
THE FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

FAST AND EFFECTIVE SOLUTIONS TO THE PHASE ORDERING

PROBLEM

By

PRASAD A. KULKARNI

A Dissertation submitted to the

Department of Computer Science

in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

Degree Awarded:

Summer Semester, 2007

The members of the Committee approve the Dissertation of Prasad A. Kulkarni defended

on June 27th, 2007.

David B. Whalley
Professor Directing Dissertation

Steve Bellenot
Outside Committee Member

Gary Tyson
Committee Member

Xin Yuan
Committee Member

Kyle Gallivan
Committee Member

Theodore Baker
Committee Member

The Office of Graduate Studies has verified and approved the above named committee members.

ii

This dissertation is dedicated to aai, baba, sonu, and Prajna.

iii

ACKNOWLEDGEMENTS

First and foremost, I thank my dissertation advisor, Dr. David Whalley, for encouraging

me to pursue a Ph.D. I could not have done this work without his incredible technical advice,

personal guidance, promptness, and understanding. I have learnt a lot from him over the

past five years, and I will remain forever grateful. Not any less, I also thank Dr. Gary

Tyson, who has essentially functioned as my co-advisor for the last three years. He has been

a constant source of great ideas, support, and encouragement.

Since no level of thanking will be enough, I will only mention my parents, sister, and

(my soon-to-be-wife) Prajna here. I can only hope they realize how much I depend on their

presence in my life.

Finally, I also express gratitude to Bill Kreahling, Clint Whaley, Steve Hines, Wankang

Zhao, and my other lab-mates for their suggestions, comments, and above all for making our

office a fun place to work.

iv

TABLE OF CONTENTS

List of Tables . vii

List of Figures . viii

Abstract . xi

1. Introduction . 1
1.1 Role of Compilers and Compiler Optimizations 1
1.2 The Phase Ordering Problem . 2
1.3 Addressing the Phase Ordering Problem 2
1.4 Contributions and Potential Impact of Our Research 4
1.5 Outline of My Dissertation . 5

2. Related Work . 7
2.1 Phase Parameterization . 8
2.2 Phase Selection Problem . 9
2.3 Phase Ordering . 11
2.4 Other Iterative Compilation Approaches 13
2.5 Static Performance Estimation . 14
2.6 Evaluating Heuristic Search Algorithms 15

3. Experimental Framework Common throughout the Dissertation 16

4. Techniques for Faster Genetic Algorithm Searches 20
4.1 Background . 21
4.2 Reducing the Search Overhead . 28
4.3 Producing Similar Results in Fewer Generations 40
4.4 Implementation Challenges . 49
4.5 Concluding Remarks . 50
4.6 Influence on Future Direction of Research 51

5. Exhaustive Optimization Phase Order Exploration and Evaluation 56
5.1 Additional Challenges . 56
5.2 Re-interpretation of the Phase Ordering Problem 57
5.3 Algorithm for Exhaustive Phase Order Space Evaluation 58
5.4 Experimental Results . 68

v

5.5 Correlation between Dynamic Frequency Measures and Processor Cycles 73
5.6 Concluding Remarks . 80

6. Analysis of the Exhaustive Optimization Phase Order Space and Applications
to Exploit It . 81
6.1 Optimization Phase Interaction Analysis 81
6.2 Probabilistic Batch Optimization . 86
6.3 Evaluating Heuristic Optimization Phase Order Search Algorithms . . . 87
6.4 Miscellaneous Topics . 103
6.5 Concluding Remarks . 107

7. Future Work . 110

8. Conclusions . 112
Appendix . 114

A. Function Statistics . 114

REFERENCES . 119

BIOGRAPHICAL SKETCH . 125

vi

LIST OF TABLES

3.1 Candidate Optimization Phases Along with their Designations 18

3.2 MiBench Benchmarks Used in the Experiments 19

4.1 Independent Optimization Phases . 31

5.1 Applied Phases during Space Traversal . 67

5.2 Dynamic Execution Count Results for all Studied Functions in the MiBench
Benchmarks . 69

5.3 Code-Size Results for all Studied Functions in the MiBench Benchmarks . . 70

5.4 Static Features of Functions which We Could Not Exhaustively Evaluate . . 73

5.5 Correlation Between Dynamic Frequency Counts and Simulator Cycles for
Leaf Function Instances . 79

6.1 Enabling Interaction between Optimization Phases 83

6.2 Disabling Interaction between Optimization Phases 84

6.3 Independence Relationship between Optimization Phases 85

6.4 Comparison between the Old Batch and the New Probabilistic Approaches of
Compilation . 88

6.5 Neighbors in Heuristic Searches . 90

6.6 Perf. of N-Lookahead Algorithm . 102

A.1 Phase Order Statistics For All Functions in MiBench 114

vii

LIST OF FIGURES

4.1 Interactive Code Improvement Process . 23

4.2 Main Window of VISTA Showing History of Optimization Phases 24

4.3 Selecting Options to Search for Possible Sequences 25

4.4 Window Showing the Search Status . 25

4.5 Speed Only Improvements for the SPARC 27

4.6 Size Only Improvements for the SPARC . 27

4.7 Size and Speed Improvements for the SPARC 27

4.8 Methods for Reducing Search Overhead . 29

4.9 Example of Redundant Attempted Sequences 30

4.10 Example of a Redundant Active Sequence 32

4.11 Different Optimizations Having the Same Effect 32

4.12 Different Functions with Equivalent Code . 34

4.13 Number of Avoided Executions . 35

4.14 Relative Total Search Time on the SPARC 36

4.15 Number of Redundant Executions Avoided Per Generation 36

4.16 Number of Redundant Executions Avoided Per Generation for Different
Sequence Lengths . 37

4.17 Average Times Each Phase Was Active . 38

4.18 Percentage That Each Phase Was Active When Attempted 38

4.19 Number of Times Each Phase Was Active Given It Was Active at Least Once 39

4.20 A DAG Representing Active Prefixes . 42

viii

4.21 Enabling Previously Applied Phases . 42

4.22 Number of Generations before Finding the Best Fitness Value When Using
the Batch Sequence . 43

4.23 Number of Generations before Finding the Best Fitness Value When Prohibit-
ing Specific Phases . 44

4.24 Percentage of Functions Where Each Phase Could be Prohibited 45

4.25 Number of Generations before Finding the Best Fitness Value When Prohibit-
ing Prior Dormant Phases . 46

4.26 Number of Generations before Finding the Best Fitness Value When Prohibit-
ing Unenabled Phases . 46

4.27 Number of Generations before Finding the Best Fitness Value When Applying
All Techniques . 47

4.28 Number of Avoided Executions When Using Section 4.3.1 Techniques 47

4.29 Average Benefit Relative to the Best Fitness Value Per Generation 48

4.30 Relative Search Time before Finding the Best Fitness Value 49

4.31 Speed Only Improvements for the ARM . 53

4.32 Size Only Improvements for the ARM . 53

4.33 Size and Speed Improvements for the ARM 53

4.34 Relative Total Search Time on the ARM . 54

5.1 Naive Optimization Phase Order Space for Four Distinct Optimizations . . . 59

5.2 Effect of Eliminating Consecutively Applied Phases on the Search Space in
Figure 5.1 . 59

5.3 Effect of Detecting Dormant Phases on the Search Space in Figure 5.1 . . . 60

5.4 Detecting Identical Code Transforms the Tree in Figure 2 to a DAG 62

5.5 Breadth-First and Depth-First DAG Traversal algorithms 65

5.6 Steps followed during an exhaustive evaluation of the phase order space for
each function . 68

5.7 Case When No Leaf Function Instance Yields Optimal Performance 72

5.8 Correlation between Processor Cycles and Frequency Counts for init search . 76

ix

5.9 Average Distribution of Dynamic Frequency Counts 77

6.1 Weighted DAG Showing Enabling, Disabling, and Independence Relations . 82

6.2 Probabilistic Compilation Algorithm 87

6.3 Search Space Properties . 92

6.4 Properties of the Hill Climbing Algorithm 94

6.5 Increase in the Number of Steps to Local Minimum with Increases in Initial
Temperature and Annealing Schedule Step 96

6.6 Greedy Algorithm Performance . 97

6.7 Performance and Cost of Genetic Algorithms 100

6.8 Performance and Cost of Random Search Algorithms 101

6.9 Function Complexity Distribution . 104

6.10 Active Search Space for Different Sequence Lengths 105

6.11 Ratio of Distinct Function Instances in Active Space 106

6.12 Distribution of Performance Compared to Optimal 106

6.13 Repetition Rate of Active Phases . 108

x

ABSTRACT

The phase ordering problem has been a long-standing problem in compiler optimizations.

Different orderings of applying optimization phases by a compiler can result in different

code generated, with potentially significant performance differences for many applications or

even functions within applications. At the same time it is universally acknowledged that a

single ordering of optimization phases will not produce the best code for all functions. The

strict performance constraints in applications for embedded and high performance systems

is making it increasingly important to quickly find the optimal or near-optimal order of

applying optimization phases so that efficient code can be produced.

Given the huge search space of all possible orderings of optimization phases, finding the

optimal phase ordering for each function was generally considered intractable. Furthermore,

heuristic approaches to address the phase ordering problem frequently take too long to

converge on a good solution. In this dissertation I will first describe two complimentary

approaches to achieve faster searches for effective optimization sequences when using a

genetic algorithm. We then further leverage our observation of huge redundancies in the

typical phase order space to make exhaustive evaluation of the entire phase order space

practical in most cases. We also analyze various properties of the optimization phase order

space, and show how such analysis can be used to generate faster conventional compilers,

and enhance commonly employed heuristic approaches to produce better solutions faster.

xi

CHAPTER 1

Introduction

This chapter will lay the foundation for this dissertation by describing our research problem

in the wider context of compilers and compiler optimizations. I will also attempt to delineate

the impact our research work can potentially have on the field of compiler optimizations.

1.1 Role of Compilers and Compiler Optimizations

From the current perspective, a compiler in it’s simplest form can be described as a software

program used to transform some other high-level language program into low-level assembly

program or object code, for execution on a specific computer system. Grace Hopper, working

on the A-0 programming language for the UNIVAC at Remington Rand Inc., is generally

accredited for leading the effort to develop the first widely used compiler for the same

language in 1952 [1]. However, most of the early compilers, or automatic programming

systems as they were then called, were mainly employed to provide a richer instruction set

than the one provided by the native machine. Such a synthetic instruction set contained

enhanced functionality such as floating-point instructions, index registers, and improved

input-output commands lacking on the native computer [2]. Early compilers typically

generated programs that were significantly slower than hand-written assembly programs, and

this high cost prevented the wide scale adoption of such program transformation systems.

The FORTRAN-I compiler, released in 1957, was the first compilation system that

seriously regarded efficient program generation as one of its main design goals [3, 2]. John

Backus, the lead developer of the FORTRAN programming language and compiler, believed

that the failure of compilers to generate efficient programs would critically hamper the wide

scale use of high-level programming languages like FORTRAN. The successive years have

witnessed a large investment of time and resources by compiler developers to discover and

1

implement innovative optimization techniques to improve the quality of the code generated

by the compiler. This focus on code quality has resulted in the development of numerous

compiler optimization techniques, and in the production of high quality code by many

compilers.

1.2 The Phase Ordering Problem

As more and more compiler optimizations started being implemented in various compilers, it

was soon realized that many optimization phases interact with each other. Each optimization

phase attempts to apply a series of transformations consisting of a sequence of changes that

try to improve program efficiency, while preserving the semantic behavior of the program.

Many of these optimization phases use and share resources (such as machine registers),

and also need specific conditions in the code to be applicable. As a result optimization

phases interact with each other by enabling and disabling opportunities for other phases

to be applied. Such interactions between optimization phases have been widely studied in

the context of different compilers (with different sets of optimization phases) and different

architectures [4, 5, 6, 7, 8]. Based on such studies it is now definitively known that phase

interaction often causes different orders of applying optimizations phases to generate different

code, with potentially significant performance variation among them. Therefore, finding

the best order of applying optimization phases is important in application areas where

performance is paramount, such as in high performance and embedded domains, so that more

efficient code can be generated for each application. This challenge is commonly known as

the phase ordering problem in compilers. Over four decades of research on the phase ordering

problem has shown that the problem is challenging since a single order of optimization phases

will not produce optimal code for every application [9, 10, 11, 12, 13, 7]. The best order

depends on the program being optimized, the manner in which the optimization phases are

implemented in the compiler, and the characteristics of the target machine.

1.3 Addressing the Phase Ordering Problem

Over the years there have been several attempts to reasonably address the phase ordering

problem in optimizing compilers. A comprehensive survey of some of the more important

work in this area will be provided in Ch 2. In this section I will briefly summarize the

2

general approaches investigated by researchers, before outlining our method to address the

phase ordering problem.

A fundamental requirement for finding the optimal phase ordering is the ability to reorder

optimization phases in the compiler. Most early compilers did not recognize phase ordering

to be an important issue, and thus several compilers were initially designed without taking

this problem into consideration. As a result different optimization phases expected their

input in different formats, commonly the output format of some earlier phase, which in

effect serialized and fixed the order of optimization phases in that compiler. The growing

awareness of the potential benefits of adapting the phase ordering led to the development

of many compilers that enforced all optimization phases to operate on a single intermediate

language representation of the program [14, 4]. Consequently, each optimization phase can

be applied repetitively and in any order, which neutralized many simple phase ordering

issues. Another approach adopted by some researchers is to combine two or more phases

that are very sensitive to phase ordering into a single optimization phase [15, 16].

The successive years saw an exponential growth in computing power, which made

possible, and gave rise to the field of iterative compilation [7]. Iterative compilation is the

method of iteratively compiling and evaluating an application with sequences of different

optimization-parameter pair values in an attempt to achieve the best performance. A naive

solution to the phase ordering problem is to exhaustively evaluate the performance of all

possible orderings of optimization phases. However, this approach requires the resolution

of two sub-problems, both of which have always been considered infeasible for production

quality compilers. The first sub-problem is to exhaustively enumerate all possible orderings

of optimization phases. This enumeration is impractical since the phase ordering space has

a tendency to quickly become infeasible to completely explore in the face of several different

optimization phases that are typically present in current compilers, with few restrictions

on the ordering of these phases. The second sub-problem is to evaluate the performance

of all the enumerated orderings to find the optimal performance. Performance evaluation

requires execution of the application, which is typically much more expensive than simply

compiling the code. Furthermore, many embedded development environments do not support

compilation, and hence require simulation instead of native execution, which is often orders

of magnitude more expensive. These requirements were challenging enough to deter any

previous attempts at exhaustive phase order space evaluation over all the optimization

3

phases in a mature compiler. Most research either used heuristic algorithms to evaluate only

a portion of the optimization space [11], or performed exhaustive evaluation over a small

subset of the available optimization phases to study optimization space characteristics [6].

During our research, we successfully demonstrated that although the complete optimiza-

tion phase order space is extremely large, it contains a significant amount of redundancy,

such that many different orderings of optimization phases ultimately produce the same code.

Thus, by using various pruning techniques it is often possible to exhaustively evaluate all

possible ways that code can be generated for the optimization phases in our compiler, and

determine the optimal performing phase orderings with a very high degree of accuracy for

most of the functions in our benchmark suite. In this dissertation, I will describe the

techniques we used to prune the phase order search space to generate all possible distinct

function instances that can be produced by changing the optimization phase orderings in

our compiler, for the vast majority of the functions that we studied. I will also explain our

approach of using simple and fast estimation techniques to reduce the number of program

evaluations to quickly determine the optimal, or near-optimal, performing function instance.

By using different correlation techniques, we show that our method of performance estimation

is highly accurate for our purposes. Finally, exhaustive evaluation of the phase order space

over a large number of functions provided us with a large data set, which we have analyzed

to determine various properties of the optimization phase order space. I will explain how

we have used this information to enhance our default batch compiler, as well as to suggest

improvements to earlier heuristic methods to address the phase ordering problem.

1.4 Contributions and Potential Impact of Our
Research

Our research is the first to demonstrate that for a large majority of the functions it is

possible to exhaustively evaluate the optimization phase order space in a reasonable amount

of time to find the phase ordering resulting in (near) optimal code being produced by the

compiler. This single result can potentially have a significant impact on further research in

addressing/solving the phase ordering problem in optimizing compilers by challenging the

acceptance of the infeasibility of exhaustive phase order space evaluation. At the same time,

the methodologies and algorithms we used, and the results we obtained can also be used in

various other research problems in computer science and beyond.

4

The major contributions of our research can be concisely stated as follows:

1. We demonstrated how domain knowledge specific to sequences of optimization phases

can be used to detect huge redundancies in the phase order space [17, 18]. We developed

techniques to detect this redundancy to speed up already existing heuristic phase order

search algorithms.

2. Instead of explicitly enumerating all possible sequences of optimization phases (which

is indeed impractical), we rephrased the phase ordering problem to take advantage of

redundant sequences, and made the problem more manageable [8]. We then developed

new algorithms to make it possible to exhaustively enumerate the phase order space

in a reasonable amount of time for most of the functions in our benchmark suite [19].

3. We simplified the program performance estimation problem, and justified the use

of cheaper estimation techniques to measure program performance by employing

well-known statistical methods to demonstrate their correlation with more expensive

program simulations [20].

4. We developed techniques to gather relevant information about the phase order space to

gain a better understanding of this space, and used this information to improve batch

compilation [8], as well as to compare and evaluate different heuristic search algorithms,

and proposed new algorithms that exploit the available information to improve these

searches [21].

1.5 Outline of My Dissertation

This section will describe the layout of the remainder of this dissertation. Chapter 2 describes

the related work of searching for effective ways to apply compiler optimizations. Chapter 3

presents the experimental framework we used for our research of the phase ordering problem.

It is worthwhile to point out here that my dissertation research is a natural progression of

the work we did as part of my Master’s thesis [22]. In my thesis, we presented the performance

improvements over our default batch compilation that can be achieved by finding function-

specific optimization phase orderings. A genetic algorithm based approach was used to find

distinct phase orderings for every function. During that work we had observed significant

redundancy in the successive orderings found by the genetic algorithm. It was quite

5

obvious that finding techniques to eliminate this redundancy has the potential of making the

searches for effective optimization phase orderings faster and more productive. Chapter 4,

will describe our efforts to improve efficiency when using genetic algorithm searches, by

developing techniques to eliminate redundant sequences, and find better successor sequences.

During our genetic algorithm experiments, our techniques were able to avoid over 87%

of program executions. This result indicated the presence of significant redundancy in

the optimization phase order space. This observation also encouraged us to enhance our

techniques of exploiting redundant phase orderings further to pursue the ultimate goal of

finding the optimal phase ordering by performing an exhaustive search. However, even the

task of enumerating all possible permutations of optimization phases is acknowledged to be

impractical. Chapter 5 describes the approach we used to enumerate all distinct function

instances that can be produced by all possible phase orderings, without explicitly listing

each possible phase ordering permutation.

The next task to find the optimal phase ordering is to evaluate the performance of each

distinct function instance (for every function) by execution or simulation of the application.

Executing the application to determine its performance is generally orders of magnitude more

expensive than just generating the code. Simulation, which is required in many embedded

application development environments is even more time-consuming. Chapter 5 describes

our approach, and the techniques we used to quickly find the optimal phase ordering with a

very high degree of probability.

Exhaustively evaluating the optimization phase order space over a very large suite

of functions provided us with a very large data set containing imformation about phase

interactions, and other optimization phase properties. We have attempted to employ some

of this information to improve conventional compilation. We also used our knowledge of the

entire phase ordering space to compare commonly used heuristic algorithms that search for

different phase orderings. We suggest improvements for current algorithms and suggest new

algorithms as well. These experiments and evaluations are presented in Chapter 6. Some

future directions for this research are outlined in Chapter 7, and finally our conclusions are

presented in Chapter 8.

6

CHAPTER 2

Related Work

Modern compilers make extensive use of optimizations to improve program performance.

Many compiler optimizations are highly dependent on both the program characteristics as

well as the architectural environment on which the program is run. Architectural features

like the number of registers, cache size, pipeline depth etc. can have a huge impact on the

performance delivered by such optimizations. A compiler usually performs some form of

static program analysis based on simplified machine models. However, the machine models

used are inherently inaccurate, and cannot account for the behavior of the entire system.

At the same time, transformations are not independent in their effect on performance of the

generated code making the compiler’s task of selecting the best sequence of transformations

difficult. Moreover, compilers typically use heuristics that are based on averaging observed

behavior for a small set of benchmarks. This generality leads to loss of performance in most

applications.

All the compiler optimization issues discussed above deal with only the selection,

arrangement, and parameterization of optimization phases. As such, research on the

strategies to apply compiler optimizations has been divided into three distinct groups:

(1) phase parameterization, (2) phase selection, and (3) phase ordering. An approach

termed as iterative compilation is used in many compilers to aggressively optimize programs

in order to overcome these issues. In this approach, many different combinations of

optimization/parameter pairs are applied to a program and their worth is determined by

actually executing the resulting code and measuring the execution time. Such an approach

does not suffer from undecidability issues and, given sufficient time will find the optimal

program for the set of optimizations being performed. The obvious drawback is that

compilation time dramatically increases. As a result, researchers have also studied static

7

techniques to pre-select the optimization strategy. In several approaches heuristic models

are used to impose a limit on the number of cases studied during iterative compilation. In

this chapter I will describe the existing research work that attempts to address these compiler

optimization issues.

2.1 Phase Parameterization

Many compiler optimizations are parameterized. If a compiler contains m optimization

phases, with ni legal parameter values for each phase i (1 ≤ i ≤ m), then the phase

parameterization space is: (n1 ∗ n2 ∗ ∗ nm). Thus the space parameterization space can

be very large. These parameters are either fixed, or commonly selected by incomplete,

and simplified machine models, and as a result are frequently sub-optimal. For example,

the number of times a loop is duplicated when applying loop unrolling is called the unroll

factor. High unroll factors for loop unrolling can improve performance by reducing the loop

overhead and providing for better instruction scheduling. However, high unroll factors also

increase the possibility of cache overflow, and depending on machine cache sizes can degrade

performance. Similarly, loop tiling is an optimization that typically improves memory

heirarchy performance by increasing the temporal data locality. However, this optimziation

can also hurt performance if it is incorrectly parameterized, and needs to be carefully tuned

to obtain maximum benefit.

The small area of the transformation space formed by applying loop unrolling (with unroll

factors from 1 to 20) and loop tiling (with tile sizes from 1 to 100) was analyzed for a set

of three program kernels across three separate platforms [23, 7]. The study showed that

the optimization space is highly non-linear, and the best parameters depend largely on the

application and the processor. Their iterative strategy using a grid-based search algorithm

was able to find good transformation settings by examining a very small fraction of the

optimization space. One important deduction from this work was that typical program

search spaces generally contain many local minima, and so heuristic algorithms need to

be robust enough to not get trapped in a local minimum. In some related research the

performance of many different heuristic and machine learning algorithms that search for

effective phase parameters was evaluated [24]. The general observation was that different

search algorithms do not differ much in their efficiency. Researchers have also incorporated

8

static cache models during iterative compilation, and have shown that cache models can

reduce the number of executions by 50% [25]. This research also reported that searching for

the best parameters using only static models yields performance improvements that are far

less than those obtained by iterative compilation.

The ATLAS project [26] used iterative compilation to generate dense numerical linear

algebra library called the BLAS. They call their approach automated empirical optimization

of software (AEOS). The ATLAS approach works best for the level-3 BLAS, which performs

matrix-matrix multiplications. ATLAS runs in two phases. In the first phase, ATLAS runs

micro-benchmarks to approximately determine the values of some architectural features,

such as L1 cache size, number of floating-point registers, and the presence of multipy-add

instruction in the specific machine’s instruction set. In the next phase, an extensive empirical

search is performed to find the most effective parameters for cache and register level tiling,

loop unrolling, and scheduling. The machine parameters estimated in the first step are used

to limit the empirical search in the next phase.

The PHiPAC [27] project used iterative techniques to optimize linear algebra routines.

The FFTW [28, 29, 30] project used AEOS-like techniques to optimize fast fourier trans-

forms. Other projects with AEOS-like designs include Optimqr, for creating solvers for sparse

systems of linear equations [31], software for designing signal processing algorithms [32], and

Tune, for designing models and transformations for memory-friendly programming [33].

Many researchers have also employed static models at compile time to search for good

optimization parameters. This includes cache models to select tile sizes [34], and to compute

loop unroll factors [35]. Research on phase parameterization is, however, only concerned with

selecting the correct parameters for a few compiler optimizations in isolation, and does not

consider all compiler optimizations. In constrast, my dissertation research, instead, considers

the order in which all optimization phases should be applied.

2.2 Phase Selection Problem

Most current mainstream compilers implement many different optimization phases. As such,

not all the phases may be able to achieve a performance improvement for all input functions.

For example, loop unrolling usually improves performance. However, depending on machine

characteristics like size of the instruction cache and number of allocatable registers, loop

unrolling can actually degrade performance by causing cache or register overflow. Many

9

compilers provide command-line flags that can be turned on/off to select the phases to

be applied to each function or program [36]. The phase selection problem is the problem

of selecting the ideal compiler flags to achieve the best program performance for each

application. If a compiler provides n optimization flags, then there are at most 2n possible

selections of compiler optimization options.

The search space of all possible combinations of optimization flags can be very large.

Chow and Wu applied a technique called fractional factorial design [37] to systematically

design a series of experiments to select a good set of program-specific optimization flags [38].

Each set of experiments determines some effects and interactions between compiler switches.

A relatively few number of runs were needed to detect most interactions. However, much of

the work needed to select the experiments, and isolate higher-level optimization effects was

manually performed in this research.

Some researchers have also used orthogonal arrays to create a fractional factorial design

of experiments to partially explore the space of all possible combinations of compiler

switches [39]. This research used orthogonal arrays of strength two to compute the effect

each compiler option will have on the final application performance. Such statistical analysis

allowed them to turn on/off certain compiler flags. Follow-up work on the same topic

allowed the researchers to generate a compiler setting that is optimized for a collection

of applications [40]. In addition to looking at the performance effect of each option, this

research also considered the interaction between pairs of optimizations in the presence of

other options being turned on.

Granston and Holler propose a tool, called Dr. Options, for automatic recommendation

of compiler options [41]. This tool uses a set of deterministic rules for when to turn on certain

options based on interviewing compiler writers, their experience, and results from literature.

The tool gathers static information about the current function, such as characteristics of loops

and data access patterns, and optionally also uses user-supplied, and profiling information

to guide the compiler options selection process.

Pan and Eigenmann developed three different algorithms to quickly select good compiler

settings [42]. The first algorithm, called batch elimination, requires a single experimental

run per optimization phase to identify and turn off that phase if it causes a performance

degradation. This algorithm does not consider interactions between optimizations. Iterative

elimination is the second algorithm that takes n experimental runs (n is the number of

10

phases in the compiler) per iteration to switch off one flag with the most negative effect.

The algorithm continues until an iteration is reached when no optimization is causing a

performance degradation. The third algorithm, called combined selection, combines the

previous two approaches. During each iteration, after identifying the phases with negative

effects, this algorithm tries to eliminate all these negative optimizations one by one in a

greedy fashion.

Research on the problem of phase selection only attempts to find the best set of compiler

options to apply, and does not vary the ordering of the phases. Different from this, my goal

is to find the ideal ordering of compiler optimizations. This phase ordering problem in fact

subsumes the phase selection problem.

2.3 Phase Ordering

Optimization phase ordering is a long standing problem in compilers and as such there is

a large body of existing research on this topic. An interesting research study investigating

the decidability of the phase ordering problem in optimizing compilation proved that finding

the optimal phase ordering is undecidable in the general schemes of iterative compilation

and library generation/optimization [43]. However, their hypothesis assumes that the set

of all possible programs generated by distinct phase orderings is infinite. This hypothesis

is rational since optimizations such as loop unrolling, and strip mining can be applied an

arbitrary number of times, and can generate as many distinct programs. In practice, however,

compilers typically impose a restriction on the number of times such phases can be repeated

in a normal optimization sequence. Thus, finding the optimal phase ordering is decidable in

most current compilers, albeit very hard.

Exhaustive evaluation of the entire optimization phase order space in a mature compiler

has generally been considered infeasible, and, to the best of our knowledge, had never

before been successfully attempted before my present work. Enumerations of search spaces

over a small subset of available optimizations have, however, been attempted. One group

exhaustively enumerated a 10-of-5 subspace (optimization sequences of length 10 from 5

distinct optimizations) for some small programs [6]. Each of these enumerations typically

required several processor months even for small programs. The researchers found the search

spaces to be neither smooth nor convex, as well as noticed the difficulty in predicting the

best optimizations in most cases.

