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ABSTRACT 
 
 

An assembly optimizer takes in assembly code as input and produces improved and/or translated 

assembly code as output. In this project I took an existing assembly optimizer that was targeted 

for the SPARC assembly language and retargeted it to the MIPS/SCALE assembly language. To 

do this I also solved the problem of determining what registers are live at each point in the assembly 

program without performing any interprocedural analysis to allow for determining if the assembly 

optimizer properly handled instructions in a more efficient manner. Additionally, I expanded all 

pseudo assembly instructions that would generate two or more machine instructions so that there 

is a one-to-one correspondence between each assembly instruction and machine instruction, which 

allows for more effective instruction scheduling. I also provided the option to generate SCALE 

assembly, which has some slightly different features than the conventional MIPS assembly, to be 

used for further research projects. I extensively tested the MIPS assembly optimizer (ASOPT) and 

was able to process all MIPS assembly files produced by the gcc compiler when compiling the 

MiBench and SPEC 2006 benchmark suites. This included successfully translating each assembly 

instruction through the assembly optimizer with no assembly time errors while also verifying that 

no instructions with unnecessary dead assignments were introduced by the assembly optimizer. 
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CHAPTER 1 
 

INTRODUCTION 
 
 

1.1 Motivation 
 

An assembly optimizer takes in assembly code as input and produces optimized or 

translated assembly code as output. An assembly optimizer abstracted outside of a compiler 

provides many benefits to a conventional compiler, such as gcc. One primary benefit is it allows 

for us to perform additional low-level optimizations or translation at the assembly level without 

having to actually modify the complex implementation of a compiler, gcc for example is several 

hundred thousand lines of code. At the same time, it allows us to take advantage of the 

optimizations and code generation automatically performed by the compiler producing the initial 

assembly code.  

This Masters project is part of the SCALE research project. SCALE stands for Statically 

Controlled, Asynchronous Lane Execution and this research is funded by NSF. The SCALE 

project will have several assembly language instructions that will support a variety of new 

architectural features. This retargeted MIPS assembly optimizer will be used on future projects 

involving various SCALE ISAs, and this assembly optimizer can also function as a learning tool 

for implementing various low-level assembly optimizations on MIPS assembly code.  

This project involved porting an assembly optimizer used in the COP6622 Advanced 

Topics in Compilation course. The assembly optimizer used in that course was for the SPARC 

assembly language. In order for the SCALE project to use the assembly optimizer it was necessary 

to retarget it to support all MIPS instructions generated by the gcc compiler. Additionally, I 

provided the option to translate some MIPS assembly instructions to SCALE-specific instructions. 

One of the significant challenges of this project was determining what registers are live at each 

point in the assembly program without performing interprocedural analysis. This document 

explains the process and implementation taken to retarget the SPARC assembly optimizer 

previously written by Dr. Whalley to the MIPS assembly language. 

  



2 
 

 

1.2 Overview of MIPS Assembly Optimizer 
 

This project began with an initial SPARC assembly optimizer written by Dr. Whalley. The 

SPARC assembly optimizer was split up into machine independent code stored in a “lib” directory 

and SPARC dependent code was placed into a “sparc” directory. I had the task of creating the code 

in the mips directory that contains the mips dependent code so the assembly optimizer could 

analyze and process mips assembly instructions. Beginning with this initial assembly optimizer 

the task at hand was to support all MIPS assembly instructions that would be encountered in a gcc 

generated assembly file. I then ran the assembly file along with other necessary generated files 

through the assembly optimizer. As I encountered unhandled assembly instructions I would add 

support for them manually when necessary rather than going through the MIPS assembly language 

manual and adding every possible MIPS instruction. The means for generating the MIPS gkd file 

and objdump file shown in Figure 1 will be explained in later sections of the document. 

C source file

gcc

MIPS gkd file

geninf

objdump file

geninf

inf file

assembly 
optimizer

optimized 
assembly file

MIPS assembly 
file

assembly 
optimizer

optimized 
assembly file

Figure 1: Generating Optimized Assembly File Process 
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1.2.1 Processing Assembly Instructions 
 

As assembly instructions were encountered that were unhandled, I would add each of these 
to an instinfo struct that shows the fields for each type of instruction. Each of these instructions 
and key details about them are stored within the instinfo struct which is shown below. These fields 
allow the assembly optimizer to properly analyze and manipulate each assembly instruction. 

 
struct instinfo { 
   char *mneumonic;      /* mneumonic of instruction                */ 
   enum insttype type;  /* instruction class                       */ 
   int numargs;   /* number of arguments                     */ 
   int numdstregs;  /* number consecutive registers associated with destination*/ 
   int numsrcregs;  /* number consecutive registers associated with source*/ 
   int latency;   /* number of cycles to produce value       */ 
   int setscc;   /* condition codes set?                    */ 
   int lastsrccanbeconst; /* can last src operand be a constant?     */ 
   int datatype;  /* datatype of instruction                 */ 
   int lanes;   /* lanes in which instruction can execute  */ 

