
Program Differentiation

DANIEL CHANG, STEPHEN HINES, PAUL WEST, GARY TYSON, DAVID WHALLEY
Computer Science Department, Florida State University

Tallahassee, Florida 32306-4530, USA
{dchang, hines, west, tyson, whalley}@cs.fsu.edu

Received (Day Month Year)
Revised (Day Month Year)
Accepted (Day Month Year)

Mobile electronics are undergoing a convergence of what were formerly muliple single application devices into
a single programmable device – generally a smart phone. The programmability of these devices increases their
vulnerability to malicious attack. In this paper, we propose a new malware management system that seeks to
use program differentiation to reduce the propagation of malware when a software vulnerability exists. By
modifying aspects of the control flow of the application, we allow various portions of an application executable
to be permuted into unique versions for each distributed instance. Differentiation is achieved using hardware
and systems software modifications which are amenable to and scalable in embedded systems. Our initial areas
for modification include function call/return and system call semantics, as well as a hardware-supported
Instruction Register File. Differentiation of executables hinders analysis for vulnerabilities as well as prevents
the exploitation of a vulnerability in a single distributed version from propagating to other instances of that
application. Computational demands on any instance of the application are minimized, while the resources
required to attack multiple systems grows with the number of systems attacked. By focusing on prevention of
malware propagation in addition to traditional absolute defenses, we target the economics of malware in order
to make attacks prohibitively expensive and infeasible.

Keywords: Program differentiation; Malware prevention and mitigation; Return address indirection; System
call indirection.

1. Introduction

Like general purpose computing systems, mobile devices and the software loaded on these
devices are subject to a host of security threats and malicious software (malware) attacks due
to vulnerabilities in their coding. Solutions to preventing malware become more challenging
as the complexity and interconnectivity of these systems increase [36]. The increasingly
complex software systems used in modern smart phones contain more sites for potential
vulnerabilities, a problem exacerbated as application developers continue to integrate third
party software with plugins for such user applications as web browsers and search engines.
Recent exploitations of Google Desktop, Microsoft Internet Explorer, and MobileSafari on the
Apple iPhone are examples [25, 24, 12, 21, 20, 14].

Rootkits are a grave concern due to their tenacity, detrimental effect on systems, and
difficult detection. Typically they target kernel vulnerabilities to infect system-level programs
and to conceal their existence. The rootkit applications themselves include key loggers,
network sniffers, and a staging system to launch other attacks like Denial-of-Service and
more. The primary use of Rootkits is to inject malware and to collect sensitive user

2 Daniel Chang, Stephen Hines, Paul West, Gary Tyson, David Whalley

information. This is especially problematic for mobile devices that are increasingly used to
store private data.

Traditional approaches have sought to provide an absolute defense to specific
malware attacks by patching software vulnerabilities or detecting and blocking malware [28,
27, 6, 5, 16]. However, the current situation represents a programmatic arms race between the
patching of existing vulnerabilities and the exploitation of new ones. Despite increased
awareness, vulnerabilities continue to be produced, as observed in McAffee's position paper
citing Windows Vista as being less secure than its predecessors [18, 23, 34]. Most recently,
the modified Mac OS X system on the Apple iPhone fails to even implement widely accepted
best practices such as a non-executable heap or address randomization of memory area
starting locations [20, 14]. Ultimately vulnerabilities will be found and malware will go
undetected long enough to exploit such. We propose a different approach to managing
malware based on limiting the ability of viruses to propagate even in the presence of
undiscovered software vulnerabilities. When used in conjunction with traditional malware
defenses, this approach greatly increases the difficulty and cost for malware developers to
exploit vulnerabilities across a wide range of vulnerable systems.

Mitigation through the use of program differentiation has an analogue in biological
systems, which not only presume attack will occur but in fact have well-known, openly visible
vulnerabilities [31, 9]. Beyond protective walls, biological entities also rely on a system that
mitigates subsequent proliferation of biological attacks. Biological systems defend both at the
individual level and the population level. While anti-virus software can convey individual
system protection, they do nothing to limit the rapid propagation of new viruses across a large
set of homogeneous application code [40, 22]. The correlation between malware propagation
and resulting damage leads us to explore mitigating attacks by thwarting the propagation.

Program differentiation seeks to make each executable instance of an application
unique. There are various ways of achieving this in software. One simple method would be to
invoke different compiler transformations, or a different transformation ordering, to obtain
different versions of the same application. However, this approach has two problems that
make it infeasible. First, the vulnerable portions of the application must be the ones affected
and there is no way to guarantee those unknown vulnerabilities are modified by this
differentiation approach. The second problem is a more severe software engineering one.
Multiple distinct versions of the same program code can be difficult to produce and highly
impractical to maintain and update; subtle software errors in an application will likely change
behavior in only a subset of differentiated versions. Performance may also differ widely
between instances of the program. A solution is needed that differentiates program
executables while preserving program semantics and control flow, and maintaining a single
code profile for maintenance. We propose changes in hardware support for control flow
instructions to achieve differentiation that changes the binary representation of applications
without changing the execution order of instructions in the processor pipeline. The hardware
modifications change how functions are called (and returned), how system calls are specified

Program Differentiation 3

and how instructions
fetched from memory are
interpreted. This prevents
the propagation of
viruses by making each
instance of a vulnerable
application sufficiently
different to require a
nontrivial mutation of
malware code for each
infection. Figure 1 depicts the general workflow of our proposed methodology. Differentiation
can occur before distribution, during initial configuration or even at load time for each
invocation of the application. Whenever performed, differentiation modifies the original
application using an undifferentiated instance and a configuration database, generating a
potentially unique executable for each application instance.

Google's Android operating system for mobile devices is a prime example of the new
breed of embedded systems we seek to reinforce, and thus is also an ideal candidate for our
differentiation approaches. Android is a Linux-based operating system targeted at cell
phones, tablets and other mobile systems. The basic system includes a Linux version 2.6
Kernel, basic libraries, and an application framework that provides core Java programming
language functionality. Java applications are then built on a layer above the core system, with
each running in its own process within an instance of the Dalvik virtual machine [1].
Nevertheless, given Android's open architecture and consumer product platform, the libraries
and framework provide broad access to system functionality including phone calling, GPS
systems, and process control. As of the first quarter of 2010, sales of Android-base
smartphones exceeded iPhone OS units, commanding a 28 percent market share and making it
the second best-selling smartphone system in the quarter behind RIM's Blackberry OS [19].