11

Since exhaustive phase order search space exploration had generally been conceived as

infeasible, researchers investigated the problem of finding an effective optimization phase

sequence by aggressive pruning and/or evaluation of only a portion of the search space. This

area has seen the application of common artificial intelligence search techniques to search the

optimization space. Hill climbers, simulated annealing, as well as genetic algorithms have

been used during iterative searches to find optimization phase sequences better than the

default one used in their compilers [11, 12, 6]. Most of the results report good performance

improvements over a fixed compiler sequence.

There have been several attempts to reduce the cost of iterative search to address the

phase ordering problem. Agakov et al. used predictive modeling to automatically focus the

search on those areas of the space likely to result in maximum performance improvement [44].

This approach uses program features to correlate the program to be optimized with previous

knowledge in order to focus the search. In this approach a training set of programs is

iteratively evaluated, and the shape of the spaces and program features are modeled. When

a new program is encountered, program features are used to select the appropriate model,

which then biases the search to a certain area of the space. Thus, the time for iterative

search is significantly reduced.

Model driven or analytical approaches to address the phase ordering problem have also

been attempted. Such approaches attempt to determine the properties of optimization

phases, and then use some of these properties at compile time to decide what phases to

apply and how to apply each phase. Such approaches have minimal overhead since additional

profile runs of the application are generally not required.

Whitfield and Soffa developed a common framework based on a formal axiomatic

specification language for describing the actions of optimizations and the conditions for

performing them [10, 5]. This framework was employed to theoretically list the enabling and

disabling interactions between optimizations, which were then used to derive an application

order for the optimizations. It was found that many pairs of optimization phases may not

enable or disable another, while in many of the remaining cases the interaction relationship

is theoretically one-way. For such phases it is trivial to find the best order of applying

optimization phases. The main drawback of this work was that in cases of cyclic interactions

between optimization phases it was not possible to automatically determine a good ordering

without detailed information about the compiler and application.

12

Follow-up work on the same topic has seen the use of additional analytical models,

including code models, resource models (such as for cache, registers, and computation), and

optimization models, to determine and predict other properties of optimization phases such

as the impact of optimizations [45], and the profitability of optimizations [46]. Even after

substantial progress, the fact remains that properties of optimization phases, as well as the

relations between them are, as yet, poorly understood, and model driven approaches find it

hard to predict the best phase ordering in most cases.

The Unified Transformation Framework (UTF) was proposed to provide a uniform and

systematic representation of iteration reordering transformations (implemented for loop

interchange, reversal, skewing, distribution, fusion, alignment, interleaving, tiling, coalescing,

scaling, statement reordering, and index set splitting) and their arbitrary combinations [47].

It is possible using UTF to represent a sequence of iteration reordering transformations as a

sequence of parameters. UTF allows a compiler to transform the optimization phase order

space into a polyhedral space, which is considered by some researchers to be more convenient

for a systematic exploration than the original space [48]. Researchers have further proposed

a random heuristic search algorithm independent of architecture, language, and environment

to locate high-performance points in the space of iteration reordering transformations [48].

However, this work is only restricted to loop optimizations, and needs to be extended to

other optimizations before it’s merit can be evaluated for typical iterative compilers.

In contrast to all earlier approaches to address phase ordering, my dissertation work is

the first and only successful attempt to exhaustively evaluate the phase order space over all

the phases in a compiler to find the optimal phase ordering for each function.

2.4 Other Iterative Compilation Approaches

In additional to the above work on phase selection, ordering, and parameterization there

has been some other work as well that used empirical optimization techniques. A method

called Optimization-Space Exploration [13] combines phase selection with the search for good

optimization parameter settings. This algorithm uses a compile-time pruning technique, and

uses compiler writer’s knowledge to select a small set of optimization-parameter settings that

are known to perform well. At run-time, this algorithm iteratively attempts to find better

optimization parameters by merging the beneficial ones in the previous iterations. Static

performance estimators are used to reduce the search time. This approach is very general

13

since code for critical segments are actually generated and a static performance estimation

is applied. Thus, any set of optimizations can be used in this approach.

There has been some research investigating the performance of exhaustive searches in

relatively small search spaces to find optimization sequences to improve code for individual

benchmarks. Exhaustive techniques have been developed to search for optimal instruction

sequences [49] or to eliminate branches [50]. However, these approaches can only be used in

very limited contexts.

2.5 Static Performance Estimation

Several prior studies have used static performance estimations to avoid program executions

during iterative compilation [51, 52, 13]. Encouragement for replacing program executions

with faster static estimations was provided by earlier studies, such as the one by Wagner et

al., who presented a number of static performance estimation techniques to determine the

relative execution frequency of program regions, and measured their accuracy by comparing

them to profiling [53]. They reported that in most cases static estimators provided sufficient

accuracy for their tasks. Researchers have experimented with detailed cache models [51],

along with a model for predicting branches [13] to reduce the number of program executions

needed during iterative compilation.

Other researchers have also varied how optimizations are applied and have instead used

static estimations of performance to reduce the search time. One method searches through

the different ways to apply loop fission, fusion, interchange, and outer loop unrolling in

an attempt to optimize loop nests [54]. This method does not actually generate code, but

instead uses an estimate based on the original loop nest and the potential benefit for a

transformation. Thus, their approach is limited since the estimator only works on the set of

optimizations being considered. The search space is pruned in different ways. The decisions

regarding how to apply some optimizations, such as outer loop unrolling factors, are made

independently from other optimizations since it was felt that it would not be affected by

how inner loops would be optimized. The number of loops to be varied when tuning other

optimizations, such as tile size and loop interchange, are also limited. Other methods for

integrating different optimization phases were also studied [55, 56].

The method of static performance estimation I used during my research is most similar

to the approach of virtual execution used by Cooper et al. [52] in their ACME system of

14

compilation. In the ACME system, Cooper et al. strived to execute the application only

once (for the un-optimized code) and then based on the execution counts of the basic blocks

in that function instance, and careful analysis of transformations applied by their compiler,

determine the dynamic instruction counts for other events, such as function instances. With

this approach, ACME has to maintain detailed state, which introduces some amount of

additional complexity in the compiler. In spite of detailed analysis, in a few cases ACME

is not able to accurately determine the dynamic instruction count due to the types of

optimizations been applied, occasionally resulting in small errors in their computation.

2.6 Evaluating Heuristic Search Algorithms

In spite of the wide-spread use of heuristic approaches, there have been few attempts to

evaluate and compare their properties and performance in the context of the characteristics

of the phase order space. Kisuki et al. analyzed the performance of five different search

algorithms, and reported the observation that heuristic algorithms do not differ much in

their efficiency [24]. However, this study was performed on a space of only two optimizations

(with different parameters), and did not take into account properties of the phase order

space. A more detailed evaluation was performed by Almagor et al. [6], which attempted

to relate features of the phase order space with the efficiency and performance of different

heuristic algorithms. This study was, however, incomplete since they had restricted their

sequence length to be of a fixed size. This earlier work also did not have access to the entire

phase order space features, and lacked a knowledge of the optimal phase order performance.

15

CHAPTER 3

Experimental Framework Common throughout the

Dissertation

We selected the Very Portable Optimizer (VPO) [57] as our compiler backend to conduct

experiments and verify our hypothesis. VPO was a part of the DARPA and NSF co-

sponsored National Compiler Infrastructure project to produce and distribute a compiler

infrastructure to be used by compiler researchers in universities, government, and industry.

VPO is a compiler back-end that performs all its optimizations on a single low-level

intermediate representation called RTLs (Register Transfer Lists). Since VPO uses a single

representation, it can apply most analysis and optimization phases repeatedly and in an

arbitrary order. I have already discussed that repetitively applying optimization phases is

considered an effective way to address simple inefficiencies due to phase ordering [4]. VPO

compiles and optimizes one function at a time. This is important since different functions

may have very different best orderings, so any strategy that requires all functions in a file to

have the same phase order will almost certainly not be optimal. At the same time, restricting

the phase ordering problem to a single function helps to make the phase order space more

manageable. VPO has been targeted to produce code for a variety of different architectures.

Some of our initial experiments were conducted on an Ultra SPARC III processor. The

SPARC provided a high performance platform along with support for native compilation

and execution. Due to our focus on embedded applications, we ultimately moved over to

the StrongARM SA-100 platform, using Linux as its operating system. VPO was used as a

cross-compiler executing on fast x86 machines while generating code for the ARM. We used

the SimpleScalar set of functional and cycle-accurate simulators [58] for the ARM to get

dynamic performance measures.

Table 3.1 describes each of the 15 candidate code-improving phases that we used during

16

our exhaustive and heuristic explorations of the optimization phase order search space. In

addition, register assignment, which is a compulsory phase that assigns pseudo registers

to hardware registers, must be performed. In our experiments VPO implicitly performs

register assignment before the first code-improving phase in a sequence that requires it.

Two other optimizations, merge basic blocks and eliminate empty blocks, were removed

from the optimization list used for our searches since these optimizations only change the

internal control-flow representation as seen by the compiler and do not directly affect the final

generated code. These optimizations are now implicitly performed after any transformation

that has the potential of enabling them. After applying the last code-improving phase in

a sequence, VPO performs another compulsory phase that inserts instructions at the entry

and exit of the function to manage the activation record on the run-time stack. Finally,

the compiler also performs predication and instruction scheduling before the final assembly

code is produced. These last two optimizations should only be performed late in VPO’s

compilation process, and so it was not possible to include these optimizations in our regular

set of phases for searching the phase order space.

A few dependences between some optimization phases in VPO makes it illegal for them

to be performed at certain points in the optimization sequence. The first restriction is that

evaluation order determination can only be performed before register assignment. Evaluation

order determination is meant to reduce the number of temporaries that register assignment

later allocates to registers. VPO also restricts some optimizations that analyze values in

registers, such as loop unrolling, loop strength reduction, induction variable elimination

and recurrence elimination, to be performed after register allocation. These phases can

be performed in any order after register allocation is applied. Register allocation itself can

only be performed after instruction selection so that candidate load and store instructions

can contain the addresses of arguments or local scalars. There are a set of phases that

require the allocation of hardware registers and must be performed after register assignment.

These phases include register allocation, common subexpression elimination, dead assignment

elimination, and most loop transformations, including loop unrolling, loop-invariant code

motion, loop strength reduction, recurrence elimination, and induction variable elimination.

As mentioned earlier, register assignment is automatically performed before the first phase

that requires it. Finally, we restrict loop unrolling to be active at most once in each sequence.

In this study we were only investigating the phase ordering problem and did not vary

17

Table 3.1: Candidate Optimization Phases Along with their Designations

Optimization Phase Gene Description

branch chaining b Replaces a branch or jump target with the target of the last jump
in the jump chain.

common subexpression
elimination

c Performs global analysis to eliminate fully redundant calculations,
which also includes global constant and copy propagation.

remove unreachable
code

d Removes basic blocks that cannot be reached from the function
entry block.

loop unrolling g To potentially reduce the number of comparisons and branches at
runtime and to aid scheduling at the cost of code size increase.

dead assignment elimi-
nation

h Uses global analysis to remove assignments when the assigned
value is never used.

block reordering i Removes a jump by reordering blocks when the target of the jump
has only a single predecessor.

minimize loop jumps j Removes a jump associated with a loop by duplicating a portion
of the loop.

register allocation k Uses graph coloring to replace references to a variable within a
live range with a register.

loop transformations l Performs loop-invariant code motion, recurrence elimination, loop
strength reduction, and induction variable elimination on each
loop ordered by loop nesting level.

code abstraction n Performs cross-jumping and code-hoisting to move identical in-
structions from basic blocks to their common predecessor or suc-
cessor.

evaluation order deter-
mination

o Reorders instructions within a single basic block in an attempt to
use fewer registers.

strength reduction q Replaces an expensive instruction with one or more cheaper ones.
For this version of the compiler, this means changing a multiply
by a constant into a series of shift, adds, and subtracts.

reverse branches r Removes an unconditional jump by reversing a conditional branch
when it branches over the jump.

instruction selection s Combines pairs or triples of instructions together where the in-
structions are linked by set/use dependencies. Also performs con-
stant folding and checks if the resulting effect is a legal instruction
before committing to the transformation.

remove useless jumps u Removes jumps and branches whose target is the following posi-
tional block.

parameters for how phases should be applied. For instance, we do not attempt different

configurations of loop unrolling, but always apply it with a loop unroll factor of two since

we are generating code for an embedded processor where code size can be a significant issue.

Note that VPO is a compiler backend. Many other optimizations not performed by VPO,

such as loop tiling/interchange, inlining, and some other interprocedural optimizations, are

typically performed in a compiler frontend, and so are not present in VPO. We also do not

perform ILP (frequent path) optimizations since the ARM architecture, our target for most of

this research, is typically implemented as a single-issue processor and ILP transformations

would be less beneficial. In addition, frequent path optimizations require a profile-driven

compilation process that would complicate this study.

18

Table 3.2: MiBench Benchmarks Used in the Experiments

Category Program Description

auto
bitcount test processor bit manipulation abilities
qsort sort strings using the quicksort sorting algorithm

network
dijkstra Dijkstra’s shortest path algorithm
patricia construct patricia trie for IP traffic

telecomm
fft fast fourier transform
adpcm compress 16-bit linear PCM samples to 4-bit sam-

ples

consumer
jpeg image compression and decompression
tiff2bw convert color tiff image to b&w image

security
sha secure hash algorithm
blowfish symmetric block cipher with variable length key

office
string-
search

searches for given words in phrases

ispell fast spelling checker

Note that some phases in VPO represent multiple optimizations in many compilers.

However, there exist compilers, such as GCC, that have a greater number of distinct

optimization phases. Unlike VPO, most compilers are more restrictive regarding the order

in which optimizations phases are performed. In addition, the more obscure a phase is,

the less likely that it will be successfully applied and affect the search space. While one

can always claim that additional phases can be added to a compiler or that some phases

can be applied with different parameters (e.g., different unroll factors for loop unrolling),

completely enumerating the optimization phase order space for the number of phases applied

in our compiler had never before been accomplished to the best of our knowledge.

For these experiments we used a subset of the benchmarks from the MiBench benchmark

suite, which are C applications targeting specific areas of the embedded market [59]. We

selected two benchmarks from each of the six categories of applications present in MiBench.

Table 3.2 contains descriptions of these programs. VPO compiles and optimizes individual

functions at a time. The 12 benchmarks selected contained a total of 244 functions, out

of which 88 were executed with the input data provided with each benchmark. Detailed

information about the functions in each benchmark is provided in Appendix A.

19

CHAPTER 4

Techniques for Faster Genetic Algorithm Searches

Researchers attempting to address the phase ordering problem in optimizing compilers have

always had the ultimate goal of finding the optimal phase ordering for each application or

function. However, this ultimate goal has always been considered intractable for production

quality compilers, and over all the optimization phases present in their compilers. There are

two main contributing reasons for this prevalent notion of infeasibility.

First, the space of all possible orderings of optimization phases is extremely huge. Current

compilers contain numerous different optimization phases, with few restrictions on the

ordering of different phases. For example, VPO contains 15 different re-orderable phases. At

the same time, phases can enable each other by creating new opportunities for application

of other optimization phases. Thus, each phase can be active multiple times in the same

phase sequence, which makes it impossible to statically determine the scope of the phase

order space for each function. For example, with VPO the space can potentially be much

greater than the 15! number of all possible permutations of optimization phases.

Second, evaluating the performance of each phase ordering requires a pass to compile,

assemble, and link the application, in addition to executing the application, and verifying

the generated output for correctness. Many embedded development environments do not

natively support a run-time system, which implies that simulation (rather than execution)

will be required to determine the phase ordering performance. Simulation can be orders of

magnitude more expensive than native execution. Performing these operations to measure

the relative performance of all possible phase orderings quickly becomes prohibitively

expensive.

Moreover, based on phase interaction behavior, it is recognized that no single ordering

of phases will be optimal for all applications. This means that it is not enough to only

20

perform the optimal phase ordering measurements once, but that since the best orderings

can change, the measurements need to be repeated for each new application on every

computer platform. Researchers have also attempted to study and classify the behavior

and interactions between optimization phases. But, the phase interactions still remain

ill-understood and unpredictable. Thus, it is not at all surprising that determining the

optimal phase ordering was always considered infeasible, and there were few attempts in

that direction. Instead, researchers attempted to use heuristic algorithms to probe only a

part of the phase order space to find effective function-specific optimization phase orderings.

Heuristic algorithms, such as genetic algorithm and hill climbing, are commonly used to

search for effective function or program-specific optimization phase orderings. While such

searches have been shown to produce more efficient code than that produced by a single

phase ordering, these approaches can be extremely slow because the application needs to be

compiled and possibly executed to evaluate the effectiveness of each sequence. As part of

my Masters’s thesis, I studied the cost and performance impact of using genetic algorithms

to find function-specific optimization phase sequences [22]. We found that even for small

embedded applications the search process often required several hours to converge on a good

sequence. Focusing on the same goal of improving searches for function-specific optimization

phase sequences as part of my dissertation, we proposed and evaluated two complimentary

approaches for achieving faster searches for effective optimization sequences when using a

genetic algorithm. In this chapter, I will describe the techniques that we used to obtain

dramatic improvements in our genetic algorithm searches, and what the observations from

these experiments meant for my subsequent research in this field. These experiments did

not use loop unrolling and code abstraction as available reorderable phases. Additionally,

two phases, merge basic blocks and eliminate empty blocks, that were later removed from our

list of reorderable phases, were included during the experiments described in this chapter.

The experiments in this chapter were conducted on an Ultra SPARC III processor, unless

indicated otherwise.

4.1 Background

Before describing the techniques to achieve faster genetic algorithm searches, I will first

provide a brief background of some of my earlier research. This includes an introduction to

the VISTA compilation framework, and an explanation of the genetic algorithm we employed

21

in our experiments.

4.1.1 Terminology

I will start this section by providing descriptions of some terminology that I use throughout

my dissertation.

Active Phase : If the current function contains the enabling conditions for an optimization

phase, then application of this phase will modify the function representation. A phase

able to change the code generated for the function is called an active phase.

Dormant Phase : If an optimization phase is not able to find opportunities to modify the

function representation, then this phase is called a dormant phase.

Function Instance : A function instance can be formally defined as any syntactically,

semantically, and functionally identical representation of the source function. It is in

essence a version of the function produced by some phase ordering sequence.

Batch Compiler : The VPO compiler operating in the default mode is called the batch

compiler. Consequently, the phase ordering applied by the batch compiler is called

the batch sequence. The default compiler aggressively applies optimizations in a fixed

order, but repeats the sequence in a loop until some pass is attained during which no

optimization is able to modify the function representation.

4.1.2 VISTA: VPO Interactive System for Tuning Applications

The experiments described in this chapter were conducted using VISTA. VISTA is a low-level

interactive compilation framework [60, 61]. Figure 4.1 illustrates the flow of information in

VISTA, which consists of a compiler and a viewer. The programmer initially provides a file

to be compiled and then specifies requests through the viewer, which include sequences of

optimization phases, manually specified transformations, and queries. The compiler performs

the specified actions and sends program representation information back to the viewer. To

evaluate the performance impact of a single optimization phase, or a sequence of phases, the

compiler first applies all specified phases to the function under consideration. The compiler

then optionally instruments the function using EASE [62], produces assembly code, links and

executes the program, and gets performance measures from the execution. When the user

22

Viewer
State

EASE

Display
User

File

Assembly

 File

Source

File

Request
Measure

Requests

Program Representation Info. Transformation Info.

Compiler

New Instructions

Selections

Saved

Executable

Measures
Performance

Figure 4.1: Interactive Code Improvement Process

chooses to terminate the session, VISTA writes the sequence of transformations to a file so

they can be reapplied at a later time, enabling future updates to the program representation.

The interactiveness of VISTA is an important aspect of the environment. A user can

view the program representation after each phase or transformation along with performance

feedback to gauge the improvement during the tuning process. In addition, a user can

manually specify transformations, which is particularly useful when there are architectural

features that the compiler cannot exploit. Note that traditional compiler optimization phases

can be applied even after manually specifying transformations.

Figure 4.2 shows a snapshot of the viewer with a history of a sequence of optimization

phases displayed. Note that not only is the number of transformations associated with each

optimization phase displayed, but also the improvements in instructions executed and code

size are shown. Likewise, we can interface with a simulator to obtain improvements in cycle

count and power consumption. This information allows a user to quickly gauge the progress

that has been made in improving the function. The frequency of each basic block relative

to the function is also shown in each block header line, which allows a user to identify the

critical regions of a function.

VISTA allows a user to specify a set of distinct optimization phases and have the compiler

attempt to find the best sequence for applying these phases for a given function. Figure 4.3

shows the different options that VISTA provides the user to control the search. The user

23

Figure 4.2: Main Window of VISTA Showing History of Optimization Phases

specifies the sequence length, which is the total number of phases applied in each sequence.

Our experiments used the biased sampling search, which applies a genetic algorithm in an

attempt to find the most effective sequence within a limited amount of time since in many

cases the search space is too large to evaluate all possible sequences [63]. A population is

the set of solutions (sequences) that are under consideration. The number of generations

indicates how many sets of populations are to be evaluated. The population size and

the number of generations must be specified, which limits the total number of sequences

evaluated. These terms are described in more detail in the next section. VISTA also allows

the user to choose dynamic and static weight factors, where the relative improvement of each

is used to determine the overall fitness.

Performing these iterative searches is time consuming, typically requiring tens of minutes

for a single function, and hours or days for an entire application even when using direct

execution. Thus, VISTA provides a window showing the current search status. Figure 4.4

shows a snapshot of the status of the search selected in Figure 4.3. The percentage of

sequences completed, the best sequence, and its effect on performance are given. The user

can terminate the search at any point and accept the best sequence found so far.

24

Figure 4.3: Selecting Options to Search for Possible Sequences

Figure 4.4: Window Showing the Search Status

4.1.3 Genetic Algorithm Performance Results

A genetic algorithm is a randomized biased sampling search technique that attempts to model

the natural process of evolution in living beings [63, 64]. Past studies using genetic algorithms

to generate better phase orderings have performed searches on entire applications [65, 11, 66].

In contrast, we performed our searches on individual functions, which require a greater

number of compilations but results in better overall improvements [12]. In fact, most of the

techniques we evaluated would be much less effective had we searched for a single sequence

to be applied on an entire application. These experiments were conducted on 106 functions

from six MiBench benchmarks, one from each available category (the first benchmark from

25

each category in Table 3.2).

We set the sequence (chromosome) length for the genetic algorithm to be 1.25 times the

number of active phases that were applied for that function by the batch compiler. We felt

this length was a reasonable limit that gives VISTA an opportunity to apply more active

phases than what the batch compiler could accomplish. Note that this length is much less

than the number of phases attempted during the batch compilation. The sequence lengths

used in these experiments varied between 3 and 50 with an average of 14.15. We set the

population size (fixed number of sequences or chromosomes) to 20 and each of our initial

sequences was randomly initialized with candidate optimization phases. We performed 100

generations when searching for the best sequence for each function. We sorted the sequences

in the population by a fitness value calculated using a 50% weight on speed and a 50%

weight on code size. The speed factor we used was the number of instructions executed

since this was a measure that could be consistently obtained, allowing us to obtain baseline

measurements within a reasonable period of time. Similar speed factors have been used in

earlier studies as well [11, 12]. It is possible to obtain a more accurate measure of speed

by using a cycle-accurate simulator. However, the main point of our experiments was to

evaluate the effectiveness of techniques for obtaining faster searches, which can be applied

with any type of fitness evaluation criteria.

At each generation (time step) we removed the worst sequence and three others from the

lower (poorer performing) half of the population chosen at random. Each of the removed

sequences were replaced by randomly selecting a pair of the remaining sequences from the

upper half of the population and performing a crossover (mating) operation to create a

pair of new sequences. The crossover operation combined the lower half of one sequence

with the upper half of the other sequence and vice versa to create two new sequences.

Fifteen (75%) sequences are then candidates for being changed (mutated) by considering

each optimization phase (gene) in the sequence. Mutation of each phase in a sequence

occurred with a probability of 10% and 5% for the lower and upper halves of the population,

respectively. When an optimization phase is mutated, it is randomly replaced with another

phase. The four sequences subjected to crossover and the best performing sequence are not

mutated. Finally, identical sequences in the same population were replaced with randomly

generated sequences

Figures 4.5, 4.6, and 4.7 show the percentage improvement that we obtained for the

26

Figure 4.5: Speed Only Improvements for the SPARC

Figure 4.6: Size Only Improvements for the SPARC

Figure 4.7: Size and Speed Improvements for the SPARC

27

SPARC when optimizing for speed only, size only, and 50% for each factor, respectively. The

baseline measures were obtained using the batch VPO compiler, which iteratively applies

optimization phases until no more improvements can be obtained. This baseline is much

more aggressive than always using a fixed length sequence of phases [61], which makes our

performance improvements look modest. More information about the VISTA compilation

framework, or the specifics of our genetic algorithm searches can be obtained from previous

publications [60, 12, 61].

4.2 Reducing the Search Overhead

Performing a search for an effective optimization phase sequence can be quite expensive,

perhaps requiring hours or days for an entire application even when using direct execution

instead of simulation to evaluate performance. Our main motivation for speeding up these

searches was to make iterative compilation more attractive to use. Another benefit is

that the heuristic searches can now be made more aggressive by increasing the number

of generations, to potentially produce greater performance improvements. The following

subsections describe the methods we used to reduce the search overhead, and the results of

applying these methods.

4.2.1 Methods for Reducing the Search Overhead

Iterative compilation performs the following tasks to obtain dynamic performance mea-

surements for a single sequence. (1) The compiler applies the optimization phases in the

order specified by the sequence. (2) The generated code for the function is instrumented, if

required, to obtain performance measurements. The assembly code for that function and the

remaining assembly code for the functions in the current source file are written to a file. (3)

The newly generated assembly file is assembled. (4) The object files comprising the entire

program are linked together into an executable by a command supplied in a configuration

file. (5) To obtain performance measurements, the program is executed using a command in

a configuration file, which may involve direct execution or simulation. (6) The output of the

execution is compared to the desired output to provide assurance that the new sequence did

not cause the compiler to generate invalid code.1 Tasks 2-6 often dominate the search time,

1It is possible that a new optimization sequence can cause the generated code to produce incorrect output.
In the rare case when this happened, we assigned a poor fitness value to the sequence so that it will not be

28

Genetic

Algorithm

Check

Attempted

Sequences

Check

Active

Sequences

Check for

Equivalent

Function

Check for

Identical

Function

best

phases

Execute

Application

candidate

sequence

generate

executable

apply

phases

next

sequence

previous measure
found found

calculate unmapped checksum

foundfound

new measure

checksum
mapped

calculate

Figure 4.8: Methods for Reducing Search Overhead

which is probably due to these tasks requiring I/O and task 1 being performed in memory.

The following subsections describe methods to reduce the search overhead by eliminating

redundant program compilations/evaluations. Figure 4.8 illustrates the order in which the

different methods are attempted. Each optimization phase sequence generated by the genetic

algorithm is checked by up to four methods. The methods are ordered according to cost.

Each method handles a superset of the sequences handled by the methods applied before

it, but the later methods are more expensive. The first method checks if the attempted

sequence has been previously encountered for the function. If so, then the compilation by

applying these phases is avoided. The second, third, and fourth methods are used to avoid

the execution of the application, which comprise tasks 2-6 described earlier.

Finding Redundant Attempted Sequences

Sometimes the same optimization phase sequence is reattempted during the search. Consider

Figure 4.9, where each optimization phase in a sequence is represented by a letter. The same

sequence can be reattempted due to mutation not occurring on any of the phases in the

sequence (e.g. sequence i remaining the same in Figure 4.9). Likewise, a crossover operation

or mutation changing some individual phases can produce a previously attempted sequence

(e.g. sequence k mutates to be the same as sequence j before mutation in Figure 4.9). A

hash table of attempted sequences along with the performance result for each sequence is

selected by the genetic algorithm.

29

... ...

... ...
seq i: seq i:e

... ...
seq j: seq j: dd

... ...
seq k: seq k:be k c

before mutation after mutation

d k d c r

cckr

r c b d

d k e d c r

ck cr

r c b d

kb

Figure 4.9: Example of Redundant Attempted Sequences

maintained. If a sequence is found to be previously attempted, then the evaluation of the

sequence is not performed and the previous result is used. This technique of using a hash

table to capture prior attempted solutions had been previously used in other research to

reduce search time [11, 66, 12].

We realized that different sequences with the same attempted phases may generate the

same code since some optimization phases are independent in that the order in which they

are performed cannot affect the final code that is being generated. For instance, consider

applying branch chaining before and after register allocation. Branch chaining does not

change the live range of any variable that is a candidate for register allocation. Likewise,

register allocation does not affect branch chaining since it does not affect conditional branches

or unconditional jumps. Both branch chaining and register allocation will neither inhibit

nor enable the other phase. Therefore, we statically identified for each optimization phase

whether or not it is independent with each of the other phases. Rather than directly using

the attempted sequence in the hash, we instead first sort the phases within the sequence so

that two consecutively applied phases that are independent are always performed in the same

order. We then used the sorted sequence of phases when accessing the hash table. Using

the sorted sequence allowed more redundant sequences to be detected so more compilations

were avoided. The x entries in Table 4.1 indicate which optimizations are independent of one

another in the VPO compiler. For instance, branch chaining (b) is independent of register

allocation (k).