}; 

The insttypes is an array of instinfo structs that is interlaid to contain proper values for each 
instruction. Provided below is an example of some of the instructions added to this structure. As 
each new MIPS instructions is encountered, we would add the instruction to the structure.  

 
struct instinfo insttypes[] = { 
 {"addiu", ARITH_INST,  3, 1, 1, 1, FALSE, TRUE,  INT_TYPE,    GENINT_LANE}, 
 {"addu", ARITH_INST,  3, 1, 1, 1, FALSE, FALSE, INT_TYPE,    GENINT_LANE}, 
 {"add.d", ARITH_INST,  3, 2, 2, 1, FALSE, FALSE, DOUBLE_TYPE, GENFP_LANE}, 
 {"add.s", ARITH_INST,  3, 1, 1, 1, FALSE, FALSE, FLOAT_TYPE,  GENFP_LANE}, 
 {"and", ARITH_INST,  3, 1, 1, 1, FALSE, FALSE, INT_TYPE,    GENINT_LANE}, 
 {"andi", ARITH_INST,  3, 1, 1, 1, FALSE, TRUE,  INT_TYPE,    GENINT_LANE}, 
 {"b",  JUMP_INST,   1, 0, 0, 1, FALSE, FALSE, 0,           TOC_LANE}, 
 {"beq", BRANCH_INST, 3, 0, 1, 1, FALSE, FALSE, INT_TYPE,    TOC_LANE}, 
 {"break", BREAK_INST,  1, 0, 0, 1, FALSE, TRUE,  0,           TOC_LANE}, 
 … 
 {"c.eq.s", CMP_INST,    2, 0, 1, 1, TRUE,  FALSE, FLOAT_TYPE,  GENFP_LANE}, 
 {"c.eq.d", CMP_INST,    2, 0, 2, 1, TRUE,  FALSE, DOUBLE_TYPE, GENFP_LANE}, 
 … 
 {"j",  JUMP_INST,   1, 0, 0, 1, FALSE, FALSE, 0,           TOC_LANE}, 
 {"jal", CALL_INST,   1, 0, 0, 1, FALSE, FALSE, 0,           TOC_LANE}, 
 {"jalr", CALL_INST,   1, 0, 1, 1, FALSE, FALSE, 0,           TOC_LANE}, 
 {"jr",  RETURN_INST, 1, 0, 1, 1, FALSE, FALSE, 0,           TOC_LANE}, 
 {"la",  ARITH_INST,  2, 1, 0, 1, FALSE, FALSE, INT_TYPE,    GENINT_LANE}, 
 … 
 {"lw",  LOAD_INST,   2, 1, 1, 1, FALSE, FALSE, INT_TYPE,    LOAD_LANE}, 
 … 
 {"sw",  STORE_INST,  2, 0, 1, 1, FALSE, FALSE, INT_TYPE,    STORE_LANE}, 
 {"",           0,           0, 0, 0, 0,     0,     0,        0,             0} 

}; 

 

Figure 2: Structure for Storing Assembly Instructions  

Figure 3: Organization of Assembly Instructions Handled 
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CHAPTER 2 

 
METHODS 

 
 

2.1 Generating Additional Files to Determine Live Register Information 
 

In order to run an assembly file through the assembly optimizer we must first generate 3 

files associated with the assembly file, which are the RTL dump file (*.s.gkd), the object dump file 

(*.objdump), and the *.inf file. In this section we will explain the need for each file generated and 

how it is used by the assembly optimizer to help determine which registers are live at each 

assembly instruction to properly perform analysis and transformations on the assembly. Once the 

associated *.inf file is created that corresponds with the MIPS assembly file, we can finally begin 

processing the assembly file through the assembly optimizer. 

 

2.1.1 Generating RTL Dump File 
 

A *.s.gkd file associated with a MIPS assembly file contains the RTL dump information 

of our assembly file. This file is necessary for determining which registers are passed as arguments 

to each function call so that we can properly determine any implicitly used registers used by a call 

instruction. This information is crucial for determining live register information. The flags to 

produce the assembly file and the *.s.gkd file while running gcc are “-fdump-final-insns -S”. 

Figure 4 shows an example section of a *.s.gkd file. As functions are encountered in the 

*.s.gkd file via the keyword “Function” preceded by “;;” within the RTL dump we extract the 

function name. This name will be stored and later searched for within the *.objdump file when it 

is processed to determine the return type of the function. Next, we search for each “call_insn” 

following the extracted function name. The RTL dump is used for determining calls to functions 

by searching for the key word "call_insn" and extracting the information following it. We also 

extract which register values are used by the function call by explicitly searching for the keyword 

“(use (reg” and then extracting the arguments following the keyword. Via this information we can 
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determine which registers are passed as arguments to the function so we can determine the implicit 

uses of the function call when performing proper live variable analysis. 

