
Suppor ting User-Friendly Analysis of Timing Constraints*

LO KO AND DAVID B. WHALLEY
Department of Computer Science, Florida State University, Tallahassee, FL 32306-4019, U.S.A.

e-mail: whalley@cs.fsu.edu, phone: (904) 644-3506

MARION G. HARMON
Dept. of Computer and Information Systems, Florida A&M University, Tallahassee, FL 32307-3101, U.S.A.

e-mail: harmon@cis.famu.edu, phone: (904) 599-3042

SUMMARY

Real-time programmers have to deal with the problem
of relating timing constraints associated with source
code lines to sequences of machine instructions. This
paper describes an interface that was developed to assist
users in this task. Portions of programs can be quickly
selected and the corresponding bounded times, source
code lines, and machine instructions are automatically
displayed. In addition, users are restricted to only
selecting portions of the program for which timing
bounds can be obtained. The result is a user-friendly
interface that assists programmers in the analysis of
timing constraints within a program.

INTRODUCTION

One controversial aspect of real-time systems is
whether timing analysis should be performed at a high
(source code) or low (machine code) level. An advantage
of high-level analysis is that the results of the timing pre-
dictions can be more easily related to a user. Timing
bounds are obtained for each high-level language construct,
which includes statements, loops, and functions.The
assumption is that timing bounds for a specific machine can
be associated with each of these constructs.Unfortunately,
current architectural features, such as pipelines and caches,
preclude a single a priori time associated with a high-level
language construct.In addition, global compiler optimiza-
tions can affect how a specific construct is translated and its
associated timing bounds. While much more accurate tim-
ing bounds can be obtained by performing the analysis at
the machine code level, it is still important to relate these
timing predictions in a manner that a user can understand.
A user needs to know the correspondence between
sequences of machine instructions and lines of source code.

This problem is very similar to the one of symbolic
debugging of optimized code.Many users are willing to
rely on symbolic debugging of unoptimized code given that
the behavior of the unoptimized and optimized programs
are semantically equivalent. However, correct behavior of

*This work was supported in part by the Office of Naval Research
under contract number N00014-94-1-0006.

real-time programs includes whether the results are pro-
duced on time. Thus, the timing analysis should be at the
level of the machine instructions or the compiler should
maintain an accurate mapping between the high-level and
low-level representations. Therehas been much research in
the area of symbolic debugging of optimized code to main-
tain such mappings [Hen82, CMR88, BHS92, AdG93].

This paper describes the implementation of a user
interface to support analysis of timing constraints.The
approach that was used involves performing the timing
analysis on the machine code of a program and depicting
the relationship between the machine instructions (i.e.
assembly code) and the corresponding source code lines.

OVERVIEW

The design of the timing analysis user interface
described in this paper included the following goals:
(1) A user should be able to quickly select a portion of the pro-

gram for timing prediction.
(2) Theuser should only be allowed to select portions of the pro-

gram for which timing bounds can be obtained.
(3) Thecorresponding portions of the source code and machine

code levels of the program selected by the user for timing
prediction should be depicted.

Figure 1 gives an overview of the context in which
timing predictions are obtained.Control-flow information
is stored as the side effect of the compilation of a file.The
control-flow information is passed to a static cache simula-
tor, which constructs the control-flow graph of the program
that consists of the call graph and the control flow of each
function. Theprogram control-flow graph is then analyzed
for a given cache configuration and a categorization of each
instruction’s potential caching behavior is produced.1 Next,
a timing analyzer uses the instruction caching categoriza-
tions along with the control-flow information provided by
the compiler, which includes the source lines associated
with basic blocks, to estimate the best-case and worst-case
instruction caching performance for each loop and function
within the program. Finally, user interface windows are
displayed allowing one to request the timing bounds for

1 Note that at this time only instruction caching behavior is ana-
lyzed. Work is currently proceeding on analyzing pipelining and data
caching behavior.

-1-

Configuration
Cache

Simulator
Cache
Static

Information
Flow

Control
Compiler

Files
Source

C
Timing

Predictions

User Timing Requests

Analyzer
Timing

Caching
Categorizations

User
Interface

Figure 1: Overview of Obtaining Timing Predictions

portions of the program.