We used our experience and insight in deriving the information in this table indicating

which optimization phases are independent of one another. We inserted sanity checks when

running our experiments to ensure that this information was correct. We were surprised

30

Table 4.1: Independent Optimization Phases

Optimization Phase Gene b c d e h i j k l m o q r s u

branch chaining b x x x x x x x
comm subexpr elim c x x x x
remv unreach code d x x x x x x x
remv useless blocks e x x x x x x x x
dead asg elim h x x x x x x x
block reordering i x x x x x x x x
min loop jumps j x x x x x x x
register allocation k x x x x x x
loop trans l x x x x x
merge basic blocks m x x x x
eval order determ o x x x x x x x x x
strength reduction q x x x x x x x x x x
reverse branches r x x x x x x
instruction select s x x x x x x x x
remv useless jumps u x x x x x x x x x

x indicates if the two phases are independent

that our initial reasoning was often incorrect and we had to rectify our independence table

on several occasions.

Finding Redundant Active Sequences

A dormant phase is unable to apply any transformations. As one would expect, only a

subset of the attempted phases in a sequence will typically be active. It is common that a

dormant phase may be mutated to another dormant phase, but it would not affect the

compilation. Figure 4.10 illustrates how different attempted sequences can map to the

same active sequence, where the bold boxes represent active phases and the non-bold boxes

represent dormant phases. A second hash table is used to record sequences where only the

active phases are represented. As when accessing the attempted hash table, we also sort the

phases in the active sequence so that two consecutive independent phases are always applied

in the same order.

Detecting Identical Code

Sometimes identical code can be generated from different active sequences. Often different

optimization phases can be applied and can have the same effect. Consider the two different

ways that the pair of instructions in Figure 4.11 can be merged together. Instruction selection

31

seq i:active: rce seq j: rce

b

d

seq i:attempted: d e d c r seq j: d k e b c r

d

Figure 4.10: Example of a Redundant Active Sequence

original code segmentoriginal code segment
r[2]=1; r[2]=1;

r[3]=r[4]+r[2];r[3]=r[4]+r[2];

after dead assignment elimination
r[3]=r[4]+1;

after constant propagation
r[2]=1;
r[3]=r[4]+1;

after instruction selection
r[3]=r[4]+1;

Figure 4.11: Different Optimizations Having the Same Effect

symbolically merges the instructions and checks to see if the resulting instruction is legal.

The same effect in this case can be produced by constant propagation (actually part of

common subexpression elimination in VPO) followed by dead assignment elimination.

We also found that while some optimization phases are not independent, the order in

which they are applied often do not affect the generated code. For instance, branch chaining

causes a transfer of control to go directly to the end of a chain of unconditional jumps. It

is possible that one of those unconditional jumps in the chain can become unreachable code

after performing branch chaining. However, this is unlikely to happen.

To lower the search overhead, it was important to efficiently detect when different active

sequences generate identical code. A search may result in thousands of unique function

instances, which may be too large to store in memory and be very expensive to access on

disk. The key realization in addressing this issue was that while we wanted to detect all

occurrences of identical function instances, we could tolerate occasionally treating different

instances as being identical since the sequences within a population are sorted and the best

sequence found by the genetic algorithm must be completely evaluated. Thus, our technique

32

calculates a CRC (cyclic redundancy code) checksum on the bytes of the RTLs and keeps

a hash table of these checksums. CRCs are commonly used to check the validity of data

transmitted over a network and have an advantage over conventional checksums in that the

order of the bytes of data does affect the result [67]. This property of CRC checksums

is important since two function instances having the same instructions in different relative

orders should be detected as distinct. If the checksum for the current function instance is the

same as that generated for some previous function instance, then the two function instances

are tagged as identical, and the performance results of the previous instance are used. We

have verified that it is rare (we never found an instance) that the same checksum is generated

for different function instances, and we never observed that the best fitness value found was

affected in our experiments.

Detecting Equivalent Code

We noticed that sometimes the codes generated by different optimization sequences, although

not identical, are guaranteed to perform identically in regard to speed and size. Such function

instances are termed as equivalent. Consider two function instances that have the same

sequence of instruction types, but use different registers. This situation can occur since

different optimization phases compete for registers. For instance, consider the source code in

Figure 4.12(a). Figures 4.12(b) and 4.12(c) show two possible translations given two different

orderings of optimization phases that consume registers.

To detect this situation, we devised a technique that identifies the live ranges of all of the

registers in the function and maps each live range to a distinct pseudo register. Equivalent

function instances become identical after mapping, which is illustrated for the example in

Figure 4.12(d). The CRC checksum for the mapped function instance is computed and

checked in a separate hash table of CRC checksums to see if the mapped function had been

previously generated.

On most machines there is a uniform access time for each register in the register file.

Likewise, most statically scheduled processors do not generate stalls due to anti (write after

read) and output (write after write) dependences. However, these dependences could inhibit

future optimizations. Thus, comparing register mapped functions to avoid executions in the

search should only be performed after all remaining optimizations (e.g. filling delay slots)

have been applied. Given that these assumptions regarding a uniform register access time

33

(a) Source Code
 sum += a[i];
for (i = 0; i < 1000; i++)
sum = 0;

(b) Register Allocation
before Code Motion

IC=r[1]?r[9];

PC=IC<0,L3;

L3

Register Allocation
(c) Code Motion before

PC=IC<0,L3;

IC=r[1]?r[9];

r[1]=r[1]+4;

r[8]=M[r[1]];

(d) After Mapping

r[34]=r[34]+4;

IC=r[34]?r[35];

PC=IC<0,L3;

L3

Registers

r[1]=r[1]+4;

 =0;r[10]
 =HI[a];

r[1]= ;

r[12]

 r[12]

 =0;

 =HI[a];

L3

r[11]
r[10]

 =0;

 =HI[a];

r[36]=M[r[34]];

r[32]
r[33]

 = +LO[a];r[12]

r[8]=M[r[1]];

r[9]=4000+ ;

 = +r[8];r[10]

r[12]

r[12]

r[10]

 = +LO[a];r[10]
r[1]= ;
r[9]=4000+ ;

 = +r[8];r[11]

r[10]
r[10]

r[10]

r[11]

 = +LO[a];r[33]
r[34]= ;
r[35]=4000+ ;

 = +r[36];r[32]

r[33]
r[33]

r[33]

r[32]

Figure 4.12: Different Functions with Equivalent Code

and no stalls due to anti or output dependences are true, if the current mapped function is

equivalent to a previous mapped instance of the function, then we can assume the two are

equivalent and will produce the same result after execution.

4.2.2 Experimental Results

We applied the techniques in Section 4.2.1 to all functions in each of our benchmarks.

Again we used a population size of 20 and 100 generations when attempting to find an

effective optimization sequence using the genetic algorithm once for each function. Thus,

2000 optimization phase sequences are generated for each function.

Figure 4.13 shows the average number of sequences whose executions were avoided for

each benchmark using the four different methods described in Section 4.2.1. Each function

is weighted equally since the same number of sequences were applied for each function. The

average bar is for the average of the percentages for the six benchmarks. These results

do not include the functions in the benchmarks that were not executed when using the

sample input data since these functions were evaluated on code size only and did not require

execution of the application. As mentioned previously, each method in Section 4.2.1 is

able to find a superset of the sequences handled by methods applied before it. On average

38.2% of the sequences were detected as redundantly attempted using the first technique in

Section 4.2.1. 36.6% were caught as redundant active sequences using the second technique

34

Figure 4.13: Number of Avoided Executions

in Section 4.2.1. 10.5% were discovered to produce identical code as generated by a previous

sequence using the third technique, and 2.5% were found to produce unique, but equivalent

code using the last technique in Section 4.2.1. Thus, over 87.7% of the executions were

avoided. We discovered that sorting the phases in a sequence, so that consecutively applied

independent phases are in the same order, increased the number of avoided executions by

1.15%. We found that sorting was more successful when hashing the active sequences than

the attempted sequences since there was a greater chance of having a redundant sequence

due to the sequence lengths being shorter after removing the dormant phases.

Figure 4.14 shows the relative search time required when applying the methods described

in Section 4.2.1 to not applying these methods. These methods reduced the search time by

62%. The average time required to evaluate each of the six benchmarks improved from 6.31

hours to 2.86 hours. The reduction appears to be affected not only by the percentage of

the avoided executions, but also by the size of the functions. The larger functions tended to

have fewer avoided executions and also had longer compilations. While the average search

time was significantly reduced for these experiments using direct execution on a SPARC

processor, the savings would only increase when using simulation since the executions of the

application would comprise a larger portion of the search time.

By observing the search status, as shown in Figure 4.4, we found that search progressed

more quickly as the number of generations performed increased. Figure 4.15 shows the

average number of redundant sequences, where execution was not required, for each of the

35

Figure 4.14: Relative Total Search Time on the SPARC

Figure 4.15: Number of Redundant Executions Avoided Per Generation

100 generations in the searches. The average number of redundant sequences generally

increases as more generations are performed. This phenomenon is not surprising since there

is a limited number of sequences that will produce different code. Thus, a user can double the

number of generations to be performed with only a small increase in search time. Likewise,

we could check for improvement for the last n generations and used this as a termination

condition for the genetic algorithm.

We also found that searches performed with shorter sequences had a higher percentage

of redundant executions that could be avoided. Note that the sequence length is established

by the batch compiler active sequence. Smaller functions tended to have shorter sequence

lengths due to fewer opportunities for optimization phases to be active. Figure 4.16 shows

three plots with sequence lengths ranging from 3-10, 11-20, and 21-50. The shorter sequence

36

Figure 4.16: Number of Redundant Executions Avoided Per Generation for Different
Sequence Lengths

lengths quickly become almost entirely redundant in a few generations. A sequence that

has a shorter length is more likely to be redundant due to fewer active phases affecting the

generated code. In addition, the likelihood of mutation is less when there are fewer phases in

a sequence to mutate. In contrast, the longer sequences are on average much less redundant

since longer sequence lengths yield more possible active sequences and more possible ways

in which the final code can be generated. All three plots show that the search finds an

increasing number of redundant sequences as the number of generations increases.

Figures 4.17, 4.18, and 4.19 display information regarding the number of times an

optimization phase was active. Figure 4.17 shows the average number of times that the

different optimization phases were active for each sequence. One should realize that an

optimization phase may not be active in a sequence since the genetic algorithm may simply

not select that particular phase throughout the sequence. Also, this information does not

depict the number of transformations that were applied in each active phase. However,

the figure does illustrate that some optimization phases, such as instruction selection and

common subexpression elimination, are much more likely to be active than other phases. In

addition, some phases can be accomplished by a combination of other phases. For instance,

common subexpression elimination and dead assignment elimination can often have the

same effect as instruction selection. Finally, the success of phases is also affected by the code

generation strategy. For instance, the front end that we used always generated intermediate

37

Figure 4.17: Average Times Each Phase Was Active

Figure 4.18: Percentage That Each Phase Was Active When Attempted

code where a label preceded the epilogue code at the end of a function in case there were

return statements in the source code from other locations in the function. For functions with

no conditional control flow, this return block was always merged with the entry block. Thus,

the merge basic blocks optimization phase was successful more frequently than if another

code generation strategy was used.

Figure 4.18 shows how often an optimization phase was active given that it was actually

attempted. It is interesting to note that while instruction selection was the phase that was

38

Figure 4.19: Number of Times Each Phase Was Active Given It Was Active at Least Once

active the most often, common subexpression elimination was active a greater percentage of

the time when it was selected. Instruction selection has a direct impact on both code size

and speed. Sometimes common subexpression elimination does not reduce code size and

may not be deemed as beneficial as instruction selection by the genetic algorithm. Likewise,

evaluation order determination could often be applied successfully when attempted, but had

little impact on performance. The phases that did not help performance are likely to be in

sequences that are in the lower half of the population. These sequences could be replaced

by the crossover operation and had a higher mutation rate applied to them. Thus, phases

having little impact on performance were applied less often. In addition, evaluation order

determination could only be applied before assigning pseudo registers to hardware registers,

which was implicitly performed before the first code-improving phase in the sequence that

requires it.

Figure 4.19 shows the average number of times an optimization phase was active in a

sequence given that it was active at least once. There are several optimization phases, such

as branch chaining, that were active at most a single time. This shows that perhaps these

phases are typically not enabled by other phases.

39

4.3 Producing Similar Results in Fewer Generations

Another approach that we used to reduce the search time for finding effective optimization

sequences is to produce the same results in fewer generations of the genetic algorithm. We

demonstrated the feasibility of this approach by developing techniques that can allow users

to either specify fewer generations to be performed in their searches, or stop the search

sooner once the desired results have been achieved.

4.3.1 Methods for Producing Similar Results in Fewer Genera-

tions

The following subsections describe the different techniques that we use to obtain effective

sequences of optimization phases in fewer generations. All of these techniques identify phases

that are likely to be active or dormant at a given point in the compilation process.

Using the Batch Sequence

The traditional or batch version of our compiler always attempts the same order of

optimization phases for each function. We obtain the sequence of active phases (those

phases that were able to apply one or more transformations) from the batch compilation of

the function. We have used the length of the active batch sequence to establish the length

of the sequences attempted by the genetic algorithm in previous experiments [12].

For this technique we used the active batch sequence for the function as one of the

sequences in the initial population. This was based on the premise that if we initialize a

sequence in the population with optimization phases that are likely to be active, then this

may allow the genetic algorithm to converge faster on the best sequence it can find. This

approach is similar to including in the initial population the compiler writer’s manually

specified priority function when attempting to tune a compiler heuristic [66].

Prohibiting Specific Phases

While many different optimization phases can be specified as candidate phases for the genetic

algorithm, sometimes specific phases can never be active for a given function. If the genetic

algorithm only attempts phases that have an opportunity to be active, then the algorithm

may converge on the best sequence it can find in fewer attempts. There are several situations

40

when specific optimizations should not be attempted. Loop optimization phases cannot be

active for a function that does not contain loops. Register allocation in VPO cannot be active

for a function that does not contain any local variables or parameters. Branch optimizations

and unreachable code elimination cannot be active for a function that contains a single basic

block. Detecting that a specific set of optimization phases can never be active for a given

function requires simple analysis that only needs to be performed once at the beginning of

the genetic algorithm.

Prohibiting Prior Dormant Phases

When compiling a function, we realized that certain optimization phases will be dormant

given that a specific prefix of active phases has been performed. Given that the same prefix

of phases is attempted again, there is no benefit from attempting the same dormant phase in

the same situation since it will remain dormant. To avoid repeating these dormant phases,

we represent the active phases as nodes in a DAG, where each child corresponds to the next

phase in an active sequence. For each node we calculate the CRC checksum for the bytes

of the RTLs at that point after applying the associated optimization phase. A node in the

DAG has more than one parent when different prefixes produce identical RTLs. We also

stored at each node the set of phases that were found to be dormant for that prefix of active

phases. Figure 4.20 shows an example DAG where the bold portions represent active prefixes

and the non-bold boxes represent dormant phases given that prefix. For instance, a and f

are dormant phases for the prefix bac. To prohibit applying a prior dormant phase, VISTA

forces a phase to change during mutation until we find a phase that has either been active

with the specified prefix or has not yet been attempted.

Prohibiting Unenabled Phases

Certain optimization phases when performed cannot become active again until enabled. For

instance, register allocation replaces references to variables in live ranges with registers. A

live range is assigned to a register when a register is available at that point in the coloring

process. After the compiler applies register allocation, this optimization phase will not have

an opportunity to be active again until the register pressure has changed. Unreachable code

elimination and a variety of branch optimizations will not affect the register pressure and

thus will not enable register allocation. Figure 4.21 illustrates that a specific phase, the

41

b

a c e

c da b

efb a b d

f

f

b

Figure 4.20: A DAG Representing Active Prefixes

... k b r ...k... k b c ...k

c enables k b and r do not enable k

Figure 4.21: Enabling Previously Applied Phases

non-bold box of the sequence on the right, will at times be unenabled and cannot be active.

Again the premise is that if the genetic algorithm concentrates on the phases that have an

opportunity to be active, then it will be able to apply more active phases in a sequence and

converge to the best sequence it can find in fewer attempts. Note that determining which

optimization phases can enable another phase requires careful consideration by the compiler

writer.

We implemented this technique by forcing a phase to mutate if the same phase has

already been performed and there are no intervening phases that can enable it. We realized

that a specific phase can become unenabled after an attempted phase is found to be active

or dormant. We first follow the DAG of active prefixes, which was described in the previous

subsection, to determine which phases are currently enabled. For example, consider again

Figure 4.20. Assume that b can be enabled by a, but cannot be enabled by c. Given the

prefix bac, we know that b cannot be active at this point since b was dormant after the

prefix ba and c cannot reenable it. After reaching a leaf of the DAG we track which phases

cannot be enabled by just examining the subsequently attempted phases.

42

Figure 4.22: Number of Generations before Finding the Best Fitness Value When Using the
Batch Sequence

4.3.2 Experimental Results

In this section we determined the average number of generations that were evaluated for each

of the functions before finding the best fitness value in the search. The baseline result is

without using any of the techniques described in Section 4.3.1. The other results indicate the

generation when the first sequence was found whose performance equaled the best sequence

found in the baseline search. We did not include the results for the functions when the best

fitness value found was not as good as the best fitness value in the baseline, which occurred

on about 3% of the functions. Not including these results caused the baseline to vary since

the functions with different fitness values were not always the same when applying each of

the techniques. About 9.4% of the functions had improved fitness values and about 2.8% of

the functions had worse fitness values when all of the techniques were applied. On average

the best fitness values improved by 0.04% (by 0.30% for only the differing functions). The

maximum number of generations before finding the best fitness value for any function was

98 out of a possible 100 when not applying any of the four techniques. The maximum was

89 when all four techniques were used. The techniques occasionally caused the best fitness

value to be found later, which we believe is due to the inherent randomness of using a genetic

algorithm. However, all of the techniques were beneficial on average.

Figure 4.22 shows the effect of using the batch sequence in the initial population, which in

43

Figure 4.23: Number of Generations before Finding the Best Fitness Value When Prohibiting
Specific Phases

general was quite beneficial. The last three bars show the average effect when separating the

benchmarks according to the sequence length used in the search. Note that sequence length

for each function is established by multiplying the active sequence of the batch compiler by

1.25. We found that this technique worked well for the smaller functions in the applications

since it was often the case that the batch compiler produced code that was as good as the

code generated by the best sequence found in the search. However, the smaller functions

tended to converge on the best sequence in the search in fewer generations anyway since the

sequence lengths were typically shorter. In fact, it is likely that performing a search for an

effective optimization sequence is in general less beneficial for smaller functions since there

is less interplay between phases. Using the batch sequence for the larger functions often

resulted in finding the best sequence in fewer generations even though the batch compiler

typically did not produce code that was as good as produced by the best sequence found in

the baseline results. Thus, simply initializing the population with one sequence containing

phases that are likely to be active is quite beneficial.

The effect of prohibiting specific phases throughout the search was less beneficial, as

shown in Figure 4.23. Specific phases can only be safely prohibited when the function is

relatively simple and a specific condition (such as no loops, no variables, or no unconditional

jumps) can be detected. Several applications, such as stringsearch, had no or very few

functions that met these criteria. The simpler functions also tended to converge faster to

44

the best sequence found in the search since the sequence length established by the length of

the batch compilation was typically shorter. Likewise, the simpler functions also have little

impact on the size of the entire application and have little impact on speed when they are

not frequently executed.

Figure 4.24: Percentage of Functions Where Each Phase Could be Prohibited

Figure 4.24 shows how often each type of phase could be prohibited. Several transfer of

control optimization phases could be prohibited when the function had no such instructions.

Minimize loop jumps and loop transformations could be prohibited when there were no loops

in a function. Register allocation could be prohibited for only very simple functions that

referenced no local variables or arguments. Several optimization phases were never prohibited

since these phases could either be commonly performed or the analysis to determine they

could not be applied was difficult to accomplish. In contrast, prohibiting prior dormant and

unenabled phases, which are depicted in Figures 4.25 and 4.26, had a more significant impact

since these techniques could be applied to all functions. Without using these two techniques,

it was often the case that many phases were reattempted when there was no opportunity for

them to be active.

Applying all the techniques produced the best overall results, as shown in Figure 4.27.

In fact, only about 41% of the generations on average (from 21.38 generations to 8.85

generations) were required to find the best sequence in the search as compared to the baseline.

As expected, applying all of the techniques did not result in the sum of the benefits of the

individual techniques since some of the phases that were prohibited would be caught by

45

Figure 4.25: Number of Generations before Finding the Best Fitness Value When Prohibiting
Prior Dormant Phases

Figure 4.26: Number of Generations before Finding the Best Fitness Value When Prohibiting
Unenabled Phases

multiple techniques.

Only applying phases that are likely to be active affects the number of avoided executions,

which is depicted in Figure 4.28 The top bar shows the results given in Figure 4.13 from

applying only Section 4.2.1 techniques. The bottom bar for each benchmark shows the

number of executions that are avoided when all of the techniques described in Section 4.3.1

are applied. No active sequences were considered redundant after applying the technique

described under the heading Prohibiting Prior Dormant Phases in Section 4.3.1 since we

46

Figure 4.27: Number of Generations before Finding the Best Fitness Value When Applying
All Techniques

Figure 4.28: Number of Avoided Executions When Using Section 4.3.1 Techniques

checked the checksums stored in the DAG of active prefixes to determine if the active

sequences produced identical code. Thus, detecting sequences as identical also detects

redundant active sequences. One can see that the number of redundantly attempted

sequences decreased on average. We found that many of the smaller functions had more

hash table hits for attempted sequences after applying the techniques in Section 4.3.1 and

the larger functions typically had fewer hits. We believe this phenomenon is due to applying

the techniques to prohibit prior dormant and unenabled phases. For the smaller functions

47

Figure 4.29: Average Benefit Relative to the Best Fitness Value Per Generation

with shorter sequence lengths, the possible phases to attempt were often exhausted and

an active phase that was used before was often attempted. Likewise, the larger functions

with longer sequence lengths and significantly larger search spaces tended to not reattempt

previously dormant phases, but did not exhaust the possible phases and had fewer hits in the

hash table. The average number of avoided executions decreases by about 1.4%, which means

a greater number of functions with unique code were generated. However, the decrease in

avoided executions is much less than the average decrease in generations required to reach

the best sequence found in the search, as shown in Figure 4.27.

Figure 4.29 shows the impact that applying all of the techniques in Section 4.3.1 had on

the average performance of the code for each generation relative to the best fitness value found

in the search. A significant improvement is obtained by performing the batch sequence in the

initial generation. After a few generations, prohibiting prior dormant phases and prohibiting

unenabled phases result in a greater benefit than using the batch sequence. Performing all of

the techniques resulted in the best result. This graph shows that the number of generations

could be reduced with a negligible loss in performance of the generated code.

Figure 4.30 shows the relative time for finding the best fitness value when all of the

techniques in Section 4.3.1 were applied. The actual times are shown in minutes since

finding the best sequence is accomplished in a fraction of the total generations performed in

the search. Note the baseline for finding the best fitness value includes all of the methods

described in Section 4.2.1 to avoid unnecessary executions. The best fitness value was found

48

Figure 4.30: Relative Search Time before Finding the Best Fitness Value

in 65.0% of the time on average as compared to the baseline.

4.4 Implementation Challenges

During the process of this investigation, we encountered several implementation issues that

made this work challenging. In this section I have attempted to document some of the

challenges specific to this period of my research.

The biggest challenge for iterative compilers is producing code that always generates the

correct output for different optimization phase sequences. Even implementing a conventional

compiler that always generates code that produces correct output when applying one

predefined sequence of optimization phases is not an easy task. In contrast, generating

code that always correctly executes for thousands of different optimization phase sequences

is a severe stress test for the compiler. In addition to making the implementation of our

optimization phases more robust, we also had to carefully determine exactly what analysis

is needed for each optimization phase, and what analysis can be invalidated by each phase.

This was mainly done to improve the efficiency of our searches, since invalidating and re-

performing all analysis between all phases will be very wasteful. Ensuring that all sequences

in the experiments produced valid code required tracking down many errors that had not

yet been discovered in the VISTA system.

Additionally, determining which phases were independent (see Table 4.1), prohibiting

specific phases (see Section 4.3.1), and prohibiting unenabled phases (see Section 4.3.1)

49

required analysis and judgment by the compiler writer to determine when optimization

phases could be enabled or disabled. We inserted sanity checks when running experiments

without using these methods to ensure that our assertions concerning the enabling of

optimization phases were accurate. For instance, we checked that the attempted and active

sequences for every function produced the same code when applied directly or when applied

after sorting the independent phases. We found several cases where our reasoning was faulty

after inspecting the situations uncovered by these sanity checks and we were able to correct

our enabling assertions.

We sometimes found that the optimization phases we classified as being dormant did

have unexpected side effects by changing the analysis information, which could enable

or disable a subsequent optimization phase. These side effects can affect the results of

eliminating redundant active sequences in Section 4.2.1, and prohibiting prior dormant and

unenabled phases in Section 4.3.1. We also inserted sanity checks to ensure that different

dormant phases did not cause different effects on subsequent phases. We detected when

these situations occurred, properly set the information about what analysis is required and

invalidated by each optimization phase, and now rarely encounter these problems.

Finally, these experiments were quite time-consuming, particularly when obtaining a

baseline without using our techniques to reduce the search overhead. We modified the system

to log information during the search, such as each attempted sequence, the corresponding

active sequence, the checksum of the function produced by the sequence, and the effect on

speed and space. In order to reduce the time required to isolate problems when performing

various sanity checks, we would process the log file rather than rerunning the entire search.

We feel that the overhead of logging information was more than justified by the time we

saved during debugging our techniques. It was, of course, possible to easily turn off logging

to improve efficiency during the final experimental runs.

4.5 Concluding Remarks

There are several contributions from this work. First, we have shown that there are effective

methods to reduce the search overhead for finding effective optimization phase sequences by

avoiding expensive executions or simulations. Detecting when a phase was active or dormant

by instrumenting the compiler was very useful since many sequences can be detected as

redundant by memoizing the results of active phase sequences. We also discovered that the

50

same code is often generated by different sequences. We demonstrated that using efficient

mechanisms, such as a CRC checksum, to check for identical or equivalent functions can

also significantly reduce the number of required executions for an application. Second, we

have shown that on average the number of generations required to find the best sequence

can be reduced by over two thirds. One simple, but effective technique is to insert the

active sequence of phases from the batch compilation as one of the sequences in the initial

population. We also found that we could often use analysis and empirical data to determine

when phases could not be active. These techniques result in faster convergence to more

effective sequences, which can allow equally effective searches to be performed with fewer

generations of the genetic algorithm.

An environment to tune the sequence of optimization phases for each function in an

embedded application can be very beneficial. However, the overhead of performing searches

for effective sequences using a genetic algorithm can be quite significant and this problem is

exacerbated when performance measurements for an application are obtained by simulation

or on a slower embedded processor. Many developers are willing to wait for tasks to run

overnight to improve a product, but are unwilling to wait longer. We have shown that the

search overhead can be significantly reduced, perhaps to a tolerable level, by using methods

to avoid redundant executions and techniques to converge to the best sequence it can find

in fewer generations.

4.6 Influence on Future Direction of Research

The results and observations we gathered during the experiments described in this chapter

proved very significant in charting the course for my future research. In the final section of

this chapter, I will attempt to explain some of our considerations resulting from the influence

of this work.

4.6.1 Exhaustive Searches for Optimal Phase Ordering

Exhaustively evaluating the performance of all possible orderings of optimization phases

had always been considered impossible over all the phases in a mature optimizing compiler.

Before our present research, even we considered the task highly improbable. Optimizing

compilers typically contain numerous different optimization phases (VPO has 15 different

51

phases). Many compilers enforce few restrictions on the ordering of optimization phases.

Additionally, optimizations can potentially enable each other, implying that many phases

can be active multiple times in the same sequence. The possibility of phase repetition also

means that it is impossible to determine the length of the optimal phase sequence.

Our techniques for eliminating redundant optimization sequences from Section 4.2.1

demonstrated significant redundancy in the optimization phase order space. We were able to

avoid execution for over 87% of the sequences we encountered. However, these results were

for a heuristic genetic algorithm. Heuristic algorithms only scan a very small portion of the

phase order space. They also simplify the problem by fixing the length of the optimization

phase sequence for each function. Even so, the amazing redundancy was hard to ignore. Can

we extend our pruning techniques to exhaustive searches as well? Seeking an answer to this

question we set out to demonstrate the feasibility of exhaustive enumeration of the entire

phase order space over many functions, something that was never thought possible.

