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This paper describesxvpodh a visualization tool developed to support the analysis of optimizations
performed by the vpo optimizer. The tool is a graphical optimization viewer that can display the
state of the program epresentation bebre and after sequences of changesgferred to as transbrma-
tions, that results in semantically equialent (and usually improved) code. The information and
insight such visualization povides can simplify the debugging of psblems with the optimizer
Unique features ofxvpodbinclude revese viewing (or undoing) of transbrmations and the ability to
stop at breakpoints associated with the generated instructions. The viewer facilitates thetargeting

of vpoto a hew machine, supports experimentation with new optimizations, and has been used as a
teaching aid in compiler classes.
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1. Introduction

To increase portability compilers are often split int@ tgarts, a front end and a back end. The front
end processes a high# language program and emits intermediate code. The back end processes the
intermediate code and generates assembly instructions for ¢gje¢ maachine architecture. Thus, the front
end is dependent on the source language and the back end is dependent on the instruction segdor the tar
machine. Retgeting such a compiler for awemnachine requires the creation of amlack end. While
the time and effort required to reg@t a back end of a compiler to asnmachine has decreasedenthe
years, performing this task in arpeditious manner still remains a problem. One reason is that the rate at
which nev machines are being introduced has increased. Also, there is an increasing reliance on compilers
to perform highly sophisticated optimizations thapleit architectural features. Usually these optimiza-

tions can be applied most effely in the back ends of compilers [1].

"A preliminary version of the optimization viewer was describeBrmceedings of the ACM SIGPLAN '93 Coefeze on Rygram-

ming Languge Design and Implementatiamder the title "Isolation and Analysis of Optimization Error.'dlemonstration ersion

of the viewer is currentlyvailable for perusal.The files (which includes documentation, input data, aedutables for a variety of
machines) arevailable via anonymous ftp from ftp.cs.fsu.edu (128.186.121.27) in the /pub/whalley/xvpodb diréeaders inter

ested in this research are encouraged to obtain these files and experiment with this demorssiationAsis commonly the case

with graphical applicationvpodbhas maxy characteristics that are difficult to describe in prose, but trivial to understand when seen
and used.



Much of the dbrt required to retarget a back end occurs during testing. Long periods of time are
often spent attempting to determineywincorrect code is generated orywpecific optimizations cannot
be applied.A significant portion of this effort is due to the inherent nature of optimizing compilers and the
inadequate debugging facilities of @entional source-teel symbolic deluggers. Therare may features

that a compiler writer would find useful when diagnosing problems in a optimizing compiler.

(1) Ideally the program representation should appear in a easily readable display that is automatically
updated each time the data structure is changed.

The representation of a program being optimized is often stored in an encoded internal format. While the
compiler writer may hee access to a function that will dump the contents of the data structure containing

this encoded information, repeatedlyaking this function is a tedious task.

(2) Itwould be desirable to kia a bol that can indicate thexact portions of the representation that were
altered during a transformation.

An optimizer performs a series of transformations on the representation of a prdggamtransformation
consists of a serial sequence of changes that results in semanticaldfesj(and usually impneed) code.

A compiler writer may wish to see the set of changes associated with a particular transforiegiofif.
the compiler writer has the ability to dump the program representaticn readable format before and

after the transformation occurred, the actual differences may be difficult to detect.

(3) Programmersn general and compiler writers in particular would use data breakpoints more fre-
quently if they were efficient and could be easily specified.

Data breakpoints are oftervadable with source-teel debuggers. Unfortunate)yexecuting a debgger
while data breakpoints are set can result in prokidhjtislon execution. Databreakpoints are also €ifult

to set when dealing with dynamically allocated data structures (i.ezeesttbthrough the structure may be
required to specify the desired portiot)nlike mary other types of applications, a large portion of the data
in compilers is dynamically allocated to hold the representation of the program being compiled.

(4) Theideal approach for diswering why an invdid instruction(s) was generated is to set a data break-

point on the specific walid instruction(s) and vie the transformations in verse until the imalid
instruction(s) is disogered.



When diagnosing an erroa compiler writer may determine that a specific instruction (or set of instruc-
tions) caused thexecution of the compiled program to produce incorrect output. The compiler writer
needs to kno why the optimizer generated the incorrect instruction(dhfortunately it is difficult to

reach the point that thevalid instruction(s) was generated during the Compila{ion.

A graphical optimization vieer, called xvpodb(X-windows VPO DeBugger), has beenvdeped
that allows the programmer to wesach optimization performed by the optimizédne could obtain the
same information using a ocaantional source-keel symbolic debugger toxamine internal data structures.
However, this process is often sip labor intensie, and prone to human erroiThe abstract, yet precise
way the transformations are presented by the viewemallthe compiler writer to see an application-
oriented viev of the program representation, rather than struggling with inadequate debugging tools to

inspect the data structures.

The viever, xvpodh dso recognizes the temporal aspect of a compilatibime vpo optimizer can
iteratively apply optimization phases matimes during the optimization of a functioithe viewer identi-
fies not only what changes occurredt blso when theoccurred during the compilation (rekati o aher
changes). Careying this temporal information to the compiler writer can simplify the eradicatiomgd b
that only manifest when a certain cascading set of optimization phases are applied to a specific function.
Selectve viewing of the transformations performed byois accomplished using breakpoints. The break-
point paradigm used ixvpodbis simple and dicient. Itallows the compiler writer to quickly focus on the
desired portion of the compilatioriThe optimization viewer also has a feature thavgrs a common
frustration that occurs with ceentional source-leel symbolic deluggers. Theviewer has the ability to
reverse the effects of gnor dl transformations performed in the order in whichythreere applied during
the compilation of a functionWith this feature the compiler writer need not be concerned akeeitang

the optimizer "one step too far" and being forced taeeete.

! While data breakpoints arevailable (and inefficient) with some sourcesedebuggers, no current source#® debuggers
support unlimited neerse eecution.



