
CRC: Protected LRU Algorithm

Yuval Peress, Ian Finlayson, Gary Tyson, David Whalley

To cite this version:

Yuval Peress, Ian Finlayson, Gary Tyson, David Whalley. CRC: Protected LRU Algorithm.
Joel Emer. JWAC 2010 - 1st JILP Worshop on Computer Architecture Competitions: cache
replacement Championship, Jun 2010, Saint Malo, France. 2010. <inria-00492945>

HAL Id: inria-00492945

https://hal.inria.fr/inria-00492945

Submitted on 17 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00492945


CRC: Protected LRU Algorithm

Yuval Peress Ian Finlayson Dr. Gary Tyson Dr. David Whalley
peress@cs.fsu.edu finlayso@cs.fsu.edu tyson@cs.fsu.eduwhalley@cs.fsu.edu

Abstract

Additional on-chip transistors as well as more ag-
gressive processors have led the way for an ever ex-
panding memory hierarchy. Multi-core architectures
often employ the use of a shared L3 cache to reduce
accesses to off chip memory. Such memory structures
often incur long latency (as much as 30 cycles in our
framework) and are configured to retain sets as large
as 16 way. A baseline replacement algorithm that
has proven itself over and over again is the Least
Recently Used (LRU) policy. This policy seeks to re-
place lines that were used least recently, which works
well thanks to temporal locality. This paper seeks to
improve on LRU by taking advantage of the 16 ways
available to include a bias for replacement. By keep-
ing track of the relative use of each lines, some fre-
quently used lines may become “protected”. By pro-
viding protection for such lines we have managed to
reduce the miss rate to 62.89% from LRU’s 70.08%.
Using a memory reference trace, we also demon-
strated that the best replacement algorithm, an or-
acle which knows about future accesses, could only
provide a 58.80% miss rate for our benchmarks.

1 Framework

The Cache Replacement Competition (CRC) pro-
vides the competitors with a trace driven simulation
environment. Competitors were provided access to
the class structure holding meta-data and functions
responsible for selecting the evicted line in each L3
cache set.

The competition can be subdivided into 2 phases:
a single and multi core execution. The L3 Cache con-
figuration maintains 16 way sets and 64 byte lines re-
gardless of the number of cores, and allows for 1MB
per core. In each phase, submissions are judged by
the performance of the L3 cache replacement algo-
rithm. Each submission is limited to 8 bits per cache
line as well as 1 Kbits of global memory. Due to the
long latency of the L3 and the low frequency of L3

cache accesses, algorithm complexity was not lim-
ited.

For our tests we chose 9 SPEC2006[1] bench-
marks (astar, bzip2, gcc, h264ref, hmmer, libquan-
tum, mcf, perlbench, and sjeng). These benchmarks
provided us with a large variety of L3 cache misses
(capacity, conflict, and compulsory).

2 Exploring the LRU Algorithm

The most common cache replacement algorithms are
based on the idea of Least Recently Used (LRU).
Here, the goal is to evict the lines that were accessed
the longest time ago, because temporal locality tells
us that they are unlikely to be needed again very
soon. Algorithms in this family include the popu-
lar Pseudo-LRU, the LRU-K algorithm [5], and 2Q
[3]. Another common approach in cache replace-
ment algorithms is to try and replace the lines that
are Least Frequently Used (LFU). The idea here is
that lines that have been used many times are likely
to be needed again.

The LRU algorithm was provided with the CRC
kit and was a natural starting point for our work.
Each of our benchmarks was executed using the LRU
algorithm and provided us with a list of hits/misses
and replacements within the cache as well as a base-
line miss rate (70.08%). Using these results we be-
gan scanning for patterns that might reveal shortcom-
ings of the LRU algorithm. Such a pattern was re-
vealed when a line was brought into the L3 cache for
a single reference, evicting a line that was referenced
many times before. The heavily referenced line was
then brought back into the cache to be used in what
must have been another loop or iteration of an outer
loop.

For example, a memory addressX was usedNx

times before being evicted byX′. X′ was then only
used a few times beforeX was brought back into the
set. It is important to note that on the second appear-
ance ofX, it does not necessarily replaceX′. Instead,
it is possible forX′ to remain in the set unused sim-

1



ply because it was referenced recently. This pattern
brings up an interesting question, “ShouldX be kept
in memory for being accessed many times?”

There have been several attempts to create an im-
proved cache replacement algorithm by combining
the LRU and LFU concepts. In [4] it is argued that
there is a spectrum of cache replacement algorithms
that include both least recently used and least fre-
quently used based on how much weight is given
to each policy. They use this weight to calculate a
combined recency and frequency value for each line
which is used in replacement decisions.