 
;; Function printlist2 (printlist2, funcdef_no=6, decl_uid=1298, symbol_order=6) 
 
(note# 0 0 NOTE_INSN_DELETED) 
(note# 0 0 [bb 2] NOTE_INSN_BASIC_BLOCK) 
(insn/f# 0 0 (set (reg/f:SI 29 $sp) 
        (plus:SI (reg/f:SI 29 $sp) 
            (const_int -24 [0xffffffffffffffe8]))) 
/home/karapate/infogen/test/sort/sort.c:71# {*addsi3} 
     (nil)) 
(insn# 0 0 (clobber (mem/c:BLK (reg/f:SI 29 $sp) [  A8])) 
/home/karapate/infogen/test/sort/sort.c:71# 
     (nil)) 
(insn/f# 0 0 (set (mem/c:SI (plus:SI (reg/f:SI 29 $sp) 
                (const_int 20 [0x14])) [  S4 A32]) 
        (reg:SI 31 $31)) /home/karapate/infogen/test/sort/sort.c:71# {*movsi_internal} 
     (expr_list:REG_DEAD (reg:SI 31 $31) 
        (expr_list:REG_FRAME_RELATED_EXPR (set/f (mem/c:SI (plus:SI (reg/f:SI 29 $sp) 
                        (const_int 20 [0x14])) [  S4 A32]) 
                (reg:SI 31 $31)) 
            (nil)))) 
(code_label 33 0 0 33 "" [1 uses]) 
(note# 0 0 [bb 7] NOTE_INSN_BASIC_BLOCK) 
(insn# 0 0 (set (reg:SI 4 $4) 
        (symbol_ref/f:SI ("*$LC2") [flags 0x2] <var_decl # *$LC2>)) 
/home/karapate/infogen/test/sort/sort.c:77# {*movsi_internal} 
     (nil)) 
… 
(call_insn# 0 0 (parallel [ 
            (set (reg:SI 2 $2) 
                (call (mem:SI (symbol_ref:SI ("printf") [flags 0x41] <function_decl # 
printf>) [ printf S4 A32]) 
                    (const_int 16 [0x10]))) 
            (clobber (reg:SI 31 $31)) 
        ]) /home/karapate/infogen/test/sort/sort.c:77# {call_value_internal} 
     (expr_list:REG_DEAD (reg:SI 5 $5) 
        (expr_list:REG_DEAD (reg:SI 4 $4) 
            (expr_list:REG_UNUSED (reg:SI 2 $2) 
                (nil)))) 
    (expr_list:SI (use (reg:SI 5 $5)) 
        (expr_list:SI (use (reg:SI 4 $4)) 
            (nil)))) 

 
  

Figure 4: Example Portion of sort.s.gkd File 
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2.1.2 Generating an Object Dump File 
 

We compiled the .c file with the -g -c options to produce symbolic debugging information 

in the file. We use the “objdump” command to produce a parseable *.objdump file. Producing a 

*.objdump file associated with our assembly file is necessary for determining the return type of 

the function encountered within the assembly. This information is then used to determine what 

register is implicitly used by return instructions so that we can determine which register is live 

when returning from the function. In the command to generate the *.objdump file below, “$base” 

is the base name of the assembly file. The command to generate .o file: "gcc -g -c $base.c ". The 

command to generate *.objdump file is "objdump -Wi $base.o > $base.objdump". 

 
<1><430>: Abbrev Number: 20 (DW_TAG_subprogram) 
    <431>   DW_AT_external    : 1 
    <431>   DW_AT_name        : (indirect string, offset: 0x19f): printf 
    <435>   DW_AT_decl_file   : 2 
    <436>   DW_AT_decl_line   : 332 
    <438>   DW_AT_prototyped  : 1 
    <438>   DW_AT_type        : <0x4b> 
    <43c>   DW_AT_declaration : 1 
    <43c>   DW_AT_sibling     : <0x447> <0xf0> 
<1><4b>: Abbrev Number: 3 (DW_TAG_base_type) 
    <4c>   DW_AT_byte_size   : 4 
    <4d>   DW_AT_encoding    : 5        (signed) 
    <4e>   DW_AT_name        : int 

Figure 5 shows an example portion of a *.objdump file. After encountering the function 

name from the *.s.gkd we then begin our search in the .objdump file for that specific function 

name. We first validate that the section the name is located in is the section denoted by the keyword 