This paper is structured as folls. Sectior? describes the compiler that is wied by usingcvpodb
Section 3 depicts arnverview of the functionality of the viger. Section 4 illustrates some examples of
using the tool. Section 5 provides details about the implementatiorpotib Section 6 discusses porting
the viewer to other machines and compilers. Sectiorvé& gasight about the vieer's performance di-

cieng. Section 8 describes related work and Section 9 summarizes the contributions of the paper.

2. Owerview of the Compiler

The optimization viewer described in this paper supports the compiler technology laso/po
(Very Portable Optimizer) [2], [3], [1]. The optimizeapo, replaces the traditional code generator used in
mary compilers and has been used to build C, Pascal, and Ada compilers. The back endeitedetgr
supplying a description of the target machine. Using the diagrammatic notatiomlbfAly Figure 1
shavs the @erall structure of a set of compilers constructed usipg Vertical columns within a box rep-
resent logical phases which operate serialglumns divided horizontally into rows indicate that the sub-
phases of the column may beeeuted in an arbitrary ordeiL is the Intermediate Language generated by
a front end. Register transfer lists (RTLs) describe the effects of machine instructions aadhbdorm of
corventional expressions and assignment the hardware gorage cells.For example, the RTL

r[1] =r[1] +r[2]; cc =r[1] +r[2] ? O;
represents a gister-to-rgister integer add on mgrmachines. Whileary particular RTL is machine-

specific, the form of the RTL is machine-independent.

All phases of the optimizer manipulat&@ 5. TheRTLs are stored in a data structure that also con-
tains information about the order and controWflof the RTLs within a functionOne advantage of using
RTLs as the sole intermediate representation is thay ipi@ase ordering problems are eliminated. In con-
trast, a more carentional compiler system will perform optimizations on various different representations.
For instance, machine-independent transformations are often performed on intermediate code and machine-
dependent transformations, such as peephole optimizations, are often performed on assemidty code.
addition, local transformations (within a basic block) are often performedAsh @presentations and

global transformations (across basic blocks) are often performed on three-address Duelds. the
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Figure 1: Compiler Structure

invoked in any order and allowed to iterate until no further impements can be found.

Another advantage is that since eadi. Represents a ¢& machine instruction, the effect of a modi-
fication to the set of RTLs comprising a function is rekdy§i simple to grasp. In contrast, most gen-
tional compiler systems generate code after optimizations. Thus, the optimizations are actually performed
on intermediate code. Since there is typically not a one-to-one mapping between an intermediate code

operation and a machine instruction, the effect of a modification on the final code that will be generated

may not be obvious in these systems.



3. Functional Description of XYPODB

The xvpodbviewer is a separate program that caeceite concurrently with thepooptimizer FHg-
ure 2 depicts hae viewing optimizations is typically accomplishe@he circles represent processes and the
arrowvs sheav communication channels between the processes. The optimizesciger within a source-
level debuggerwhich allovs the compiler writer to control thexeeution of the compiler and inspect inter
nal data structures. Information is passed frgro to xvpodbabout the compilation of a source fil&he
message passing paradigm chosen provides the user with the opti@euding vpo and xvpodbon two
different machines. Due to the use of Xndbws, the user also has the option toawiae output windws
of these tw process groups on yet another machine. Thissallihe user to use the resources of up to three

machines, thus speeding up the debugging cycle.

The vpo optimizer will first pass a set of messages that describes the initial state dL.allRthe
function currently being compiled before performing optimizations. After receiving these messages,

xvpodbwill display this initial set to the userSubsequently messages containing descriptions of all

XVPODB

X-Window Server

Figure 2: Typical Use of XVPODB



changes to the RTLs as yhaccur will be passed tevpodh which stores them for later interpretation at the

request of the uselif a new file is compiled, then both the optimizer and xvpodieha be einitialized.

The viewer does not kia © be &ecuted concurrently with the compileA separate program as
developed to receie the messages from the compiler and store them in affilether simple program as
implemented to read the messages from a file and send thewpddb Thus, vpds message sending
paradigm can be simulated without theiead of performing the actual compilation. This featureety v

useful when usingvpodbas a teaching aid.

Perhaps the best analogy kmpodbwould be a video editing machine. The changes described in the
messages sent by the compiler are analogous to the individual frames wiea iite sequential sets of
changes that represent transformations are comparable to scenes ivithe Thexvpodbviewer can be
thought of as a video editing machine that has the ability tw sbenes in fonard or reerse, to quickly
locate ag scene or set of scenes in thevigy and to she as nuch or as little detail (individual frames)
about ag scene in the movie as desiretihus,xvpodbcan sha a compiler writer exactly what happened
to the program representation during/ gortion of the optimization process. If one wishes to study a par
ticular optimization phase, thewwpodbcan depict only the transformations performed by that phase. If one
desires to examine a particular instruction, tRepodbcan isolate only those transformations that directly
affected that instruction. These breakpoint criteria can be combiradexample,xvpodbcan sha any
changes to a selected instruction that occurred in a specified optimization phase during the entire optimiza-

tion process. All of these operations can be performed in both forward\snserdirections.

3.1. Main Window

Figure 3 depicts the main windoof xvpodb This windav consists of three sections. Thedar
middle section of the winawdisplays a portion of the RTL structure at a&egi point during the compila-
tion of one of the function&The RTLs are shown contained in rectangles, which represent basic blocks.

The basic blocks are shown in the order in whicly thid appear when generated as assembly instructions.

2The RTLs in Figure 3 describe SPARC instructions in the funatiklimewithin the UNIX utility banner
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Figure 3: Main Winda for XVPODB




The RTLs themsebs are displayed in human readable form (not the encoded internal format wgejl by
The highlighted RTLs are those that are affected by the transformation beieglvidhescrollbar to the

left of the display area can be used towaay part of the current set of RTLs.