4.6.2 Applying the Techniques on an Embedded Processor

After ensuring that the techniques we developed to improve the search time for effective

sequences were sound, we decided to port our infrastructure to an embedded environment.

This is because targeting applications in the embedded domain was very important and at-

tractive for the techniques we developed during the current research. Embedded applications

routinely need to deal with stringent constraints on performance, and hence designers are

generally willing to spend the extra time and effort, as required by iterative compilation, to

obtain the best possible performance.

To evaluate the performance benefits of iterative compilation on embedded systems, we

obtained the results for our different performance configurations on the Intel StrongARM

SA-110 processor. Figures 4.31, 4.32, and 4.33 show the percentage improvement when

optimizing for speed only, size only, and 50% for each factor, respectively. Figure 4.33 shows

the percentage improvement for size and speed of the generated code. The improvements on

average are more significant as compared to the improvements for the SPARC, which is shown

in Figure 4.7. We believe this is in part due to the ARM architecture having fewer registers.

Several optimization phases allocate registers and which phase can most effectively use a

register would depend on the function being compiled. In addition, the ARM has complex

and somewhat unusual addressing modes that can cause unexpected tradeoffs when applying

52

Figure 4.31: Speed Only Improvements for the ARM

Figure 4.32: Size Only Improvements for the ARM

Figure 4.33: Size and Speed Improvements for the ARM

53

Figure 4.34: Relative Total Search Time on the ARM

optimization phases.

Figure 4.34 shows the relative time for running the genetic algorithm on the ARM when

all of the techniques in Section 4.2.1 were applied. The search time using the Section 4.2.1

techniques required 35.9% of the time on average as compared to not applying these

techniques. The average time required to obtain results for each of the benchmarks when

optimizing for both speed and size on the ARM required 11.54 hours instead of 26.68 hours.

We knew that demonstrating our results on an embedded platform will make our techniques

more easily useful and more widely accepted.

4.6.3 Renouncing VISTA

The VISTA framework provided an interactive compilation environment. This meant that

VISTA was specifically designed so that a user could interactively make selections using a

mouse for each task. Although a great environment for debugging applications, manually

improving program performance, and teaching the internals of compiler optimizations, the

inherent support for interactive display was proving to be too inefficient for our needs. We

had already set up a mode in VISTA where selections could be specified in a file (at the

viewer end) so that the experiments could be performed in a batch mode. For such batch

operations, we automatically suspended the communication of all intermediate messages

between the compiler and the viewer. We eventually decided that supporting the interactive

paradigm during exhaustive searches may prove to be inefficient, and unduly complicated.

54

Hence, for my remaining research we only concentrated our efforts on the compiler side of

VISTA.

55

CHAPTER 5

Exhaustive Optimization Phase Order Exploration and

Evaluation

During our earlier experiments using genetic algorithms we had discovered significant

redundancy in the phase ordering space for all studied functions. Using various redundancy

detection techniques, we found that over 87% of the sequences generated by our genetic

algorithm produced identical or equivalent code. This observation allowed us to significantly

speed up our genetic algorithm to find effective optimization phase sequences. In this chapter

I will explain how we were able to extend our techniques to make it possible to exhaustively

search the phase order space to find the best phase ordering for most of our benchmark

functions. It should be noted that all references to the best (optimal) phase ordering

(function instance) in this dissertation are with respect to the possible phase orderings in

VPO, and over the benchmarks and input data set that we study during our experiments.

Other compilers with a different set of optimization phases, or the same benchmarks with a

different input data set can result in a different best phase ordering than the one we find.

5.1 Additional Challenges

Even with most of our techniques in place to detect massive phase order space redundancies,

achieving exhaustive phase order space evaluation requires a different approach for addressing

the phase ordering problem. In this section I will mention some of the issues that required

a reconsideration.

Before proceeding further to attempt exhaustive phase order search space enumeration,

one obvious question is: exactly how large is the attempted phase order space? Our compiler

contains 15 different optimization phases. If each phase is attempted only once, then there

are 15! = 1,307,674,368,000 possible permutations of optimization phases. Factoring in the

56

87% redundancy we had discovered earlier will still require 169,997,667,840 phase sequence

evaluations per function. Exhaustive searches still seem impossible unless we can boost our

knowledge regarding redundant phase orderings to not even attempt a considerable number

of subsequent phase sequences.

Additionally, phases can enable each other. Consequently, we cannot restrict each phase

to be attempted only once in each phase sequence. In fact, during our initial experiments

we observed that many phases (such as instruction selection and common subexpression

elimination) are active multiple times in each sequence. Allowing phase repetition for a

sequence length of 15 will require us to evaluate 1515 = 437,893,890,380,859,375 different

phase sequences to find the best phase order for each function. Moreover, on allowing phase

repetition we can no longer restrict the sequence length to only 15. In fact, to find the

best phase ordering we cannot limit the sequence length to any fixed number. Thus, our

exhaustive search algorithm will need to be independent of the sequence length.

At the same time, all the stages in any exhaustive search algorithm we develop need to be

optimized to conserve both space and time. Thus, the main challenges in designing a good

exhaustive phase order search algorithm will be to program the search to apply previous

knowledge about redundant sequences to find additional redundancy, to make the entire

process independent of the sequence length, and to optimize all stages of the algorithm for

speed and memory.

5.2 Re-interpretation of the Phase Ordering Problem

Explicit listing and evaluation of all possible phase orderings cannot provide a good solution

for two main reasons: (1) we do not a priori know the most appropriate sequence length to use

for each function, and (2) we did not know of any way to effectively utilize previously found

redundancy in the phase order space to eliminate future orderings. One crucial observation

about optimization phase orderings is that each distinct ordering can only produce one

distinct version of the current function (we call this a function instance). At the same

time, since many different orderings produce the same function instance, the number of

distinct function instances is clearly much smaller than the set of all possible optimization

phase orderings (of different sequence lengths). Thus, rather than explicitly enumerating

all possible optimization phase orderings, if we concentrate on generating all the distinct

function instances (that can be produced by any phase orderings) then the problem should

57

become more manageable. This realization was instrumental in our success at exhaustive

phase order evaluation for most of the functions we studied.

Based on this intuition, we provided a subtle re-interpretation of the phase ordering

problem. We rephrased the phase ordering problem as the problem of generating and

evaluating all possible distinct function instances that can be produced by any ordering of

optimization phases in our compiler for each function. Our re-interpretation at once made

the phase ordering problem, long considered intractable, much more malleable for a complete

solution. The next challenge is to design a new algorithm directed at generating distinct

function instances, and to find accurate and efficient methods to detect identical function

instances.

5.3 Algorithm for Exhaustive Phase Order Space
Evaluation

In this section I will describe the algorithm we developed to quickly and accurately evaluate

all possible distinct function instances for each function. For each function, our algorithm

starts with the unoptimized function instance at the root level (level 0). For level 1, we

generate the function instances produced by an optimization sequence length of 1, by

applying each optimization phase individually to the base unoptimized function instance.

For all other higher levels, optimization phase sequences are generated by appending each

optimization phase to all the sequences at the preceding level. Note that for each level n, we in

effect generate all combinations of optimizations of length n. Thus, our algorithm represents

the naive optimization phase order space in the form of a tree. Figure 5.1 illustrates the

phase order space tree for four distinct optimization phases. Nodes in this tree represent

function instances, and edges represent transitions from one function instance to another

on application of an optimization phase. As can be seen from Figure 5.1, this space grows

exponentially at each level and would very quickly become infeasible to traverse.

This exponentially growing search space can often be made tractable without losing any

information by using many different pruning techniques. Some of these techniques have

already been introduced earlier in Section 4.2.1. In the remaining part of this section, I will

describe all our space pruning techniques, emphasizing their differences with our previous

implementation wherever relevant.

58

Level 2

Level 1

Level 0
a

c
d

a b c
d a b c

d a
b c

d a
b c

d

b

Figure 5.1: Naive Optimization Phase Order Space for Four Distinct Optimizations

5.3.1 Eliminating Consecutively Applied Phases

There is no phase in our compiler that can be successfully applied more than once

consecutively. For example, consider register allocation being applied twice consecutively.

On its first application register allocation will assign registers to variable live ranges as long as

there are unassigned live ranges, or until we run out of free registers. On its next consecutive

application, register allocation will remain dormant since the earlier terminating condition

(no unassigned live ranges, or no free registers) will still be valid. Therefore, an active phase

at one level is not even attempted at the next level. The phase order space after eliminating

consecutively applied phases can be represented as shown in Figure 5.2.

Level 2

Level 1

Level 0
a

c
d

b c
d a

c
d a

b
d a

b c

b

Figure 5.2: Effect of Eliminating Consecutively Applied Phases on the Search Space in Figure
5.1

5.3.2 Detecting Dormant Phases

The second pruning technique exploits the fact that not all optimization phases are successful

at all levels and in all positions. As already explained, phases that are unable to find

opportunities to modify the function representation are called dormant phases. In order to

detect dormant phases we modified the compiler to provide feedback reporting if the phase

was active or dormant. Since dormant phases keep the function unchanged, we do not need

59

to again add a node corresponding to this instance to the tree at the current level. Detecting

dormant phases eliminates entire branches of the tree in Figure 5.1. The search space taking

this factor into account can be envisioned as shown in Figure 5.3. The optimization phases

found to be inactive are shown by dotted lines.

a
b c

d

b c
d a d a dc b

Level 0

Level 1

Level 2

Figure 5.3: Effect of Detecting Dormant Phases on the Search Space in Figure 5.1

5.3.3 Detecting Identical Function Instances

The next pruning technique relies on the assertion that many different optimizations at

various levels produce function instances that are identical to those already encountered at

previous levels or those generated by previous sequences at the same level. We have already

considered some reasons why different optimization sequences would produce the same code.

One reason is that some optimization phases are inherently independent. As opposed to

using a statically generated table of independent phases, as described in Section 4.2.1, for

exhaustive searches we generate the code for all distinct active sequences, and explicitly check

for uniqueness. We have also explained cases where sequences of different active phases can

lead to the same code. If the current function instance is detected to be identical to some

earlier function instance, then it can be safely eliminated from the space of distinct function

instances. In other words, we do not add a new node at the current level for identical function

instances.

To detect identical function instances we potentially need to compare each newly

generated function instance with all previously generated distinct function instances for

a match. A search may result in thousands of unique function instances, which may be too

large to store in memory and very expensive to access on disk. A per character comparison

would also significantly slow the search algorithm. Therefore, to make the comparisons

efficient, we calculate multiple hash values for each function instance and compare the hash

60

values for a match. For each function instance we store three numbers: a count of the

number of instructions, byte-sum of all instructions, and the CRC (cyclic-redundancy code)

checksum on the bytes of the RTLs in that function. This approach has also been described

in our earlier experiments using genetic algorithms in Section 4.2.1. CRCs are commonly

used to check the validity of data transmitted over a network and have an advantage over

conventional checksums in that the order of the bytes of data does affect the result [67].

CRCs are useful in our case since function instances can be identical except for different

order of instructions. We have verified that when using all the three checks in combination

it is extremely rare (we have never encountered an instance) that distinct function instances

would be detected as identical.

5.3.4 Detecting Equivalent Function Instances

In earlier sections I have also explained how we detect equivalent function instances. Two

different non-identical function instances are termed to be equivalent if they are guaranteed

to result in identical performance. Equivalent function instances can occur since different

optimization phases compete for registers. It is also possible that a difference in the order of

optimizations may create and/or delete basic blocks in different orders causing them to have

different labels. An example of equivalent function instances was shown in Figure 4.12. If we

encounter multiple identical or equivalent function instances, then we only need to maintain

one instance from each such group of function instances, and the rest can be eliminated from

the search space.

In Section 4.2.1, we only check for equivalence after applying all optimization phases

in their respective sequences, i.e. we are certain that no additional optimizations will be

attempted on either function instance. However, during the exhaustive search algorithm we

check for function equivalence during each level of the search. Therefore, we need to make

our equivalence check more conservative to account for additional future optimization phases

that can be later applied to the current function instance. Thus, our new check for function

equivalence also guarantees that all future optimization phases will have identical effect on

both instances.

To detect equivalent function instances we map each register and block label-number to

a different number depending on when it is encountered in the control flow. Note that this

mapping is only performed for the checksum calculation and is not used when additional

61

phases are applied. We start scanning the function from the top basic block. Each time a

register is first encountered we map it to a distinct number starting from 1. This register

would keep the same mapping throughout the function. For instance, if register r[10] is

mapped to r[1], then each time r[10] is encountered it would be changed to r[1]. If

r[1] is later found in some RTL, then it would be mapped to the remap number existing at

that position during the scan. Thus, our check for equivalent function instances is different

from register remapping of live ranges as described in Section 4.2.1, and is in fact much

more naive. This is because although a complete live range register remapping might detect

more instances as being equivalent, we recognize that a live range remapping at intermediate

points in an optimization phase sequence would be unsafe as it changes the register pressure

which might affect other optimizations applied later.

Different phase orderings can also assign different labels to identical basic blocks in

different function instances. Thus, during the function traversal we simultaneously remap

block labels as well, which also involves mapping the labels used in the actual RTLs. The

algorithm for detecting equivalent function instances then proceeds similarly to the earlier

approach of detecting identical function instances.

The effect of eliminating identical or equivalent function instances from the search space

tree is to transform the tree structure of the search space, as seen in Figures 5.1 and 5.3, to a

directed acyclic graph (DAG) structure, as shown in Figure 5.4. By comparing Figures 5.1,

5.3 and 5.4, it is apparent how these three characteristics of the optimization search space

help to make an exhaustive search more feasible. Note that the optimization phase order

space for functions processed by our compiler is acyclic since no phase in VPO undoes the

effect of another. However, a cyclic phase order space could also be exhaustively enumerated

using our approach since identical function instances are detected.

a
b c

c
a d d

Level 0

Level 1

Level 2

a
d c

Figure 5.4: Detecting Identical Code Transforms the Tree in Figure 2 to a DAG

62

5.3.5 Performance Estimation of Each Distinct Function Instance

Finding the dynamic performance of a function instance requires execution or simulation

of the application. Executing the program typically takes considerably longer than it takes

the compiler to generate each function instance. Moreover, simulation can be orders of

magnitude more expensive than native execution, and is often the only resort for evaluating

the performance of applications on embedded processors. Using the techniques discussed

above, we have been able to drastically reduce the phase order space so as to make it possible

to enumerate all distinct function instances for each function in most cases. However, in most

cases, we are still left with a substantial number of distinct function instances, which means

that executing the program for each function instance in all such cases will be prohibitively

expensive. Thus, in order to find the optimal function instance it is necessary to reduce the

number of program executions, but still be able to accurately estimate dynamic performance

for all function instances. In this section, I will describe the approach we used to achieve

this.

In order to reduce the number of executions we use a technique that is based on the

premise that two different function instances with identical control-flow graphs will execute

the same basic blocks the same number of times. Our technique is related to the method

used by Cooper et al. in their ACME system of adaptive compilation [52]. However, our

adaptations have made the method simpler to implement and more accurate for our tasks.

During the exhaustive enumerations we observed that for any function the compiler only

generates a very small number of distinct control-flow paths, i.e. multiple distinct function

instances have the same basic block control-flow structure. For each such set of function

instances having the same control flow, we execute/simulate the application only once to

determine the basic block execution counts for that control-flow structure.

Thus, after generating each new function instance we compare its control-flow structure

with all previously encountered control flows. This check compares the number of basic

blocks, the position of the blocks in the control-flow graph, the positions of the predecessors

and successors of each block, and the relational operator and arguments of each conditional

branch instruction. Loop unrolling presents a complication when dealing with loops that

contain a single basic block. It is possible for loop unrolling to unroll such a loop and change

the number of loop iterations. Later if some optimization coalesces the unrolled blocks, then

63

the control flow looks identical to that before unrolling, but due to the changed number of

iterations, the block frequencies are actually different. We handle such cases by verifying

the loop exit conditions and marking unrolled blocks differently than non-unrolled code. We

are unaware of any other control flow changes caused by our set of optimization phases that

would be incorrectly detected by our algorithm.

If the check reveals that the control flow of the new function instance has not as yet been

encountered, then before producing assembly code, the compiler instruments the function

with additional instructions using EASE [62]. Upon simulation, these added instructions

count the number of times each basic block is executed. The functional simulator, sim-uop

present in the SimpleScalar simulator toolset [58] is used for the simulations. The dynamic

performance for each function instance is estimated by multiplying the number of static

cycles calculated for each block with the corresponding block execution counts.

For each distinct function instance we then calculate the number of cycles required to

execute each basic block. The dynamic performance of each function instance can then be

calculated as the sum of the products of basic block cycles times the block execution frequency

over all basic blocks. We call this performance estimate our dynamic frequency measure.

Thus, the dynamic frequency measure for some function instance can be represented as:

dynamic frequency measure =
n

∑

i=1

bfreqi ∗ bcyci (5.1)

where, bfreqi is the basic block execution count for block i, bcyci is the cycle count for block

i, and n is the number of basic blocks in the current function instance. As long as the basic

block control-flow remains unchanged for some other function instance, bfreq in Equation 5.1

stays the same, and we only need to recalculate bcyc for the new function instance.

For the purpose of the current study, the basic block cycle count is a static count that

takes into account stalls due to pipeline data hazards and resource conflicts, but does not

consider order dependent events, such as branch misprediction and memory hierarchy effects.

Other more advanced measures of static performance, using detailed cache and resource

models, can be considered at the cost of increased estimation time. As we will show later in

this paper, we have found our simple estimation method to be sufficiently accurate for our

needs on the in-order ARM processor.

64

5.3.6 Implementation Details

In this section I will describe some implementation details relevant to our exhaustive phase

order search space algorithm. The phase order space can be generated/traversed in either

a breadth-first or a depth-first order. Both of these approaches can be accomplished using

standard graph traversal algorithms. Each traversal algorithm has different advantages and

drawbacks for our experiments. In both cases we start with the unoptimized function instance

representing the root node of the DAG. In breadth-first traversal, at each stage we attempt

to generate all the children of the current node. Thus, using breadth first search, nodes in

Figure 5.4 would be generated in the order shown in Figure 5.5(a). Depth-first search, at

each stage, attempts to recursively generate the entire subtree, starting at the current node,

before proceeding on to the next sibling. Thus, depth-first search would generate the nodes

in Figure 5.4 in the order shown in Figure 5.5(b).

a
b c

c
a d d

a
d

1

2 3 4

5 6

(a) Breadth−first Traversal

c

7 8 9

a
b c

c
a d d

a
d

1

2 5

3 4

(b) Depth−first Traversal

c

6 7

8

9

Figure 5.5: Breadth-First and Depth-First DAG Traversal algorithms

During the search process we have to compile the same function with thousands of

different optimization phase sequences. Generating the function instance for every new

optimization sequence involves discarding the previous compiler state (which was produced

by the preceding sequence), reading the unoptimized function back from disk, and then

applying all the optimizations in the current sequence. We made a simple enhancement to

keep a copy of the unoptimized function instance in memory to avoid disk accesses for all

optimization sequence evaluations, except the first. Another enhancement we implemented

to make the searches faster uses the observation that many different optimization sequences

share common prefixes. Thus, for the evaluation of each phase sequence, instead of rolling

back to the unoptimized function instance every time, we determine the common prefix

between the current sequence and the previous sequence, and only roll back until after the

last phase in the common prefix. This saves the time that would otherwise have been required

65

to re-perform the analysis and optimizations in the common prefix.

To avoid re-applying optimization prefixes, we need to maintain multiple partially

optimized versions of the current function at various points in the search space DAG. To

re-start optimization with an old partially optimized function instance, it is essential that the

internal state in the compiler be appropriately re-initialized. This is a non-trivial operation.

In our earlier work, we had built the capability in VPO to throw away the current compiler

state, and re-initialize the internal state by again reading in the original input file, and

re-applying all previously applied transformations. For our current work, we extended this

functionality by storing the current internal compiler state itself into the format of the input

file. The re-initialization of the compiler to any previous compiler state now only requires us

to throw away the present state as before, and read back the input file containing the required

previous state. We no longer need to re-apply transformations. Moreover, by keeping all

required previous compiler states in memory, this entire operation does not require any disk

accesses.

Table 5.1 shows the successful sequences during the generation of the DAG in Figure

5.4 during both breadth-first and depth-first traversals. Since phases in the common prefix

do not need to be reapplied, the highlighted phases in Table 5.1 are the only ones which

are actually attempted. Depth-first search keeps a stack of previous phase orderings, and is

typically able to exploit greater redundancy among successive optimization sequences than

breadth-first search. Therefore, to reduce the search time during our experiments we used

the depth-first approach to enumerate the optimization phase order search space. Also note,

that the number of partially optimized function instances we need to maintain in memory at

any given time is equal to the current depth level of the DAG. Since the DAGs are typically

not very deep, this extra storage does not cause any significant space overhead.

There is, however, a drawback to the depth-first traversal approach. Although a large

majority of the functions that we encountered can be exhaustively evaluated in a reasonable

amount of time, there are a few functions, with extremely huge search spaces, which are

intractable even after using all our pruning methods. It would be beneficial if we could

isolate such cases before starting the search or early on in the search process so that we do

not spend time and resources unnecessarily. This is easier to accomplish during the breadth-

first traversal as we can see the growth in the search space at each level (refer Figure 5.4).

If the growth in the first few levels is highly exponential, and difficult to tame, then we can

66

Table 5.1: Applied Phases during Space Traversal

1. a 1. a

2. b 2. a c

3. c 3. a d

4. a c 4. b

5. a d 5. b a

6. b a 6. b c

7. b c 7. b d

8. b d 8. c

9. c a 9. c a

10. c d 10. c d

Breadth-First Depth-First
Traversal Traversal

stop the search on that function and designate that function as too large to exhaustively

evaluate. In an earlier study, we used breadth-first search and stopped the search whenever

the number of sequences to evaluate at any level grew to more than a million [8]. It is hard

to find such a cut-off point during a depth-first traversal. For our final study, we stopped

the exhaustive search on any function if the time required exceeded an approximate limit of

2 weeks. Please note that exhaustive phase order evaluation for most of the functions only

requires a few minutes or a few hours, with only the largest enumerated functions requiring

a few days.

The steps followed during the exhaustive phase order evaluation for each function are

illustrated in Figure 5.6. Our depth-first search algorithm generates the next phase to apply

in order to produce a new function instance. The checks to detect dormant phases, and

identical/equivalent function instances are performed to remove redundant instances. If the

current instance passes the redundancy checks, then we know that it is a distinct function

instance, and add a corresponding node to the DAG. We then compare the basic block

control-flow of the current instance with all previously encountered control-flows. If we find

a match then we do not need to simulate the application, since we already know the basic

block execution counts. Otherwise, we simulate an instrumented version of the application

containing the current function instance, and measure the block execution counts. We then

estimate the dynamic execution count for this function instance. The algorithm continues

until nodes at the last level in the DAG can no longer generate any new function instances.

67

active ?

identical
function
instance?

equivalent
function

control flow
seensimulate

application

instance?

structure?

calculate
function

performance

approach
depth−first

using

optimization
next

generate

last phase

N Y Y

Y N N

Y

N

phase
add node
to DAG

Figure 5.6: Steps followed during an exhaustive evaluation of the phase order space for each
function

5.4 Experimental Results

For this study we have been able to exhaustively evaluate the phase order space for 234 out

of a possible of 244 functions over 12 applications selected from the MiBench benchmark

suite [59]. We selected the applications such that there are two applications from each

of the six categories of benchmarks in MiBench. Only 88 out of the 244 total functions

were executed when using the input data sets provided with the MiBench benchmarks.

Out of the 88 executed functions, we were able to evaluate 79 functions exhaustively. We

have distributed the results into two tables: Table 5.2 presents the results for the executed

enumerated functions, and Table 5.3 illustrates the results for all of the enumerated functions

in our benchmarks. The functions in both the tables are sorted in descending order by the

number of instructions in the un-optimized function instance. Each table only presents the

results for the top 50 functions in each category, along with the average numbers for the

remaining functions.

The first three columns in Tables 5.2 and 5.3, namely the number of instructions,

branches, and loops in the unoptimized function instance, present some of the static

characteristics for each function. These numbers provide a measure of the complexity of

each function. As expected, more complex functions tend to have larger search spaces. The

next two columns, number of distinct function instances and the maximum active sequence

length, reveal the sizes of the actual and attempted phase order spaces for each function.

A maximum optimization sequence length of n gives us an attempted search space of 15n,

where 15 is the number of optimizations present in VPO. The numbers indicate that the size

68

Table 5.2: Dynamic Execution Count Results for all Studied Functions in the MiBench
Benchmarks

Function Inst Br Lp Fn inst Len CF Leaf within ? % of opt. % from opt.
opt 2% 5% Batch Worst

main(t) 1275 110 6 2882021 29 389 15164 1.1 26.3 41.1 0.0 84.3
parse sw...(j) 1228 144 1 180762 20 53 2057 0.4 1.9 4.1 6.7 64.8
askmode(i) 942 84 3 232453 24 108 475 1.7 2.9 4.6 8.4 56.2
skiptoword(i) 901 144 3 439994 22 103 2834 0.5 5.6 29.6 6.1 49.6
start in...(j) 795 50 1 8521 16 45 80 20.0 60.0 60.0 1.7 28.4
treeinit(i) 666 59 0 8940 15 22 240 3.3 40.0 100.0 0.0 3.4
pfx list...(i) 640 59 2 1269638 44 136 4660 0.3 0.3 2.1 4.3 78.6
main(f) 624 35 5 2789903 33 122 4214 0.0 0.0 0.0 7.5 46.1
sha tran...(h) 541 25 6 548812 32 98 5262 0.0 9.4 30.2 9.6 133.4
initckch(i) 536 48 2 1075278 32 32 4988 24.1 91.1 91.1 0.0 108.4
main(p) 483 26 1 14510 15 10 178 1.7 21.9 32.0 7.7 13.1
pat insert(p) 469 41 4 1088108 25 71 3021 1.4 46.6 47.3 0.0 126.4
main(j) 465 28 1 25495 21 12 134 0.0 0.0 0.0 5.6 6.0
main(l) 464 51 4 1896446 25 920 5364 0.0 25.0 25.0 0.9 89.3
adpcm co...(a) 385 35 1 28013 23 24 230 1.3 2.6 12.6 1.8 48.9
dijkstra(d) 354 22 3 92973 22 18 1356 0.3 22.1 26.8 0.0 51.1
good(i) 313 29 1 87206 22 32 370 4.3 17.3 48.9 0.0 14.6
chk aff(i) 304 30 1 179431 21 160 2434 1.6 10.8 39.8 0.1 58.7
cpTag(t) 303 40 0 522 11 9 16 0.0 100.0 100.0 1.6 1.6
makeposs...(i) 280 33 1 70368 24 119 498 2.4 30.5 33.7 0.0 130.1
xgets(i) 273 37 1 37960 19 103 284 4.2 32.4 32.4 0.0 129.7
missings...(i) 262 28 2 23477 26 30 513 8.2 8.2 14.4 4.0 86.8
missingl...(i) 252 31 3 11524 16 40 180 0.6 0.6 3.3 12.9 79.2
chk suf(i) 243 21 1 75628 21 29 2835 0.8 4.4 11.7 0.8 62.4
compound...(i) 222 30 1 78429 20 49 448 3.6 3.6 3.6 11.1 100.0
main(b) 220 15 2 182246 23 84 508 0.8 16.9 16.9 8.3 250.0
skipover...(i) 212 30 1 105353 29 110 413 0.5 7.3 47.0 7.7 75.4
lookup(i) 195 22 2 37396 20 38 114 0.0 0.0 0.0 7.7 75.9
wronglet...(i) 194 25 2 22065 17 25 430 0.5 0.5 4.2 15.0 89.8
ichartostr(i) 186 26 3 40524 21 40 304 1.6 27.3 52.6 0.0 236.0
main(s) 175 12 3 30980 23 10 163 4.9 7.4 8.6 0.0 67.4
main(d) 175 15 3 9206 20 22 85 2.4 3.5 49.4 4.3 75.3
main(q) 174 14 2 38759 23 121 160 2.5 25.0 25.0 0.0 214.3
treelookup(i) 167 23 2 67507 17 65 1992 15.3 15.3 15.3 0.0 66.7
insertR(p) 161 15 0 2462 14 6 22 18.2 36.4 72.7 0.5 97.9
sha final(h) 155 4 0 2472 13 3 68 20.6 20.6 41.2 0.0 21.7
select f...(j) 149 21 0 510 10 10 16 25.0 25.0 75.0 0.0 7.1
byte rev...(h) 146 5 1 2715 19 13 54 7.4 61.1 74.1 0.4 42.4
main(a) 140 10 1 1676 16 8 12 0.0 66.7 66.7 0.0 16.9
strtoichar(i) 140 18 1 10721 19 17 109 7.3 11.0 26.6 0.0 100.5
ntbl bit...(b) 138 1 0 48 7 1 8 25.0 25.0 75.0 0.0 10.7
read pbm...(j) 134 21 2 4182 15 18 60 6.7 16.7 20.0 6.7 69.3
bitcount(b) 133 1 0 44 8 1 7 14.3 14.3 28.6 0.0 64.3
strsearch(s) 128 17 2 32550 17 48 972 0.3 0.9 5.2 1.5 135.2
enqueue(d) 124 10 1 488 13 4 12 16.7 75.0 100.0 0.2 4.5
remaining(34) 60.1 5.0 0.5 1561.6 10.3 10.9 27.0 36.0 45.7 50.2 7.0 52.7
average(79) 234.3 21.7 1.2 174574.8 16.1 47.4 813.4 18.7 32.6 41.8 4.8 65.4

(Function - function name followed by benchmark indicator [(a)-adpcm, (b)-bitcount, (d)-dijkstra,
(f)-fft, (h)-sha, (i)-ispell, (j)-jpeg, (l)-blowfish, (q)-qsort, (p)-patricia, (t)-tiff, (s)-stringsearch]),
(Inst - number of instructions in unoptimized function), (Br - number of conditional and uncon-
ditional transfers of control), (Lp - number of loops), (Fn inst - number of distinct control-flow
instances), (Len - largest active optimization phase sequence length), (CF - number of distinct
control flows), (Leaf - Number of leaf function instances), (within ? % of optimal - what percentage
of leaf function instances are within ”?”% from optimal), (% from opt - % performance difference
between Batch and Worst leaf from Optimal).