DW_TAG_subprogram, this denotes that the following section provides details pertaining to a 

function. The next keyword we search for is DW_AT_name, the string furthest to the right denotes 

the name of the function for this section and if this function name matches the function name we 

encountered within the *.s.gkd we then know we can continue within this section to determine the 

return type for the function. To determine the return type, we then search for the first DW_AT_type 

keyword and the number between the “< >” in this section denotes where in the objdump we can 

find the return type for the function of this name, as every line is denoted with a hexadecimal 

number between “< >”. If there is no DW_AT_type keyword before the next section is 

Figure 5: Example Portion of sort.objdump File 
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encountered, that function has no return type (void return). In the example above the type is located 

at “<0x4b>” and upon searching for the line denoted by “<4b>” we find within a section denoted 

with the tag “DW_TAG_base_type”. In this section we are provided important details such as the 

byte_size, the name of the type, and whether it is signed or unsigned encoding. Other more difficult 

scenarios that were handled were when a return type was a pointer type, structure type, typedef, or 

enumeration. In order to handle these scenarios further recursion was necessary to make sure that 

the deepest nested primitive type of the data being returned was accessed, as this is the information 

that is necessary when performing live variable analysis on the registers.  
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2.1.3 Generating the .inf file  
 

Using the *.s.gkd file and *.objdump files as input into a geninf program we can then 

generate a *.inf file. Generating a *.inf file became necessary for the SCALE project using the 

assembly optimizer in order to support hand-written assembly files. The *.s.gkd files could not be 

generated automatically when there was no corresponding *.c file to run through the gcc compiler. 

For a handwritten assembly file, we generate a *.inf file by hand as the format is much simpler 

than a *.s.gkd and *.objdump file. Figure 6 shows an example of a *.inf file. The geninf program, 

written by Dr. Whalley, was created using much of the code I implemented for processing and 

accessing the live variable information from the *.s.gkd files and the *.objdump files described 

above. Before running the geninf program, the *.s.gkd and the *.objdump files associated with the 

assembly file must be generated and located within the same directory as the assembly file as they 

are used to generate the *.inf file. The command to use the geninf program to generate the *.inf 

file is "geninf $base.s". The process for generating a *.inf file is illustrated in Figure 1. 

function myabs int 
function myrand int 
calls myabs $4 
function swap void 
function choose_pivot int 
function quicksort void 
calls choose_pivot $4 $5 
calls swap $4 $5 
calls swap $4 $5 
calls swap $4 $5 
calls quicksort $4 $5 $6 
calls quicksort $4 $5 $6 
function printlist void 
calls printf $4 $5 
calls printf $4 
function printlist2 void 
calls printf $4 $5 
function main int 
calls myrand 
calls printf $4 
calls printlist2 $4 $5 
calls quicksort $4 $5 $6 
calls printf $4 
calls printlist2 $4 $5 
calls printf $4 

 
  

Figure 6: Example sort.inf File 
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2.2 Generating Optimized MIPS Assembly Output 

 For each assembly line in the generated MIPS assembly, the function setupinstinfo was 

called in which the assembly line would first have its items (arguments) associated with an 

instruction (done in makeinstitems function). This process involved stripping out any initial blank 

characters, checking if a mnemonic was encountered, checking for a comma (denoting the 

encountering of items next), and replacing the space before the arguments with a tab if there is no 

tab already (for the proper alignment of the generated MIPS assembly). Next all commas 

separating each argument were replaced with tabs and the arguments were then captured as well 

for later usage when producing the output. 

The next step in the setupinstinfo function is to classify the instruction in the current 

assembly line (done in classifyinst function). This is the step in which we search through the list 

of known instructions previously discussed and shown in Figure 3. The information provided in 

that list of instruction structures denotes the assigning of the type for the instruction on the current 

assembly line, the number of destination registers, and the number of source registers. Here we 

also handle special types that are unique to the mnemonic being used in conjunction with its 

arguments. For example, if encounter a jump instruction and its argument is $31 (j $31) this 

denotes that the type for this instruction should not be categorized as a jump instruction but rather 

a RETURN_INST. If we encountered a JUMP_INST, the argument contains a “$” and it is not 

$31 or $L it is a CALLRETURN_INST. If we encountered a JUMP_INST, and the argument does 

not contain a “$” then the type is an INDJUMP_INST.  

The final step in the setupinstinfo function is to set the bits associated with the registers set 

and used in the instruction (done in the setsuses function). This will assist us when performing live 

variable analysis. First, we initialize the variable state to be NULL for the sets, uses, and implicit 

uses fields. Next, we check if the registers being read in are in the proper format for the MIPS 

instruction. Finally, we assign the register sets and uses based on the type of instruction being 

handled. The different types encountered that needed to be handled for each MIPS assembly line 

included: ARITH_INST, CONV_INST, MOV_INST, SPMOV_INST, PRED_MV_INST, 

BRANCH_INST, CALL_INST, CALLRETURN_INST, CMP_INST, BREAK_INST, 

JUMP_INST, JUMPTABLE_LINE, INDJUMP_INST, NOP_INST, LOAD_INST, 
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STORE_INST, RESTORE_INST, SAVE_INST, RETURN_INST, COMMENT_LINE, and 

DEFINE_LINE. When processing CALLRETURN_INST it was necessary to also set scratch 

registers since the called function could overwrite all of them. Figure 7 shows the function to 

initialize the variables state to indicate all scratch registers. We use relevant information in the 

generated *.inf file associated with each assembly line that is a function call to determine the uses 

for it, since the *.inf file contains information about what registers each function receives as 

arguments and are thus live entering the function.  