Transfers of control between basic blocks are depicted using arcs (tweeads on the arcs indicate
direction of transfer). Short arcs with double arsowere used to represent arcs that are longer than tw
screen lengths since long arcs ardidlift to trace by a user and often resulted in a cluttered display
Instead, the user can use the right mouse button to automatically fo#ocontrol flev between blocks.
The RTL display will be centered on thegat block of a branch or jump by clicking the right mouse b
ton on the header of the basic block containing the transfer of cofttitble user clicks the right mouse
button while holding down the shiftey in a kasic block headethen the RTL display will be centered on

the basic block that branches or jumps to the specified Block.

In the top section of the windoare a set of labels that provide information to the .u3&ese labels
indicate the name of the function beingmined, the optimization phase in which the current transforma-
tion is performed, the number of the current transformation, and the total number of transformations that
have teen receied for this function. Also shown is the current state of the transforma#oBEFORE
state indicates that the current transformation has not yet been applied Td_thdisplayed. If an RTL is
highlighted in a BEFORE state, then th€LRwill be deleted or modified in some manné&n AFTER
state indicates that the current transformation has been applied. Highlighted RTLs in an AFTER state were
either inserted or alteredn addition, a label is displayed that shows the number of highlightéd. RA

user may find this number useful since all highlighted lines may not fit on the screen at one time.

The bottom section of the main wind@ontains buttons that represent the different optioasadle
to the user via mouse clickdzour of these buttons resemble the controls on an audio cassette player
(including audio reerse). Whenthe Step Forward (>) and Step Backward (<) buttons are clickd,

xvpodbdisplays the nd or previous transformation, respeety. The user can vie a full transformation

3 If there is more than one branch or jump to the specified block, then a list of the blocks containing these transfers of control
will be displayed.



with two dicks of the mouseFor instance, assume the viewer is displaying the BEFORE state of a trans-
formation (as in Figure 3)With one mouse click on thebutton the AFTER state of the same transforma-

tion will be shavn. Selecting> again will result in the BEFORE state of the next transformation being dis-
played. The< button works similarly except that the user either proceeds from the AFTER state to the
BEFORE state of the same transformation or from the BEFORE state to the AFTER state ofitius pre
transformation. Th&ontinue Forward (>>) and Continue Backward (<<) buttons are similar te and

<, except the viewer continues to apply transformations until either a breakpoint is reached or the end or
beginning of the transformation list is encounter&teakpoints can be set, listed, and deleted by selecting
the Set/List/Delete Beakpoints button and using its associated wimdo Managingbreakpoints is dis-

cussed in the following section.

The user can vie the transformations serially or at specified breakpoints, either in thearfdrw
(shaving the transformations being applied) ovamse (shawing them being undone) direction. In other
words, the user does not need toxeeeite anything to vie a reviously applied transformation. The user
can reverse the effects of gror dl transformations with a f@ mouse clicks. This process does ndeetff
the ability to interpret transformations in the forward directidhus, the user can wiea ransformation or
set of transformations being applied andersed as mantimes and in as marareas of the compilation as
desired, which is very useful for comprehending the full effect of complicated transformatitsos.the
programmer need not compile the entire function to be able wtrdaaesformations. Theiewer will allow
the user to see wriransformations that a dready been receed from vpo. The programmer can step
vpo using a source-le debugger through its optimization of a function one transformation at a time.
Thus, at ap given point one can both we the graphical representation of the RTLs and study the actual

data structures and source code in the optimizer that produced it.

3.2. ManagingBreakpoints

There are three types of breakpointswpodb The simplest is &ransformation numbdsreakpoint.
The user enters a transformation number or numberscgpadbwill break at the BEFORE or AFTER

state of these transformations (depending on the direction winge Sincevpo knows the number of
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each transformation it sendsxgpodh this provides a carenient way to coordinate breakpoints in both the

compiler and the viewd.

The user selects a set of optimization phases to cre@ptanization Phasereakpoint. Afterclick-
ing on a continue button, the viewer will stop whamene of these phases is encounter&de first or last

transformation in the phase will be displayed, depending on whether ilnie<< button was selected.

The final type is aRTLbreakpoint. Theiser can choose a set of RTLs to be associated with a set of
optimization phases selected. The viewer will stop whemany o the selected RTLs is changed iryan
way during ary of the selected phases for that breakpoint. Figure @wsisereral of the menus used to set

this type of breakpoint.
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Figure 4: Setting Breakpoints in XVPODB

4 Thetransformation numbedsreakpoints also ale a wser to quickly vier an invdid transformation identified by the error iso-
lation tool calledvpoiso[5].
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The user also has the option to list and delete the existing breakpoints. The user can simply list the
transformation numbers associated with the curtemisformation numbebreakpoints and click on the
numbers to be deleted. More information is provided forRf& breakpoint, as shn in Figure 5.How-
evea, these breakpoints are associated with actual instructions that weaydemn altered since the break-
point was set. The user needs information to remember the reason for setting the bredkmoefore,
the user is also skum the transformation number and the text of each RTL in the breakpoint when the

breakpoint was set.
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Figure 5: Listing and Deleting Breakpoints in XVYPODB

3.3. OtherOptions

Selection of thé@ptionsbutton in the bottom section of the main wimdpops up a menu ofutons
that implement less commonly used features of thwearieThis menu is shen in Figure 6. The options

were placed in a separate menu to reduce screen clutter and provideeaierdnplace for future
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Figure 6: Options Window

developers to add minor features to thewe The Proceed to Next Functiobutton is used to instruct
xvpodbto discard the current function data and interpret the next function that was conipile@o To

Initial Setbutton allovs the user to undo all transformations for the current function. Thusweaofihe
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initial set of RTLs for the current function will be displayethe Apply All Tansformationsutton is used
to display the completely optimized set of generated instructions by applying all the transformations that

have been receied for the current function. Both of these features skip all breakpoints.