Another replacement algorithm that uses both re-
cency and frequency is presented in [2]. Similar to
our work, they identify a set of least recently used
lines and, among those, choose to replace the line
that is least frequently used. With each line they store
a counter indicating the number of accesses to that
line. Since our works are similar, it becomes impor-
tant to note the differences. First, [2] uses both the
LRU stack (4 bits) and an 8 bit counter value per line
which would not fit in the CRC framework. Second,
their work attempts to predict when caching a line
is not necessary whereas our work will always cache
a line that is fetched into the L3. Finally, and per-
haps most importantly, their work first selects theN
least recently used lines of which they select the least
frequently used to replace. Our preliminary work re-
vealed that more misses can be avoided if frequently
used lines are given protection first. Assuming that
12 lines are to be given protection from eviction, [2]
would select the least frequently used of the 4 least
recently used lines. Such a scenario could end poorly
if a phase of execution is about to repeat and all 4
lines will be needed again. Our algorithm would first
protect such lines that were heavily used previously,
and select a replacement from the remaining lines.

3 The LRU + Protected MUs

To further explore the questions above, an addi-
tional concept was added to each cache set: the MU
(Most Used). The initial test used an arbitrarily large
counter to keep count of the total number of refer-
ences per memory address. This counter value was
maintained in global memory space even while the
memory references was evicted from the cache. The

LRU algorithm was then augmented to never evict
the 4 most used addresses within the set. Such a
configuration provided us with a miss rate of 69.42%
(0.94% lower than LRU alone).

Since such a design is unreasonable to imple-
ment in hardware, a second concept arose. In the
second design, each cache line was augmented with
an arbitrarily large counter. This counter was incre-
mented on each access and zeroed when the line was
replaced. The remaining algorithm was the same,
when a line needed to be replaced the top 4 MU lines
were removed from the list of LRU lines before se-
lection. The new configuration provided an average
miss rate of 67.83% (2.25% lower than LRU). As it
turned out, keeping the counter around for too long
resulted in the cache becoming polluted with lines
that were accessed many times in a previous phase
of execution becoming impossible to evict. The new
results drove us to limit the counter size in hopes of
further removing such stagnation in the cache and
meeting the space requirements.

Replacing the original 64 bit global counter
per memory address, the first configuration aug-
mented the LRU algorithm (4 bits/line) with a 4 bit
counter/line and protect the 4 MU lines during an
eviction. This approach increased our miss rate from
67.83% to 67.89% (still beating LRU by 2.19%).
Since this design appeared to be working well, more
configurations were run, allowing for anywhere from
1 to 15 protected MU lines and anywhere from 3-
5 bit counters (Figure 1). Of these, we found that
the best configuration across the board was 14:3 (14
protected MU lines:3 bit counters), with an average
miss rate of 62.89% (7.19% lower than LRU alone).
While such a configuration provided the best aver-
age miss rate, a different approach reveals a different
view. Since a single benchmark provided large gains
for each additional MU, we wanted to find the best
configuration without giving too much bias to a sin-
gle benchmark. To do this, each benchmark’s best
performance configuration was listed: 7:3 (astar),
10:3 (bzip2), 10:3 (gcc), 14:3 (h264ref), 15:3 (hm-
mer), 15:3 (libquantum), 12:4 (mcf), 14:3 (sjeng).
Using the unweighted average we find that the ideal
configuration (rounded down) should be 12:3.

The 12:3 configuration provides a miss rate of
63.6% (6.48% lower than LRU alone) and costs 7
bits per line with no additional global data. The

2



Figure 1: Hit rate of different LRU + Protected MU configurations

first 4 bits are used to store the LRU stack position
in a 16 way cache; the following 3 bits provide a
counter with a max value of 7. LRU would now
be kept as it was previously, with each access to a
line simply shifting that line stack index to 0 and in-
crementing the stack locations that were below it so
that the stack values may remain continuous. The
additionalcounterwill be incremented on each ac-
cess to a cache line. If the counter ever rolls over,
all the counters within the set are right shifted by
1. Such a divide by 2 approach helps preserve the
top most used values, while not allowing such val-
ues to become stagnant between phases of execution.
Since algorithm complexity is of no issue, the top
12 counter values (in our 12:3 configuration) are ig-
nored when looking for a line to replace using a sim-
ple scan through. Instead, the LRU of the remaining
4 lines is evicted and its counter set to 0.