Android-based devices, like mobile devices in general, are a growing target for
attack due to their large and ever-growing installed base as well as their inherent network
access. Given that an Android device includes the open source operating system as well as
applications, it provides us with an ideal platform for our approaches, which integrate
operating system level enhancements with application level differentiation.

2. Software Exploits

Vulnerabilities in software have not only proven costly, but are continually increasing in
number [36]. They can be broadly separated into processor architecture exploits and higher-
level software exploits that are independent of the target architecture. High-level techniques
are generally attacks on input strings that are interpreted within a source level interpreter in
the application, such as overwriting of an SQL command string with an unauthorized set of

Source
Application

Figure 1. Software Differentiation Workflow

Config
Database

Differentiator
(Call/Return, Syscall,

Hardware Instructions)

Differentiated
Executables

4 Daniel Chang, Stephen Hines, Paul West, Gary Tyson, David Whalley

commands to compromise the database system. Mitigation of such attacks must be handled by
the application and further coverage is outside the scope of this paper’s processor-level
security systems. By far the most common security exploits related to processor architecture
are buffer overflow attacks, which overwrite memory locations in vulnerable applications [6,
32]. These attacks exploit vulnerabilities in the control flow conventions of the target
architecture to gain control of system resources. The vulnerabilities exploited by the highly
prolific Code Red worm and recently discovered in the Apple iPhone browser are examples of
buffer overflow vulnerabilities [40, 22, 20, 2]

These attacks require an intimate understanding of the program code, including data
and program object locations, branching, and address usage. The attack requires an
unbounded input buffer, used to insert a payload of malicious code, and a vulnerability that
allows the control flow to execute the payload code. Unfortunately, distribution of identical
versions of a software executable facilitates propagation of a successful attack; once a
vulnerability is found and exploited the attack is applicable to every other distributed instance.
It is this commonality that allowed the 2001 Code Red worm (CRv2), which exploited a
vulnerability in Windows NT and Windows 2000 operating systems, to infect more than
359,000 Internet Information Servers on the Internet in less than 14 hours [40, 22]. Mitigation
techniques, such as hardware restrictions that disable execution of code from within the stack
region of memory, seek to eliminate the vulnerability. Unfortunately, there are buffer overflow
variants that do not require the insertion of payload code, but instead jump to existing routines
in the application to compromise the system. Commonly referred to as return-to-libc attacks,
the target address in the application code is often a library routine to manipulate systems
components (such as to invoke a shell or delete files).

Moreover, despite advances in security methodologies in software development the
prevalence of software vulnerabilities continues to grow. This trend will likely continue as
software systems become more numerous and complex. Greater opportunities for new
vulnerabilities arise from the tremendous growth in high-demand, third-party software
applications that require administrative privileges or trusted access. The Google Desktop
application demonstrated several vulnerabilities in user-level software that had system-level
implications. A flaw discovered in December 2004 allowed malicious websites to illicitly read
local search results from a target machine [25, 24]. The following year, a flaw in the Internet
Explorer web browser combined with Google Desktop allowed an attacker to retrieve private
user data or even execute operations on remote domains while impersonating the user [12,
21]. The extreme integration of third-party applications is another growing threat, as
demonstrated by the recent discovery of a buffer overflow vulnerability in the MobileSafari
browser on the new Apple iPhone [20]. Through the exploit, a malicious web site could
deliver a payload that allowed access to and transmission of any phone data [14]. The threat
of malware on cell phones has loomed large in the past few years as they increase in
computational power. Now that modern cell phones are simply full-fledged computer systems
they are subject to computer system threats, only at much larger distribution scale [29].

Program Differentiation 5

Unfortunately, current anti-virus support is limited to identifying existing
vulnerabilities or a few restricted patterns of attack. This approach means that systems
security is always lagging behind the discovery of new vulnerabilities and fast propagation can
defeat even the most active malware defense. Differentiation offers the promise of either
eliminating or significantly slowing propagation independent of the type of software
vulnerability exploited. Used in conjunction with existing mitigation techniques, program
differentiation provides the strongest deterrent to the spread of future malware.

3. Differentiation Sources

The goal of differentiation is to restructure each instance of an application in a manner that
makes the exploitation of inherent vulnerabilities in either the application or execution
environment more difficult. At the same time, the implementation of a differentiation
technique should not hinder application maintenance, change functional behavior, or result in
dramatic performance differences between instances. Particularly in embedded systems, the
ideal differentiation technique should have minimal to no impact on performance and be
scalable to the available resource budget. Finally, the overhead required to support
differentiation should be minimal in both space and execution time. We propose three
independent mechanisms to provide differentiation using a combination of hardware and
software techniques. Each of these techniques utilizes indirection and by permuting indices
supports differentiation. The first two schemes manipulate function call and system call
semantics using both hardware and software modifications. The third scheme modifies how
instructions are interpreted when fetched from memory and provides additional restrictions on
execution of the most vulnerable instructions. These mechanisms are not only orthogonal to
each other, but can be used in conjunction with all other available protection schemes.