A timing tree is constructed to simplify the process
of bounding the timing performance of a program.Each
node in the tree corresponds to a function or natural loop
instance [AMW94]. A function is analyzed as though it
was a natural loop that iterates only once when entered.
The loops in the timing analysis tree are processed in a bot-
tom-up fashion. Theentire tree is analyzed before a user is
allowed to request timing predictions for portions of the
program.

USER INTERFACE

Figures 2 and 3 depict the three windows that are
always displayed for the timing analysis user interface.
Figure 2 shows the main window of the user interface. The
top section of the main window displays a message indicat-
ing the current action the user can perform with a mouse

Figure 2: Main Window at Function Level

selection in the middle section. The middle section of the
main window has a specific portion highlighted, which
indicates the current program construct for which best-case
and worst-case timing predictions are displayed in the
lower part of this section. Portions of the middle section of
the window associated with other program constructs can
be selected by simply clicking on the appropriate line in
this section.The bottom section of the main window con-
tains buttons that allow the user to select the level of infor-
mation displayed.Selection of theMore Detail button per-
mits the user to view the current program portion in finer
detail. TheBack button is selected when the user desires to
back up to a coarser level of detail. Examplesof selecting
these two options will be given shortly. The Exit button
can always be selected to allow the user to exit the applica-
tion at any time.

Figure 3 shows the two other windows in the user
interface that are always displayed. The left window con-
tains a display of the source code of the program being ana-
lyzed. Thehighlighted lines are the executable source lines
that correspond to the highlighted construct in the middle
section of the main window. Whenever a different con-
struct is selected in the main window, the highlighted lines
in the source and assembly windows are automatically
updated and scrolled to the appropriate position.Note that
the source lines within the display are numbered.This
allows a user to identify constructs that are referenced by
line numbers in the main window. The options at the bot-
tom of the source window will be explained shortly. The
right window contains a display of the assembly code for
the program.The highlighted assembly lines correspond to
the code generated for the highlighted source lines.Note
that a comment precedes each basic block that identifies the
block number and the associated source lines.These com-
ments in the assembly window and the line numbers in the
source window allow a user to quickly grasp the relation-
ship between the high-level (source code) and low-level
(machine code) representations.

The most straightforward approach for allowing one
to obtain timing predictions from various portions of the
program would be to allow the user to move up or down a
single node of the timing tree at a time. The authors

-2-

Figure 3: Source Code and Assembly Code Windows

realized that most users would not be interested in travers-
ing a graph representing the combined call graph and loop
nesting structure of the program. Instead, users would sim-
ply want the capability of accessing specified portions of
the program as quickly as possible.The user interface
described in this paper has two different methods for
accessing portions of a program.

Selecting Portions of a Program
Using the Main Window

The first method for accessing different portions of
the program involves clicking theMore Detail button after
selecting the appropriate construct in the middle section of
the main window. There are four levels of detail a user is
allowed to view. The top level and initial display for the
middle section of the main window is the list of functions
within the program. This top level is depicted in Figure 2,
which was shown previously in the paper. The function

selected by default upon initialization of the interface is the
main function, which results in displaying the best and
worst case cycles representing the execution of the entire
program.

The next lower level of detail consists of loops as
shown in Figure 4. The entire function and each loop
within the function are listed in the display. Again selec-
tion of the function or a loop will cause the corresponding
bounded number of cycles to be displayed and the appropri-
ate lines to be highlighted in the other two windows. Note
that by each loop number is its range of source lines and
nesting level within the function to facilitate identification
by the user.

The next lower level of detail displays paths as
shown in Figure 5.A path is defined as a unique sequence
of basic blocks connected by control-flow transitions.
Thus, each path is depicted in the main display as a list of
blocks and corresponding source line ranges. Each loop
path starts with the loop header and is terminated by a

-3-

block with a transition to the loop header or an exit block
outside the loop.The paths at a function level start with the
initial block in the function and are terminated by blocks
containing return instructions. Note that if a path contains
a transition to a header of a more deeply nested loop, then
the entire child loop is represented as a single step along
that path.