Clicking theDump RTLdutton pops up a windw that can be used to dump the current setTafsR
displayed. Asshowvn in Figure 7, the alternatis include dumping the RTLs to stdea fie, or to a
printer.5 In addition, the user can select the range of blocks to be duripésifeature is useful for analyz-

ing the BEFORE and AFTER states of a particular transformation.

Prooesd Lo nexdt Funoblon

B Lo inilisl Set

Beplu 811 fransforaations

Phaange

TS Range of Basic Blocks

Siatic Heq from to

Hide Lonbro |2]’~ | |25. |

Shes Transnfon Dump to: |stderr ||Printer|

Filenane

r—

Figure 7: Dump RTLs Window

The user can select tienter Sceenbutton to quickly center gnsection of the RTL structure on the
screen. Adgllustrated in Figure 8, the user can either specify a block number orxreedress of a pointer
to a block or HL. Thehex address is the same as the addresgos pointer to that structure. This fea-
ture is very useful while viging the RTLs withxvpodband controlling theecution ofvpowith a source-
level dehugger since the user can easily locate a structurepadbusing the actual pointer address within

the compiler.

5 The term stderr refers to the standard error file associated with C progvdines xvpodb is imoked from a shell script, this
output can be captured in a diagnostic winds $iown in Figure 10.
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Figure 8: Center Screen Window

Measurements about the current display of RTLs can be obtained by selectBigtibeMeasia-
mentsbutton. Figure9 shows the windev that pops up containing a scrollable display of informatidhe
set of natural loops with the number of instructions and memory references at each loop nettiag le
shavn. A user can quickly grasp the benefit of the optimizations performed on a function by viewing these

measurements at the initial set of RTLs and after all transformatioadben applied.

Fraceed o o
e Lo Ind Static Heaszurements

Hpply BLL fra

Hatural Loopz

nest level loop head other blocks

1 15 16, 17, 18, 19, 20, 21
1 9 10
2 19 20
2 16 17

Frequency Infornation

loop nesting level instructions  nenory references
108
1 q7 q

Figure 9: Static Measurements Window

Clicking theHide Controlflow Acstoggle allows the user to turnf@br back on) the drawing of arcs

that represent the control Wobetween basic blocks. Arcs will be eva by de&ult. This feature is
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convenient when using a very sloX server or if the RTLs are being displayeekoa long haul network.

Sometimes it may not be clear to a usexwgfodbexactly what changes occurred duringpotrans-
formation. Byselecting the&show Tansformation Detailgoggle, the user will be sk information about
evay change message sent\po for a transformation. This information is displayed whandhe user
adwances to the BEFORE state of a transformatiear.instance, Figure 10 shows the details of the trans-

formation illustrated in Figure 3.

[®] Diagnostics from Xvpodb
Port number 3613

CHANGE INFORMATION FOR TRANSFORMATION: &7
MODIFY RTL (00229%ee8) in block 21 (00229760)

01ld RTL text = *IC=r[d40]?r[39];°
New BTL text = *IC=r[40]7%;"

DELETE RTL (00229448) in block 21 (00229760)
01ld RTL text = "pr[39]=9;"

MODIFY DE2DS (0022%=e8) in bloeck 21 (00229760)
BETL asscc with deads = fIC=r[40]7r[39];"

01d deads = *r[39]r[40]", New deads = *r[40]°

Figure 10: Transformation Details

3.4. ObtainingInformation on RTLs or Basic Blocks

Information is provided byvpodbthat allavs the user to easily locate the desired portioxpais
internal data structurel-or example, the programmer can find the pointer address usegddgr ary RTL
or basic block simply by clicking on it vpodb The user can use this pointer address in the sowee-le

debugger to access that actual portion of the data structupe.in

If the user clicks the middle mousatton on an RTL in the main RTL displahen a winda will
appear showing extended information about tfi&.RThis information includes separate lines for thette
of the RTL and its dead register list and sidea$. Thispopup windev is typically wide enough to com-

pletely display all of these fields.

Similarly, the user can click the middle mouse button on a basic block header to oimided
information about that basic blocK his information, which is illustrated in Figure 11, includes the pointer

addresses of the block, its predecessors, and its succeSsong commonly used data and controlvflo
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information is also calculated and displayed.

[®] ¥PO Optimization Viewer
Function | nkline() | [ BEFORE | Trans Hunber 187
Opt Phase | Connon Subexpr Elinination | El Highlighted Total 231

7 L4l

IC=r[131&r[11170;

FC=IC:0,142;

8

r[81=b[121{24:
r[81=r[81324:
IC=r[8170: rl8]
FC=IC:0, 144

Pr=Ld3;
10 [ Ldd R
rI81={BIAT11-114243 3241
11 ] 145
Pr=Ld3;
12 [ L42 R
r[81=32;
Options
Set/List/Delete . - , My,
Break
T34« BASIC BLOCK 8 (00226238) INFORMATION +

|: Successors: Blocks 9 {002268803, 10 {002267f8)
Predecessors:  Blocks 7 (00225428}
Hunber RTLs: 4
Live Ins: bL121r[11r[21r 31 [41r[S1rI6]r (1010 [111r[13]
Live Duts: bL121r[11r[21r[31r[41r[51r[61r[101r[111r[13]
Doninators: i, 2, 3. 6, 7, 8, 18, 19

Figure 11: Detailed Basic Block Information Window

4. Examplesof Using the Viewer

To illustrate the power afvpodh the process of using the wer to diagnose an error and to under
stand hav a particular RTL was generated is described.
4.1. Diagnosingan Error

One of the major benefits ofvpodbis to assist a compiler writer when diagnosing optimization

errors. D illustrate the use okvpodbin this process, the authors modified the code withinvihe
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optimizer to erroneously perform induction variable elimination. The modificatamstasvcomment out the
code that checks if the induction variable wae lfter exiting the Ioo;?. Figure 12 shows the BEFORE
and AFTER states of theviaid transformatior!. The instruction incrementing inductioanabler [ 10] is
deleted as a result of the transformatiofet r [ 10] is used after the loop as an argumenptont f , as
depicted in the last RTL of block 6. Detecting that the RTL that incremngrit®] should not hee been
deleted is easily accomplished by being able tev Wiee BEFORE and AFTER states of the transformation.
In addition, the compiler writer can peseute vpo within a source-leel debugger and stop at the point
before the transformation was performed to discavhy the transformation occurred. This point in the
execution can easily be reached singm also counts the number of transformations performed during the

optimization of a function A simple conditional breakpoint on the transformation counter will suffice.