3.2 Return address differentiation

Our first approach is to introduce a level of indirection into the function call return address
stored on the stack. The return address is the typical target of buffer overflow attacks, which
attempt to overwrite the address to point to a payload placed in the buffer. By replacing the
return address with an index to a table of return addresses, we prevent the injection of a direct
address and instead force the attacker to analyze the behavior of the new Return Address
Table (RAT). This requires modification of function call and return semantics to access the
return address through the RAT. Function calls must utilize a register to pass the index in
much the same manner as the return address is currently passed. The return instruction must
be modified to use the index to load the return address from the RAT before jumping to the
instruction following the function call. Any buffer overflow would now override the RAT
index. Without knowledge of the ordering of return addresses in the read-only RAT, the
attacker can only jump to a random return address location in the existing code. With some

6 Daniel Chang, Stephen Hines, Paul West, Gary Tyson, David Whalley

modification to memory management access, the table itself can be marked unreadable by all
instructions except function return. This removes code inspection from the arsenal of the
malware attack. Statistical attacks using random indices can be thwarted by increasing the size
of the RAT. The cost paid is a fixed increase in storage requirements for the return address
table and a slight performance penalty on each function return due to the required table
lookup. Instruction set modifications include the call or jalr instructions and ret. Calling
conventions replace the automatic movement of the program counter for the next instruction
(generally PC+4) with an index specifying the RAT entry containing the address of the next
instruction. This is performed by an additional instruction, though in many cases this
additional instruction is loop invariant and can thus be performed much less often than the
function call. The call instruction could be totally eliminated; however, this would have
implications on micro-architectural resources like the return address stack. Remaining calling
conventions remain unchanged. The ret instruction is modified to first read the index off the
stack, and then use the index to load the return address from the RAT. In a load-store
architecture, this would be performed by multiple instructions. In either case, the performance
impact is less than expected since the branch prediction will continue to utilize the return
address stack, which generally contains the correct address.

Modifications to the function return code sequence are outlined in Figure 2. The
return behavior is updated to: 1) retrieve the index from the program stack; 2) access the RAT
to obtain the return address; and then 3) jump to the return address. The RAT itself is made
read-only, and in retrieving the return address bounds checking can be imposed by using
logical instructions to mask the index value and prevent the use of any out-of-range indices.
Even a small number of RAT entries results in a combinatorial number of permutations. This
directly attacks the economics of a malware attack, making a random attack extremely
unlikely to produce any useful predictable behavior and grossly thwarting the ability to have a
wide-ranging impact with a single system attack. For the attacker who wishes to analyze
software or a system to improve malware success and propagation, the permutation
complexity elicits a signature analysis behavior that is easily detectable by traditional intrusion
detection systems. Still, some consideration must be given to the use of shared library
routines. Since these functions are shared by different applications, care must be taken when
using any process resources,
particularly the RAT. If all
system processes use the
differentiation calling
conventions then libraries
pose no difficulties; RAT
indices are evaluated in the
context of a process and each
process contains a unique
RAT. Returns from library

load r1,[sp] 0x13

and r1,r1,0x3ff 0x13

load r1, [r1] 0xF..3A

jump r1 0xF..3A

0x13

Stack with Indices

0xF..3A

Figure 2. Secure Return Code Sequence

r1

0x12

0x13
...

RAT (Read-Only)

...

Program Differentiation 7

functions would still use the index into the process RAT and jump to the correct location. In a
system where not all applications use differentiation call semantics, the return from a library
function would then be undifferentiated, using the return address on the stack and jumping to
the correct location. This mixed environment does not offer the same level of protection as a
fully differentiated executable; however, only library routines are left vulnerable and ideally
they would tend to be a more stable code base not as easily targeted by malware.

3.2 System call differentiation

Another candidate for indirection are system call conventions, which specify a system call
identifier generally passed using a specific data register. System calls can be used to
manipulate files, memory or process permissions, and can be compromised by malware that
changes the system call identifier prior to execution. System calls are implemented by
jumping to a function in the operating system (entSys() in Linux), which then uses the system
call identifier to index into a jump table to the correct handler function. We thus have the
same basic approach as with the RAT. Differentiation of the table (the sys_call_table in
Linux) will provide a different mapping of system call identifiers to handler functions for each
system (not each application) at no additional overhead. The only requirement to perform
system call differentiation is to permute the entries in the sys_call_table and update any
system calls in the applications. It is quite rare for an application to directly reference a system
call since almost all calls are performed in the standard systems libraries (libC and others).
This simplifies the differentiation process. Of course, this approach means that all applications
running on the system share the same system call identifiers. This is likely not a problem since
viruses tend to propagate by infecting the same application on different systems, not by
attacking different applications on the same system. However, by duplicating the
sys_call_table for each process, differentiation can be performed for each process on the same
system. The only additional requirement is an increase in the stored state of the process and
de-referencing of the process table pointer in entSys(). This approach again provides a level of
indirection that requires an attacker to now gain access to a particular executable's custom
system call table in order to identify targets for control flow redirection. Furthermore, the
custom sys_call_table can be pruned to only contain those used by the particular program,
reducing malware ability to
initiate unexpected system
calls. Figure 3 depicts the
general process of accessing
the lookup table containing the
system call specifier, which
ultimately results in one
additional function call and one
additional load from a table in

[syscall specifier X]

System Call Table
(Current Process)

[index] Proc
System Call Handler

. . .

Execute System Call
"X"

Figure 3. System Call Table Lookup

[index]

8 Daniel Chang, Stephen Hines, Paul West, Gary Tyson, David Whalley

memory. Normally a register contains the identifier for the system call to perform. We would
differentiate modules by replacing the identifier with an index into the system call lookup
table.

3.3 ISA differentiation

The final modification to support differentiation provides the strongest level of protection.
Instructions can be obfuscated by using a level of indirection in the decoding of instructions
fetched from memory. This enables a portion of the Instruction Set Architecture (ISA)
encoding to be changed for each program instance while leaving instruction execution
unchanged. Keeping the decoded/executed instruction stream the same allows software
engineers to more easily maintain an application, since any version can theoretically be
transformed into a different version by applying the appropriate mapping of indirection
specifiers. This facilitates the debugging and patching of differentiated executables, a task
easily achievable using previous techniques. There have been several possible approaches for
indirectly accessing instructions that could support differentiation. Computational accelerators
fuse multiple operations into single operations by providing a programmable set of functional
units [4]. An accelerator could be configured to use only simple instructions with a specific
new opcode/operand encoding that could vary amongst differentiated executables. The FITS
system allows for mapping of an ISA, customized for a particular executable, to a
configurable processor [3]. The programmability of opcode and operand decoders in FITS
allows for their permutation in the instructions supported by the ISA. Both, however, have
drawbacks in either potential performance penalties or increased implementation time.