 
/*                                                                               
 * scratchinit - initialize scratch registers in mips                            
 */                                                                              
void scratchinit(varstate v) {                                                                          
   v[0] = 0x03003FFE; //scratch registers in mips are 1-13 and 24-25             
   v[1] = 0x000FFFFF; //fp scratch are 0-19                                      
   v[2] = 0x00000007; //for hi, lo, cc                                           
   v[3] = 0x03003FFE; //scratch registers in mips are 1-13 and 24-25             
   v[4] = 0xFFFF0000; //predicate registers                                      
   v[5] = 0x00000000; //variables                                                
}    

 

  

Figure 7: Scratch Registers Assigned in scratchinit Function. 
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Finally, after completing the processing of the instruction for the assembly line and 

performing these steps for each assembly line in the file, block by block, while ignoring directives 

and removing assembly comment lines, we are then able to generate useful output for someone 

using the assembly optimizer. All comments beginning with the “#” symbol were inserted into the 

output of the processed MIPS assembly file with relevant data pertaining to each block of 

assembly, loops that occur, and what the sets, uses, and dead registers are at each line. Figure 8 

shows example assembly optimizer output for a simple function. 

 
        .text 
        .align  2 
        .globl  myabs 
        .set    nomips16 
        .set    nomicromips 
        .type   myabs, @function 
# block 1 
# preds: 
# succs: 2 3 
#  doms: 1 
#   ins=$4:$31: 
#  outs=$2:$4:$31: 
myabs: 
        move    $2,$4               # sets=$2:     uses=$4:      deads= 
        slt     $1,$4,$0            # sets=$1:     uses=$0:$4:   deads= 
        beqz    $1,$L2              # sets=        uses=$1:      deads=$1: 
# block 2 
# preds: 1 
# succs: 3 
#  doms: 1 2 
#   ins=$4:$31: 
#  outs=$2:$31: 
        subu    $2,$0,$4            # sets=$2:     uses=$0:$4:   deads=$4: 
# block 3 
# preds: 1 2 
# succs: 
#  doms: 1 3 
#   ins=$2:$31: 
#  outs= 
$L2: 
        j       $31                 # sets=        uses=$2:$31:  deads=$2:$31:    

  

Figure 8: Example Generated Output from Processing sort.s File. 
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2.3 Implicitly Used and Set Registers and Live Variable Analysis 

 When processing the MIPS assembly through the assembly optimizer it is important to 

properly determine which registers are live at each point in the program to properly perform certain 

compiler optimizations such as “dead assignment elimination”. To do this performing live variable 

analysis on the dataflow is necessary. A register is considered live at a specific point if it contains 

a value that is used in the future, for example being read before being overwritten. While 

performing the final step of the setupinstinfo function, the sets and uses were explicitly handled 

for various instruction types. Implicit uses were determined when handling returns. This involved 

initializing the callee save and scratch register sets to their default values. Next, we needed to take 

the union of all registers accessed and then subtract the scratch registers from this set of the union 

of all registers. This determines the callee save registers that are accessed. From this we can set 

the implicit uses for each return instruction. In the epilogue before a return instruction callee-save 

register values are returned (loaded from the scratch). The return instructions need to have these 

callee-save registers as implicit uses so dead assignment elimination does not improperly remove 

these loads. Implicit sets were handled explicitly for scenarios such as CALLRETURN_INST 

where the implicit sets were the initial scratch registers and the $sp register. For implicit sets we 

also needed to handle scenarios where a function being called appeared earlier in the file and if 

this did occur the implicit sets needed to include the sets from that function earlier in the file. 
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void implicituses(struct bblk *tblk) { 
   struct assemline *ptr; 
   varstate csets;   //callee save sets 
   varstate scregs;  //scratch registers 

 
   /* initialize the callee save and scratch register sets */ 
   varinit(csets); 
   scratchinit(scregs); 
 
   /* take the union of all registers accessed */ 
   for (tblk = top; tblk; tblk = tblk->down) 
      for (ptr = tblk->lines; ptr; ptr = ptr->next) 
         unionvar(csets, csets, ptr->sets); 
 
   /* subtract the scratch registers from this set to determine 
      the callee save registers that are accessed */ 
   minusvar(csets, csets, scregs); 
 