Figure 4: Main Window at Loop Level

Figure 5: Main Window at Path Level

The final level of detail consists of subpaths as shown
in Figure 6. A subpath is a subset of the blocks within a
path that are connected by control-flow transitions. Asub-
path is selected by pressing the mouse button with the

cursor on the subpath starting block and releasing it on the
ending block.Note that a basic block is the finest level of
detail for which timing predictions may be obtained.A
basic block may be associated with multiple source lines or
a single source line may be associated with multiple basic
blocks. It was relatively simple to track the source lines
associated with basic blocks during optimizations.The
source lines for each C statement were identified by the
front end of the compiler and are passed to the back end,
which associated a source line range with each basic block.
These ranges of source lines were then maintained when-
ev er basic blocks were moved (i.e. the control flow was
adjusted) during optimizations.2 Tracking individual
instructions is much more challenging and has been the tar-
get of much research associated with debugging optimized
code. Notethat while it would not be difficult to provide
timing bounds at a more fine-grain level by allowing selec-
tion of one specific instruction within each of the first and
last blocks in the subpath, a corresponding set of source
lines would be more difficult to identify.

Figure 6: Main Window at Subpath Level

Thus, there are four levels of detail of a program that
a user can view: functions, loops, paths, and subpaths.A
user can quickly choose any specifiable portion of the pro-
gram in only four selections in the main window. The
appropriate timing analysis information is extracted for

2 Note that all the instructions within a specific basic block may not
correspond to the associated lines of source code.Various global opti-
mizations may move individual instructions to different blocks (e.g. code
motion, filling delay slots, etc.).For instance, the delay slot of the branch
in block 5 (source lines 36-36) was filled with an instruction from block 10
(source lines 40-41).

-4-

each selection by the user. If there is more than one
instance of the portion selected by the user (i.e. multiple
instances can occur when the portion of source code can be
reached via different sequences of calls), then the fastest of
the best-case times and the slowest of the worst-case times
of the different instances are displayed.

Selecting Portions of a Program
Using the Mouse on the Source Window
The other method for accessing a portion of the pro-

gram is to directly select lines of source code using the
mouse as depicted in Figure 7.First, the user clicks on the
Select Path button at the bottom of the source code win-
dow. Next, the user highlights the lines which must be
within the path to be timed. This highlighting is accom-
plished by clicking the left mouse button on the desired
source lines as shown in Figure 7.A user may quickly
obtain the best-case and worst-case timing predictions for a
segment of code by selecting only two source lines. The
user can clear a specific highlighted line by clicking the
right mouse button on that line. The user can also clear all
the highlighted lines selected so far by clicking theClear
All button. Finally, the user can also cancel the selection of
a path by clicking theCancel button.

Figure 7: Selecting a Path via the Source Code Window

Once the user has highlighted the source lines of
interest, then the timing bounds can be obtained by clicking
on theAccept button. At this point one of three popups is

displayed depending upon the number of subpaths that are
associated with the highlighted source lines (zero, one, or
more than one). The popup shown in Figure 8 is displayed
when there are multiple subpaths corresponding to the
selected path, as in Figure 7.Note that if there is no sub-
path or only one subpath that is associated with the high-
lighted lines, then the user is given the option of selecting
the loop or function that most tightly encloses the high-
lighted lines.

Figure 8: Popup Window after Selecting Lines
with Multiple Paths

Figures 9 and 10 show the best and worst case set of
source lines that were displayed associated with the options
to be selected in Figure 8, respectively. Figure 9 shows the
highlighted lines after the user selects to view the best case

Figure 9: Best Case Path from Source Lines
Selected in Figure 7

-5-

timing of the path selected.Note that instructions associ-
ated with other source lines may have to be executed as
well. Thebasic block associated with source line 36 has to
be executed to be able to reach line 40 from line 31.Like-
wise, other lines may have to be executed since their corre-
sponding machine instructions are in a selected basic block.
For instance, the initialization of the for loop at line 41 is in
the same basic block as the assignment statement at line 40.

Automatically including line 41 in this example illus-
trates that the user interface restricts the user to only select-
ing portions of the program for which timing predictions
can be obtained.The timing analyzer only tracks source
lines to a basic block level. Thus,it must include all source
lines associated with a basic block if any of the source lines
within that block are selected.

Figure 10 shows the highlighted lines after the user
selects to view the worst case timing of the path selected.
Note this time both if statements are entered.The popup
shown in Figure 8 will remain on the screen until the user
selects thecancel option. Thisallows the user to repeatedly
view both options without reselecting the path.