[¢] ¥PO Optimization Viewer [¢] ¥PO Optimization Viewer
Function | nain{} | [ BEFORE | Trans Hunber [ 761 | Function [ nain{} ] [AFTER Trans Hunber
Opt Phase [ Induction Var Elinination | [ 1] Highlighted Total 83]: | Opt Phase [ Induction Yar Elinination | [ 0] Highlighted Total
z]L13 3| L1
rI8I=RIF(311 r[BI=RIF[311;
PLALI=P (11040812 PL8] PLALI=r (11040813 rL8]
[eTus | [eTus
| FI31=r[31+4; | | rizi=rizie;
5| LB
5] Lis IC=r[31%r[91;
1C=r[317r[31; PC=10<0,L19;
PC=1C<0,L19; L
1 6] L7
6| L17 rI81=HIL22]:
L8I=HI[L22]: L81=r [B1+4L0[L22];
rL81=r[81+L0[L22]; P[91=r[11]; rLAL
r[91=rll1dy r[11] ST=HI[_printf1+L00_printf],80,3; =r(101:=r[9]
ST=HIL_printf1+LO[_printfl1,80,33 =r[101:=r[3] l
1 [ 7Tus
I
Options Options
Set/List/Delete Set/List/Delete
Help Help

Figure 12: Inspecting the BEFORE and AFTER States of\aidnTransformation

5 We fad to manufacture an error to illustrate usiwgodbto find an optimizer problem since we currently ddnow of any
errors in thespocompiler.

” Note that the BEFORE and AFTER states of a transformation cannot both be displayed at the sanxepdb iDisplay-
ing both simultaneously & deemed to require too much space on a screen since a user will typieabydiher windev displaying
the compiler being»ecuted within a sourceel debugger at the same time. Besides being able to rapidly flip between the BEFORE
and AFTER states of a transformation using *hend < buttons, the user can dump the BEFORE and AFTER states of the basic
blocks irvolved in the transformation to a file or a print@s $iown in Figure 7. In addition, the user can obtain details about the spe-
cific set of changes that comprise a transformation, as shown in Figure 10.
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4.2. UnderstandingHow an Instruction Was Generated

Another benefit okvpodbis to allov a compiler writer to quickly understand Wwoa particular RTL

was generated. Initiallythe user directs the optimization viewer to reach a point when the partidilar R

has been produced. This is easily accomplished by selectingptply All T ransformations button

(located in the options menu), which causes the viewer to display the completely optimized Het.of R

For instance, Figure 13 shows the RTLs of a function after all optimizatiamesikhan applied. It may not

be obvious to a user tothe fifth instruction in block 12, a left shift operationasvgeneratedNext, the

[#] VPO Optimization Viewer

Function |

Opt Phase|

cal(} | | AFTER | Trans Humber
Fill Delay Slots |

[ 2] Highlighted

Total

276
276

10 | L1oo

rl12]=r[12]+1:

11 | L1z

IC=r[1217[131;
PC=1C<40,L103:
r[81={Blr[1211{24}}24:

4

12 | L1ot

r[91=7:
r[81=UCL,rem,r[8]1,0[911: r[3]
r[81=r[161: r[1R]
r[191=r[3]1:
r[81=r[81{2:
r[81=-[81-r[191
r[161=r[221+r[8]:
rl20]=1r
r[81=HI[_monl:
r[81=r[81+L0L _monl:
r[81={Blr[241+r[A11{24 3324
IC=r[251M (812

PC=IC>0,L93:

r[81r[22]

13 | Loot

r[221=HI[ _monl:

Options

Set/List/Delete
Breakpoints

Help

<«<| < | >

Figure 13: After All Optimizations

-19-



user sets aRTL breakpoint to cause the viewer to stop oy @range to the desiredlR. At this point the

user can vie each transformation irolving this RTL being undone by succesty clicking <<.

Figures 14 and 15 shows the AFTER and BEFORE states of tieysréransformation wolving

the left shift instruction. The transformation can be analyzed by clickiagd> as mag times as neces-

sary By stepping backwards with the button, the user is able to determine that the left shift was gener

ated by applying strength reduction on a multiply operation, as shown in Figure 15. The user can click

[¢] ¥PO Optimization Viewer

|

Function

cal{)

Opt Phase

[ 3] Highlighted

|
Strength Reduction |

Total

| AFTER | Trans Hunber

276

9 L100

rL101=r[10]+1:

10 | Lin2

IC=r[1077r[18]1:
PC=IC<0,L103:

11 | L1l

r[91=7:
r[81=r[161: r[1E]

r[3]

r[81=UCT  rem, r[81,r[91]:
r[191=r[81:

rl161=r[221+r[8]; rlBIr[22]
r[171=1:

r[81=HI[_mor1:
r[81=r[81+L00_monl:
r[81=¢{Blr[18]1+r[811{24:¥24;
IC=r[1717r[81:

PC=IC>0,L93:

12 | Lol

r[22]1=HI[ _monl:

Options

Set/List/Delete
Breakpoints

<<

>

> >

Figure 14: After State of the Last Transformation Affecting the Instruction

-20-



until the transformations that produced the particular RTL are understood. If desired, the user could click

>>to view each transformation being reapplied to the RTL.