   /* set the uses for each return instruction with the callee save regs */ 
   for (tblk = top; tblk; tblk = tblk->down) 
      for (ptr = tblk->lines; ptr; ptr = ptr->next) 
         if (is_return(ptr)) 
            unionvar(ptr->uses, ptr->uses, csets); 
} 

2.4 Expanding Pseudo Instructions 
 
 The next significant task to implement was traversing through the MIPS assembly and 

expanding pseudo instructions as they were encountered. This was done by traversing each block 

and checking each line for specific instructions that needed to be expanded. These lines would be 

replaced accordingly. Figures 10 and 11 show examples of expanding a pseudo instruction into 

multiple instructions. In the examples below, numbers followed by the “$” symbol represent 

registers in MIPS assembly.  

l.d $f1, 2($2) 

=> 

lwc1 $f1, 2($2) 

lwc1 $f2, 6($2) 

  

Figure 9: Function to Update Implicit Uses in Return Instructions 

Figure 10: Example Expanding l.d or s.d Instruction 
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syscall 

=> 

addiu   $1,$sp,16 

setkri  $4,$1,0 

syscall__ 0,0 

When dealing with a load, store, or load address of a global name, we expanded the construction 

of the address using these two instructions originally. 

la $2,name 

=> 

lui $1,%hi(name) 

ori $2,$1,%lo(name) 

This was later altered to be expanded to the example below that are SCALE specific instructions. 

la $2,name 

=> 

lalui $2,name 

laori $2,$2,name 

 
Doing this replaced the %hi and %lo with the new assembly mnemonic names (lalui and 

laori).  The other change is since we are updating the destination register ($2 above), we know $2 

can be used in both the lalui and laori instructions. The same was done for load and store 

instructions, using lalui and laori before the actual load or store instruction.  The $1 MIPS register 

is reserved for the MIPS assembler to expand pseudo instructions. We made use $1 as we expanded 

all pseudo instructions. Loads did not need to use the $1 register. For stores we did need to use $1 

register as a store does not update a register.  

All li instructions outside of the immediate field range of -32768…32767 were also 

expanded.  When expanding li instructions we did not need to use $1 register as we can just use 

the destination register. We also did not use %hi and %lo when expanding li instructions. We 

extracted the upper portion of the constant by doing a bitwise and operation with 0xffff0000 and 

putting the result in an unsigned variable and doing a right shift by 16. We then extracted the lower 

portion by doing a bitwise and operation with 0xffff and putting the result in an unsigned variable.  

Figure 12 shows an example of expanding an li instruction. 

  Figure 11: Example Expanding syscall Instruction  
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li $2,32770 //32770 is 0x10010 in hex 
=> 

lui $2,1 

ori $2,$2,2 

Any load or store instructions that used displacements were also expanded to produce legal 

SCALE loads and stores. Therefore, this version of the MIPS only supports register deferred 

addressing mode for memory references and all loads and stores that have a nonzero displacement 

are expanded into two instructions where the first instruction calculates the effective address. All 

loads and stores that reference a static or global address directly are also expanded into three 

instructions. The first instruction is a lalui (load address load upper immediate) macro. The next 

instruction is lalli (load address load lower immediate) macro. lalui assigns the upper 16 bits of 

the static or global address and lalli assigns the lower 16 bits of the same static or global address. 

In this example below the lw instructions got expanded as the item in the second field contains a 

'('.  If the item in the second field for the instruction contains a '(' symbol it means that the memory 

address is using a displacement or register deferred addressing mode. Figure 13 shows some 

examples of expanding loads, stores and load address pseudo instructions. 

 

lw $3,4($7)   sw $4,8($2)   lw $5,g1   la $6,g2 

=>     =>    =>    => 

addiu $3,$7,4   addiu $1,$2,8  lalui $5,g1   lalui $6,g2 

lw $3,($3)   sw $4,($1)   lalli $5,g1   lalli $6,g2  

       lw $5,($5) 

  

Figure 12: Example Expanding li Outside of Immediate Field Range 

Figure 13: Examples of Expanding Loads, Stores and Load Address Macros 
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Lastly all branch pseudo instructions were replaced with expansions. This includes: bgtz, bgez, 

blez, bltz, beq, and bne. Each of these instructions was replaced with their associated equivalent 

expansion of the instructions slt and bnez, slt and beqz, or just bnez/beqz. Figure 14 shows some 

examples converting MIPS branches to their SCALE equivalent versions. 