69

Table 5.3: Code-Size Results for all Studied Functions in the MiBench Benchmarks

Function Inst Br Lp Fn inst Len CF Leaf % from opt.
Batch Worst

start in...(j) 1371 69 2 120777 25 70 894 1.41 8.92
correct(i) 1294 106 5 1348154 25 663 7231 4.18 21.71
main(t) 1275 110 6 2882021 29 389 15164 16.25 29.12
parse sw...(j) 1228 144 1 180762 20 53 2057 0.41 20.82
start in...(j) 1009 55 1 39352 21 18 336 2.46 29.47
start in...(j) 971 67 1 63458 21 30 388 1.66 6.31
askmode(i) 942 84 3 232453 24 108 475 7.87 37.08
skiptowo...(i) 901 144 3 439994 22 103 2834 1.45 24.71
start in...(j) 795 50 1 8521 16 45 80 2.70 9.27
TeX skip...(i) 704 77 2 5734 15 30 180 2.20 25.55
treeinit(i) 666 59 0 8940 15 22 240 2.39 5.26
pfx list...(i) 640 59 2 1269638 44 136 4660 8.37 33.95
main(f) 624 35 5 2789903 33 122 4214 20.99 77.78
makedent(i) 555 47 2 1063697 33 70 5325 2.56 47.44
pat remo...(p) 552 62 4 1151047 24 59 1669 0.61 63.80
sha tran...(h) 541 25 6 548812 32 98 5262 63.77 102.90
initckch(i) 536 48 2 1075278 32 32 4988 2.80 61.54
treeinse...(i) 510 48 3 368810 26 75 1000 2.70 42.57
expandmo...(i) 493 41 2 23530 22 15 372 0.60 32.74
main(p) 483 26 1 14510 15 10 178 1.32 28.29
read sca...(j) 480 52 2 44489 18 57 791 1.22 40.85
terminit(i) 476 33 1 3072 15 32 56 1.17 2.92
LZWReadB...(j) 472 33 2 39434 22 19 189 0.72 52.17
pat inse...(p) 469 41 4 1088108 25 71 3021 0.00 55.71
main(j) 465 28 1 25495 21 12 134 0.00 3.97
main(l) 464 51 4 1896446 25 920 5364 9.66 35.17
dofile(i) 436 38 0 5700 16 12 136 0.00 7.33
shellesc...(i) 420 53 5 244264 21 161 3054 2.21 25.74
checkfile(i) 416 36 5 154348 24 234 2345 23.40 109.57
adpcm co...(a) 385 35 1 28013 23 24 230 0.88 195.58
dijkstra(d) 354 22 3 92973 22 18 1356 6.59 81.32
givehelp(i) 347 10 1 584 11 9 31 1.10 5.49
usage(j) 344 1 0 34 9 1 3 0.00 2.53
TeX math...(i) 344 49 2 69841 30 50 147 3.67 36.70
casecmp(i) 342 34 2 366006 31 37 1804 9.00 75.00
GetCode(j) 339 11 1 74531 22 20 117 4.65 9.30
show char(i) 333 49 1 45581 17 152 812 29.63 36.42
good(i) 313 29 1 87206 22 32 370 0.00 8.00
bmhi init(s) 309 22 4 11640 22 11 188 2.22 84.44
adpcm de...(a) 306 28 1 44422 29 61 369 0.00 189.29
chk aff(i) 304 30 1 179431 21 160 2434 8.16 20.41
cpTag(t) 303 40 0 522 11 9 16 6.98 6.98
update f...(i) 294 22 1 6874 17 14 64 2.15 10.75
processC...(t) 289 31 0 1804 13 10 38 3.45 19.54
toutent(i) 286 29 1 7158 17 17 19 3.19 32.98
remaining(189) 108.7 9.9 0.7 15313.0 12.9 22.1 140.8 6.59 37.74
average(234) 196.2 17.3 1.1 89946.7 14.7 36.2 458.3 6.46 38.42

(Function - function name followed by benchmark indicator [(a)-adpcm, (b)-bitcount, (d)-dijkstra,
(f)-fft, (h)-sha, (i)-ispell, (j)-jpeg, (l)-blowfish, (q)-qsort, (p)-patricia, (t)-tiff, (s)-stringsearch]),
(Inst - number of instructions in unoptimized function), (Br - number of conditional and uncon-
ditional transfers of control), (Lp - number of loops), (Fn inst - number of distinct control-flow
instances), (Len - largest active optimization phase sequence length), (CF - number of distinct
control flows), (Leaf - Number of leaf function instances), (% from opt - % code size difference of
the Batch and Worst leaf from Optimal).

70

of the optimization phase order search space is 1516 on average, and can grow to 1544 (for

the function pfx list chk in ispell) in the worst case for the compiler and benchmarks used

in this study. Thus, we can see that although the attempted search space is extremely large,

the number of distinct function instances is only a tiny fraction of this number. A more

important observation is that unlike the attempted space, the number of distinct function

instances does not typically increase exponentially as the sequence length increases. This

is precisely the redundancy that we are able to exploit in order to make our approach of

exhaustive phase order space enumeration feasible.

The number of distinct control flows is more significant for the performance evaluation

of the executed functions in our benchmarks (Table 5.2). We only need to simulate the

application once for each distinct control flow. The relatively small number of distinct

control flows as compared to the total number of unique function instances makes it possible

to obtain the dynamic performance of the entire search space with only relatively insignificant

compile-time overhead. The next column gives a count of the leaf function instances. These

are function instances for which no additional phase is able to make any further changes to

the program representation. The small number of leaf function instances imply that even

though the enumeration DAG may grow out to be very wide, it generally starts converging

towards the end. It is also worthwhile noting that, for most functions, at least one leaf

function instance is able to reach optimal. Note again that we are defining optimal in this

context to be the function instance that results in the best dynamic frequency measures. The

next three columns reveal that over 18% of all leaf instances, on average, reached optimal,

with over 41% of them within 5% of optimal. We also observed that for 86.08% of the

functions in our test suite at least one leaf function instance reached optimal. It is easy to

imagine why this is the case, since all optimizations are designed to improve performance,

and there is no optimization in VPO which undoes changes made by other optimizations

before it.

We analyzed the few cases for which none of the leaf function instances achieved optimal

performance. The most frequent reason we observed that caused such behavior is illustrated

in Figure 5.7. Figure 5.7(a) shows a code snippet which yields the best performance and

5.7(b) shows the same part of the code after applying loop-invariant code motion. r[0] and

r[1] are passed as arguments to both of the called functions. Thus, it can be seen from

Figure 5.7(b) that loop-invariant code motion moves the invariant calculation, r[4]+28, out

71

of the loop, replacing it with a register to register move, as it is designed to do. But

later, the compiler is not able to collapse the reference by copy propagation because it is

passed as an argument to a function. The implementation of loop-invariant code motion in

VPO is not robust enough to detect that the code will not be further improved. In most

cases, this situation will not have a big impact, unless this loop does not typically execute

many iterations. It is also possible that loop-invariant code motion may move an invariant

calculation out of a loop that is never entered during execution. In such cases, no leaf

function instance is able to achieve optimal phase ordering dynamic results.

L2:

L1:

L2:

L1:

 r[0]=r[4]+28;
 r[1]=64;
 call reverse;

 r[0]=r[4]+28;
 r[1]=r[5];
 call memcpy;

 r[7]=r[4]+28;
 PC = L1;

 c[0]=r[6]?191;
 PC=c[0]<0, L2;

 r[0]=r[7];
 r[1]=64;
 call reverse;

 r[0]=r[7];
 r[1]=r[5];
 call memcpy;

 c[0]=r[6]?191;
 PC=c[0]<0, L2;

 PC = L1;

(a) Before Code Motion (b) After Code Motion

Figure 5.7: Case When No Leaf Function Instance Yields Optimal Performance

The last two columns in Table 5.2 compare the performance of the conventional (batch)

compiler and the worst performing leaf function instance with the function instance(s) having

the optimal ordering, with respect to our dynamic frequency measure shown in Equation 5.1.

The conventional VPO compiler iteratively applies optimization phases until there are no

additional changes made to the program by any phase. As a result, the fixed (batch) sequence

in VPO always produces a leaf instance in our DAG. In contrast, many other compilers

(including GCC) cannot do this effectively since it is difficult to re-order optimization phases

in these compilers. The fixed batch optimization sequence in VPO has been tuned over

several years. In spite of this aggressive baseline, the batch compiler produces code which

is 4.8% worse than optimal, on average. The worst performing leaf function instance is over

65% worse than optimal on average.

The last two columns in Table 5.3 correspondingly show the code size difference between

72

Table 5.4: Static Features of Functions which We Could Not Exhaustively Evaluate

Function Insts Blk Trans. of Cntr. Loops
Cond. Uncond. Depth1 Depth2 Depth3

main(i) 3335 369 93 142 3 1 0
linit(i) 1842 180 51 98 5 3 0
checkline(i) 1387 203 69 96 5 2 0
save root..(i) 1140 133 38 73 4 4 0
suf list..(i) 823 102 33 48 1 1 0
treeoutput(i) 767 114 29 60 7 3 3
fft float(d) 680 45 11 21 3 1 1
flagpr(i) 581 86 21 46 8 0 0
cap ok(i) 521 95 24 54 1 5 0
prr pre..(i) 470 65 17 33 3 0 0

(Function - function name followed by benchmark indicator [(d)-dijkstra, (i)-ispell]), (Inst - number
of instructions in unoptimized function), (Blk - number of basic blocks in unoptimized function),
(Trans. of Cntr. - number of conditional and unconditional transfers of control), (Loops - number
of loops with nesting depths 1, 2, or 3),

the batch and the worst leaf code size, as compared to the best achievable leaf code size for

each function. On average, the function instance produced by the batch compiler is 6.46%

larger than the smallest leaf, with the worst leaf function instance over 38% larger than the

best leaf.

Table 5.4 displays the unoptimized static features of the functions that we were unable to

exhaustively enumerate according to our stopping criteria. As explained earlier, we terminate

the exhaustive evaluation for any function when the time required for the algorithm exceeds

two weeks. Out of the 244 possible functions, we were unable to exhaustively evaluate only

10 of those functions. It is difficult to identify one property of each function that leads to such

uncontrollable growth in the phase order space. Instead, we believe that some combination

of the high number of loops, greater loop nesting depths, branches, number of instructions,

as well as the instruction mix are responsible for the greater phase order space size.

5.5 Correlation between Dynamic Frequency
Measures and Processor Cycles

In order to make our approach of exhaustive phase order space evaluation feasible, we have

avoided simulating the application to determine the performance of each distinct function

instance. Instead, we have used a measure of estimated performance based partly on static

73

function properties. Although we have tried to account for pipeline data hazards related stalls

in our estimate, it still does not consider other penalties encountered during execution, such

as branch misprediction and cache miss penalties. In spite of the potential loss in accuracy,

we expect our measure of performance to be sufficient for achieving our goal of finding the

optimal phase ordering with only a handful of program simulations. This is especially true

for embedded applications. Unlike general-purpose processors, the cycles obtained from a

simulator can often be very close to executed cycles in a low-power embedded processor

since these processors typically have simpler hardware and no operating system. For similar

reasons, dynamic frequency measures on embedded processors will also have a much closer

correlation to simulated cycles, than for general-purpose processors. It is also important

to realize that it is not critical that our measure of dynamic frequencies exactly match

the simulator cycles. However, what is required is a strong correlation between dynamic

frequencies and simulator cycles. In this section, we perform some studies to show that this

is exactly the case, at least within our test environment and experimental framework. Before

listing the correlation results we first describe a modification we made to SimpleScalar cycle

accurate simulator to make it faster.

5.5.1 Mixed Mode Simulator

The SimpleScalar simulator toolset [58] includes many different simulators intended for

different tasks. Most useful for our purposes are the two simulators sim-uop and sim-

outorder. Sim-uop is a functional simulator which implements the architecture, only

performing the actual program execution. Sim-outorder is a performance simulator which

implements the microarchitecture, modeling the system resources and internals in addition

to executing the program. Thus, sim-uop is relatively fast but only provides dynamic

instruction counts, whereas sim-outorder is able to provide processor cycles, but takes many

times longer to run. In our experiments we use sim-outorder with the inorder flag for the

ARM, which is generally an in-order processor for most implementations.

For our tests we only concentrate on one function at a time. Although the cache and

global branch access patterns of the remaining functions in the application, as well as the

library functions can affect the performance of the current function being optimized, side

effects should generally be minimal. In such a scenario it would be ideal if we could run only

the current function through the cycle accurate simulator, and run all remaining functions

74

using the faster functional simulator. This method has the potential of reducing the time

required for simulations close to the level provided by the faster functional simulator, while

still being able to provide accurate processor cycles for the function in question.

Sim-outorder already has a mode by which we can apply only the functional simulation

for some number of initial instructions before starting the cycle accurate simulation. But

once the cycle simulation was started, it was not possible to go back to the functional mode.

We extended sim-outorder to include the ability of going back to the functional mode from

the cycle mode, so that we can essentially switch back and forth between the two modes

whenever desired. Before each simulator run required during our experiments, we first use

the Unix nm utility to get the start and end instruction addresses for the current function.

Later during simulation, we switch to the cycle mode only when the program counter is

between this address range for the current function. Whenever the address falls out of this

range we wait for the pipeline to empty and then revert back to functional simulation. This

approach gives us substantial savings in time with very little loss in accuracy.

5.5.2 Complete Function Correlation

Even when using the mixed mode SimpleScalar simulator, it is very time consuming to

simulate the application for all function instances in every function, instead of simulating

the program only on encountering new control flows. We have simulated all instances of a

single function completely to provide an illustration of the close correlation between processor

cycles and our estimate of dynamic frequency counts. Figure 5.8 shows this correlation for

all the function instances for the init search function in the benchmark stringsearch. This

function was chosen mainly because it is relatively small, but still has a sufficient number of

distinct function instances to provide a good example.

In addition to comparing the dynamic frequency estimates and fast (mixed-mode)

simulator cycles, Figure 5.8 also shows that the mixed-mode cycles are almost identical

to the actual cycles from sim-outorder, verifying that our modifications did not cause much

deviations from actual performance. All these performance numbers are sorted on the basis of

dynamic frequency counts. Thus, we can see that our estimate of dynamic frequency counts

closely follows the processor cycles most of the time. What is more important is that the

correlation gets better as the function is better optimized. The excellent correlation between

dynamic frequency estimates and fast/slow cycles for the optimized function instances allows

75

Figure 5.8: Correlation between Processor Cycles and Frequency Counts for init search

us to predict the function instances with good/optimal cycle counts with a high level of

confidence.

5.5.3 Correlation for Leaf Function Instances

Figure 5.9 shows the distribution of the dynamic frequency counts as compared to the optimal

counts for all distinct function instances, averaged over all 79 executed functions. From this

figure we can see that the performance of the leaf function instances is typically very close

to the optimal performance, and that leaf instances comprise a significant portion of optimal

function instances as determined by the dynamic frequency counts. From the discussion in

Section 5.4 we know that for more than 86% of the functions in our benchmark suite there

was at least one leaf function instance that achieved the optimal dynamic frequency counts.

Moreover, it is important to note that the leaf instances constitute the only set of function

instances that can be produced by the class of aggressive compilers, which includes VPO,

that iteratively apply optimization phases until no additional improvements can be made.

Since the leaf function instances achieve good performance across all our functions, it is

worthwhile to concentrate on leaf function instances. These experiments require hundreds

of program simulations, which are very time consuming. So, we have restricted this study

to only one application from each of the six categories of MiBench benchmarks. For all

the executed functions from the six selected benchmarks we get simulator cycle counts for

only the leaf function instances and compare these values to our dynamic frequency counts.

76

Figure 5.9: Average Distribution of Dynamic Frequency Counts

In this section we show the correlation between dynamic frequency counts and simulator

cycle counts for only the leaf function instances for all executed functions over six different

applications in our benchmark suite.

The correlation between dynamic frequency counts and processor cycles can be illustrated

by various techniques. A common method of showing the relationships between variables

(data sets) is by calculating Pearson’s correlation coefficient for the two variables [68]. The

Pearson’s correlation coefficient can be calculated by using the formula:

Pcorr =

∑

xy −
P

x
P

y

n
√

(
∑

x2 − (
P

x)2

n
) ∗ (

∑

y2 − (
P

y)2

n
)

(5.2)

In Equation 5.2 x and y correspond to the two variables, which in our case are the dynamic

frequency counts and simulator cycles, respectively. Pearson’s coefficient measures the

strength and direction of a linear relationship between two variables. Positive values of

Pcorr in Equation 5.2 indicate a relationship between x and y such that as values for x

increase, values of y also increase. The closer the value of Pcorr is to 1, the stronger is the

linear correlation between the two variables. Thus, Pcorr = +1 indicates perfect positive

linear correlation between x and y.

It is also worthwhile to study how close the processor cycle count for the function instance

that achieves the best dynamic measure, is to the best overall cycle count over all the leaf

function instances. To calculate this measure, we first find the best performing function

instance(s) for dynamic frequency counts and obtain the corresponding simulator cycle count

for that instance. In cases where multiple function instances provide the same best dynamic

77

frequency count, we obtain the cycle counts for each of these function instances and only

keep the best cycle count amongst them. We then obtain the simulator cycle counts for

all leaf function instances and find the best cycle count in this set. We then calculate the

following ratio for each function:

Lcorr =
best overall cycle count

cycle count for best dynamic freq count
(5.3)

The closer the value of Equation 5.3 comes to 1, the closer is our estimate of optimal by

dynamic frequency counts to the optimal instance using simulator cycles.

Table 5.5 lists our correlation results for the leaf function instances over all studied

functions in our benchmarks. The column, labeled Pcorr provides the Pearson’s correlation

coefficient according to Equation 5.2. An average correlation coefficient value of 0.96 implies

that there is excellent correspondence between dynamic frequency counts and cycles. The

next column shows the value of Lcorr calculated by Equation 5.3. The following column

gives the number of distinct leaf function instances which have the same best dynamic

frequency counts. These two numbers in combination indicate that an average simulator

cycle performance of Lcorr can be reached by simulating only nLf number of the best leaf

function instances as determined by our estimate of dynamic frequency measure. Thus, it can

be seen that an average performance within 98% of the optimal simulator cycle performance

can be reached by simulating, on average, less than 5 good function instances having the

best dynamic frequency measure. The next two columns show the same measure of Lcorr by

Equation 5.3, but instead of considering only the best leaf instances for dynamic frequency

counts, they consider all leaf instances which come within 1% of the best dynamic frequency

estimate. This allows us to reach within 99.6% of the optimal performance, on average,

by performing only 21 program simulations per function. In effect, we can use our dynamic

frequency measure to prune most of the instances that are very unlikely to achieve the fewest

simulated cycles.

The conclusions of this study are limited since we only considered leaf function instances.

It would not be feasible to get cycle counts for all function instances over all functions. In

spite of this restriction, the results are interesting and noteworthy since they show that

a combination of static and dynamic estimates of performance can predict pure dynamic

performance with a high degree of accuracy. This result also leads to the observation that

we should typically only need to simulate a very small percentage of the best performing

78

function instances as indicated by dynamic frequency counts to obtain the optimal function

instance by simulator cycles.

Table 5.5: Correlation Between Dynamic Frequency Counts and Simulator Cycles for Leaf
Function Instances

Function Pcorr Lcorr 0% Lcorr 1%
Diff nLf Diff nLf

AR btbl b... 1.00 1.00 1 1.00 1
BW btbl b... 1.00 1.00 2 1.00 2
bit count 1.00 1.00 2 1.00 2
bit shifter 1.00 1.00 2 1.00 2
bitcount 0.89 0.92 1 0.92 1
main 1.00 1.00 6 1.00 23
ntbl bitc... 0.99 0.95 2 0.95 2
ntbl bitcnt 1.00 1.00 2 1.00 2
dequeue 0.99 1.00 6 1.00 6
dijkstra 1.00 0.97 4 1.00 269
enqueue 1.00 1.00 2 1.00 4
main 0.98 1.00 4 1.00 4
print path 1.00 1.00 2 1.00 2
qcount 1.00 1.00 1 1.00 1
CheckPoin... 0.95 1.00 2 1.00 5
IsPowerOf... 0.93 0.98 3 1.00 24
NumberOfB... 0.84 1.00 1 1.00 20
ReverseBits 1.00 1.00 2 1.00 2
byte reve... 0.89 1.00 1 1.00 3
main 0.71 1.00 25 1.00 74
sha final 0.72 0.82 26 1.00 50
sha init 0.98 1.00 4 1.00 9
sha print 0.95 0.88 1 1.00 6
sha stream 1.00 1.00 1 1.00 8
sha trans... 0.97 1.00 2 1.00 35
sha update 0.98 1.00 14 1.00 32
finish in... 1.00 1.00 1 1.00 1
get raw row 1.00 1.00 7 1.00 7
jinit rea... 1.00 1.00 2 1.00 2
main 1.00 0.99 2 1.00 153
parse swi... 0.95 1.00 8 1.00 16
pbm getc 0.99 1.00 2 1.00 2
read pbm ... 0.73 0.98 2 0.98 2
select fi... 0.97 0.90 3 1.00 12
start inp... 0.95 0.99 12 0.99 15
write std... 1.00 1.00 1 1.00 1
init search 1.00 1.00 1 1.00 14
main 1.00 1.00 8 1.00 12
strsearch 1.00 1.00 3 1.00 3
average 0.96 0.98 4.38 0.996 21

Pcorr - Pearson’s correlation coefficient, Lcorr - ratio of cycles for dynamic frequency to best overall cycles
(0% - optimal, 1% - within 1 percent of optimal frequency counts), Diff - ratio for Lcorr, nLf - number of
leaves achieving the specified dynamic performance

79

5.6 Concluding Remarks

During our experiments with making genetic algorithms faster, we had observed that there

is huge redundancy in the optimization phase order space, in the sense that many different

orderings of optimization phases produce the same code. This observation led us to the

realization that the space of all possible distinct function instances can be many orders of

magnitude smaller than the space of all possible attempted phase orderings. In this chapter, I

showed how we used this intuition to guide us in developing novel search algorithms that focus

on enumerating all distinct function instances that can be produced by any phase ordering

for each function. Along with new search algorithms, we also adapted all our search space

pruning techniques from Section 4.2.1 to eliminate redundant function instances. We were

able to exhaustively enumerate the entire phase order space for 234 out of the 244 functions

that we studied.

Even after all our pruning techniques we were left with tens of thousands of unique

function instances for each function. We realized that using execution or simulation to

determine the performance of all instances will be prohibitively expensive. Instead, to find

the optimal phase ordering performance we decided to use accurate estimations. Static

phase order space enumeration had only found very few distinct basic block control flows

for each function. In this chapter, I also showed how we leveraged this information to

make our performance estimations more accurate. This is achieved by only simulating the

application once for each set of function instances having identical control-flow structure to

find their basic block execution count. The block count combined with the static block cycle

count estimate gives us our dynamic performance counts for each function instance. We also

showed that our performance estimation bears close correlation with simulator cycles. Thus,

we are now able to find optimal phase orderings with our measure of dynamic performance

counts, as well as find near-optimal phase orderings with respect to simulator cycles for a

large majority of our functions in a reasonable amount of time.

80

CHAPTER 6

Analysis of the Exhaustive Optimization Phase Order

Space and Applications to Exploit It

Exhaustive enumeration of the optimization phase order search space for a sizable number

of functions has given us a large data set that we can analyze to gather some interesting

information about optimization phase interactions, and phase order space characteristics.

We can further use such information for various tasks, such as to improve conventional

compilation, as well as to enhance heuristic iterative compilation techniques. This chapter

will describe the results of some of our efforts to extract, study, and apply phase order

space information to improve other compilation paradigms. This is, obviously, not an

comprehensive list of applications that can benefit by a thorough understanding of the phase

order space, but is mostly intended to serve as a primer for future exploration.

6.1 Optimization Phase Interaction Analysis

The unpredictable interaction between the various optimization phases is responsible for the

phase ordering issues experienced by optimizing compilers. In this section I will present some

analysis to characterize phase interactions. To assemble these statistics we first represented

the search space in the form of a DAG. The nodes in the DAG represent distinct function

instances and the directed edges are marked by the optimization phase that was applied from

one node (function instance) to the next. This representation is illustrated in Figure 6.1.

The nodes of the DAG are weighted by how many leaves it can reach. The leaf nodes have a

weight of 1. The weight of each interior node is the summation of the weights of all its child

nodes. Thus, the weight of each interior node gives the number of distinct sequences that

are active through that point. Active phases at each node (indicated in brackets for interior

nodes) in Figure 6.1 are simply the active phases that are applied on outgoing edges of that

81

node. We studied three different phase interactions: enabling, disabling and independence

relationships between optimization phases. The following sections describe the results of this

study.

1

2

5

a b c

1 2

1 1 1

1

b c
c

a b

a d

[abc]

[bc] [c] [ab]

[a] [d]

Figure 6.1: Weighted DAG Showing Enabling, Disabling, and Independence Relations

6.1.1 Enabling Interaction between Phases

A phase x is said to enable another phase y, if y was dormant (inactive) at the point just

before x was applied, but then becomes active again after application of x. For example, b

enables a along the path a-b-a in Figure 6.1. Note that it is possible that a phase could enable

some other phase on some sequence but not on others. Thus, it could be seen that a is not

enabled by b along the path c-b. Likewise, it is also possible for phases to be dormant at the

start of the compilation process, and become active later (e.g., phase d along the path b-c-d).

As a result we represent this information in the form of the probability of each phase enabling

each other phase. We calculate the enabling probabilities by considering dormant → active

and dormant → dormant transitions of phases between nodes, adjusted by the weight of the

child node. The probability is the ratio of the number of dormant → active transitions to the

sum of dormant → active and dormant → dormant transitions between optimization phases.

We do not consider active → active and active → dormant transitions since phases already

active cannot be enabled. Please note that the enabling probabilities only correspond to

the phase order space information we have collected over 234 functions. We summarize

the enabling information we collected for all the functions in Table 6.1, where each row

represents the probability of that phase enabling other phases represented in columns. The

82

second column (St) in this table shows the probability over all functions evaluated, of each

phase being active at the start of the compilation process.

Table 6.1: Enabling Interaction between Optimization Phases

Phase St b c d g h i j k l n o q r s u

b 0.72 0.02 0.01 0.04 0.01 0.02 0.66
c 1.00 0.01 0.68 0.01 0.02 0.07 0.05 0.15 0.34
d 1.00 1.00 1.00
g 0.22 0.28 0.17 0.05 0.02 0.14 0.34 0.09 0.15
h 0.08 0.16 0.14 0.02 0.01 0.20
i 0.72 0.04 0.01 0.09
j 0.03 0.06 0.44
k 0.98 0.28 0.01 0.02 0.01 0.96
l 0.60 0.73 0.02 0.01 0.01 0.03 0.53
n 0.41 0.36 0.01 0.01 0.01 0.29
o 0.88 0.40 0.03
q 0.99 0.02 0.99
r 0.57 0.06 0.06
s 1.00 0.33 0.41 0.83 0.07 0.05 0.15 0.07
u 0.01 0.01 0.02

Blank cells indicate an enabling probability of less than 0.005. St represents the probability
of a phase being active at the start of compilation.