[#] VPO Optimization Viewer E]

Function | cal{} | | BEFORE | Trans Hunber

Opt Phase | Strength Reduction | Highlighted Total 276

g L1o0
rl101=rl101+1s

10 | Lio2
IC=r[101%r[181:
PC=IC<0,L103;

11 | Liot

r[91=7:

r[81=r[1E1: rl1E]
r[81=UCL.rem, (81,0911 r[9]
r[191=r[81:
r[8l=r 3
r[1R1=r[221++-[8]; r[81-[22]
r[171=1:

r[81=HI[ _monl:

r[81=r[831+L00 _man]:
r[81=tBlr[18]+r[811{243324;
IC=r[171%[81:

PC=IC>0,L93

1)
12 | Logt
r[221=HIL _monl:
1)
JJ 13| L8 |
Options
Set/List/Delet
“Breakpoints || Q& < > > >
@iD[  telp ]

Figure 15: Before State of the Last Transformation Affecting the Instruction

5. Implementing XVPODB

The implementation okvpodb required obtaining information frompo about the compilation,

retaining this information, and interacting with the user.

81f an invalid instruction has been identified and a took Mpoiso[5] is unavailable, then this technique can also be used to vi-
sually isolate the incorrect transformation.
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5.1. ObtainingInformation from the Compiler

Thevpooptimizer was modified to send information about the optimization of a fikepgodb This
information was communicated via messages using UNIXetsckut could easily be redone using remote
procedure calls (RPCs)nternet stream sockets were used to guarantee reliable communicationswand allo
long haul operation of the wier. Most of the types of messages sent fago to xvpodbare shown in
Table 1. The first set of messages in the table are used to indicatpadbwhen the changes occurred
during the compilation. The second set of messages describe the actual changes to the program representa-

tion.

Coordination Messages

machine dependent information
begin function

end function

begin optimization phase

end optimization phase

begin transformation

end transformation

end compilation

Change Messages

create ne basic block

free up basic block

modify basic block label

modify control flav successor of block
modify output position successor of block
insert nev RTL

delete RTL

move RTL

modify RTL

modify RTL dead register list
modify RTL side effect list

Table 1. Message Types frompoto xvpodb

The sequence of messages is described by the following BNF grammar.
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<conpi l ati on> ;. = MACHI NE_DEPENDENT MSG
<function>*
END_COWVPI LATI ON_MSG

<function> ;.= BEGA N_FUNC _MsG
<phase>*
END_FUNC_MSG

<phase> 1= BEG N_PHASE_MSG

<transformati on>+
END PHASE MsG

<transformation> ::= BEG N_TRANS_MSG
<change>+
END_TRANS_MSG

<change> 11 = agecific chang messae

The <conpi | ati on> of a file produces a machine dependent information message, information about
zero or more functions, and a message indicating the end of the compilation of the file. The machine
dependent message contains information thatvatikwpodbto properly recognize a memory reference and

a regster for the target architectur€cach<f uncti on> consists of zero or more optimization phases
enclosed by messages that indicate the beginning and end of the fultiicn.optimizatiorxphase>

consists of begin and end phase messages thaeb@uk or more transformationg&ach<t r ansf or -

mat i on> consists of one or morechange>s and is surrounded by messages indicating thggnioing

and end of the transformation.

Functions that construct phase and transformation messages vedegl iim vpoat the points that an
optimization phase or transformation could potentiallgibeand end.However, a kegn transformation
message was not sent until iasvdetermined that the transformation contained at least one change. If the
begin transformation message was the last message to be sent before an end transformation asgessage w
constructed, then both messages were abottdtewise, a begin phase messageswot sent until it as
determined that the phase contained at least one nonempty transformatating the transmission of
empty phases and transformations reduced the socket traffic betp@and xvpodband eliminated the

viewing of empty transformations by the user.

5.2. Main Data Structures

There are tw main data structures ixvpodh the Optimization Listand theSceen List These data

structures are depicted in Figure IBhe Optimization Listis a doubly linked list of nodes. Each of these
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Optimization List Screen List

A

1 | :
| . | | [ 8= B

| ‘ J
] | [ ——{ [ riei=@IrisI24))24; [ ]

| 1
' | |+ [ ma=maey ]

‘ [ ‘ ,
| | [ =8 B

| ] —

| 7\ | | ——»{ [ ic=rseo; |
' v

Figure 16: Main Data Structures in XVPODB

nodes represent a decoded message. This list is descended when performing forward transformations and
ascended whenversing transformationsA single pointer to this list represents the point during the com-
pilation that is currently being displayed kypodb The act of stepping or continuing mes this pointer

in the appropriate direction. All transformations ebdhe pointer and none b&owill have keen applied

to the initial set of RLs. Any information needed to verse a change is stored in the node associated with

the change message when the transformation is appltad.information is used to restore the screen rep-
resentation of the R. or basic block to its previous state while ascending the list (undoing transforma-

tions).

The screen listis a singly linked list of nodes, each node containing (among other things) one small
section of the main RTL viewing area. These nodes represent the current state of all RTLs and basic
blocks. Nodesre modified as transformations are applied versed. Asimple routine copies all of the
small screen sections to an area of memory that will be displayed after performing a step or continue opera-

tion. Thescreen lisnodes are created, modified, or deleted as change messages are processed.
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To illustrate hav these data structures are manipulated, a description of the processing of change
messages in both directions iveyi. Figure1l0 shows the information represented by the three change
messages that comprise the transformation illustrated in Figure 3. The forward processingnodifiie
RTL message requires storing a ga the old RTL text in thé®ptimization Listhode associated with this
change message. After gopg the old RTL text, the actual modification is applied to RTL text field in
both theOptimization Listand Sceen Listnodes. Asimilar process will occur for thmodify RTL dead
register listmessage, except the dead register list is copied and then updated. The forward processing of a
delete RTLchange requires saving the previoud R ID (saving the location at which it can be reinserted
in preparation for reerse viewing) in theDptimization Listhode associated with this change messéage.
addition, the character strings representing the RTL, the dead register list, and thdesid&osh the
Sceen Listnode are copied into th@ptimization Lisnode. Aftercopying this information, th&creen List

node associated with the RTL is deleted.