An interesting observation is found when look-
ing at the addition of counter bits. On average be-
tween all benchmarks and each number of protected
MUs, we find that the addition of the 4th bit increases
the miss rate by 0.12%, while the 5th bit further in-
creases the miss rate by 0.24%. Such data further
supports the concept of stagnation within the pro-
tected MUs. The additional bits allowed cache lines
to become so dominant within the set that they be-

came hard or even impossible to evict once they be-
came useless.

A final run was performed where each bench-
mark produced a trace of which memory addresses
are accessed. On a following run of the benchmark,
the trace is loaded and is used during line eviction.
When a line needs to be replaced, the oracle scans
through the trace using only references that have not
been seen yet. The lines in the set are check off as
each memory address is seen until only a single line
is left. This final line is the one that needs to be re-
placed since it will not be used for the most number
of cycles. Using this oracle we found that the best re-
placement we could expect for our benchmarks will
provide a 58.80% miss rate.

For completeness, the execution of 4 threads was
performed. The 4 threads were selected by which
threads had the greatest standard deviation between
all the configurations we ran (bzip2, gcc, hmmer, and
libquantum). Configuration for the 4 threaded ex-
ecution followed the parameters of the competition
by increasing the L3 cache size from 1MB to 4MB
and altering no other parameters. The results showed
that gcc and hmmer both were aggressively compet-
ing for the protected slots such that below a thresh-
old of 6 MU’s a 1:5 configuration was best with an
average miss rate of 59.95%. Once the threshold is

3



met performance improves with each additional pro-
tected MU, our selected 12:3 configuration provided
a 56.96% miss rate (4.07% lower than the 61.03%
miss rate provided by LRU).

4 Conclusion

In this work we have demonstrated that with large
sets, the LRU algorithm can be improved by account-
ing for use frequency. With only an additional 3 bits
per line over LRU, we can protect lines which may
have been referenced a long time ago but used many
times before. To prevent stagnation of such counter
based protection, the counter is limited to 3 bits and
upon saturation all counters within the set are right
shifted by 1.

We would also like to compare our results with
[2] since the concepts driving both works are very
similar. Unfortunately, [2] used an older set of
benchmarks which have only a single benchmark in
common with our work, mcf. In this benchmark,
their best performing scheme performed at 1% im-
provement from LRU (translating to a rough miss
rate of 91%), where as our worst submitted config-
uration achieved a miss rates of 86.36% (or a 6.23%
improvement over LRU when scaled as in [2]).

Using SPEC-INT CPU2006 benchmarks we
have demonstrated that a 12:3 configured Protected
LRU can achieve an average miss rates 6.48% lower
than LRU alone and a 14:3 configuration further re-
duce the miss rate by 0.71%. We further demon-
strated that additional counter bits adversely af-
fect performance due to stagnation. If we were to
normalize our results with the oracle performance;
we would find that LRU’s miss rate is 119.18%,
while our configurations (10:3, 12:3, and 14:3) have
109.54%, 108.16%, and 106.96% miss rates respec-
tively. While a 14:3 configuration did perform better
under our benchmarks, we believe that a 12:3 config-
uration is more appropriate for general purpose ap-
plications. Our submission includes 10:3, 12:3, and

14:3 configurations.

5 Acknowledgements

This research was supported in part by NSF grants
CNS-0615085 and CNS-0915926.

References

[1] Standard Performance Evaluation Cor-
poration. SPEC CPU2006 Benchmarks.
http://www.spec.org/cpu2006.

[2] Haakon Dybdahl, Per Stenström, and Lasse
Natvig. An lru-based replacement algorithm
augmented with frequency of access in shared
chip-multiprocessor caches.SIGARCH Comput.
Archit. News, 35(4):45–52, 2007.

[3] Theodore Johnson and Dennis Shasha. 2q: A
low overhead high performance buffer manage-
ment replacement algorithm. InVLDB ’94: Pro-
ceedings of the 20th International Conference
on Very Large Data Bases, pages 439–450, San
Francisco, CA, USA, 1994. Morgan Kaufmann
Publishers Inc.

[4] Donghee Lee, Jongmoo Choi, Jong-Hun Kim,
Sam H. Noh, Sang Lyul Min, Yookun Cho, and
Chong Sang Kim. On the existence of a spec-
trum of policies that subsumes the least recently
used (lru) and least frequently used (lfu) policies.
SIGMETRICS Perform. Eval. Rev., 27(1):134–
143, 1999.

[5] Elizabeth J. O’Neil, Patrick E. O’Neil, and Ger-
hard Weikum. The lru-k page replacement al-
gorithm for database disk buffering. InSIG-
MOD ’93: Proceedings of the 1993 ACM SIG-
MOD international conference on Management
of data, pages 297–306, New York, NY, USA,
1993. ACM.

4