A few points regarding the enabling information are worth noting. The enabling

interaction table is relatively sparse meaning that most phases do not enable another,

which limits the maximum depth of the DAG and the total number of instances. For our

benchmarks instruction selection(s) and common subexpression elimination(c) are always

active initially. In contrast, register allocation(k) requires instruction selection(s) to be

enabled in VPO so that the loads and stores contain the addresses of local scalars. Instruction

selection(s) is frequently enabled by register allocation(k) since loads and stores are replaced

by register-to-register moves, which can typically be collapsed by instruction selection(s).

In contrast, control flow optimizations (e.g., branch chaining(b)) are never enabled by

register allocation(k), which does not affect the control flow. The numbers in the table

also indicate that many optimizations have a very low probability of being enabled by any

other optimization phase. Such optimizations will typically be active at most once in each

optimization sequence. Remove unreachable code(d) is rarely active for the functions in

our benchmark suite, which indicates the need for a larger set of functions. Note that,

unreachable code occasionally left behind by branch chaining is removed during branch

chaining itself, since we found such code hindering some analysis which caused later

83

optimizations to miss some code improving opportunities.

6.1.2 Disabling Interaction between Phases

Another related measure is the probability of each phase disabling some other phase. This

relationship can be seen in Figure 6.1 along path b-c-d, where a is active at the root

node, but is disabled after b. The statistics regarding the disabling interaction between

optimization phases is illustrated in Table 6.2. Each value in this table is the weighted

ratio of active → dormant transitions to the sum of active → dormant and active → active

transitions. We do not consider dormant → dormant and dormant → active transitions since

a phase has to be active to be disabled.

Table 6.2: Disabling Interaction between Optimization Phases

Phase b c d g h i j k l n o q r s u

b 1.00 0.28 0.09 0.18 0.20 0.11 0.01
c 0.01 1.00 0.02 0.08 0.02 0.30 0.32 1.00 0.08
d 1.00 0.03 0.01 0.01
g 0.13 1.00 0.06 0.01 0.12 0.22
h 0.01 0.01 1.00 0.04 0.10 1.00 0.01
i 0.02 0.22 1.00 0.20 0.01 0.44 0.91
j 0.01 0.08 1.00 0.01 0.16
k 0.01 0.05 1.00 0.05 0.14 1.00
l 0.02 1.00 0.11 0.04 0.07 1.00 0.32 1.00
n 0.07 0.01 0.02 0.01 0.01 1.00 1.00 0.01
o 0.01 0.08 0.01 1.00
q 1.00
r 0.06 0.20 0.36 1.00 0.05
s 0.07 0.03 0.31 0.22 0.14 0.26 0.02 1.00
u 0.41 0.02 0.34 0.15 1.00

Blank cells indicate a disabling probability of less than 0.005.

From Table 6.2 it can be seen that phases are much more likely to be disabled by

themselves than by other phases. We can also see that phases such as register allocation(k)

and common subexpression elimination(c) always disable evaluation order determination(o)

since they require register assignment, and evaluation order determination can only be

performed before register assignment. All the phase disabling values along the diagonal

are equal to one, since phases in our compiler always disable themselves when attempted.

84

6.1.3 Optimization Phase Independence

The third interaction we measured was the probability of independence between any two

optimization phases. Two phases can be considered to be independent if their order does

not matter to the final code that is produced. This is illustrated in Figure 6.1 along the

paths a-c and c-a. Both orders of phases a and c in these sequences produce identical

function instances, which would mean that they are independent in this situation. In

contrast, sequences b-c and c-b do not produce the same code. Thus, they are considered

dependent in this situation. If two optimizations are detected to be completely independent,

then we would never have to evaluate them in different orders. This observation can lead to

the potential of even greater pruning of the search space. Table 6.3 shows the probability

of each phase being independent of some other phase. This is a weighted ratio of the times

two consecutively active phases produced the same code to the number of times they were

consecutively active.

Table 6.3: Independence Relationship between Optimization Phases

Phase b c d g h i j k l n o q r s u

b 1.00 1.00 0.09 1.00 0.84 0.99 1.00 0.95 0.59 1.00 1.00 0.73 1.00 0.55
c 1.00 1.00 0.28 0.90 0.90 0.99 1.00 0.41 0.09 0.32 0.92 0.96 0.19 0.99
d 0.28 1.00 0.80 1.00 0.84 1.00 0.93
g 0.09 0.90 1.00 0.99 0.29 0.80 0.96 0.87 0.96 0.99 0.86 0.84 0.92
h 1.00 0.90 0.80 0.99 1.00 1.00 0.99 0.71 0.82 0.79 0.99 0.98 0.94 1.00
i 0.84 0.99 1.00 0.29 1.00 1.00 0.72 0.99 0.88 0.99 1.00 1.00 0.09 1.00
j 0.99 1.00 0.80 0.99 0.72 1.00 1.00 0.92 0.91 1.00 1.00 0.37 0.87 0.76
k 1.00 0.41 0.96 0.71 0.99 1.00 1.00 0.29 0.55 1.00 0.98 0.81 1.00
l 0.95 0.09 0.87 0.82 0.88 0.92 0.29 1.00 0.46 1.00 0.97 0.11 1.00
n 0.59 0.32 0.84 0.96 0.79 0.99 0.91 0.55 0.46 1.00 1.00 0.98 0.24 1.00
o 1.00 1.00 1.00 1.00 1.00 0.60 1.00
q 1.00 0.92 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.45 1.00
r 0.73 0.96 1.00 0.86 0.98 0.09 0.37 0.98 0.97 0.98 1.00 1.00 1.00 0.90 1.00
s 1.00 0.19 0.93 0.84 0.94 1.00 0.87 0.81 0.11 0.24 0.60 0.45 0.90 1.00 1.00
u 0.55 0.99 0.92 1.00 0.76 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Blank cells indicate an independence probability of less than 0.005.

Unlike the enabling and disabling relationships shown in Tables 6.1 and 6.2, independence

is a symmetric relationship, as shown in Table 6.3. In addition, Table 6.3 is less sparse

indicating that many phases are typically independent of each other. For instance, it can

be seen that register allocation(k) is highly independent of most control flow optimizations.

Instruction selection(s) and common subexpression elimination(c) frequently act on the same

85

code sequences, and so we see a low level of independence between them. Since most of the

phases are independent of each other most of the time it is frequently possible to reorder

phases without any side-effect. Consequently, many different optimization sequences produce

the same code resulting in greater convergence in the DAG and fewer leaf function instances

for most functions, as seen in Section 5.4.

6.2 Probabilistic Batch Optimization

The analysis results and observations assembled during our experiments can be further used

to improve upon various compiler features. As a case study, we use some of these results to

support faster compilations in this section. The VPO compiler applies optimization phases

to all functions in one default order. To allow aggressive optimizations, VPO applies many

optimization phases in a loop until there are no further program changes produced by any

optimization phase. Thus, although VPO can attempt a different number of phases for

different functions, the order in which they are attempted still remains the same. Applying

optimizations in a loop also means that many optimization phases when attempted are

dormant.

We use information about the probability of phases enabling and disabling each other

to dynamically select optimizations phases depending on which previous ones were active.

The probability of each optimization phase being active by default is used at the start of the

optimization process. Using these probabilities as initial values, we dynamically determine

which phase should be applied next depending on which phase has the highest probability of

being active. After each active optimization phase, we update the probabilities of all other

phases depending on the probability that the last phase would enable or disable it. This

algorithm is depicted in Figure 6.2. We denote the compiler using this new algorithm of

dynamically selecting optimization phases as the probabilistic batch compiler.

From Table 6.4 it can be seen that the new probabilistic mode of compilation achieves

performance comparable to the old batch mode of compilation and requires less than one-

third of the compilation time on average. Although the probabilistic approach reduces the

number of attempted phases from over 235, on average, to under 30, the number of active

phases is in fact greater in the new approach. Many phases attempted in the old compiler

were found by the probabilistic compiler to be disabled and were therefore not attempted.

Presently, the probabilistic compiler selects the next phase only on the basis of the probability

86

p[i] - current probability of phase i being active ;
e[i][j] - probability of phase j enabling phase i;
d[i][j] - probability of phase j disabling phase i;
foreach phase i do

p[i] = e[i][st]; # start phase probabilities (see Table 4) ;

while any p[i] > 0 do

Select j as the current phase with highest probability of being active;;
Apply phase j; ;
if j was active then

foreach phase i do

if i != j then

p[i] += ((1-p[i]) * e[i][j]) - (p[i] * d[i][j]); ;

p[j] = 0; ;

Figure 6.2: Probabilistic Compilation Algorithm

of it being active. Our method does not consider the benefits each phase can potentially

provide when applied. This is the main reason for the slight degradation in performance, on

average, over the old method. Thus, the probabilistic compilation paradigm, even though

promising, may be further improved by taking phase benefits into account.

6.3 Evaluating Heuristic Optimization Phase Order
Search Algorithms

Exhaustive exploration of the optimization phase order space, although possible in a

reasonable amount of time for a large majority of the functions, takes prohibitively long

for most large functions to make it suitable for use in typical iterative compilers. Instead,

faster heuristic algorithms that scan only a portion of the phase order space are more

commonly employed. However, such methods do not evaluate the entire space to provide any

guarantees about the quality of the solutions obtained. Commonly used heuristic algorithms

to address the phase ordering problem include genetic algorithms [11, 12], hill climbing

algorithms [6, 24], as well as random searches of the space [44].

In this section I will present our evaluation of different heuristic search approaches to

determine the important characteristics of each algorithm as related to the phase order space.

This study is the most detailed evaluation of the performance and cost of different heuristic

search methods, and the first to compare their performance with the optimal phase ordering.

A major goal of this study is to isolate and evaluate several properties of each studied

87

Table 6.4: Comparison between the Old Batch and the New Probabilistic Approaches of
Compilation

Function
Old Compilation Prob. Compilation Prob/Old

Attempt Active
Time

Attempt Active
Time Time Size Speed

Phases Phases Phases Phases

main(i) 253 14 77.55 32 13 35.88 0.463 0.980 0.885
linit(i) 270 15 6.72 44 18 4.29 0.639 1.000 1.000
checkline(i) 270 17 5.67 44 17 3.07 0.541 1.020 1.145
start inp...(j) 233 16 2.53 32 13 1.20 0.475 1.014 N/A
correct(i) 233 16 11.84 42 18 6.02 0.508 0.996 N/A
main(t) 270 16 4.63 38 19 2.75 0.594 1.000 1.000
parse swi...(j) 233 14 6.07 34 13 2.93 0.482 1.016 0.972
save root...(i) 358 29 3.46 64 26 2.11 0.611 1.005 N/A
start inp...(j) 270 15 1.78 32 14 0.67 0.378 1.007 N/A
start inp...(j) 233 14 1.53 27 12 0.58 0.381 1.003 N/A
askmode(i) 233 16 2.01 38 17 1.07 0.531 0.997 1.040
skiptoword(i) 270 17 2.44 34 16 1.11 0.454 1.000 1.016
suf list ...(i) 233 14 1.49 39 16 0.88 0.591 1.003 0.899
start inp...(j) 231 11 1.02 32 12 0.46 0.448 1.004 1.000
treeoutput(i) 247 16 1.24 38 15 0.73 0.589 1.011 1.769
fft float(f) 463 28 2.15 48 24 1.22 0.567 1.562 0.974
TeX skip ...(i) 231 9 1.18 30 10 0.52 0.444 1.004 N/A
treeinit(i) 233 9 1.35 27 11 0.55 0.410 1.023 1.034
pfx list ...(i) 270 16 1.26 40 16 0.65 0.519 1.013 1.020
main(f) 284 20 1.59 41 18 0.80 0.501 1.003 1.000
flagpr(i) 342 23 1.27 58 22 0.79 0.624 1.018 N/A
makedent(i) 307 22 1.04 47 19 0.47 0.456 1.025 N/A
pat remove(p) 233 13 0.73 31 14 0.33 0.454 1.018 N/A
sha trans...(h) 284 18 0.57 45 18 0.38 0.665 1.000 1.000
initckch(i) 344 18 0.86 46 18 0.36 0.422 1.007 1.001
cap ok(i) 372 25 1.07 59 24 0.57 0.538 1.027 N/A
treeinsert(i) 233 18 0.82 43 19 0.49 0.601 1.020 N/A
expandmode(i) 233 12 0.83 30 12 0.35 0.416 1.012 N/A
read scan...(j) 233 13 0.81 30 11 0.34 0.421 1.018 N/A
main(p) 233 12 0.90 27 13 0.35 0.387 1.000 1.000
terminit(i) 231 10 0.72 36 14 0.38 0.535 1.012 N/A
LZWReadByte(j) 268 12 0.53 27 11 0.18 0.330 1.014 N/A
pat insert(p) 233 14 0.61 32 14 0.29 0.485 1.014 1.013
pr pre ex...(i) 344 22 0.91 41 16 0.37 0.403 1.014 N/A
main(j) 270 12 0.86 34 15 0.36 0.412 1.007 1.000
main(l) 233 16 0.93 38 18 0.47 0.506 1.013 1.000
dofile(i) 233 10 0.82 27 12 0.32 0.397 1.020 N/A
shellescape(i) 233 15 0.63 33 15 0.31 0.481 1.043 N/A
checkfile(i) 270 15 0.48 37 15 0.23 0.480 1.000 N/A
adpcm coder(a) 251 13 0.53 32 12 0.31 0.586 2.877 1.197
remaining(204) 228.3 8.6 0.15 26.6 9.4 0.05 0.283 1.020 1.013
average 235.6 9.8 0.75 28.5 10.4 0.35 0.319 1.033 1.021

Old Compilation - original batch compilation, Prob. Compilation - new probabilistic mode
of compilation, Attempt Phases - number of attempted phases, Active Phases - number of
active phases, Time - compilation time in seconds, Prob/Old - ratio of probabilistic to old
compilation for compilation time, code size, and dynamic instruction counts, respectively.

88

heuristic algorithm, and demonstrate the significance and difficulty in selecting the correct

optimization phase sequence length, which is often ignored or kept constant in most previous

studies on optimization phase ordering. We also recognize and illustrate the importance of

leaf function instances, and show how we can exploit the properties of leaf instances to

enhance existing algorithms as well as to construct new search algorithms.

We are able to perform a very thorough study since we had already completely enumer-

ated the phase order spaces of our compiler for hundreds of functions. The experiments in

this section also represent the exhaustive phase order space information for each function in

the form of a DAG. The DAG then enables much faster evaluation of any search heuristic,

since compilation as well as execution can be replaced with a simple table lookup in the

DAG to determine the performance of each phase ordering. As a result, the study of the

various algorithms can be accomplished very quickly, and it is possible to evaluate various

parameters of the algorithms as well as the search space.

Over the past decades researchers have employed various heuristic algorithms to cheaply

find effective solutions to the phase ordering problem. However, several issues regarding

the relative performance and cost of each algorithm, as well as the effect of changing

different algorithm parameters on that algorithm’s performance are as yet uncertain and not

clearly understood. In this section we will perform a thorough evaluation and comparison

of commonly used heuristic methods.

6.3.1 Local Search Techniques

Local search techniques, such as hill climbing and simulated annealing, can only migrate to

neighboring points from one iteration to the next during their search for good solutions.

Central to these algorithms is the definition of neighbors of any point in the space. For this

study, we define the neighbors of a sequence to be all those sequences that differ from the base

sequence in only one position. Thus, for a compiler with only three optimization phases a, b

and c, the sequence shown in the first column of Table 6.5 will have the sequences listed in

the following columns as its neighbors. The position that differs in each neighbor is indicated

in bold. For a compiler with m optimization phases, a sequence of length n will have (m−1)n

neighbors. Unless the search space is extremely smooth, these local search algorithms have a

tendency to get stuck in a local minimum, which are points that are not globally minimum,

but have better fitness values than any of their neighbors. For a comprehensive study of

89

these algorithms it is important to first understand relevant properties of the optimization

phase order space. The results from this study are presented in the next section.

Table 6.5: Neighbors in Heuristic Searches

bseq neighbors
a b c a a a a a a
b b b a c b b b b
c c c c c a b c c
a a a a a a a b c

Distribution of Local Minima in the Phase Order Space

Earlier studies have attempted to probe the properties of the phase order space [23, 6].

Such studies, however, only looked at a small portion of the space, and ignored important

factors affecting the nature and distribution of local minima in phase order spaces. One

such factor, commonly ignored, is the optimization sequence length. It is almost impossible

to estimate the best sequence length to use due to the ability and tendency of optimization

phases to enable other phases. During our experiments, maximum sequence lengths of active

phases varied from 3 to 44 over different functions, with considerable variation within the

same function itself for different phase orderings. The goal of analyzing the search space,

in the context of local search techniques, is to find the properties and distribution of all

local minima in each phase order search space. However, there are some difficult hurdles in

achieving this goal:

Variable sequence length: Since the best sequence length for each function is

unknown, an ideal analysis would require finding the properties of local minima for all

possible sequence lengths. This requirement is needed because any sequence of attempted

phases of any length defines a point in the search space DAG. Conversely, a single point in

the space can be defined by, potentially, infinite number of attempted sequences of different

lengths. This is important, since different sequences defining the same point will have

different neighbors. This fact implies that some of those sequences may be locally optimum,

while others may be not, even though they define the same point in the phase order space.

For example, the attempted sequences {b → a}, {c → b → a}, and {d → b → c → a} all

define the same node 4 in the DAG in Figure 5.4 (Note that, the phases a and b, indicated

90

in bold, are active, while c and d are dormant). Thus, we can see that it is possible to have

sequences of different lengths pointing to the same node. Thus, this ideal goal of finding the

local minima for all possible sequence lengths is clearly impossible to achieve.

Fixed sequence length: A conceptually simpler approach would be to use some oracle

to give us the best sequence length to use for each function, and then only analyze the space

for this single sequence length. The minimum reasonable length to use, so that all nodes in

the DAG can be reached, would be the maximum active sequence length for each function.

For an average maximum active sequence length of 16, over all 234 enumerated functions,

we would need to evaluate 1516 different phase orderings for each function. Evaluation of

any phase ordering to determine if that ordering is a local optimum would in turn require

us to lookup the performance of that ordering as well as that of its 15 ∗ 16 neighbors. This,

also, is clearly a huge undertaking considering that the maximum active sequence length we

encountered during our exhaustive phase order enumeration study was 44.

Due to such issues, in our present experiments, we decided to use sampling to probe only

a reasonable portion of the phase order search space for some number of different sequence

lengths for each function. We use 16 different sequence lengths. The initial length is set

to the length of the sequence of active phases applied by the conventional VPO compiler in

batch mode. The remaining sequence lengths are successive increments of one-fourth of the

initial sequence length used for each function. The larger sequence lengths may be needed

to accommodate phases which may be dormant at the point they are attempted. For each

set of experiments for each function, we first randomly generate a sequence of the specified

length. We then compare the performance of the node that this sequence defines with the

performance of all of its neighbors to find if this sequence is a local optimal. This base node

is marked as done. All later sequences are constrained to define different nodes in the space.

As this sampling process progresses it will require an increasing number of attempts to find a

sequence corresponding to an unevaluated node in the search space. The process terminates

when the average number of attempts to generate a sequence defining a new node exceeds

100.

Figures 6.3(a) and 6.3(b) illustrate the average phase order space properties over all the

executed functions that we studied. The plot labeled % nodes touched in the DAG from

Figure 6.3(a) shows the percentage of nodes that were evaluated for local minimum from

amongst all nodes in the space DAG. This number initially increases, reaches a peak, and then

91

(a) Local Minima Information (b) Global Minima Information

Figure 6.3: Search Space Properties

drops off. This graph, in effect, shows the nature of typical phase order spaces. Optimization

phase order space DAGs typically start out with a small width, reach a maximum around

the center of the DAG, and again taper off towards the leaf nodes as more and more function

instances generated are detected to be redundant. Smaller attempted sequence lengths in

Figure 6.3(a) define points higher up in the DAG, with the nodes defined dropping down in

the DAG as the length is increased. The next plot labeled avg local minima % distance from

optimal in Figure 6.3(a) measures the average difference in performance from optimal over

all the samples at each length. As the sequence lengths increased the average performance

of the samples gets closer and closer to optimal, until after a certain point the performance

remains more or less constant. This is expected, and can be explained from the last plot

in Figure 6.3(a), labeled %(avg.active seq. length / batch seq. length), which shows the

percentage increase in the average length of active phases as the attempted sequence length

is increased. The ability to apply more active phases implies that the function is better

optimized, and thus we see a corresponding increase in performance and a smaller percentage

of active phases.

The first plot, %(num minima / total samples), in Figure 6.3(b) shows the ratio of

sequences reaching local minima to the total sequences probed. This ratio seems to remain

more or less constant for different lengths. The small percentage of local minima in the total

samples indicates that there are not many local minima in the space. The next plot, %(num

global minima / total minima), in this figure shows that the percentage of locally minimum

nodes achieving global minima grows with increase in sequence length. This increase is more

92

pronounced initially, but subsequently becomes steadier. In the steady state around 45%

of local minima display globally optimum performance. This characteristic means that for

longer sequence lengths there is a good chance that the local minimum found during local

search algorithms will have globally optimal performance. The final plot in Figure 6.3(b),

%(functions for which at least one sample reached optimal), presents the percentage of

functions for which the probe is able to find optimal in at least one of its samples. This

number shows a similar characteristic of continuously increasing with increasing sequence

lengths, until it reaches a steady state at close to 100% for larger sequence lengths. Hence,

for small multiples of the batch sequence length the local search algorithms should be able

to find global minima with a high probability for most of the functions.

Thus, this study illustrates that it is important to find the correct balance between

increase in sequence length, performance obtained, and the time required for the search.

Although larger sequence lengths tend to perform better, they are also more expensive to

evaluate, since they have more neighbors, and evaluation of each neighbor takes longer. It is

worthwhile to note that we do not need to increase the sequence lengths indefinitely. After a

modest increase in the sequence lengths, as compared to the fixed batch sequence length, we

are able to obtain most of the potential benefits of any further increases in sequence lengths.

Hill Climbing

In this section we evaluate the performance of the steepest descent hill climbing heuristic

algorithm for different sequence lengths [6]. The algorithm is initiated by randomly

populating a phase sequence of the specified length. The performance of this sequence

is evaluated, along with that of all its neighbors. If the best performing neighbor has better

performance than the base sequence, then that neighbor is selected as the new base sequence.

This process is repeated until a local optimum is reached, i.e., the base sequence performs

better than all of its neighbors. For each sequence length, 100 iterations of this algorithm

are performed by selecting random starting points in the search space. The sequence lengths

were incremented 40 times starting from the length of the active batch sequence, with each

increment equal to one-fourth the batch length.

Figures 6.4(a) and 6.4(b) illustrate the results of the hill climbing experiments. The plot

marked % best perf. distance from optimal in Figure 6.4(a) compares the best solution found

by the hill climbing algorithm with optimal, averaged over the 79 executed functions, and

93

(a) Local Minima Information (b) Global Minima Information

Figure 6.4: Properties of the Hill Climbing Algorithm

over all 100 iterations for each sequence length. We can see that even for small sequence

lengths the algorithm is able to obtain a phase ordering whose best performance is very close

to optimal. For lengths greater than 1.5 times the batch sequence length, the algorithm is

able to reach optimal in most cases. The plot avg. steps to local minimum in Figure 6.4(a)

shows that the simple hill climbing algorithm requires very few steps to reach local optimal,

and that the average distance to the local optimal decreases with increasing sequence lengths.

This decrease in the number of steps is caused by better performance delivered by each typical

sequence when the initial sequence length is increased, so that in effect the algorithm starts

out with a better initial sequence, and takes fewer steps to the local minimum.

As mentioned earlier, the hill climbing algorithm is iterated 100 times for each sequence

length and each function to eliminate the noise caused by the random component of the

algorithm. The first plot in Figure 6.4(b), avg. % iterations reaching optimal, illustrates that

the average number of iterations reaching optimal increases with increase in the sequence

length up to a certain limit, after which it remains more or less constant. A related measure

% avg. perf. distance from optimal, shown in the second plot in Figure 6.4(b), is the average

function performance over all the iterations for each sequence length. This measure also

shows a marked improvement as the sequence length increases until the average performance

peaks at around 4% worse than optimal. These results indicate the significance of selecting a

correct sequence length during the algorithm. Larger sequence lengths lead to larger active

sequences that result in the initial performance improvement, but increasing the length

incessantly gives diminishing returns while making the algorithm more expensive.

94

Simulated Annealing

Simulated annealing can be defined as a technique to find a good solution to an optimization

problem by trying random variations of the current solution. A worse variation is accepted as

the new solution with a probability that decreases as the computation proceeds. The slower

the cooling schedule, or rate of decrease, the more likely the algorithm is to find an optimal

or near-optimal solution [69]. In our implementation, the algorithm proceeds similarly to

the hill climbing algorithm by starting from a random initialization point in the phase order

space. The sequence length is fixed for each run of the algorithm. During each iteration the

performance of the base sequence is evaluated along with that of all its neighbors. Similar to

the hill climbing method, if the performance of the best performing neighbor is better than

the performance of the base sequence, then that neighbor is selected as the base sequence for

the next iteration. However, if the current iteration is not able to find a neighbor performing

better than the base sequence, the algorithm can still migrate to the best neighbor based on

its current temperature. The worse solution is generally accepted with a probability based

on the Boltzmann probability distribution:

prob = exp(−
δf

T
) (6.1)

where, δf is the difference in performance between the current base sequence and the best

neighbor, and T is the current temperature. Thus, smaller the degradation and higher the

temperature the greater the probability of a worse solution being accepted.

An important component of the simulated annealing algorithm is the annealing schedule,

which determines the initial temperature and how it is lowered from high to low values.

The assignment of a good schedule generally requires physical insight and/or trial and error

experiments. In this paper, we attempt to study the effect of different annealing schedules

on the performance of a simulated annealing algorithm. For this study, the sequence length

is fixed at 1.5 times the batch compiler length of active phases. As seen in the hill climbing

experiments, this is the smallest sequence length at which the average performance reaches

a steady state that is very close to optimal. We conducted a total of 400 experimental

runs by varying the initial temperature and the annealing schedule. The temperature was

varied from 0 to 0.95 in steps of 0.5. For each temperature we defined 20 different annealing

schedules, which control the temperature in steps from 0.5 to 0.95 per iteration. The results

95

Figure 6.5: Increase in the Number of Steps to Local Minimum with Increases in Initial
Temperature and Annealing Schedule Step

for each configuration are averaged over 100 runs to account for noise caused by random

initializations.

Our results, shown in Figure 6.5, indicate that for the phase ordering problem, as seen

by our compiler, the initial temperature as well as the annealing schedule do not have a

significant impact on the performance delivered by the simulated annealing algorithm. The

best performance obtained over all the 400 experimental runs is, on average, 0.15% off from

optimal, with a standard deviation of 0.13%. Likewise, other measures obtained during

our experiments are also consistent across all 400 runs. The average number of iterations

achieving optimal performance during each run is 41.06%, with a standard deviation of

0.81%. The average performance for each run is 15.95% worse than optimal, with a deviation

of 0.55%. However, as expected, the number of steps to a local minimum during each

iteration for each run increases with increase in the initial temperature and the annealing

schedule step. As the starting temperature and annealing schedule step are increased, the

algorithm accepts more poorly performing solutions before halting. However, this increase

in the number of steps to local optimal does not translate into any significant performance

improvement for our experiments,

6.3.2 Greedy Algorithm

Greedy algorithms follow the policy of making the locally optimum choice at every step in

the hope of finally reaching the global optimum. Such algorithms are commonly used for

addressing several optimization problems with huge search spaces. For the phase ordering

96

Figure 6.6: Greedy Algorithm Performance

problem, we start off with the empty sequence as the base sequence. During each iteration

the algorithm creates new sequences by adding each available phase first to the prefix and

then as the postfix of the base sequence. Each of these sequences is evaluated to find the

best performing sequence in the current iteration, which is consequently selected as the base

sequence for the next iteration. If there are multiple sequences obtaining the same best

performance, then one of these is selected at random. The algorithm is repeated 100 times

in order to reduce the noise that can potentially be caused by this random component in

the greedy method. Thus, in our case the algorithm has a bounded cost, as it performs a

fixed number of (15+15=30) evaluations in each step, where 15 is the number of available

optimizations in our compiler.

Our current implementation of the greedy algorithm is inspired by the approach used by

Almagor et al. [6]. Similar to the hill climbing algorithm, the sequence lengths during the

greedy algorithm are varied from the active batch sequence length for each function as the

initial length to 11 times the batch length, in increments of one-fourth the batch length. To

minimize the effect of the random component, the algorithm is repeated 100 times for each

sequence length. The best and average performances during these 100 iterations for each

sequence length, averaged over all executed functions, are illustrated in Figure 6.6. The plots

show a similar pattern to the hill climbing performance graphs. However, it is interesting to

note that the best achievable performance during the greedy algorithm is around 1.1% worse

than optimal, whereas it is very close to optimal (0.02%) for the hill climbing algorithm.