 

beq  $3,$0,L1  bne  $3,$0,L1  beq  $4,$5,L1  bne  $4,$5,L1 

=>    =>    =>    => 

beqz $3,L1  bnez $3,L1   seq  $1,$4,$5  seq  $1,$4,$5 

bnez $1,L1  beqz $1,L1 

-------------------------------------------------------------------------------------------------------------------------------------------- 

bgtz $3,L1  bgez $3,L1   blez $3,L1  bltz $3,L1 

=>    =>    =>    => 

slt  $1,$0,$3  slt $1,$3,$0  slt  $1,$0,$3  slt  $1,$3,$0 

bnez $1,L1 beqz $1,L1  beqz $1,L1  bnez $1,L1 

 
2.5 Testing for Properly Handling Instructions and Debugging Process 

 To test proper handling of instructions and functionality of the MIPS assembly optimizer 

we began running the MIPS assembly optimizer through very simple benchmarks and 

progressively introduced it to more difficult benchmarks. The first batch of benchmarks were the 

infogen/test benchmarks. The next benchmarks that were handled were the MiBench benchmark 

suite setup for VPO and SimpleScalar. The last benchmarks we handled and tested against were 

the SPEC 2006 FLOAT and INTEGER benchmarks. In total there were 26 assembly files in the 

infogen/test benchmarks, 140 assembly files in the MiBench benchmark suite, and 1941 assembly 

files in the SPEC 2006 benchmarks. Bash scripts were also written for each test suite to automate 

the testing process and to test the functionality of previously passed benchmark tests as changes 

were made to support new benchmarks. Figure 15 shows one of the bash scripts written to invoke 

other bash scripts for each benchmark test. As some of benchmarks required specific compilation 

settings to be built and run properly there needed to be different scripts written for each benchmark 

Figure 14: Examples of Converting Branches to Use bnez and beqz Instructions 
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test. The output from each test script was saved away in a file that was searched through for error 

messages that were reported and needed to be resolved to pass the benchmark test. 

 
#benchmarks in Test directory 
./run_test.sh &> ./outputs_benchmarks/out_test.txt 
 
#benchmarks in MiBench 
./run_automotive.sh &> ./outputs_benchmarks/out_automotive.txt 
./run_consumer.sh &> ./outputs_benchmarks/out_consumer.txt 
./run_network.sh &> ./outputs_benchmarks/out_network.txt 
./run_office.sh &> ./outputs_benchmarks/out_office.txt 
./run_security.sh &> ./outputs_benchmarks/out_security.txt 
./run_telecomm.sh &> ./outputs_benchmarks/out_telecomm.txt 
 
#benchmarks in SPEC Float 
./run_SPEC_FLOAT.sh &> ./outputs_benchmarks/out_SPEC_FLOAT.txt 
 
#benchmarks in SPEC Integer 
./run_SPEC_INTEGER.sh &> ./outputs_benchmarks/out_SPEC_INTEGER.txt 
 
#check for errors, segmentation faults, and report transformations performed 
cd ./outputs_benchmarks/ 
echo -e '---------------------------------------------------------------\n' 
grep -r "compilation terminated" * 
echo -e '---------------------------------------------------------------\n' 
grep -r "Segmentation fault" * 
echo -e '---------------------------------------------------------------\n' 
grep -r "transformations applied by all optimization phases" * 
echo -e '---------------------------------------------------------------\n' 
grep -r "incorrect sets and uses calculated" * 
echo -e '---------------------------------------------------------------\n' 
grep -r "unexpected end of file after function" * 
echo -e '---------------------------------------------------------------\n' 
grep -r "encountered unhandled return type" * 
echo -e '---------------------------------------------------------------\n' 
grep -r "is unknown instruction" * 
echo -e '---------------------------------------------------------------\n' 
cd .. 
 
exit 0 

 

To make sure the assembly in the benchmarks was being properly processed we relied on 

the gcc compiler to perform the compiler optimization “dead assignment elimination” on the 

generated MIPS assembly code by default. We would then run the gcc produced assembly code 

through our MIPS assembly optimizer and if dead assignment elimination was triggered by our 

MIPS assembly optimizer this was an indicator that we incorrectly determined the sets and uses 

for an assembly line instruction. Interestingly we encountered multiple scenarios where our MIPS 

assembly optimizer found a correct location for performing dead assignment elimination even after 

gcc was supposed to perform this operation while it generated the MIPS assembly. These cases of 

Figure 15:Example run_all_benchmarks.sh Bash Script File 
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properly triggering dead assignment elimination via our MIPS assembly optimizer needed to be 

explicitly ignored as they were incorrectly denoting that we had incorrect sets and uses calculated. 

For example, one scenario where gcc missed a proper scenario for dead assignment elimination 

was in the function save_serial_archive in the SPEC 2006 FLOAT benchmark 433.milc. In this 

example there is a scenario where only the first half of the loaded float values are used, and gcc 

misses checking for this when performing dead assignment elimination. 

As we encountered scenarios where the MIPS assembly optimizer was actually incorrectly 

calculating the sets and uses we would add explicit debugging logs to print out relevant information 

when an incorrect scenario was triggered so that the MIPS assembly optimizer could be updated 

to account for these scenarios. Additionally, fall through checks were setup to be triggered when 

no explicitly handled cases would trigger in a section of processing the assembly. This would 

denote that an unhandled representation of an assembly line or a new instruction was encountered. 