Ultimately, a most
attractive option is instruction
packing, a technique that can be
readily adapted to provide
differentiation at the hardware
instruction level [15]. This
technique promotes frequently
occurring static and/or dynamic
instructions into instruction
registers, which can then be
indexed for execution by using
just a few bits. The small size of
these indices allows multiple
such references to be "packed"
together into a single 32-bit
instruction. Parameterization of
register numbers and immediate

Figure 4. Indirection with an IRF

Program Differentiation 9

values increases the number of instructions that can be promoted. This reduces code size and
improves energy efficiency, as the Instruction Register File (IRF) requires less power to
access than the instruction cache. Using instruction packing, the indices of the packed
instructions can be permuted to generate new executables. With a 32-entry IRF (and one
instruction register reserved for a nop), there are 31! possible permutations, leading to quite a
large space for differentiation of a single application. Figure 4 shows an example program
being permuted within the IRF. The four instructions are mapped into the IRF and the
appropriate identifiers are specified for the packed instruction. Since we only have four
instructions to pack together, the fifth slot is mapped to the nop, which need not necessarily be
at entry 0. Packing instructions with an IRF is also the least intrusive solution, as it requires
the fewest changes to the baseline ISA. The tightly packed instruction format can be supported
using just a few spare opcodes in almost any existing ISA. An IRF needs to be added to the
pipeline, and the fetch and decode stages need to be modified to be able to fetch instructions
from it. Instructions are placed in the IRF at load-time for an application, and must be restored
on context switches. This allows separate applications to have completely different IRF
entries. Instruction packing clearly satisfies all of the necessary requirements for providing an
easily permuted instruction indirection scheme. Furthermore, the additional energy and code
size savings (with no performance overhead) make this technique even more attractive for
implementing hardware instruction level differentiation, especially on restrictive embedded
systems. The IRF structure also allows for scalability, balancing the size of the IRF with the
amount of differentiation desired. [15].

Using an IRF to support differentiation also provides an additional benefit for
protecting code from malware. Since the IRF provides a totally independent way to specify
the instructions that reside within it, it is possible to disallow those instructions from being
fetched directly from the memory system. So if we always promote certain critical instruction
into the IRF, then we can execute the processor in a safe mode that would not decode those
actual instructions when being fetched from the memory system. By targeting syscall, call,
return, adds to the stack pointer and short conditional branches, it becomes difficult for any
payload malware to perform critical, or even common, instructions without identifying the
IRF permutation. Additionally, empty IRF operands can be used to verify proper control flow
with the inclusion of a simple validating state machine in the beginning of the processor
pipeline. This could be as simple as requiring some parity calculation for the instructions. This
has little or no impact on application performance, and while the virus can replicate the
calculation, each instance of the application can use the free IRF encodings for different
validation checks. For the malware to propagate, the virus must correctly handle an arbitrarily
large number of validation checks. Again, this technique offers scalability in an embedded
system up to the level of desired or allowable protection.

10 Daniel Chang, Stephen Hines, Paul West, Gary Tyson, David Whalley

3.4 Intrusion detection with Micro State Machine differentiation

We also propose developing a variety of small state machines that monitor some identifiable
pattern of behavior of the application, such as sequences of system calls or numbers of
arguments in function calls within a program. These Micro State Machines (MSMs) can be
defined at compile-time or load-time, and ultimately can be easily implemented in hardware
without any effect on the pipelined instructions of a software program. A wide variety of
micro state machines can be made available, executed by referencing an index from within a
software executable. These include any state monitoring patterns proposed in the previous
literature. By requiring a program to execute any or all of these micro state machines, the
integrity of program behavior can be checked outside of the regular program execution. Given
the wide variety of small state transitions that can be monitored, differentiation is introduced
into applications by varying the particular MSM called for a given executable version and/or
varying the order of calling multiple micro state machines. Indeed, each application instance
may only need to verify one aspect of the entire state monitoring problem, with variation of
which MSM is implemented in any given instance. This comes with no direct performance
penalty and forces an attacker to have to understand and thwart the monitoring of a large
number of state transition behaviors. The possible combinations of state monitoring are
ideally too large for any malware to comprehensively determine, and the act of attempting to
do so is a detectable behavior pattern that can be further used to identify the presence of
malware.
 The choice of MSMs is limitless given all the system processes and properties that
can be tracked and checked for inconsistency. Note that we are not requiring that a given
verification be perfect or guaranteed - that is, the particular section need not be invariant nor
must any attack be guaranteed to modify it. Just as with intrusion detection systems, in this
method we seek to increase the probability of detecting threats and thereby responding to
them. Subject to resource restrictions we increase the strength of hardening by increasing the
number and variety of MSMs and the depth to which any single MSM is implemented. At this
application level the saving of data and restarting of verification for context switching must be
considered. By parameterizing an MSM to support specification of a starting state, the MSM
can be properly continued after context switches.

An example addressing code driven by direct control, such as application code, is the
tracking of a portion of an application's call graph. With compiler support analysis can be
performed on an application with the aim of identifying portions that are attractive targets with
low variability. An MSM can then periodically verify the actual call behavior of the running
process.
 Internal events driven by code such as system operations represent another different
pool of data for MSM analysis. For example, translation look-aside buffer (TLB) behavior can
be monitored and verified by an MSM for generally anomalous behavior across all user
applications. A TLB miss that occurs long into the execution of an application would

Program Differentiation 11

represent code that had never been previously executed suddenly being called, which suggests
injected code. Of course, this can sometimes be correct behavior as in the case of just-in-time
(JIT) compiled code, so careful analysis for such an MSM must be made, for instance to only
be sensitive to TLB misses from particular ranges of memory.
 Analyzing system wide operational semantics represents another higher level where
we can achieve monitoring across all user applications. Common SQL injection attacks can be
detected by searching database-destined values for special characters or embedded logic
statements. But another attack behavior is the systematic delivery of varied inputs to evince
changes in output, typically when direct viewing of SQL query results is not visible. Repeated
executions of the same SQL query code can be a semantic checked by an MSM when not
expected in the normal operation of a particular application. The behavior and state of virtual
machines executing processes also represent system semantics that can be validated by an
MSM. The Android operating system provides a prime opportunity for such monitoring, as it
uses a virtual machine for each running process. Validation of erroneous behaviors can be
monitored, as well as execution of code from memory regions not belonging to the specific
application within the virtual machine. Since each running process is in a virtual machine,
operations invalid for the specific application can be documented and tracked, such as phone
call access from applications that have no business accessing the phone. Other behaviors such
as the previously mentioned TLB misses can also be monitored specifically relative to the
application within a given virtual machine.

