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Mobile electronics are undergoing a convergence of what were formerly muliple single application devices into 
a single programmable device – generally a smart phone. The programmability of these devices increases their 
vulnerability to malicious attack. In this paper, we propose a new malware management system that seeks to 
use program differentiation to reduce the propagation of malware when a software vulnerability exists. By 
modifying aspects of the control flow of the application, we allow various portions of an application executable 
to be permuted into unique versions for each distributed instance. Differentiation is achieved using hardware 
and systems software modifications which are amenable to and scalable in embedded systems. Our initial areas 
for modification include function call/return and system call semantics, as well as a hardware-supported 
Instruction Register File. Differentiation of executables hinders analysis for vulnerabilities as well as prevents 
the exploitation of a vulnerability in a single distributed version from propagating to other instances of that 
application. Computational demands on any instance of the application are minimized, while the resources 
required to attack multiple systems grows with the number of systems attacked. By focusing on prevention of 
malware propagation in addition to traditional absolute defenses, we target the economics of malware in order 
to make attacks prohibitively expensive and infeasible. 
 
Keywords: Program differentiation; Malware prevention and mitigation; Return address indirection; System 
call indirection. 

 

1.  Introduction 
 
Like general purpose computing systems, mobile devices and the software loaded on these 
devices are subject to a host of security threats and malicious software (malware) attacks due 
to vulnerabilities in their coding. Solutions to preventing malware become more challenging 
as the complexity and interconnectivity of these systems increase [36]. The increasingly 
complex software systems used in modern smart phones contain more sites for potential 
vulnerabilities, a problem exacerbated as application developers continue to integrate third 
party software with plugins for such user applications as web browsers and search engines. 
Recent exploitations of Google Desktop, Microsoft Internet Explorer, and MobileSafari on the 
Apple iPhone are examples [25, 24, 12, 21, 20, 14]. 

Rootkits are a grave concern due to their tenacity, detrimental effect on systems, and 
difficult detection. Typically they target kernel vulnerabilities to infect system-level programs 
and to conceal their existence. The rootkit applications themselves include key loggers, 
network sniffers, and a staging system to launch other attacks like Denial-of-Service and 
more. The primary use of Rootkits is to inject malware and to collect sensitive user 
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information. This is especially problematic for mobile devices that are increasingly used to 
store private data. 

Traditional approaches have sought to provide an absolute defense to specific 
malware attacks by patching software vulnerabilities or detecting and blocking malware [28, 
27, 6, 5, 16]. However, the current situation represents a programmatic arms race between the 
patching of existing vulnerabilities and the exploitation of new ones. Despite increased 
awareness, vulnerabilities continue to be produced, as observed in McAffee's position paper 
citing Windows Vista as being less secure than its predecessors [18, 23, 34]. Most recently, 
the modified Mac OS X system on the Apple iPhone fails to even implement widely accepted 
best practices such as a non-executable heap or address randomization of memory area 
starting locations [20, 14]. Ultimately vulnerabilities will be found and malware will go 
undetected long enough to exploit such. We propose a different approach to managing 
malware based on limiting the ability of viruses to propagate even in the presence of 
undiscovered software vulnerabilities. When used in conjunction with traditional malware 
defenses, this approach greatly increases the difficulty and cost for malware developers to 
exploit vulnerabilities across a wide range of vulnerable systems. 

Mitigation through the use of program differentiation has an analogue in biological 
systems, which not only presume attack will occur but in fact have well-known, openly visible 
vulnerabilities [31, 9]. Beyond protective walls, biological entities also rely on a system that 
mitigates subsequent proliferation of biological attacks. Biological systems defend both at the 
individual level and the population level. While anti-virus software can convey individual 
system protection, they do nothing to limit the rapid propagation of new viruses across a large 
set of homogeneous application code [40, 22]. The correlation between malware propagation 
and resulting damage leads us to explore mitigating attacks by thwarting the propagation. 