In the printout log, relevant details about the current function where the assembly optimizer 

encountered an unhandled scenario was printed out first followed by data relevant to resolving the 

unhandled scenario. 
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CHAPTER 3 
 

RESULTS AND DISCUSSION 
 
 

3.1 Conclusions 

 The aims of this project served two main purposes, to provide a tool to be utilized 

as part of the NSF funded SCALE research project, and to provide myself with a deeper 

understanding of creating an assembly optimizer. Previously my introduction to working with an 

assembly optimizer was in the COP66222 Advanced Topics in Compilation course. In this course 

we were provided with an assembly optimizer for the SPARC assembly language. Using this tool 

made by Dr. Whalley, we were able to learn how to implement various compiler optimizations 

without having to modify the code of the compiler itself to perform these optimizations as it was 

used on the produced assembly code in an additional processing stage abstracted from the original 

compiler itself. As we were provided with the SPARC version of this assembly optimizer, I used 

it to learn how to implement the optimizations themselves, but I did not have the experience of 

building the base tool itself to accurately process generated assembly. This project provided that 

experience of making the base of a tool like this. By starting with the SPARC version of the 

assembly optimizer and retargeting it to function for MIPS/SCALE assembly, I also gained the 

experience of porting a tool to function in another context, specifically one assembly language to 

another.  

To complete this project, I had to first solve the problem of determining what registers are 

live at each point in the assembly program, and this was done without performing interprocedural 

analysis by using the *.objdump and *..s.gkd files generated by gcc and producing a *.inf file with 

information for this analysis. Next, I had to expand all pseudo assembly instructions that would 

generate two or more machine instructions to have a one-to-one correspondence between assembly 

and machine instructions to allow for effective instruction scheduling. Additionally, I provided the 

option to generate SCALE assembly, which is slightly different from conventional MIPS 

assembly, to be used by the SCALE research group that will continue to use this assembly 

optimizer for further research. After adding these features extensive testing was done by 
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processing all of the MIPS assembly files generated by the gcc compiler when compiling the 

MiBench and SPEC 2006 benchmark suites. Processing these benchmarks involved successfully 

translating each assembly instruction through the assembly optimizer with no errors while also 

verifying that no instructions with unnecessary dead assignments were introduced by the assembly 

optimizer.  

After completing this, the tool was in a state to properly process various complex scenarios 

involving gcc generated MIPS assembly. Much like how the SPARC assembly optimizer 

developed by Dr. Whalley was used for learning how to implement various compiler 

optimizations, this tool can function in a similar context for implementing compiler optimizations 

against MIPS assembly. It can additionally be used for assisting students learning MIPS assembly 

for the first time in computer organization and architecture courses by providing details to the user 

such as what registers are entering/exiting a block, and what registers are used, set, and dead at 

each line. This tool’s most immediate usage will be in future research conducted by the SCALE 

research group as the SCALE project will have several assembly language instructions that will 

support a variety of new architectural features, and the MIPS assembly optimizer will be used on 

future projects involving the various proposed SCALE ISAs. 

 

3.2 Reflection 

 By completing this project, I learned the skills of how to accurately go about building a 

complex tool with many moving parts that will be used by others in future projects. More 

specifically, I learned how to create a tool to process generated assembly in a meticulous manner 

that is properly tested against benchmarks to ensure accuracy for when it is used by the SCALE 

research team. I had many assumptions that were incorrect about how to go about a project like 

this initially, one of which was to go through MIPS documentation and the extensive lists of all 

MIPS assembly instructions to manually handle each instruction in the assembly optimizer 

preemptively. The correct approach was to rather tackle each benchmark immediately rather than 

to try and predict scenarios to handle the generated assembly and to run the benchmarks later. 

This was evident when I realized the extent of possibilities for generated MIPS assembly when 

processing each benchmark in MiBench and SPEC 2006.  
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I also gained extensive debugging skills to isolate sections of assembly blocks using the 

gdb debugger and invoking functions to print relevant information about the registers being set 

and used on each line at runtime when a problem was occurring. Along with those debugging 

skills acquired, I learned how to properly denote where unhandled scenarios occurred in the 

assembly optimizer so that they can be caught and handled. As the assembly optimizer was run 

through each benchmark and would encounter unhandled scenarios, we would capture that 

unhandled scenario in fall through statements and we would log the relevant information about 

that unhandled scenario to provide the proper information for handling a specific assembly 

scenario. As this tool will continue to be used and developed upon for future projects for the 

SCALE research team, I also gained the experience of working with a larger team in a shared 

code base to develop something that can be used for further research and learning purposes. The 

skillset gained through this project has proven to be invaluable and I will continue to use the 

techniques learned in all my future endeavors. 