The variable selection of micro state machine types and quantity again aids
embedded system designers by providing a scalable defense method. Increasing the number
of micro state machines results in a smooth increase in the level of defense. The number can
be increased up to the desired defense level, or as is more likely the case up to the limit of
available resources for defense. Ideally, if an IRF is employed the unused slots in non-fully
packed instructions are perfect locations for placing the triggers or counters for implementing
such micro state machines. These triggers can be sought during the pipeline fetch phase with
no direct penalty on the application processing performance.

4. Evaluation

We have thus proposed several methods for implementing differentiation of software
executables using hardware support. To perform an initial test of the worst-case effect on
performance of our approaches we developed software versions of two of the approaches,
implementing both a Return Address Table (RAT) and a Linux kernel modification
implementing system call indirection, targeting binaries to the Alpha architecture. Both were
evaluated using the M5 Simulator, a modular platform for computer system architecture
research, encompassing system-level architecture as well as processor microarchitecture [35].
M5 supports the Alpha architecture and has a system-call emulation mode that can simulate
Alpha binaries. Moreover, M5 provides a full system simulator that models a DEC Tsunami

12 Daniel Chang, Stephen Hines, Paul West, Gary Tyson, David Whalley

$26 holds value originally passed as return address
isolate bits 12-3 to get a 1k address to a quadword
maximum literal size is 255, so shift left then right
must be quad word aligned so zero right 3 bits
srl $26,3,$26 # >> 3 to get on quad boundary
sll $26,57,$26 # << 3 then 54 to isolate ten bits
srl $26,54,$26 # >> to get 10 bits pos [12-3]

load from return address table
base of table+index must also be offset from bp $29

addq $26,$29,$26 # add base pointer to index

add table offset to base+index
ldq $26,ratable($26) !literal

perform return using retrieved address
ret $31,($26),1

Figure 5. Return Address Post-Processing

system in sufficient detail to boot a Linux kernel. We specifically used the M5 full system
simulator to evaluate the results of our Linux kernel modifications to support system call
indirection.

4.1 Function call return address

Our actual implementation of the RAT involved modification of a GCC version 4.0.2 cross-
compiler installation using glib version 2.3.6., configured to produce Alpha executables. We
inserted a program in between the compilation and assembly stages (just before the execution
of the as assembler program), which post-processed all return (ret) instructions in user code to
rewrite the program assembly. In addition, an array to hold return addresses was linked in with
every executable program. The address retrieved from the stack as the "return address" is
actually treated as an index into the RAT. Logical shift instructions are inserted in order to
isolate the portion of the address representing the index. The resulting index is then combined
with the base pointer and offset of the starting point of the RAT. A single load instruction is
then inserted to retrieve the actual return address to be used. The resulting post-processed
Alpha assembly file can then be assembled and linked by the remaining GCC compile chain.

In Alpha assembly ret instructions use a return address stored by convention in
register $26. Figure 5 shows the assembly added by our post-processing application to replace
the normal ret instruction. The value being passed through register $26 is now an index into
our RAT, which we implemented with 1024 entries. Since the maximum literal size in Alpha
assembly is 255, we use logical shifts to isolate ten bits in position 12-3, zeroing the three
least-significant bits since the index must be quad-word aligned. Once the index is identified,
it is added to the base address of our RAT as well as the base pointer to obtain the location in

Program Differentiation 13

memory from which to retrieve the actual return address. A simple return is now performed,
with register $26 now containing the actual return address as retrieved from the RAT.
Differentiation of multiple software executable versions is achieved by permuting the order of
return addresses in the table.

We compiled several benchmarks from the MiBench benchmark suite [13] using our
modified GCC compiler and executed them, verifying their essential correctness. The
resulting increases in instruction count and committed loads are presented in Figure 6.
Instruction count increased by only 1.04% on average, with this including a single outlying
increase of 4.32% for the Telecomm benchmarks. Among the other benchmarks the highest
increase was only 0.31%. The increase in loads showed somewhat similar behavior, with an
average increase of 3.38%, which includes two extreme cases of a 7.75% and 8.13% increase
for the Office and Telecomm benchmarks respectively. Among the remaining benchmarks the
highest increase was just under 0.6%.

4.2 System calls

Our actual
implementation for
system call
differentiation involved
modification of the
Linux 2.6.13 kernel
distribution provided
with the M5 simulator.
Each running process is
associated with a
task_struct, which is
defined in the
scheduler. We modified
the scheduler to include
an array that would
hold a unique copy of
the system call table for
each process, which is
populated when a new
process is created.
Since the actual
handling of system calls
occurs in assembly
routines, we added a Figure 6. Return Address Table Simulation

14 Daniel Chang, Stephen Hines, Paul West, Gary Tyson, David Whalley

Figure 7. System Call Handler Code

entSys:
 SAVE_ALL
 lda $8, 0x3fff
 bic $sp, $8, $8
 lda $4, NR_SYSCALLS($31)
 stq $16, SP_OFF+24($sp)
 /* remove (lda $5, sys_call_table) */
 /* we obtain system call elsewhere */
 lda $27, sys_ni_syscall
 cmpult $0, $4, $4
 ldl $3, TI_FLAGS($8)
 stq $17, SP_OFF+32($sp)
 /* remove (s8addq $0, $5, $5)
 /* since no offset */
 stq $18, SP_OFF+40($sp)
 blbs $3, strace
 beq $4, 1f