Figure 10: Worst Case Path from Source Lines
Selected in Figure 7

Figure 11 shows the selection of anif-then-
else construct. Asthe popup indicates in Figure 12, there
is no single path that can execute both thethen andelse
portions. Notein this case the user is given the option of
selecting the entire function, which immediately encloses

the selected source lines.

Figure 11: Selecting an Infeasible Path

Figure 12: Popup Window after Selecting
an Infeasible Path

Figure 13 shows the selection of source lines that
correspond to a single path.Figure 14 shows the popup
window that appears after selecting the path.The user has
the option of viewing that path or the entire function.
Notice that the user has selected lines partially within a
loop and outside of the loop.This selection illustrates
another of the limitations of the timing analysis.Any path
that enters a loop is assumed to execute the entire loop.
Figure 15 shows that additional highlighted lines are
included after the path has been selected.Lines 166-168
are automatically included since the entire loop is assumed
to have been executed. Asillustrated previously in Figures
7 and 9, only selections that correspond to entire basic
blocks are allowed. Lines172-176 are included since its
corresponding instructions are in the same basic block as
the instructions associated with line 171.

-6-

Figure 13: Selecting a Single Path

Figure 14: Popup Window after Selecting Lines
Associated with a Single Path

IMPLEMENTATION

The implementation of the timing interface includes
obtaining information from the timing analysis tree and
graphically presenting timing predictions to a user.

Obtaining Information from the
Timing Analysis Tree

The user interface is not invoked until the timing
analysis tree is already constructed.Each node within this
tree represents a loop or function. Each of these nodes are
distinguished by function instances, where a function is
uniquely identified by the sequence of call sites required for
its invocation. If the user requests a timing prediction for a
function or a loop, then this information can be obtained

Figure 15: Expanded Selected Path

directly from the timing tree. If a function or loop has
more than one instance, then the best-case timing predic-
tion is the fastest one of the best-case predictions among all
instances. Likewise, the worst-case timing prediction
would be the slowest of the worst-case predictions.

Timing predictions for paths are not stored in the tim-
ing analysis tree.A path may be used multiple times dur-
ing the analysis of a loop.On each iteration of its loop, the
timing prediction of a path may change [AMW94]. If a
user requests information for a path or a subpath, then the
appropriate function within the timing analyzer is reinvoked
for each instance of the loop or function in which the path
or subpath is contained.

Graphical Presentation of Timing Predictions
The user interface was implemented using the X

Toolkit (Xt) Intrinsics [NyO90] and Xlib [Nye90] libraries.
Both of these libraries come with each distribution of X-
Windows. Thus,use of these libraries and the proliferation
of X-Windows should enhance the portability of the inter-
face.

FUTURE WORK

There are several areas in which the user interface
could be enhanced. First, only portions of a line could be
highlighted at appropriate times.For instance, Figure 9

-7-

shows a subpath that includes the initialization of afor
loop. Yet, the entire first line of thefor statement is high-
lighted, which inappropriately includes the test condition
and increment as well.Likewise, the selection of this loop
for timing predictions should not include the initialization
portion of thefor statment. Inaddition, consider thefor
loop from source lines 45-51 in the same figure. There are
two paths through this loop.Yet both paths would be high-
lighted identically since the conditional control flow within
the loop is entirely contained in line 46, which consists of
an assignment statement containing a conditional expres-
sion. Yet, the user interface would allow both paths to be
selected via the main window and the appropriate assembly
instructions would be highlighted.

Another area in which the user interface could be
enhanced is to display information that would describe how
the timing prediction was obtained.Work is currently
being performed on the timing analyzer to include analysis
of pipeline performance.The authors intend to extend the
user interface to provide the ability to display a scrollable
pipeline diagram for paths and subpaths that do not contain
nested loops or calls to functions. Such diagrams would
help a user understand when pipeline hazards could cause
stalls and when cache miss delays could occur.

An additional enhancement would be to allow a user
to request another level of detail of timing predictions.
Rather than limiting the user to the level of timing a
sequence of blocks, the user could instead indicate the ini-
tial instruction within the first block of a subpath and the
last instruction within the last block. Such an enhancement
would allow a knowledgeable user to avoid the limitation of
multiple high-level language statements always having to
be grouped together within the same subpath.However, the
user would have to be informed that the corresponding
highlighted source lines would probably not be accurate.