Also, the average performance during the greedy algorithm improves more gradually and

continues to improve for larger sequence lengths as compared to hill climbing.

97

6.3.3 Focusing on Leaf Sequences of Active Phases

As mentioned earlier, leaf function instances are those that cannot be further modified by the

application of any additional optimizations phases. These function instances represent leaves

in the DAG of the phase order space (e.g. nodes 3, 4, 6, and 8 in Figure 5.4). Sequences of

active phases leading to leaf function instances are called leaf sequences. Working with only

the leaf sequences has the advantage that the heuristic algorithm no longer needs to guess

the most appropriate sequence length to minimize the algorithm running time, while at the

same time obtaining the best, or at least close to the best possible performance. Since leaf

function instances are generated by different lengths of active phase sequences, the length

of the leaf sequences is variable. In this section we describe our modifications to existing

algorithms, as well as introduce new algorithms that deal with only leaf sequences.

We first motivate the reason for restricting the heuristic searches to only leaf function

instances. Figure 5.9 shows the distribution of the dynamic frequency counts as compared

to the optimal for all distinct function instances obtained during our exhaustive phase order

space evaluation, averaged over all 79 executed functions. From this figure we can see

that the performance of the leaf function instances is typically very close to the optimal

performance, and that leaf instances comprise a significant portion of optimal function

instances with respect to the dynamic frequency counts. This fact is quite intuitive since

active optimizations generally improve performance, and very rarely cause a performance

degradation. The main drawback of this approach is that the algorithm will not find the

optimal phase ordering for any function that does not have an optimal performing leaf

instance. However, we have observed that most functions do contain optimal performing

leaf instances. For more than 86% of the functions in our benchmark suite there is at least

one leaf function instance that achieved optimal dynamic frequency counts. The average

best performance for leaf function instances over all executed functions is only 0.42% worse

than optimal. Moreover, leaf function instances comprise only 4.38% of the total space of

distinct function instances, which is in turn a minuscule portion of the total phase order

search space. Thus, restricting the heuristic search to leaf function instances constrains the

search to only look at a very small portion of the search space that typically consists of good

function instances, and increases the probability of finding a near-optimal solution quickly.

In the next few sections we will describe some modifications to existing algorithms, as well

98

as describe new algorithms that take advantage of the opportunity provided by leaf function

instances to find better performance faster.

Genetic Algorithm

Genetic algorithms are adaptive algorithms based on Darwin’s theory of evolution [64].

These algorithms have been successfully employed by several researchers to address the phase

ordering problem and other related issues in compilers [12, 11, 65, 66]. Genes correspond to

optimization phases and chromosomes correspond to optimization sequences in the genetic

algorithm. The set of chromosomes currently under consideration constitutes a population.

The number of generations is how many sets of populations are to be evaluated. Our

experiments with genetic algorithms suggests that minor modifications in the configuration

of these parameters do not significantly affect the performance delivered by the genetic

algorithms. For the current study we have fixed the number of chromosomes in each

population at 20. Chromosomes in the first generation are randomly initialized. After

evaluating the performance of each chromosome in the population, they are sorted in

decreasing order of performance. During crossover, 20% of chromosomes from the poorly

performing half of the population are replaced by repeatedly selecting two chromosomes from

the better half of the population and replacing the lower half of the first chromosome with

the upper half of the second and vice-versa to produce two new chromosomes each time.

During mutation we replace a phase with another random phase with a small probability of

5% for chromosomes in the upper half of the population and 10% for the chromosomes in

the lower half. The chromosomes replaced during crossover are not mutated.

The only parameter that we have observed to significantly affect the performance of

the genetic algorithm is the length of each chromosome. We conducted two different

studies with genetic algorithms. In the first study we vary the length of the chromosomes

(attempted sequence) starting from the batch sequence length to 11 times the batch sequence

length, in steps of one-fourth of the batch length. For the second study we modified the

genetic algorithm to only work with leaf sequences of active phases. This approach requires

maintaining active leaf sequences of different lengths in the same population. After crossover

and mutation it is possible that the new sequences no longer correspond to leaf function

instances, and may also contain dormant phases. The modified genetic algorithm handles

such sequences by first squeezing out the dormant phases and then extending the sequence, if

99

(a) Performance (b) Cost

Figure 6.7: Performance and Cost of Genetic Algorithms

needed, by additional randomly generated phases to get a leaf sequence. Figures 6.7(a) and

6.7(b) shows the performance results, as well as a comparison of the two approaches. Please

note that the modified genetic algorithm for leaf instances does not depend on sequence

lengths, and is in fact only a single experimental run. To compare the performance and

cost of the leaf genetic algorithm with genetic algorithms using fixed sequence lengths, the

leaf genetic algorithm measures are represented by single horizontal lines in Figures 6.7(a)

and 6.7(b). The number of generations is a measure of the cost of the algorithm. Thus,

by concentrating on only the leaf function instances, the genetic algorithm is able to obtain

close to the best performance at close to the least cost possible for any sequence length.

Interestingly, performance of the genetic algorithm for leaf sequences (0.43%) is very close

to the best achievable average leaf performance (0.42%).

Random Search

Random sampling of the search space to find good solutions is an effective technique for search

spaces that are typically discrete and sparse, and when the relationships between the various

space parameters are not clearly understood. Examples are the search spaces to address the

phase ordering problem. In this study we have attempted to evaluate random sampling, again

by performing two different sets of experiments similar to the genetic algorithm experiments

in the previous section. For the first set, randomly constructed phase sequences of different

lengths are evaluated until 100 consecutive sequences fail to show an improvement over the

current best. The second set of experiments is similar, but only considers leaf sequences or

leaf function instances.

100

(a) Performance (b) Cost

Figure 6.8: Performance and Cost of Random Search Algorithms

Figures 6.8(a) and 6.8(b) show the performance benefits as well as the cost for all our

random search experiments. As noted in the previous section, the performance and cost of the

random algorithm for leaf instances are represented by horizontal lines in Figures 6.8(a) and

6.8(b). It is interesting to note that random searches are also able to achieve performance

close to the optimal for each function in a few number of attempts. Since our algorithm

configuration mandates the best performance to be held steady for 100 consecutive sequences,

we see that the cost of our algorithm is always above 100 attempts. We again notice that

leaf sequences consistently obtain good performance for the random search algorithm as well.

In fact, for our current configuration, random search algorithm concentrating on only the

leaf sequences is able to cheaply outperform the best achievable by any other random search

algorithm for any sequence length.

N-Lookahead Algorithm

This algorithm scans N levels down the search space DAG from the current location to select

the phase that leads to the best subsequence of phases to apply. The critical parameter is

the number of levels to scan. For a N lookahead algorithm we have to evaluate 15N different

optimization phases to select each phase in the base sequence. This process can be very

expensive, especially for larger values of the lookahead N . Thus, in order for this approach

to be feasible we need to study if small values of the lookahead N can achieve near optimal

performance for most of the functions.

For the current set of experiments we have constrained the values of N to be either 1, 2,

or 3 levels of lookahead. Due to the exponential nature of the phase order search space, we

101

believe that any further increase in the lookahead value will make this method too expensive

in comparison with other heuristic approaches. Table 6.6 shows the average performance

difference from optimal for the three levels of lookahead over all the executed functions in

our set. As expected, the performance improves as the levels of lookahead are increased.

However, even after using three levels of lookahead the performance is far from optimal.

This illustrates the ragged nature of typical phase order search spaces, where it is difficult to

predict the final performance of a phase sequence by only looking at a few number of phases

further down from the current location.

Table 6.6: Perf. of N-Lookahead Algorithm

Lookahead
1 2 3

% Performance 22.90 14.64 5.35

6.3.4 Summary of Results

We have a number of interesting conclusions from our detailed study: (1) Analysis of the

phase order search space indicates that the space is highly discrete and very sparse. (2)

The phase order space typically has a few local and global minima. More importantly, the

sequence length of attempted phases defines the percentage of local and global minima in the

search space. Larger sequence lengths increase the probability of finding a global minima,

but can also increase the search time to find a good solution. Thus, it is important to

find the correct sequence lengths to balance algorithm cost, and its ability to reach better

performing solutions faster. (3) On comparing the performance and cost of different heuristic

algorithms we find that simple techniques, such as local hill climbing allowed to run over

multiple iterations, can often outperform more complex techniques such as genetic algorithms

and lookahead schemes. The added complexity of simulated annealing, as compared to hill

climbing, is found to not significantly affect the performance of the algorithm. Random

searches and greedy search algorithms achieve decent performance, but not as good as the

other heuristic approaches for the amount of effort expended. The unpredictable nature of

phase interactions is responsible for the mediocre performance of the N-lookahead heuristic

algorithm. (4) Due to the inherent difficulty in determining the ideal sequence length to use

102

during any heuristic method, and the high probability of obtaining near-optimal performance

from leaf function instances, we modified existing algorithms to concentrate on only leaf

sequences and demonstrated that for many algorithms leaf sequences can deliver performance

close to the best, and often times even better than that obtained by excessive increases in

sequence lengths for the same algorithms. Moreover, this can be achieved at a fraction of

the running cost of the original algorithm since the space of leaf function instances is only

4.38% of the total space of all function instances. (5) Interestingly, most of the heuristic

algorithms we evaluated are able to achieve performance close to the best phase ordering

performance in acceptable running times for all functions. Thus, in conclusion we find that

differences in performance delivered by different heuristic approaches are not that significant

when compared to the optimal phase ordering performance. Selection of the correct sequence

length is important for algorithms that depend on it, but can be safely bypassed without

any significant performance loss wherever possible by concentrating on leaf sequences.

6.4 Miscellaneous Topics

In this section I will describe some other interesting phase order search space properties and

analysis results.

6.4.1 Statically Predicting Optimization Phase Order Space Size

Out of the 244 functions from the MiBench benchmark suite we were able to completely

enumerate the phase order space for 234 of these functions. Even though we were unable

to exhaustively enumerate the space for the remaining 10 functions, we still had to spend

considerable time and resources for their partial search space evaluation before realizing

that their function complexity was greater that the capability of our current space pruning

techniques to contain the space growth. For such cases, it would be very helpful if we

could a priori determine the complexity of the function and estimate the size of the search

space statically. This determination is, however, very hard to achieve. The growth in the

phase order space is dependent on various factors such as the number of conditional and

unconditional transfers of control, loops and loop nesting depths, as well as the number of

instructions and instruction mix in the function.

In this study we have attempted to calibrate the function complexity based on static

103

Figure 6.9: Function Complexity Distribution

function features such as branches, loops, and number of instructions. All transfers of

control are assigned a unit value. Loops at the outermost level are assigned a weight of

5 units. All successive loop nesting levels are weighted two times the weight of the preceding

loop level. Functions with the same weight are sorted based on the number of instructions

in the unoptimized function instance. The 10 unevaluated functions are assumed to have

3,000,000 distinct function instances, which are more than the number of instances for any

function in our set of evaluated functions.

Figure 6.9 shows the distribution of the number of distinct function instances for each

function as compared to its assigned complexity weight. Figure 6.9 shows a marked increase

in the number of distinct function instances with increase in the assigned complexity weights.

A significant oscillation of values in the graph reconfirms the fact that it is difficult to

accurately predict the number of distinct function instances based on static function features.

It is, however, interesting to note that out of the 10 unevaluated functions, five are detected

to have the highest complexity, with eight of them within the top 13 complexity values.

Thus, a static complexity measure can often aid the complier in effectively prioritizing the

functions for exhaustively evaluating the phase order space.

6.4.2 Redundancy Found by Each Space Pruning Technique

As described in Section 5.3 we employ three techniques to exploit redundancy in the

optimization phase order space: detecting dormant phases, detecting identical function

instances, and detecting equivalent function instances. The attempted search space for

104

Figure 6.10: Active Search Space for Different Sequence Lengths

any function in our compiler with 15 optimization phases is 15n, where n is the maximum

active sequence length for that function. The length of the longest active sequence for

various functions is listed in Tables 5.2 and 5.3. As explained earlier, phases that are

unsuccessful in changing the function when applied are called dormant phases. Eliminating

the dormant phases from the attempted space results in the active search space. Thus, the

active search space only consists of phases that are active, i.e. successful in changing the

program representation when attempted. Figure 6.10 shows the resulting average number

of function instances in the active space for each maximum active sequence length. The

fraction of the active space to the attempted space, particularly for functions with larger

sequence lengths, is so small that we could not easily plot the ratios. This shows the drastic

reduction in attempted search space that is typically obtained by detecting and eliminating

dormant phases from the search space.

The remaining pruning techniques find even more redundancy in the active search space.

These pruning techniques detect identical and equivalent function instances, which causes

different branches of the active search space tree to merge together. Thus, the active search

space tree is converted into a DAG. Figure 6.11 shows the average ratio of the number of

distinct function instances to the number of nodes in the active search space tree. Thus, this

figure illustrates the redundancy eliminated by detecting identical and equivalent function

instances. The fraction of the tree of function instances that is distinct and represented as a

DAG decreases as the active sequence length increases. This property of exponential increase

in the amount of redundancy detected by our pruning techniques as sequence lengths are

105

Figure 6.11: Ratio of Distinct Function Instances in Active Space

(a) (b)

Figure 6.12: Distribution of Performance Compared to Optimal

increased is critical for exhaustively exploring the search spaces for larger functions.

6.4.3 Performance Comparison with Optimal

Figure 6.12(a) shows the distribution of the dynamic frequency count performances of all

function instances as compared to the optimal performance. Figure 6.12(b) illustrates a

similar distribution over only the leaf function instances. For both of these graphs, the

numbers have been averaged over all the 79 executed functions in our benchmark suite.

Function instances that are over 100% worse than optimal are not plotted. On average,

22.27% of total function instances, and 4.70% of leaf instances fall in this category.

Figure 6.12(a) rates the performances of all function instances, even the un-optimized

and partially optimized instances. As a result very few instances compare well with optimal.

We expect leaf instances to perform better since these are fully optimized function instances

106

that cannot be improved upon by any additional optimizations. Accordingly, over 18% of leaf

instances on average yield optimal performance. Also, a significant number of leaf function

instances are seen to perform very close to optimal. This is an important result, which can

be used to seed heuristic algorithms, such as genetic algorithms, with leaf function instances

to induce them to find better phase orderings faster.

6.4.4 Optimization Phase Repetition

Figure 6.13 illustrates the maximum number of times each phase is active during the

exhaustive phase order evaluation over all studied functions. Functions with the same

maximum sequence length are grouped together, and the maximum phase repetition number

of the entire group is plotted. The functions in the figure are sorted on the basis of the

maximum sequence length for that function. The optimization phases in Figure 6.13 are

labeled by the codes assigned to each phase in Table 3.1.

Common subexpression elimination(c) and instruction selection(s) are the phases that

are typically active most often in each sequence. These phases perform the work of cleaning

up the code after many other optimizations, and hence are frequently enabled by other

phases. For example, instruction selection(s) is required to be performed before register

allocation(k) so that candidate load and store instructions can contain the addresses of

arguments or local scalars. However, after allocating locals to registers, register allocation(k)

creates many additional opportunities for instruction selection(s) to combine instructions.

For functions with loops, loop transformations(l) may also be active several times due to

freeing up of registers, or suitable changes to the instruction patterns by other intertwining

optimizations. Most of the branch optimizations, such as branch chaining(b), reverse

branches(r), block reordering(i), and remove useless jumps(u), are not typically enabled

by any other optimizations, and so are active at most once or twice during each optimization

sequence. For this study, we restricted loop unrolling to be active at most once for each

sequence.

6.5 Concluding Remarks

In this chapter I explained how we can analyze the phase order space over several different

functions, and then employ observations about optimization phase interactions and phase

107

Figure 6.13: Repetition Rate of Active Phases

order characteristics to improve other compilation tasks. Investigation of the phase order

space can reveal interesting optimization phase interactions, such as the enabling, disabling,

and independence interactions presented in this chapter. I further showed how we used

the enabling and disabling phase interactions to improve our default compiler to produce

comparably performing code in less than one-third of the compilation time.

In another study we compared the cost and performance of commonly used heuristic

108

phase order search algorithms. We showed the importance of selecting an appropriate

optimization phase sequence length to properly balance algorithm cost and performance.

We discovered that focusing on leaf instances can also prove beneficial for several heuristic

algorithms. Based of such observations, we further proposed and evaluated techniques to

improve current heuristic searches.

109

CHAPTER 7

Future Work

The ultimate goal of this research is to improve performance of compiler generated code

by practically finding near-optimal optimization phase orderings on a per-function basis.

Even though a lot of the infrastructure to achieve exhaustive phase order space evaluation

is already in place, there is still room for several other enhancements. All my current work

has focused on pruning the phase order space. There is still a lot of work needed to actually

reduce the phase order space. This can be achieved by changing the implementation of some

compiler analysis and optimizations, so that false dependences due to incomplete analysis

are no longer present. Phases that can be proved to never interact (independent phases) can

then be merged into one pass for the purposes of phase ordering. This will allow exhaustive

searches of functions with large search spaces, which we have currently ignored. There is

also some potential to develop more aggressive pruning techniques. This follows from our

observation that many function instances detected to be distinct by our pruning techniques

perform equivalently. The main difficulty here is to verifiably show that such instances

will also interact identically with future optimization phases. In the future we also plan to

parallelize the search algorithm by simultaneously starting several threads exploring different

parts of the phase order search space.

We believe that there is still a lot of unexplored analysis that needs to be done to better

understand, or even to simply use the phase interaction information. Such analysis can

then be used to improve both the conventional compilers, as well as approximate heuristic

search approaches. Presently the only feedback we get from each optimization phase was

whether it was active or dormant. We do not keep track of the number and type of actual

changes for which each phase is responsible. Keeping track of this information would be

very useful to get more accurate phase interaction information. Probabilistic statistics on

110

the effect of phase interactions on application performance can be utilized in our probabilistic

batch compilers to improve program performance at the same time as reducing compilation

time. The enabling/disabling relationships between phases could be used for faster genetic

algorithm searches [17]. Machine learning techniques have been shown to be fruitful to

focus probabilistic algorithms on high performance areas of the phase order space based on

correlating function features, and previous phase order behavior. The pre-existing knowledge

can be greatly enhanced by exhaustive searches to further improve probabilistic searches.

111

CHAPTER 8

Conclusions

The phase ordering problem has been an important and long-standing problem in compiler

optimizations. The large number of optimization phases present in current compilers, along

with the phase reordering flexibility provided by many compilers creates a huge space of

distinct phase orderings for every function or application. As a result, exhaustive evaluation

of the complete phase order space to find the best phase ordering for every function was

always considered to be impossible. At the same time, the observation of different phase

orderings producing different relative performances for different functions made it important

to effectively and consistently resolve the phase ordering problem in all cases.

A major result of my dissertation is the realization that exhaustive phase order space

evaluation to find the optimal phase ordering (for all the phases in the VPO compiler) is

practically possible for most functions. Over the course of my research I developed various

techniques and algorithms to make this evaluation feasible. The re-interpretation of the

phase ordering problem to concentrate efforts on generating all possible distinct function

instances that could be produced by different phase orderings, instead of evaluating all

possible phase orderings themselves was instrumental in making the phase ordering problem

more manageable. This re-interpretation at once makes the problem much more manageable,

since we had already shown that many different phase orderings can potentially produce the

same code.

Practically enumerating all distinct function instances for each function required novel

applications of known search algorithms, and a new representation of the phase order space

in the form of a Directed Acyclic Graph (DAG). We also developed aggressive pruning

techniques to exploit redundancy in the phase order space by detecting dormant phases,

and identical/equivalent function instances. We also designed more efficient and accurate

112

estimation methods by categorizing function instances based on their basic-block control

flows. We verified the accuracy of our performance estimations by showing strong correlation

between our performance estimations and cycle counts obtained from a cycle-accurate

simulator. All these techniques allowed us to find near-optimal optimization phase orderings

in a reasonable amount of time for 234 out of the 244 functions that we studied.

Exhaustive evaluation of such a large number of functions provided us with a huge

data space and good understanding of optimization phase interactions and phase ordering

properties. We have also described several other potential applications of using this phase

interaction information. We used the enabling and disabling phase interactions to improve

our conventional compiler by producing comparable performing code in less than one-third

the compilation time. We also conducted a survey of existing heuristic algorithms for finding

effective phase orderings, by comparing their costs and performances with each other, as

well as with the optimal phase ordering performance. A better understanding of the phase

ordering characteristics allowed us to demonstrate the importance of selecting an appropriate

sequence length to balance the cost of the heuristic algorithm with the quality of the solution

produced. We also showed how we can exploit leaf function instances during heuristic

algorithms to reach better performing phase orderings earlier in the search.

In summary, I believe that we have made significant strides in solving one of the most well

known problems in compiler optimization that has been deemed intractable for over 40 years.

I further believe that our approach for efficient and exhaustive evaluation of optimization

phase order space has opened a new area of compiler research.

113

APPENDIX A

Function Statistics

Table A.1: Phase Order Statistics Over All Functions in MiBench

Function Inst Block Br Lp Fn inst Len CF Leaf Batch/optimal
Size Perf.

start in...(j) 1371 88 69 2 120777 25 70 894 1.014 N/A
correct(i) 1294 244 106 5 1348154 25 663 7231 1.042 N/A
main(t) 1275 126 110 6 2882021 29 389 15164 1.163 1.000
parse sw...(j) 1228 198 144 1 180762 20 53 2057 1.004 1.067
start in...(j) 1009 72 55 1 39352 21 18 336 1.025 N/A
start in...(j) 971 82 67 1 63458 21 30 388 1.017 N/A
askmode(i) 942 112 84 3 232453 24 108 475 1.079 1.084
skiptowo...(i) 901 173 144 3 439994 22 103 2834 1.015 1.061
start in...(j) 795 63 50 1 8521 16 45 80 1.027 1.017
TeX skip...(i) 704 87 77 2 5734 15 30 180 1.022 N/A
treeinit(i) 666 77 59 0 8940 15 22 240 1.024 1.000
pfx list...(i) 640 77 59 2 1269638 44 136 4660 1.084 1.043
main(f) 624 50 35 5 2789903 33 122 4214 1.210 1.075
makedent(i) 555 57 47 2 1063697 33 70 5325 1.026 N/A
pat remo...(p) 552 78 62 4 1151047 24 59 1669 1.006 N/A
sha tran...(h) 541 33 25 6 548812 32 98 5262 1.638 1.096
initckch(i) 536 65 48 2 1075278 32 32 4988 1.028 1.000
treeinse...(i) 510 64 48 3 368810 26 75 1000 1.027 N/A
expandmo...(i) 493 56 41 2 23530 22 15 372 1.006 N/A
main(p) 483 39 26 1 14510 15 10 178 1.013 1.077
read sca...(j) 480 59 52 2 44489 18 57 791 1.012 N/A
terminit(i) 476 50 33 1 3072 15 32 56 1.012 N/A
LZWReadB...(j) 472 44 33 2 39434 22 19 189 1.007 N/A
pat inse...(p) 469 51 41 4 1088108 25 71 3021 1.000 1.000
main(j) 465 40 28 1 25495 21 12 134 1.000 1.056
main(l) 464 66 51 4 1896446 25 920 5364 1.097 1.009
dofile(i) 436 50 38 0 5700 16 12 136 1.000 N/A
shellesc...(i) 420 71 53 5 244264 21 161 3054 1.022 N/A
checkfile(i) 416 45 36 5 154348 24 234 2345 1.234 N/A
adpcm co...(a) 385 51 35 1 28013 23 24 230 1.009 1.018
dijkstra(d) 354 30 22 3 92973 22 18 1356 1.066 1.000
givehelp(i) 347 15 10 1 584 11 9 31 1.011 N/A
usage(j) 344 3 1 0 34 9 1 3 1.000 N/A
TeX math...(i) 344 58 49 2 69841 30 50 147 1.037 N/A
casecmp(i) 342 41 34 2 366006 31 37 1804 1.090 N/A
GetCode(j) 339 14 11 1 74531 22 20 117 1.047 N/A
show char(i) 333 64 49 1 45581 17 152 812 1.296 N/A
good(i) 313 37 29 1 87206 22 32 370 1.000 1.000
bmhi init(s) 309 30 22 4 11640 22 11 188 1.022 N/A
adpcm de...(a) 306 41 28 1 44422 29 61 369 1.000 N/A
chk aff(i) 304 34 30 1 179431 21 160 2434 1.082 1.001
cpTag(t) 303 54 40 0 522 11 9 16 1.070 1.016
update f...(i) 294 29 22 1 6874 17 14 64 1.022 N/A
processC...(t) 289 41 31 0 1804 13 10 38 1.034 N/A

continued on next page

114

Table A.1: continued...

Function Inst Block Br Lp Fn inst Len CF Leaf Batch/optimal
Size Perf.

toutent(i) 286 35 29 1 7158 17 17 19 1.032 N/A
combinec...(i) 284 26 19 1 45350 19 75 108 1.062 N/A
stringch...(i) 284 41 30 2 81318 24 40 1184 1.000 N/A
makeposs...(i) 280 45 33 1 70368 24 119 498 1.141 1.000
xgets(i) 273 47 37 1 37960 19 103 284 1.000 1.000
preload ...(j) 268 29 22 2 4890 16 10 29 1.000 N/A
combine ...(i) 263 20 15 0 2352 14 8 26 1.042 N/A
missings...(i) 262 35 28 3 23477 26 30 513 1.023 1.040
pr suf e...(i) 258 30 23 1 19522 20 59 184 1.000 N/A
missingl...(i) 252 40 31 3 11524 16 40 180 1.040 1.129
get inte...(j) 249 20 17 1 16900 20 10 86 1.052 N/A
bmha init(s) 248 31 22 3 44868 25 83 835 1.242 N/A
chk suf(i) 243 25 21 1 75628 21 29 2835 1.050 1.008
findfile...(i) 241 39 29 3 15014 18 50 266 1.000 N/A
read qua...(j) 239 25 21 2 9171 16 28 296 1.000 N/A
acoversb(i) 239 42 36 0 10450 16 16 70 1.000 N/A
load int...(j) 235 19 13 2 6992 17 8 20 1.017 N/A
save cap(i) 226 21 16 1 123843 22 44 1476 1.246 N/A
TeX math...(i) 225 29 24 0 568 12 8 18 1.029 N/A
compound...(i) 222 37 30 1 78429 20 49 448 1.000 1.111
main(b) 220 22 15 2 182246 23 84 508 1.026 1.083
get word...(j) 220 11 7 1 3288 18 4 92 1.114 N/A
TeX LR b...(i) 220 28 23 0 424 10 8 18 1.000 N/A
read col...(j) 218 20 16 2 2440 17 14 40 1.604 N/A
addvhead...(i) 217 13 10 0 1631 13 6 28 1.038 N/A
dumpmode(i) 214 31 25 0 1160 13 7 40 1.061 N/A
skipover...(i) 212 39 30 1 105353 29 110 413 1.047 1.077
set samp...(j) 209 38 33 2 21818 21 51 253 1.038 N/A
entdump(i) 205 25 17 1 3256 14 12 54 1.000 N/A
bmha sea...(s) 201 29 24 3 530754 40 409 2638 1.000 N/A
lookhard...(i) 197 28 20 1 18011 18 41 288 1.107 N/A
tinsert(i) 196 20 13 1 7458 16 10 40 1.017 N/A
lookup(i) 195 27 22 2 37396 20 38 114 1.000 1.077
whatcap(i) 195 42 34 3 20527 19 44 520 1.077 N/A
bmh init(s) 194 21 15 3 5940 21 11 129 1.037 N/A
wronglet...(i) 194 32 25 2 22065 17 25 430 1.017 1.150
ichartos...(i) 186 35 26 3 40524 21 40 304 1.038 1.000
bmhi sea...(s) 184 29 24 3 243309 34 312 1359 1.000 N/A
bmh sear...(s) 181 29 24 3 356817 33 492 1766 1.000 N/A
TeX LR c...(i) 180 21 15 0 3732 14 8 60 1.000 N/A
TeX math...(i) 179 23 19 0 967 11 6 36 1.000 N/A
show line(i) 178 31 24 3 12647 21 23 236 1.065 N/A
getline(i) 176 37 27 2 40982 23 123 122 1.013 N/A
main(s) 175 19 12 3 30980 23 10 163 1.086 1.000
main(d) 175 21 15 3 9206 20 22 85 1.000 1.043
main(q) 174 19 14 2 38759 23 121 160 1.298 1.000
get 8bit...(j) 171 8 5 1 2800 16 4 47 1.059 N/A
treelook...(i) 167 28 23 2 67507 17 65 1992 1.022 1.000
get scal...(j) 166 11 7 1 1784 13 4 42 1.000 N/A
insertto...(i) 163 26 19 4 28980 22 64 378 1.017 N/A
insertR(p) 161 20 15 0 2462 14 6 22 1.000 1.005
get 16bi...(j) 158 8 5 1 1040 13 4 31 1.000 N/A
set quan...(j) 156 30 25 2 11065 16 49 38 1.017 N/A
preload ...(j) 156 14 9 1 1120 13 8 13 1.023 N/A
subsetdu...(i) 156 33 24 3 2166 17 63 28 1.562 N/A
sha final(h) 155 7 4 0 2472 13 3 68 1.000 1.000
setdump(i) 155 23 16 1 6364 19 83 92 1.118 N/A
usage(i) 153 3 1 0 16 5 1 3 1.000 N/A
select f...(j) 149 25 21 0 510 10 10 16 1.000 1.000
TeX skip...(i) 147 26 21 0 871 12 17 32 1.061 N/A
byte rev...(h) 146 8 5 1 2715 19 13 54 2.500 1.004
get 24bi...(j) 145 8 5 1 2168 15 4 44 1.069 N/A

continued on next page

115

Table A.1: continued...