 /* set first argument to the offset */
 /* (register saved by SAVE_ALL) */
 addq $31, $0, $16
 /* load retrieval function and call it */
 /* register $0 will then have actual index */
 lda $27, get_cur_sys_tbl
1: jsr $26, ($27), alpha_ni_syscall
 /* restore first argument */
 ldq $16, 160($sp);

 /* use register $27 to make system call.*/
 addq $0, $31, $27
 jsr $26, ($27), alpha_ni_syscall
 ldgp $gp, 0($26)
 blt $0, $syscall_error /* call failed */
 stq $0, 0($sp)
 stq $31, 72($sp) /* a3=0 => no error */
 . . .

function to the scheduler that is visible from the assembly language routines and that returns
entries from the system call table. We modified the system call handler to use the current
system call specifier (normally an index into the default system call table) and pass it to our
function. The function uses the value as an index into the system call table for the currently
running process and returns the corresponding actual system call specifier, which is then used
to make the system call. The most significant changes needed for implementation of system
call tables involve modification of the system call handler assembly routine. Figure 7 shows
the modifications to the applicable assembly source file in the Linux kernel (new code
italicized). Originally the system call identifier (an index into the original system call table) is
passed through register $31, but now the register contains an index into the system call table
for the currently running process. We set this index as an argument and call the
get_cur_sys_tbl function we created in the scheduler to obtain the system call table from the
currently executing process and retrieve the correct system call identifier corresponding to the
index argument. The
retrieved system call
identifier is then used to
dispatch a system call
in the normal fashion.
Differentiation can be
achieved by permuting
the system call table
contents for each
process, thus changing
all the system call
specifiers used within
the actual machine
language of each
executable version.
The functional behavior
of each executable is
unaffected, since any
two permutations of
system call tables will
ultimately result in the
same actual function
call being executed at
the same points in the
control flow.

We ran
unmodified, Alpha-

Program Differentiation 15

Figure 8. System Call Table Simulation

compiled versions of several MiBench benchmarks in the M5 simulator using the modified
Linux kernel with system call implementation. Using a separate system call table per process
entails some increase in loads due to the work required to retrieve the system call table from
the running process. The average increases in committed loads are provided in Figure 8,
which is nominal at 0.15%, with Office benchmarks having the highest average increase of
0.51%. This can be attributed to the relative infrequency of system calls in typical
applications. For this reason we did not include any figures for the negligible to undetectable
change in execution time. This is to be expected given this infrequency as well as the large
amount of work performed during a system call compared to the small amount of work from
our few additional loads.

4.3 Instruction level indirection

Implementing instruction level indirection will require the addition of an IRF and its
associated instruction extensions to the processor along with modification of the compiler to
support instruction packing. The actual permuting of the contents of the IRF randomly at
compile/link-time is a simple operation. Since the IRF is relatively performance-neutral, the
resulting processor design will feature reduced application code size, improved energy
efficiency, and an increased resistance to malware propagation. Previous application of
instruction packing on these MiBench benchmarks has shown an energy savings of 15.8%
with a corresponding code size reduction of 26.8%. This is for a 4-window 32-entry IRF that
seeks to maximize code density both statically and dynamically. Reserving a few unused
instruction registers to trigger micro state machines minimally impacts the overall
improvements provided by instruction packing. Reserving 5 additional slots (beyond the one
for nop) results in a code size reduction of 24.2% and a corresponding energy reduction of
14.9%. Average
execution time is
within 0.3% of the
original case. The vast
majority of tightly
packed instructions do
not utilize all 5 slots,
and thus there is
ample room to extend
these instructions with
references to micro
state machine
changing operations.
Simultaneously, not
all instructions that

16 Daniel Chang, Stephen Hines, Paul West, Gary Tyson, David Whalley

feature a loosely packed instruction field can actually make use of that available storage area.
Having micro state operations fill these slots prevents any additional code size increase or
execution time increase by providing a simply-decoded mechanism for modifying intrusion
detection state machines. In extremely rare stretches of code that are very densely packed with
few free slots, additional tightly or loosely packed instructions can be inserted to trigger the
appropriate state changes, thus keeping our mechanism applicable to all software applications.

5. Related Work

There has recently been growing activity in the cell phone industry regarding security in cell
phone applications and hardening of cell phone systems against viruses and other malware.
One example is the Symbian Signed initiative to digitally “sign” applications for use on
Symbian OS devices [33]. Although this can help to verify the integrity of participating
software it entails increased development costs and complexity. Also, as with any
certification-based system it is not scalable. Any successful application development will
promote increasing code quantities that inevitably outstrip available code review resources.
Signing may limit the applications a user may voluntarily install, but ultimately malware may
infiltrate a system through means other than a user’s active installation. Again the real
problem is limiting and even stopping the malicious behavior of viruses and malware, given
the assumption that malware will eventually have a chance to execute.

Many techniques have been proposed to defend against buffer overflow attacks,
including implementation of non-executable stack areas [27], placement of canary marker
values on the stack [6], encryption of pointer values in memory [5]. The approaches entail
various levels of effectiveness and performance impact, and have met with various proposed
shortcomings or defeats, including the failure to actually implement such well-accepted
defenses. A stunning example is the most recent Mac OS X system on the Apple iPhone,
which simply failed to implement a non-executable heap [20, 14]. Attempts to audit code to
identify common vulnerabilities, either by hand [10, 26], or by automated methods [8, 39],
such as searching for the use of unsafe library functions, have proven costly, sometimes
prohibitively so [17, 11]. Indeed, writing correct code seems the most difficult defense to
implement, with United States Computer Emergency Readiness Team (US-CERT) statistics
showing an increase from 1,090 vulnerabilities reported in 2000 to over 4,200 in the first three
quarters of 2005 alone [36]. Given a successful attack, Intrusion Detection Systems (IDS)
have focused on detecting violations of security policy by monitoring and analyzing some
characteristic of system behavior, with the goal of identifying, reporting on, and ultimately
terminating anomalous behavior that may be indicative of an attack [16].

