3
183 for (ji=82ii>=1zii--) £
104 i =ieclijls
185 irow=Cj & Oxdd <O L & 0x20) »» Bbr
186 ieol=C0 & 0x2) <C 20+ & 0xd)d
187 +00F 6 OxBY 2 23+00] & Ox103 3> 4d:
188 izs=izlicolllirowlljjl;
189 itmp = {itmp <<= 4 | ibinliss]:
130 ¥
| Select Path | ?ﬁ::i;f:gri ?{I:‘zzme}.; Cloar #HIL

Figure 15: Expanded Selected Path

directly from the timing tree. If a function or loop has
more than one instance, then the best-case timing predic-
tion is the fastest one of the best-case predictions among all
instances. Likwise, the worst-case timing prediction
would be the slowest of the worst-case predictions.

Timing predictions for paths are not stored in the tim-
ing analysis tree A path may be used multiple times dur
ing the analysis of a loopOn each iteration of its loop, the
timing prediction of a path may change [AMW94]. If a
user requests information for a path or a subpath, then the
appropriate function within the timing analyzer is weiked
for each instance of the loop or function in which the path
or subpath is contained.

Graphical Presentation of Timing Predictions

The user intedce was implemented using the X
Toolkit (Xt) Intrinsics [NyO90] and Xlib [Nye90] libraries.
Both of these libraries come with each distribution of X-
Windaws. Thususe of these libraries and the proliferation
of X-Windows should enhance the portability of the inter
face.

FUTURE WORK

There are seeral areas in which the user intacke
could be enhanced. First, only portions of a line could be
highlighted at appropriate timed-or instance, Figure 9

shavs a subpath that includes the initialization of @ &&, and!), and assignment of boolean expressions {e.g.
loop. Yet, the entire first line of thieor statement is high- = i == j ;) often are expressed on a single source line.
lighted, which inappropriately includes the test condition Yet, the resulting assembly instructions will consist of mul-
and increment as wellLikewise, the selection of this loop tiple basic blocks.Likewise, macro calls may beganded

for timing predictions should not include the initialization to also generate multiple basic blocks. The menu selection
portion of thef or statment. Iraddition, consider th&or approach allows selection of subpathsvdato the basic
loop from source lines 45-51 in the same figure. There areblock level. The second method alles a user to directly
two paths through this loopYet both paths would be high- select paths from the source wimdoWhile a user may

lighted identically since the conditional controlvflavithin find this methoddster some selections of paths or subpaths
the loop is entirely contained in line 46, which consists of may not be possible using this method when a single source
an assignment statement containing a conditiorpfes- line has multiple basic blockgzuthermore, selections with

sion. Yet, the user interface would alNdioth paths to be this method are restricted to only those portions of the pro-

selected via the main windoand the appropriate assembly gram for which the timing analyzer can provide timing pre-

instructions would be highlighted. dictions. Selectiorof portions of a program with either of
Another area in which the user intace could be these methods results in the corresponding source lines and

enhanced is to display information that would descritve ho 2SSembly instructions being highlighted.
the timing prediction was obtainedWork is currently This paper describes a solution for resolving the con-
being performed on the timing analyzer to include analysistroversy of whether timing analysis should be performed at
of pipeline performanceThe authors intend to extend the a high or lov levd. This controversy is a result of the
user interface to pxade the ability to display a scrollable desire to relate timing constraints to the source code and to
pipeline diagram for paths and subpaths that do not contairobtain as accurate timing predictions as possilieal-
nested loops or calls to functions. Such diagransilgv time programmers may e o deal with the problem of
help a user understand when pipeline hazards could causeelating timing constraints associated with source code
stalls and when cache miss delays could occur. lines to sequences of machine instructioAsuser-friendly

An additional enhancement would be to alla wser interface vas presented that assists real-time programmers
to request another \uel of detail of timing predictions. in relating the gnalysis of timing constraints gsso_ciated yvith
Rather than limiting the user to thevée of timing a source code _Ime; tp sequences of maqhme instructions.
sequence of blocks, the user could instead indicate the ini-1 'US, presenting timing predictions at a high (source code)
tial instruction within the first block of a subpath and the !evel can be achieed while retaining the accurgoof low-
last instruction within the last block. Such an enhancement!€vel (machine code) analysis.
would allow a knowledgeable user toveid the limitation of
multiple high-level language statementswalys having to ACKNOWLEDGEMENTS
be grouped together within the same subpéatbwever, the Robert Arnold provided assistance for obtaining tim-
user would hee b be hformed that the corresponding ing predictions on code portions from the timing analyzer
highlighted source lines would probably not be accurate. Mickey Boyd answered may questions about intea€ing

At this time the only information the timing analyzer with the X Tgolkit (Xt) Intrinsics and Xlib !ibrarie;Robert
requests from the user is the minimum and maximum itera-~Mold, Chris Healy Frank Mueller Emily Ratliff and
tions for loops that the compiler could not automatically Randy White dered helpful suggestions that resulted in a
determine. Theseequests occur each time the program is friendlier user interface.
analyzed. Abetter interface would be to allessertions to
be placed within the source code. Besides specifying the REFERENCES
maximum and minimum iterations of a loop, the user could [AdG93] A. Adl-Tabatabai and.TGross, “Detection and

also specify timing constraintsThe timing analyzer could Recwery of Endangered Variables Caused by
be irvoked as part of the compilation process and could Instruction Scheduling, Proceedings of the
inform the user when a timing constraint might be violated. SGPLAN ’'93 Conference on Programming
Language Design and Implementation, pp.
CONCLUSIONS 13-25 (June 1993).

The user interface described in this paperviges [AMW94] R. Arnold, E Mueller, D. Whalley, and M.
two methods to allv a user to quickly select a portion of a Harmon, “Bounding Wrst-Case Instruction
program for timing prediction.The first method uses a Cache PerformancepProceedings of the Fif-
menu selection approach, which permiteanfine level of teenth |IEEE Real-Time Systems Symposium,
selection. Br instance, consider that C conditionapees- pp. 172-181 (December 1994).

sions (i,ea > b ? a : b), logical operators (i.g.],

[BHS92]

[CMRS8S]

[Hen82]

[Nye90]

[NyO90]

G. Brooks, G. Hansen, and S. Simmong, *“
New Approach to Debugging Optimized
Code,” Proceedings of the SGPLAN '92 Con-
ference on Programming Language Design and
Implementation, pp. 1-11 (June 1992).

D. S. Coutant, S. Melp and M. Rsucetta,A
Practical Approach to Source-& Debugging
of Globally Optimized Codg,Proceedings of
the SGPLAN ’88 Symposium on Programming
Language Design and Implementation, pp.
125-134 (June 1988).

J.L. Hennessy" Symbolic Debugging of Opti-
mized Codé, ACM Transactions on Program-
ming Languages and Systems 4(3) pp. 323-344
(July 1982).

A. Nye, Xlib Programming Manual, O’'Reilly
& A ssociates, Inc. (1990).

A. Nye and T OReilly, X Toolkit Intrinsics
Programming Manual, O’Reilly & Associates,
Inc. (1990).