The information seed during the forward processing of a transformation will be used when a trans-
formation is re@ersed. Thebackward processing of thmodify RTLchange simply requires cgipg the
character string stored in the old@Rtext field of theOptimization Listhode during the forward processing
of this change message to the RTL text field of bottOgpmization ListandScreen Listnodes. Asimilar
process will occur for thenodify RTL deadegster list message, except the dead register list is restored.
Reversing thedelete RTLmessage requires creatingsaeen Listnode and using the wal RTL's ID to
place it in its former location in th&ceen List Next, the saed character strings in th®ptimization List
node representing the RTL, deadister list, and side effect will be copied to their counterpart fields in the

Screen Lishode.

The exclusive ise of R'Ls as the intermediate representationpo greatly simplified the design and
implementation okvpodb Because there is only one type of data structure for the program representation,
only one algorithm had to bed#oped to process change messages and produce afvike data struc-

ture.
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5.3. DiagnosingConsistency Errors between the Compiler and the Viewer

One of the most challenging problems during thesld@ment ofxvpodbwas to ensure that the R_s
displayed byxvpodbexactly matched the information in the data structuregoof Thevpooptimizer is a
large program consisting of about 25,000 lines of source cote.optimizer had to be updated to accu-
rately report all changes associated with the RTbsvfmdbh Specific changes could easily beedooked
or reported inaccuratelyln addition, a consistecerror could occur if a transformationas applied or
reversed incorrectly irkvpodb If an inconsisteng between the structures po andxvpodbwas cetected,

then the exact point po or xvpodbthat caused the inconsistgritad to be found.

A method for performing a sanity checlkasvdeeloped to ease the diagnosis of consistemoors
between the compiler and the wigr. A programmer can issue a function call witkipo at ary point dur
ing the compilation that will send tovpodba st of messages that describe the current state of the RTLs in
vpo9 The viewer compares this information to its internal representatiofilo$ Bnd will report ay dffer-
ences between the iwdructures. Thusxvpodbcan be instructed to check itself for consisiemwehich

greatly simplified the debugging of both the viewer and the modificatiorgoto

6. Portability Issues

The optimization viewer is quite easy to reirto versions ofpo for other architecture® The
code comprisingkvpodbitself is machine-independent. The messages passedviporto xvpodbare
accomplished via system calls using UNIX setsk TheUNIX operating system has been retargeted to a
greater number of dérent machines than pether operating system. The optimization viewer wassde
oped in X-Wndows. AsUNIX has become the most popular and portable operating systenndGiis
appears to be achieving the same goals as a graphicainenent. Afinal feature that enhances portability
is that the general form of RTLs is machine-independ&hts allows algorithms that perform transforma-

tions on the RTLs to be implemented in machine-independent &idee most of the transformations on

% This sanity check function reuses the same set of utility functions that send the initial set of messagekb to

10 Currently,xvpodbcan display the effects of optimizations for versionvmd that hare been retargeted to the SPARC and
Motorola 680x0 architectures.
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RTLs invpoare accomplished in a machine-independasihibn, there are fieadditional changes required

due to the addition ofvpodbwhen retargetingpoto a nev machine.

One machine-dependent issue isvhapodbcan recognize registers and memory references since
the form may vary with versions epo retageted to different machines. The wier needs to recognize
memory references to accurately shiaformation about the current display of 5 when theStatic Mea-
surement®ption is selectedSimilarly, regsters hae © be ecognized to calculate thedi regsters enter
ing and exiting a basic block when the middle mouse button is used to obtairetlegjéiter information
on a basic blockAs mentioned prgously, the first message sent frovpo to xvpodbcontains machine-
dependent information for the target architectufighis information includes a set of dwdharacter
sequences that are associated with memory refereagsinstance, a ingeer memory reference in a
SFARC RTL has the forniR[ addr] , where theaddris the particular addressing mode used in the memory
reference. Thusthere is a memory reference wheerean R[ is encountered in a SPARCTR Other
information includes the characters preceding a left bracket that represgistar the number of each
type of rejister and the registers that should not be displayed in tleerdigster information (e.g. the stack

and frame pointers).

The viewer could be adapted to display transformations iryroduer optimizing compilers without
an ecessve anount of efort. The information about RTLs, deadgister lists, and side effects were
decoded into character strings before being sent in messagegoih Mary other optimizers maintain
the program representation in a single format comparable to thgioife.g. basic blocks, etc.)The
changes to the program representation during transformations in these other optimizers will also be compa-
rable (e.g. deletions, insertions, modifications, eteéd.instance, modifying the viewer to display transfor

mations for agcccompiler would not be too difficult.

7. Performance Efficiency

There are three aspects of performandeiehgy that should be considered. The first performance

issue is the werhead placed on the compileéfhe second issue is the storage requirements for thewrie
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The final issue is the viewer response time to user selections.

It has been found that tlvpo optimizer executes a little ger two times slower on a SPARC 10 when
it has to send messagesxtgpodb Most of this time is due to interfacing with the operating system by
sending the messages via satsk Initially the authors considered makirgpodbpart of the same process
as the optimizer This idea vas rejected due to concerns about the total memory requirements of such a
process and the flexibility that separating the viewer into a separate process wwigld. pFor instance,
the authors ha implemented a simple program to reeeimessages from the compiler and store them into
a file and a simple program to read these messages from the file and send them teetheThies, the
viewer can bexecuted without the compilewhich is quite useful for providing demonstrations to students

in a compiler class. At this point, the authorsénfound the optimizerverhead acceptable.