Actual randomization of the otherwise predictable code footprint of software has
been considered in techniques such as Address Space Layout Randomization (ASLR), which
inserts random memory gaps before the stack base and heap base (and optionally other
memory areas such as the mmap() base). Attacks become less likely to succeed in executing a

Program Differentiation 17

malicious payload and more detectable due to the behavior pattern of failed attacks (typically
program crashes) [28]. PaX is a patch for Linux kernels that, among other security measures,
employs ASLR.

However, Several methods for defeating ASLR protection have been proposed. For
stack-based attacks, adding a nop slide to the beginning of the payload increases the chance of
having the effective code land past the beginning of the targeted memory area. Also, the
ASLR mmap() base randomization ignores the 12 least significant bits representing the page
offset. Given a buffer entry function and a printf() call within the same page, the printf() can
be repeatedly returned to using a format string bug to report the stack frame contents and
determine the actual stack base offset [7]. The number of randomized bits used in an ASLR
scheme can be effectively reduced by only requiring discovery of the 16-bit mmap() base
randomization, thus allowing any buffer-overflow exploit to be converted to a tractable attack
[30].

SHARK provides architectural support for protection from Rootkits [37]. By
generating Process Identifiers (PID) in hardware and then encrypting page tables, SHARK
attempts to prevent compromised operating systems from running malicious code. Program
differentiation differs in that SHARK attempts to provide a single wall of protection, while
Program Differentiation provides a Defense-in-Depth approach. Defense-in-Depth adds to
overall defense since, if an attacker manages to break the security on one machine, the attack
will not be spread to others. Furthermore, SHARK requires a significant architectural
addition, while a significant portion of Program Differentiation can be implemented in
software. In fact, program differentiation works well in combination with other protection
schemes. Overall security is enhanced with any new hardware or software protection
mechanism since it must be exploited for virus propagation to occur. Not only can other
protections exist independently of our proposed differentiation schemes, the methodology of
differentiation may be readily applied to other protection mechanism to make propagation
even more challenging.

Other related research has attempted to analogize software defense to biological
immune defense systems. Natural immune systems are designed to operate in an imperfect,
uncontrolled, open environment that is analogous to current computer system environments. It
has been proposed that principles of immune systems, including distributability of response,
multi-layering of defense responsibilities, and diversity, be applied to computer systems to
increase security [31]. Given that diversity is an important source of robustness in biological
systems, computing machines are notable in that they suffer from their extreme lack of such
diversity. Proposed diversification methods have included random addition of nonfunctional
code, reordering of code, and various software and system transformations [9].

18 Daniel Chang, Stephen Hines, Paul West, Gary Tyson, David Whalley

6. Conclusions

While vulnerabilities in software systems will continue to invite new malware attacks, we
believe that proper mitigation techniques can reduce the impact of these attacks. Towards this
goal, we propose expanding our current malware defense focus from the traditional
approaches of absolute attack prevention to include efforts toward preventing malware
propagation. By differentiating software program executables, we seek to thwart malware
propagation when a vulnerability exists in a given software application. This is accomplished
through virtualizing the control flow of the application, enabling function call/return and
system call semantics to be permuted into unique versions for each application instance. We
also show how an existing processor design utilizing an Instruction Register File (IRF) can
achieve further security though the use of differentiation of instructions in the IRF as well as
by restricting vital instructions from being fetched directly from memory. We show that these
techniques require minimal overhead with respect to increased memory footprint and
execution time. In worst-case software simulations of our control flow differentiation method
using function calls and returns we found only a 1.04% average increase in instruction count
and 3.38% average increase in loads. In software simulation of a Linux kernel implementing a
per process system call table the increase in committed loads is nominal at 0.15%. Automation
by the compiler and implementation of actual simple hardware support structures can
ultimately result in little to no performance degradation for such differentiation.

The benefits of the minimal performance impact of our techniques, as well as their
scalability, are ideal for embedded systems. These techniques can be implemented in whatever
quantities are desired or allowable in a system without draining precious performance
resources in the pursuit of defense. Current trends show that software programs will continue
to possess vulnerabilities that are discoverable by attackers. However, inherent in
differentiation is the targeting of the economics of malware, making profitable high-impact
attacks prohibitively expensive and infeasible. While we accept that there may be successful
attacks on any single distributed executable version, by dramatically increasing the ratio of
effort to damage scope, attackers incur a substantial disincentive to developing malware even
in the presence of an exploitable software vulnerability. This research was supported in part
by NSF grants CNS-0615085 and CNS-0915926.

References

1. Android Dev Guide. Android Basics. http://developer.android.com/guide/basics/what-is-

android.html. July 2010.
2. S. Bahtkar, D. C. DuVarney, and R. Sekar. Address Obfuscation: an Efficient Approach to Combat a

Broad Range of Memory Error Exploits. 12th USENIX Security Symposium, Washington, D.C.
Aug. 2003.

3. A. C. Cheng, G. S. Tyson. An Energy Efficient Instruction Set Synthesis Framework for Low Power
Embedded System Designs. IEEE Transactions on Computers, vol. 54, no. 6, pp. 698-713. June,
2005.

Program Differentiation 19

4. N. Clark, H. Zhong, and S. Mahlke. Processor Acceleration Through Automated Instruction Set
Customization. In Proceedings of the 36th Annual IEEE/ACM international Symposium on
Microarchitecture, pp. 129-140. 2003.

5. C. Cowan, S. Beattie, J. Johansen, and P. Wagle. PointGuard(TM): Protecting Pointers from Buffer
Overflow Vulnerabilities. In Proceedings of the 12th USENIX Security Symposium, pp. 91-104.
Aug. 2003.

6. C. Cowan, P. Wagle, C. Pu, S. Beattie, J. Walpole. Buffer overflows: Attacks and Defenses for the
Vulnerability of the Decade. In Proceedings of the DARPA Information Survivability Conference
and Exposition, Hilton Head, SC, pp. 119-129. January 2000.