Function Inst Block Br Lp Fn inst Len CF Leaf Batch/optimal
Size Perf.

get word...(j) 144 11 7 1 3816 17 4 92 1.061 N/A
read tex...(j) 141 21 16 2 52861 20 34 422 1.071 N/A
main(a) 140 16 10 1 1676 16 8 12 1.000 1.000
strtoich...(i) 140 25 18 1 10721 19 17 109 1.056 1.000
read sca...(j) 139 27 22 1 46248 23 47 207 1.021 N/A
ntbl bit...(b) 138 3 1 0 48 7 1 8 1.000 1.000
read pbm...(j) 134 27 21 2 4182 15 18 60 1.020 1.067
bitcount(b) 133 3 1 0 44 8 1 7 1.000 1.000
get 8bit...(j) 131 8 5 1 1352 14 4 40 1.000 N/A
strsearch(s) 128 23 17 2 32550 17 48 972 1.025 1.015
insert(i) 128 18 14 1 6053 17 22 63 1.025 N/A
get scal...(j) 126 11 7 1 1592 12 4 37 1.000 N/A
enqueue(d) 124 15 10 1 488 13 4 12 1.029 1.002
get text...(j) 123 8 5 1 1068 13 4 7 1.000 N/A
read col...(j) 123 11 7 1 2802 17 12 46 1.412 N/A
sha upda...(h) 118 11 7 1 5990 18 50 49 1.462 1.001
get pixe...(j) 117 8 5 1 1292 13 4 33 1.087 N/A
transpos...(i) 117 14 10 1 5310 16 19 44 1.032 1.045
read rle...(j) 116 18 13 1 13356 16 7 39 1.000 N/A
expand s...(i) 111 16 11 1 761 13 13 25 1.549 N/A
pat sear...(p) 110 20 14 1 5052 15 33 98 1.000 1.006
compress...(t) 106 8 5 1 30885 32 3 142 1.083 N/A
get 24bi...(j) 104 8 5 1 868 15 4 20 1.000 N/A
init sea...(s) 103 13 9 2 1430 15 11 30 1.034 1.004
main(h) 101 16 11 1 22476 20 129 320 1.000 1.071
expand p...(i) 97 11 7 1 959 13 13 25 1.575 N/A
compress...(t) 94 8 5 1 240 10 3 11 1.000 1.000
ins root...(i) 94 11 8 1 9746 15 20 101 1.057 N/A
keymatch(j) 92 20 16 1 26939 19 20 126 1.062 N/A
extralet...(i) 91 17 13 1 4278 15 28 56 1.031 1.057
trydict(i) 88 10 6 0 815 11 6 33 1.100 1.167
sha init(h) 87 3 1 0 68 8 1 5 1.000 1.000
Index to...(f) 87 19 12 0 234 10 6 12 1.000 N/A
toutword(i) 85 11 7 1 712 13 10 15 1.000 N/A
AR btbl ...(b) 83 3 1 0 87 9 1 10 1.000 1.000
compress...(t) 82 8 5 1 345 14 3 10 1.000 N/A
ReadColo...(j) 79 8 5 1 533 14 6 8 1.120 N/A
get text...(j) 79 8 5 1 1040 13 4 7 1.000 N/A
entryhas...(i) 79 13 11 0 318 8 6 16 1.000 N/A
forcevhe...(i) 79 13 9 0 1538 12 9 90 1.067 N/A
usage(t) 78 8 5 1 1324 15 4 11 1.000 N/A
dequeue(d) 76 6 3 0 102 7 3 14 1.042 1.000
bstr i(b) 70 12 9 1 4437 16 11 45 1.000 N/A
GetDataB...(j) 70 9 5 0 90 7 2 5 1.000 N/A
get 8bit...(j) 70 8 5 1 504 10 4 9 1.000 N/A
strtosic...(i) 70 6 3 0 78 8 2 6 1.000 N/A
get memo...(j) 69 3 1 0 129 8 1 12 1.053 N/A
checkcmap(t) 69 15 12 1 2106 16 24 24 1.048 N/A
BW btbl ...(b) 68 3 1 0 72 8 1 7 1.000 1.000
pat count(p) 68 6 4 0 430 11 5 4 1.000 N/A
cpTags(t) 68 8 5 1 943 16 5 8 1.000 1.000
copyout(i) 68 17 12 1 696 12 13 20 1.038 1.068
TeX strn...(i) 67 11 8 0 2190 12 8 88 1.048 N/A
DoExtens...(j) 66 3 1 0 20 6 1 6 1.095 N/A
ichartos...(i) 66 6 3 0 70 8 2 6 1.000 N/A
printich...(i) 65 7 4 0 561 12 3 40 1.000 N/A
setbit(b) 64 17 9 0 736 11 5 16 1.033 N/A
InitLZWC...(j) 64 3 1 0 60 9 1 4 1.000 N/A
print pa...(d) 63 6 3 0 188 13 2 8 1.062 1.054
bfopen(b) 62 9 7 0 1062 11 10 28 1.000 N/A
TeX skip...(i) 62 12 9 1 330 11 6 19 1.235 N/A
TeX open...(i) 62 12 9 1 330 11 6 19 1.235 N/A

continued on next page

116

Table A.1: continued...

Function Inst Block Br Lp Fn inst Len CF Leaf Batch/optimal
Size Perf.

onstop(i) 61 3 1 0 10 4 1 2 1.000 N/A
sha print(h) 60 3 1 0 45 8 1 7 1.000 1.091
get raw ...(j) 60 6 3 0 105 10 1 10 1.000 1.000
bfwrite(b) 59 6 3 0 309 9 2 10 1.000 N/A
NumberOf...(f) 59 11 7 1 3235 15 10 80 1.000 1.289
bfread(b) 58 8 4 0 273 10 2 10 1.000 N/A
sha stre...(h) 55 8 5 1 210 13 4 4 1.050 1.092
ins cap(i) 55 11 8 1 7088 14 20 51 1.056 N/A
read byte(j) 52 6 3 0 112 9 2 3 1.000 N/A
jinit re...(j) 52 3 1 0 30 6 1 2 1.000 N/A
ReadByte(j) 52 6 3 0 112 9 2 3 1.000 N/A
jinit re...(j) 52 3 1 0 30 6 1 2 1.000 N/A
read byt...(j) 52 6 3 0 112 9 2 3 1.000 N/A
jinit re...(j) 52 3 1 0 30 6 1 2 1.000 N/A
issubset(i) 52 7 5 0 1178 10 5 93 1.000 N/A
myfree(i) 52 10 8 0 440 12 8 21 1.062 N/A
ReInitLZW(j) 51 3 1 0 52 9 1 4 1.000 N/A

bswap ...(p) 51 3 1 0 30 7 1 7 1.000 N/A
treeload(i) 51 8 5 1 296 11 4 4 1.000 N/A
line size(i) 50 10 7 1 2905 12 9 36 1.059 N/A
read non...(j) 48 8 5 1 1011 12 3 6 1.000 N/A
btbl bit...(b) 47 6 3 0 322 9 2 12 1.000 N/A
bit shif...(b) 47 10 7 1 200 8 9 3 1.000 1.000
wrongcap...(i) 47 6 3 0 36 6 3 4 1.118 1.100
flagout(i) 47 6 3 0 30 6 1 6 1.000 N/A
jinit re...(j) 45 3 1 0 22 6 1 2 1.000 1.000
ntbl bit...(b) 43 6 3 0 272 10 2 20 1.200 1.397
forcelc(i) 43 8 5 1 1739 21 13 83 1.000 N/A
done(i) 42 9 5 0 112 9 2 9 1.000 N/A
getbit(b) 41 11 5 0 34 8 1 3 1.056 N/A
pbm getc(j) 41 11 7 1 96 9 7 4 1.077 1.000
text getc(j) 41 11 7 1 96 9 7 4 1.077 N/A
upcase(i) 41 8 5 1 327 12 3 7 1.000 1.000
lowcase(i) 41 8 5 1 327 12 3 7 1.000 N/A
chupcase(i) 41 3 1 0 30 7 1 1 1.000 N/A
flipbit(b) 38 9 4 0 61 8 1 4 1.000 N/A
compare(q) 37 11 7 0 81 7 6 6 1.083 1.259
bit count(b) 36 9 5 1 169 13 4 6 1.250 1.014
CheckPoi...(f) 35 6 3 0 93 7 3 16 1.100 1.500
combinea...(i) 33 3 1 0 106 8 1 12 1.000 N/A
IsPowerO...(f) 30 9 7 0 378 10 6 24 1.000 1.000
pdictcmp(i) 26 3 1 0 27 5 1 4 1.000 N/A

bswap ...(p) 25 3 1 0 42 7 1 4 1.000 N/A
tbldump(i) 25 8 5 1 92 11 8 7 1.818 N/A
alloc bi...(b) 24 3 1 0 30 6 1 3 1.000 N/A
tryveryh...(i) 23 3 1 0 22 6 1 3 1.167 1.167
SkipData...(j) 19 8 5 1 66 6 3 2 1.000 N/A
posscmp(i) 18 3 1 0 16 5 1 2 1.333 N/A
bfclose(b) 16 3 1 0 9 4 1 1 1.000 N/A
read std...(j) 16 3 1 0 9 4 1 2 1.000 N/A
write st...(j) 16 3 1 0 9 4 1 2 1.000 1.000
bit(p) 15 3 1 0 37 7 1 4 1.000 1.000
bhmi cle...(s) 14 3 1 0 7 3 1 1 1.000 N/A
qcount(d) 12 3 1 0 7 3 1 1 1.000 1.000
putch(i) 11 3 1 0 15 5 1 2 1.500 N/A
mymalloc(i) 11 3 1 0 15 5 1 2 1.500 N/A
stop(i) 9 3 1 0 3 2 1 1 1.000 N/A
finish i...(j) 5 3 1 0 3 2 1 1 1.000 N/A
finish i...(j) 5 3 1 0 3 2 1 1 1.000 N/A
finish i...(j) 5 3 1 0 3 2 1 1 1.000 1.000
finish i...(j) 5 3 1 0 3 2 1 1 1.000 N/A

continued on next page

117

Table A.1: continued...

Function Inst Block Br Lp Fn inst Len CF Leaf Batch/optimal
Size Perf.

erase(i) 5 3 1 0 3 2 1 1 1.000 N/A
move(i) 5 3 1 0 3 2 1 1 1.000 N/A
inverse(i) 5 3 1 0 3 2 1 1 1.000 N/A
normal(i) 5 3 1 0 3 2 1 1 1.000 N/A
backup(i) 5 3 1 0 3 2 1 1 1.000 N/A
average (234) 196.2 23.7 17.3 1.1 89946.7 14.7 36.2 458.3 1.065 1.048

Table A.1: (Function - function name followed by benchmark indicator
[(a)-adpcm, (b)-bitcount, (d)-dijkstra, (f)-fft, (h)-sha, (i)-ispell, (j)-jpeg, (l)-
blowfish, (q)-qsort, (p)-patricia, (t)-tiff, (s)-stringsearch]), (Inst - number of
instructions in unoptimized function), (Block - number of basic blocks in
unoptimized function), (Br - number of conditional and unconditional transfers
of control), (Lp - number of loops), (Fn inst - number of distinct control-flow
instances), (Len - largest active optimization phase sequence length), (CF -
number of distinct control flows), (Leaf - Number of leaf function instances),
(% Batch/optimal - % code size and dynamic performance ratio of the batch
Vs. the best phase ordering).

118

REFERENCES

[1] Jean E. Sammet. Programming Languages: History and Fundamentals. Prentice-Hall,
Inc., 1969.

[2] John Backus. The history of fortran i, ii, and iii. SIGPLAN Notices, 13(8):165–180,
1978.

[3] J. W. Backus, R. J. Beeber, S. Best, R. Goldberg, L. M. Haibt, H. L. Herrick, R. A.
Nelson, D. Sayre, P. B. Sheridan, H. J. Stern, I. Ziller, R. A. Hughes, and R. Nutt.
The fortran automatic coding system. In Proceedings of the Western Joint Computer
Conference, pages 188–198, February 1957.

[4] M. E. Benitez and J. W. Davidson. A portable global optimizer and linker. In
Proceedings of the SIGPLAN’88 Conference on Programming Language Design and
Implementation, pages 329–338. ACM Press, 1988.

[5] Deborah L. Whitfield and Mary Lou Soffa. An approach for exploring code improving
transformations. ACM Trans. Program. Lang. Syst., 19(6):1053–1084, 1997.

[6] L. Almagor, Keith D. Cooper, Alexander Grosul, Timothy J. Harvey, Steven W. Reeves,
Devika Subramanian, Linda Torczon, and Todd Waterman. Finding effective compi-
lation sequences. In LCTES ’04: Proceedings of the 2004 ACM SIGPLAN/SIGBED
Conference on Languages, Compilers, and Tools for Embedded Systems, pages 231–239,
New York, NY, USA, 2004. ACM Press.

[7] T. Kisuki, P.M.W. Knijnenburg, M.F.P. O’Boyle, F. Bodin, , and H.A.G. Wijshoff. A
feasibility study in iterative compilation. In Proc. ISHPC’99, volume 1615 of Lecture
Notes in Computer Science, pages 121–132, 1999.

[8] P. Kulkarni, D. Whalley, G. Tyson, and J. Davidson. Exhaustive optimization phase
order space exploration. In Proceedings of the Fourth Annual IEEE/ACM International
Symposium on Code Generation and Optimization, March 26-29 2006.

[9] Steven R. Vegdahl. Phase coupling and constant generation in an optimizing microcode
compiler. In Proceedings of the 15th annual workshop on Microprogramming, pages
125–133. IEEE Press, 1982.

[10] D. Whitfield and M. L. Soffa. An approach to ordering optimizing transformations.
In Proceedings of the second ACM SIGPLAN symposium on Principles & Practice of
Parallel Programming, pages 137–146. ACM Press, 1990.

119

[11] Keith D. Cooper, Philip J. Schielke, and Devika Subramanian. Optimizing for reduced
code space using genetic algorithms. In Workshop on Languages, Compilers, and Tools
for Embedded Systems, pages 1–9, May 1999.

[12] Prasad Kulkarni, Wankang Zhao, Hwashin Moon, Kyunghwan Cho, David Whalley,
Jack Davidson, Mark Bailey, Yunheung Paek, and Kyle Gallivan. Finding effective
optimization phase sequences. In Proceedings of the 2003 ACM SIGPLAN Conference
on Languages, Compilers, and Tools for Embedded Systems, pages 12–23. ACM Press,
2003.

[13] Spyridon Triantafyllis, Manish Vachharajani, Neil Vachharajani, and David I. August.
Compiler optimization-space exploration. In Proceedings of the International Sympo-
sium on Code Generation and Optimization, pages 204–215. IEEE Computer Society,
2003.

[14] Marc Auslander and Martin Hopkins. An overview of the pl.8 compiler. In Proceedings
of the ACM SIGPLAN Notices ’82 Symposium on Compiler Construction, pages 22–31,
Boston, June 1982.

[15] Shlomit S. Pinter. Register allocation with instruction scheduling: A new approach. In
SIGPLAN Conference on Programming Language Design and Implementation, pages
248–257, 1993.

[16] Cindy Norris and Lori L. Pollock. An experimental study of several cooperative register
allocation and instruction scheduling strategies. In MICRO 28: Proceedings of the 28th
annual international symposium on Microarchitecture, pages 169–179, Los Alamitos,
CA, USA, 1995. IEEE Computer Society Press.

[17] P. Kulkarni, S. Hines, J. Hiser, D. Whalley, J. Davidson, and D. Jones. Fast searches
for effective optimization phase sequences. In Proceedings of the ACM SIGPLAN ’04
Conference on Programming Language Design and Implementation, June 2004.

[18] Prasad A. Kulkarni, Stephen R. Hines, David B. Whalley, Jason D. Hiser, Jack W.
Davidson, and Douglas L. Jones. Fast and efficient searches for effective optimization-
phase sequences. ACM Transactions on Architecture and Code Optimization, 2(2):165–
198, 2005.

[19] Prasad Kulkarni, David Whalley, Gary Tyson, and Jack Davidson. Practical exhaustive
optimization phase order exploration and evaluation. submitted in the ACM Transac-
tions on Programming Languages and Systems, October 2006.

[20] Prasad Kulkarni, David Whalley, Gary Tyson, and Jack Davidson. In search of near-
optimal optimization phase orderings. In LCTES ’06: Proceedings of the 2006 ACM
SIGPLAN/SIGBED conference on Language, compilers and tool support for embedded
systems, pages 83–92, New York, NY, USA, 2006. ACM Press.

[21] Prasad Kulkarni, David Whalley, Gary Tyson, and Jack Davidson. Evaluating heuristic
optimization phase order search algorithms. In to appear in the IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization, March 2007.

120

[22] Prasad A. Kulkarni. Performance driven optimization tuning in vista. Master’s thesis,
Florida State University, July 2003.

[23] F. Bodin, T. Kisuki, P.M.W. Knijnenburg, M.F.P. O’Boyle, , and E. Rohou. Iterative
compilation in a non-linear optimisation space. Proc. Workshop on Profile and Feedback
Directed Compilation.Organized in conjuction with PACT’98, 1998.

[24] T. Kisuki, P. Knijnenburg, , and M.F.P. O’Boyle. Combined selection of tile sizes and
unroll factors using iterative compilation. In Proc. PACT, pages 237–246, 2000.

[25] P. M. W. Knijnenburg, T. Kisuki, K. Gallivan, and M. F. P. O’Boyle. The effect
of cache models on iterative compilation for combined tiling and unrolling: Research
articles. Concurr. Comput. : Pract. Exper., 16(2-3):247–270, 2004.

[26] R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated empirical
optimization of software and the ATLAS project. Parallel Computing, 27(1–2):3–35,
2001. Also available as University of Tennessee LAPACK Working Note #147, UT-CS-
00-448, 2000 (www.netlib.org/lapack/lawns/lawn147.ps).

[27] Jeff Bilmes, Krste Asanovic, Chee-Whye Chin, and Jim Demmel. Optimizing matrix
multiply using phipac: a portable, high-performance, ansi c coding methodology. In
Proceedings of the 11th international conference on Supercomputing, pages 340–347.
ACM Press, 1997.

[28] Frigo, Matteo, Johnson, and Steven G. FFTW: An adaptive software architecture
for the FFT. In Proc. IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing,
volume 3, pages 1381–1384, Seattle, WA, May 1998.

[29] M. Frigo. A Fast Fourier Transform Compiler. In PLDI’99 — Conference on
Programming Language Design and Implementation, Atlanta, GA, 1999.

[30] M. Frigo and S. G. Johnson. The fastest fourier transform in the west. Technical Report
MIT/LCS/TR-728, 1997.

[31] Jakob Ostergaard. Optimqr - a software package to create near-optimal solvers for
sparse systems of linear equations. http://ostenfeld.dk/ jakob/OptimQR.

[32] See homepage for a complete list of the people involved. Signal processing algorithms
implementation research for adaptable libraries. http://www.ece.cmu.edu/ spiral.

[33] See homepage for a complete list of the people involved. Tune - mathemati-
cal models, transformations and systems support for menory-friendly programming.
http://www.cs.unc.edu/Research/TUNE.

[34] Stephanie Coleman and Kathryn S. McKinley. Tile size selection using cache organiza-
tion and data layout. In PLDI ’95: Proceedings of the ACM SIGPLAN 1995 conference
on Programming language design and implementation, pages 279–290, New York, NY,
USA, 1995. ACM Press.

121

[35] Steve Carr. Combining optimization for cache and instruction-level parallelism. In
PACT ’96: Proceedings of the 1996 Conference on Parallel Architectures and Compila-
tion Techniques, page 238, Washington, DC, USA, 1996. IEEE Computer Society.

[36] Brian J. Gough. An Introduction to GCC. Network Theory Ltd., May 2005.

[37] George E. P. Box, William G. Hunter, and J. Stuart Hunter. Statistics for Experi-
menters: An Introduction to Design, Data Analysis, and Model Building. John Wiley
& Sons, 1 edition, June 1978. isbn:0471093157.

[38] K. Chow and Y. Wu. Feedback-directed selection and characterization of compiler
optimizatons. Proc. 2nd Workshop on Feedback Directed Optimization, 1999.

[39] R.P.J. Pinkers, P.M.W. Knijnenburg, M. Haneda, and H.A.G. Wijsholt. Analysis of
compiler options using orthogonal arrays. In Proceedings of CPC, pages 137–148, 2004.

[40] M. Haneda, P. M. W. Knijnenburg, and H. A. G. Wijshoff. Optimizing general purpose
compiler optimization. In CF ’05: Proceedings of the 2nd conference on Computing
frontiers, pages 180–188, New York, NY, USA, 2005. ACM Press.

[41] E. Granston and A. Holler. Automatic recommendation of compiler options. In
Proceedings 4th Feedback Directed Optimization Workshop, December 2001.

[42] Zhelong Pan and Rudolf Eigenmann. Fast and effective orchestration of compiler
optimizations for automatic performance tuning. In CGO ’06: Proceedings of the Inter-
national Symposium on Code Generation and Optimization, pages 319–332, Washington,
DC, USA, 2006. IEEE Computer Society.

[43] Sid-Ahmed-Ali Touati and Denis Barthou. On the decidability of phase ordering
problem in optimizing compilation. In CF ’06: Proceedings of the 3rd conference on
Computing frontiers, pages 147–156, New York, NY, USA, 2006. ACM Press.

[44] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P. O’Boyle, J. Thomson,
M. Toussaint, and C. K. I. Williams. Using machine learning to focus iterative
optimization. In CGO ’06: Proceedings of the International Symposium on Code
Generation and Optimization, pages 295–305, Washington, DC, USA, 2006. IEEE
Computer Society.

[45] Min Zhao, Bruce Childers, and Mary Lou Soffa. Predicting the impact of optimizations
for embedded systems. In LCTES ’03: Proceedings of the 2003 ACM SIGPLAN
Conference on Language, compiler, and tool for embedded systems, pages 1–11, New
York, NY, USA, 2003. ACM Press.

[46] Min Zhao, Bruce R. Childers, and Mary Lou Soffa. A model-based framework: An
approach for profit-driven optimization. In Proceedings of the International Symposium
on Code Generation and Optimization, pages 317–327, Washington, DC, USA, 2005.

[47] W. Kelly and W. Pugh. A framework for unifying reordering transformations. Technical
Report CS-TR-3193, 1993.

122

[48] Shun Long and Grigori Fursin. A heuristic search algorithm based on unified transfor-
mation framework. In 7th workshop on High Performance Scientific and Engineering
Computing, Norway, 2005. IEEE Computer Society.

[49] Henry Massalin. Superoptimizer: a look at the smallest program. In Proceedings of the
Second International Conference on Architectual Support for Programming Languages
and Operating Systems, pages 122–126. IEEE Computer Society Press, 1987.

[50] Torbjrn Granlund and Richard Kenner. Eliminating branches using a superoptimizer
and the GNU C compiler. In Proceedings of the ACM SIGPLAN 1992 Conference on
Programming Language Design and Implementation, pages 341–352. ACM Press, 1992.

[51] P.M.W. Knijnenburg, T. Kisuki, K. Gallivan, and M.F.P. O’Boyle. The effect of cache
models on iterative compilation for combined tiling and unrolling. In Proc. FDDO-3,
pages 31–40, 2000.

[52] K. Cooper, A. Grosul, T. Harvey, S. Reeves, D. Subramanian, L. Torczon, and
T. Waterman. Acme: Adaptive compilation made efficient. In Proceedings of the ACM
SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded
Systems, pages 69–78, June 15-17 2005.

[53] Tim A. Wagner, Vance Maverick, Susan L. Graham, and Michael A. Harrison. Accurate
static estimators for program optimization. SIGPLAN Not., 29(6):85–96, 1994.

[54] Michael E. Wolf, Dror E. Maydan, and Ding-Kai Chen. Combining loop transformations
considering caches and scheduling. In MICRO 29: Proceedings of the 29th annual
ACM/IEEE International Symposium on Microarchitecture, pages 274–286, Washing-
ton, DC, USA, 1996. IEEE Computer Society.

[55] F. Irigoin and R. Triolet. Supernode partitioning. In POPL ’88: Proceedings of the 15th
ACM SIGPLAN-SIGACT symposium on Principles of Programming Languages, pages
319–329, New York, USA, 1988. ACM Press.

[56] Guang R. Gao, R. Olsen, Vivek Sarkar, and Radhika Thekkath. Collective loop fusion
for array contraction. In Proceedings of the 5th International Workshop on Languages
and Compilers for Parallel Computing, pages 281–295, London, UK, 1993. Springer-
Verlag.

[57] M. E. Benitez and J. W. Davidson. The advantages of machine-dependent global
optimization. In Proceedings of the 1994 International Conference on Programming
Languages and Architectures, pages 105–124, March 1994.

[58] Doug Burger and Todd M. Austin. The SimpleScalar tool set, version 2.0. SIGARCH
Comput. Archit. News, 25(3):13–25, 1997.

[59] Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan Ernst, Todd M. Austin, Trevor
Mudge, and Richard B. Brown. MiBench: A free, commercially representative embedded
benchmark suite. IEEE 4th Annual Workshop on Workload Characterization, December
2001.

123

[60] W. Zhao, B. Cai, D. Whalley, M. Bailey, R. van Engelen, X. Yuan, J. Hiser, J. Davidson,
K. Gallivan, and D. Jones. Vista: A system for interactive code improvement. In
ACM SIGPLAN Conference on Languages, Compilers, and Tools for Embedded Systems,
pages 155–164. ACM, June 2002.

[61] Prasad Kulkarni, Wankang Zhao, Steve Hines, David Whalley, , Xin Yuan, Robert
van Engelen, Kyle Gallivan, Jason Hiser, Jack Davidson, Baosheng Cai, Mark Bailey,
Hwashin Moon, Kyunghwan Cho, Yunheung Paek, and Douglas Jones. Vista: Vpo
interactive system for tuning applications. volume 5, pages 819–863, November 2006.

[62] Jack W. Davidson and David B. Whalley. A design environment for addressing
architecture and compiler interactions. Microprocessors and Microsystems, 15(9):459–
472, November 1991.

[63] John H. Holland. Adaptation in natural and artificial systems. University of Michigan
Press, 1975.

[64] Melanie Mitchell. An Introduction to Genetic Algorithms. Cambridge, Mass. MIT Press,
1996.

[65] A. Nisbet. Genetic algorithm optimized parallelization. Workshop on Profile and
Feedback Directed Compilation, 1998.

[66] Mark Stephenson, Saman Amarasinghe, Martin Martin, and Una-May O’Reilly. Meta
optimization: improving compiler heuristics with machine learning. In Proceedings of
the ACM SIGPLAN 2003 Conference on Programming Language Design and Imple-
mentation, pages 77–90. ACM Press, 2003.

[67] W. Peterson and D. Brown. Cyclic codes for error detection. In Proceedings of the IRE,
volume 49, pages 228–235, January 1961.

[68] Eric W. Weisstein. Correlation coefficient. from MathWorld - A Wolfram Web Resource,
May 2006. http://mathworld.wolfram.com/CorrelationCoefficient.html.

[69] Paul E. Black. Simulated annealing. Dictionary of Algorithms and Data Structures
adopted by the U.S. National Institute of Standards and Technology, December 2004.
http://www.nist.gov/dads/HTML/simulatedAnnealing.html.

124

BIOGRAPHICAL SKETCH

Prasad A. Kulkarni

The author was born on October 13th, 1979. He received his Bachelor of Engineering

(B.E.) in Computer Engineering from Maharashtra Institute on Technology, Poona Univer-

sity, India in August, 2001. He received his Master of Science degree in Computer Science

from Florida State University in August, 2003, where his thesis dealt with research on the

phase ordering problem in compiler optimizations, and enhancing the VISTA interactive

compilation environment. After graduation with his M.S. degree he continued at Florida

State University to pursue a Ph.D. in Computer Science. His research interests include

compilers, computer architecture, and embedded systems.

125