The amount of memory required Bypodbcan be quite large depending upon the size of the source
file and the number of RTLs in a functiolVheneer the viewer receies a nessage from the compilat
appends the message to @gtimization List Messages are only deleted from @atimization Liswhen
the user selects to proceed to thetrienction. If the source file being compiled contains ynfamctions,
then there may be mgmessages sent tovpodb To avoid having to see an excessve rumber of mes-
sages in th©ptimization Listat ary one time, the compiler writer canvioke the optimizer from a source-

level debugger and not optimize a succeeding function untilfgacompleted viewing the current function.

The amount of memory needed to display ti&fRis dependent on the size of the current function.
First, the viewer must sa information about each of the currentl® being displayed in th8cieen List
Information from theScieen Listis copied to an area of memory that will be displayed each time a step or
continue operation is performed. The authors found that functions containarg Erge number of RLs
will cause the viewer to abort due to allocating too much memory to represent ¢t ipixhe display
which was apparently a limitation imposed by XAdbws. Thereforexvpodbwas modified to limit the
maximum number of RTLs that could be displayed 3t @re time. When the limit isxeeeded, only a
portion of the HLs are displayed and the user is informed that the display is incomplete. This lingeis lar

enough that most compiled functions can be entirely viewed.
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The vieaver response time to user selections is very fast once the compiler stops sending messages to
xvpodb Stepping forward or backards is usually accomplished in less than one second. The response
time from continuing forward or baclaxds depends on the number of transformations to process, but typi-
cally can be accomplished in only avfeeconds. Theesponse time tovents that cause the RTL display
to be redrawn is also dependent on the number of RTLs that are currently being displeyeder, the
authors hee found the response time acceptahblengfor functions that approach the maximum limit of

displayable RTLs.

8. RelatedWork

There hae been seeral systems that pwide some visualization support for the parallelization of
programs. Thessystems include thgat toolkit [6], the parafrase-2ervironment [7], thee/spsystem [8],
and a visualization system\a#oped at the Uniersity of Pittslurgh [9]. All of these systems provide sup-
port for a programmer by illustrating the dependencies that magrirparallelizing transformations from
occurring. Auser can inspect these dependencies and assist the system by verifying whether a gependenc

is valid or can be renved.

The UW lllustrated Compiler [10], also kwa asicomp has been used by undergraduate compiler
classes to illustrate the compilation proce$heicompcompiler graphically displays its control and data
structures during the compilation of a prograffeature called hookpoints is used to specify points in the
compiler to update the windows thatveacthanged since the last hookpoinasveecuted. Byspecifying
hookpoints and breakpoints in the compiler a user can control the rate at wkishavéedisplayed during

a compilation.

There are mandifferences between the parallelization systdomnp and xvpodb The main pur
pose for deeloping the parallelization systems was toall® programmer to assist in the process of paral-
lelizing code. The purpose for doping theicompcompiler was for use as a teaching tool in an under
graduate compiler class. The main purpose for construgtipgdbis to assist a compiler writer when

retaigeting thevpo compiler to a n& machine. Thexvpodbtool can also be used as a teaching tool in a
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compiler class to illustrate various compiler optimizations.

The portion of the compilation process beingnge also differs between these systems. The paral-
lelization systems that illustrate a portion of the compilation process either illustrate source to source trans-
formations or depict high-&l optimizations on intermediate cod@he icompcompiler shows views of
different portions of the compilation process, which includes lexical analysis, parsing, semantic analysis,
and code generatioNo optimizations are performed by the compilém contrast,xvpodbdisplays the
effects of optimizations on RTLxelusively. Each RTL represents a valid instruction for a machifleus,
the efect that each transformation has on the final code that will be generated can be easily grasped by the

user.

There are also differences invna particular transformation can be reached before it is displayed.
general, the parallelization systems step the user through the transformations since the purpose is to ha
the user assist in parallelizing the coddways stepping through each transformation would not be feasi-
ble withicompandxvpodbdue to the number of transformations being applilgeicompcompiler allavs
breakpoints and hookpoints to be set afiedént locations in the source code of the compiledoes not
have the ability to stop when a user-specified portion of avugeupdated. Thexvpodbtool allows break-
points to be set associated with updates to a specific portion of the information representing a function.
This feature is very useful for quickly isolating the transformations ttiatted particular portion of the

program.

Only the Unversity of Pittslurgh visualization system and/podballow revese viewing of transfer
mations. Unlilke xvpodh the Uniersity of Pittslurgh visualization system can also et a transforma-
tion from occurring. This ability to undo transformations allows a user of their system toverhe
effects of a transformation deemed fieetive a inappropriate. Rexrse viewing inxvpodballows a user to
quickly grasp har a particular portion of the code was generat&®bverse viewing was feasible in both of
these systems since the information about the program is represented in only a single type of data structure.
By retaining information about each change to this data structure, the ability to undo transformations can be

accomplished without excessimmplexity.
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9. Conclusions

The viewer described in this paper providegesad important benefits when retargeting the back end
of a compiler Displaying the program representation ay given point during the optimization of a func-
tion, stopping at breakpoints associated with the generated codeyensé réewing of transformations are
all helpful features for analyzing problems with an optimizZésmpilers can also be used to guide instruc-
tion set design by determining if proposed architectural features camplodéted [11]. Decreasing the time
to retarget a compiler to a proposed architectuoalleh also decrease the time required to design and

develop a nev machine.

Additionally, xvpodbcan be used as a teaching aid foraaed compiler classedany recently
introduced machines require sophisticated compiler optimizations to exploit their architectural features.
Advanced compiler courses that present techniques to perform these types of optimizations may soon
become more commorA tool that would allov a dudent to interactiely visualize the effect of each trans-

formation would be quite useful in illustrating these optimizations.
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of the portion ofkxvpodbthat calculates thevié regster information.
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