7. T. Durden. Bypassing PaX ASLR protection. Phrack Magazine, Volume 59, http://www.phrack.org
/issues.html?issue=59

8. HalVar Flake. Auditing Closed-Source Applications. The Black Hat Briefings 2000, Oct. 2000.
9. S. Forrest, A. Somayaji, D. Ackley. Building Diverse Computer Systems. In Sixth Workshop on Hot

Topics in Operating Systems, pp. 67-72, 1997.
10. Gentoo Linux Security Project. http://www.gentoo.org/proj/en/security/ audit.xml.
11. GCC Extensions. Bounds Checking Patches for GCC Releases and GCC Snapshots.

http://gcc.gnu.org/extensions.html.
12. M. Gillon. Google Desktop Exposed: Exploiting an Internet Explorer Vulnerability to Phish User

Information. http://www.hacker.co.il/security/ie/css_import.html. Nov. 30, 2005.
13. M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R. Brown. MiBench: A Free,

Commercially Representative Embedded Benchmark Suite. IEEE Workshop on Workload
Characterization. Dec. 2001.

14. S. Hansell. Stealing Data From an iPhone Is Easy, but Don’t You Dare Use a Ringtone You Didn’t Pay
For. The New York Times Online. http://bits.blogs.nytimes.com/2007/07/23/stealing-data-from-an-
iphone-is-easy-but-dont-you-dare-use-a-ringtone-you-didnt-pay-for/. July 23, 2007.

15. S. Hines, J. Green, G. Tyson and D. Whalley. Improving Program Efficiency by Packing
Instructions into Registers. In Proceedings of the 32nd Annual International Symposium on
Computer Architecture, pp. 260-271. IEEE Computer Society June 2005.

16. S. A. Hofmeyr, A. Somayaji, and S. Forrest. Intrusion Detection using Sequences of System Calls.
Journal of Computer Security Vol. 6, pp. 151-180. 1998.

17. R. Jones and P. Kelly, Backwards-compatible Bounds Checking for Arrays and Pointers in C
Programs. In Proceedings of the Third International Workshop on Automatic Debugging, pp. 13-26,
May 1997.

18. McAfee. McAfee's Position on Vista. http://www.mcafee.com/us/local_content/misc/vista_position.pdf.
19. D. Melanson. NPD: Android ousts iPhone OS for second place in the US smartphone market.

Engadget, , http://www.engadget.com/2010/05/10/npd-android-ousts-iphone-os-for-second-place-in-us-
smartphone-m/. May 10, 2010.

20. C. Miller, J. Honoroff, J. Mason. Security Evaluation of Apple's iPhone. Independent Security
Advisors, http://www.securityevaluators.com/iphone/ exploitingiphone.pdf. July 19, 2007.

21. N. Mook. IE Flaw Puts Google Desktop at Risk. http://www.betanews.com/article
/IE_Flaw_Puts_Google_Desktop_at_Risk/1133545790. Dec. 2, 2005.

22. D. Moore. The Spread of the Code-Red Worm (CRv2). http://www.caida.org/analysis/security/code-
red/coderedv2_analysis.xml.

23. E. Montalbano. McAfee Cries Foul Over Vista Security. InfoWorld (via IDG News Service).
http://www.infoworld.com/article/06/10/03/ HNmcafeefoul_1.html. Oct. 3, 2006.

24. R. Naraine. Google Patches Desktop Search Flaw. eWeek.com. http://www.eweek.com/article2
/0,1895,1744115,00.asp. Dec. 20, 2004

20 Daniel Chang, Stephen Hines, Paul West, Gary Tyson, David Whalley

25. S. Nielson, S. Fogarty, D. Wallach. Google Desktop Security Issue (Technical Report TR04-445).
Computer Security Lab: Rice University. http://seclab.cs.rice.edu/2004/12/20/google-desktop/. Dec. 20,
2004.

26. OpenBSD Project. Security. http://openbsd.org/security.html.
27. Openwall Project. Linux Kernel Patch from the Openwall Project.

http://www.openwall.com/linux/.
28. PaX Team, Documentation for the PaX Project, http://pax.grsecurity.net/docs/aslr.txt, 2003
29. J. Schwartz. IPhone Flaw Lets Hackers Take Over, Security Firm Says. The New York Times Online.

http://www.nytimes.com/2007/07/23/technology/23iphone.html?ex=1186286400&en=24cdfcebb35507dd
&ei=5070. July 23, 2007.

30. H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh. On the Effectiveness of
Address Space Randomization. ACM Conference on Computer Security, 2004.

31. A. Somayaji, S. Hofmeyr, and S. Forrest. Principles of a Computer Immune System. In Proceedings of
the Second New Security Paradigms Workshop, pp. 75-82. 1997

32. G. Suh, J. Lee, D. Zhang and S. Devadas. Secure Program Execution via Dynamic Information
Flow Tracking. In Proceedings of the 11th International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 85-96, 2004.

33. Symbian Signed. The Complete Guide to Symbian Signed. http://www.symbiansigned.com/. Oct. 2,
2006.

34. TechWeb. McAfee Slams Microsoft Over Vista Security. Software Technology News by Techweb.
http://www.techweb.com/wire/software/193101281. Oct. 2, 2006.

35. University of Michigan, Department of Electrical Engineering and Computer Science. The M5
Simulator System. http://m5.eecs.umich.edu/wiki/index.php/Main_Page.

36. U.S Cert Coordination Center. CERT/CC Statistics 1998-2005.
http://www.cert.org/stats/#vulnerabilities.

37. V. R. Vasisht, H. S. Lee. SHARK: Architectural Support for Autonomic Protection Against Stealth
by Rootkit Exploits. Proceedings of the 2008 41st IEEE/ACM International Symposium on
Microarchitecture, pp. 106-116, Nov. 2008.

38. D. Wagner and D. Dean. Intrusion Detection via Static Analysis. In Proceedings of the 2001 IEEE
Symposium on Security and Privacy, pp. 156-169, May 2001.

39. D. Wagner, J. Foster, E. Brewer, and A. Aiken. A First Step Towards Automated Detection of
Buffer Overrun Vulnerabilities. In Proceedings of the 2000 Network and Distributed System
Security Symposium, Feb. 2000.

40. C. C. Zou, W. Gong, D. Towsley. Code Red Worm Propagation Modeling and Analysis. In
Proceedings of the 9th ACM Conference on Computer and Communications Security, pp. 138-147.
2002.