At this time the only information the timing analyzer
requests from the user is the minimum and maximum itera-
tions for loops that the compiler could not automatically
determine. Theserequests occur each time the program is
analyzed. Abetter interface would be to allow assertions to
be placed within the source code. Besides specifying the
maximum and minimum iterations of a loop, the user could
also specify timing constraints.The timing analyzer could
be invoked as part of the compilation process and could
inform the user when a timing constraint might be violated.

CONCLUSIONS

The user interface described in this paper provides
two methods to allow a user to quickly select a portion of a
program for timing prediction.The first method uses a
menu selection approach, which permits a very fine level of
selection. For instance, consider that C conditional expres-
sions (i.e.a > b ? a : b), logical operators (i.e.||,

&&, and !), and assignment of boolean expressions (e.g.v
= i == j;) often are expressed on a single source line.
Yet, the resulting assembly instructions will consist of mul-
tiple basic blocks.Likewise, macro calls may be expanded
to also generate multiple basic blocks. The menu selection
approach allows selection of subpaths down to the basic
block level. The second method allows a user to directly
select paths from the source window. While a user may
find this method faster, some selections of paths or subpaths
may not be possible using this method when a single source
line has multiple basic blocks.Futhermore, selections with
this method are restricted to only those portions of the pro-
gram for which the timing analyzer can provide timing pre-
dictions. Selectionof portions of a program with either of
these methods results in the corresponding source lines and
assembly instructions being highlighted.

This paper describes a solution for resolving the con-
troversy of whether timing analysis should be performed at
a high or low lev el. This controversy is a result of the
desire to relate timing constraints to the source code and to
obtain as accurate timing predictions as possible.Real-
time programmers may have to deal with the problem of
relating timing constraints associated with source code
lines to sequences of machine instructions.A user-friendly
interface was presented that assists real-time programmers
in relating the analysis of timing constraints associated with
source code lines to sequences of machine instructions.
Thus, presenting timing predictions at a high (source code)
level can be achieved while retaining the accuracy of low-
level (machine code) analysis.

ACKNOWLEDGEMENTS

Robert Arnold provided assistance for obtaining tim-
ing predictions on code portions from the timing analyzer.
Mickey Boyd answered many questions about interfacing
with the X Toolkit (Xt) Intrinsics and Xlib libraries.Robert
Arnold, Chris Healy, Frank Mueller, Emily Ratliff and
Randy White offered helpful suggestions that resulted in a
friendlier user interface.

REFERENCES

[AdG93] A. Adl-Tabatabai and T. Gross, “Detection and
Recovery of Endangered Variables Caused by
Instruction Scheduling,” Proceedings of the
SIGPLAN ’93 Conference on Programming
Language Design and Implementation, pp.
13-25 (June 1993).

[AMW94] R. Arnold, F. Mueller, D. Whalley, and M.
Harmon, “Bounding Worst-Case Instruction
Cache Performance,” Proceedings of the Fif-
teenth IEEE Real-Time Systems Symposium,
pp. 172-181 (December 1994).

-8-

[BHS92] G. Brooks, G. Hansen, and S. Simmons, “A
New Approach to Debugging Optimized
Code,” Proceedings of the SIGPLAN ’92 Con-
ference on Programming Language Design and
Implementation, pp. 1-11 (June 1992).

[CMR88] D. S. Coutant, S. Meloy, and M. Rsucetta, “A
Practical Approach to Source-Level Debugging
of Globally Optimized Code,” Proceedings of
the SIGPLAN ’88 Symposium on Programming
Language Design and Implementation, pp.
125-134 (June 1988).

[Hen82] J.L. Hennessy, “Symbolic Debugging of Opti-
mized Code,” ACM Transactions on Program-
ming Languages and Systems 4(3) pp. 323-344
(July 1982).

[Nye90] A. Nye, Xlib Programming Manual, O’Reilly
& A ssociates, Inc. (1990).

[NyO90] A. Nye and T. O’Reilly, X Toolkit Intrinsics
Programming Manual, O’Reilly & Associates,
Inc. (1990).

-9-