Program differentiation seeks to make each executable instance of an application 
unique. There are various ways of achieving this in software. One simple method would be to 
invoke different compiler transformations, or a different transformation ordering, to obtain 
different versions of the same application. However, this approach has two problems that 
make it infeasible. First, the vulnerable portions of the application must be the ones affected 
and there is no way to guarantee those unknown vulnerabilities are modified by this 
differentiation approach. The second problem is a more severe software engineering one. 
Multiple distinct versions of the same program code can be difficult to produce and highly 
impractical to maintain and update; subtle software errors in an application will likely change 
behavior in only a subset of differentiated versions. Performance may also differ widely 
between instances of the program. A solution is needed that differentiates program 
executables while preserving program semantics and control flow, and maintaining a single 
code profile for maintenance. We propose changes in hardware support for control flow 
instructions to achieve differentiation that changes the binary representation of applications 
without changing the execution order of instructions in the processor pipeline. The hardware 
modifications change how functions are called (and returned), how system calls are specified 
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and how instructions 
fetched from memory are 
interpreted. This prevents 
the propagation of 
viruses by making each 
instance of a vulnerable 
application sufficiently 
different to require a 
nontrivial mutation of 
malware code for each 
infection. Figure 1 depicts the general workflow of our proposed methodology. Differentiation 
can occur before distribution, during initial configuration or even at load time for each 
invocation of the application. Whenever performed, differentiation modifies the original 
application using an undifferentiated instance and a configuration database, generating a 
potentially unique executable for each application instance. 

Google's Android operating system for mobile devices is a prime example of the new 
breed of embedded systems we seek to reinforce, and thus is also an ideal candidate for our 
differentiation approaches.  Android is a Linux-based operating system targeted at cell 
phones, tablets and other mobile systems.  The basic system includes a Linux version 2.6 
Kernel, basic libraries, and an application framework that provides core Java programming 
language functionality.  Java applications are then built on a layer above the core system, with 
each running in its own process within an instance of the Dalvik virtual machine [1].  
Nevertheless, given Android's open architecture and consumer product platform, the libraries 
and framework provide broad access to system functionality including phone calling, GPS 
systems, and process control.  As of the first quarter of 2010, sales of Android-base 
smartphones exceeded iPhone OS units, commanding a 28 percent market share and making it 
the second best-selling smartphone system in the quarter behind RIM's Blackberry OS [19]. 

Android-based devices, like mobile devices in general, are a growing target for 
attack due to their large and ever-growing installed base as well as their inherent network 
access. Given that an Android device includes the open source operating system as well as 
applications, it provides us with an ideal platform for our approaches, which integrate 
operating system level enhancements with application level differentiation. 
 
2.  Software Exploits 
 
Vulnerabilities in software have not only proven costly, but are continually increasing in 
number [36]. They can be broadly separated into processor architecture exploits and higher-
level software exploits that are independent of the target architecture. High-level techniques 
are generally attacks on input strings that are interpreted within a source level interpreter in 
the application, such as overwriting of an SQL command string with an unauthorized set of 
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commands to compromise the database system. Mitigation of such attacks must be handled by 
the application and further coverage is outside the scope of this paper’s processor-level 
security systems. By far the most common security exploits related to processor architecture 
are buffer overflow attacks, which overwrite memory locations in vulnerable applications [6, 
32]. These attacks exploit vulnerabilities in the control flow conventions of the target 
architecture to gain control of system resources. The vulnerabilities exploited by the highly 
prolific Code Red worm and recently discovered in the Apple iPhone browser are examples of 
buffer overflow vulnerabilities [40, 22, 20, 2] 

These attacks require an intimate understanding of the program code, including data 
and program object locations, branching, and address usage. The attack requires an 
unbounded input buffer, used to insert a payload of malicious code, and a vulnerability that 
allows the control flow to execute the payload code. Unfortunately, distribution of identical 
versions of a software executable facilitates propagation of a successful attack; once a 
vulnerability is found and exploited the attack is applicable to every other distributed instance. 
It is this commonality that allowed the 2001 Code Red worm (CRv2), which exploited a 
vulnerability in Windows NT and Windows 2000 operating systems, to infect more than 
359,000 Internet Information Servers on the Internet in less than 14 hours [40, 22]. Mitigation 
techniques, such as hardware restrictions that disable execution of code from within the stack 
region of memory, seek to eliminate the vulnerability. Unfortunately, there are buffer overflow 
variants that do not require the insertion of payload code, but instead jump to existing routines 
in the application to compromise the system. Commonly referred to as return-to-libc attacks, 
the target address in the application code is often a library routine to manipulate systems 
components (such as to invoke a shell or delete files).  

Moreover, despite advances in security methodologies in software development the 
prevalence of software vulnerabilities continues to grow. This trend will likely continue as 
software systems become more numerous and complex. Greater opportunities for new 
vulnerabilities arise from the tremendous growth in high-demand, third-party software 
applications that require administrative privileges or trusted access. The Google Desktop 
application demonstrated several vulnerabilities in user-level software that had system-level 
implications. A flaw discovered in December 2004 allowed malicious websites to illicitly read 
local search results from a target machine [25, 24]. The following year, a flaw in the Internet 
Explorer web browser combined with Google Desktop allowed an attacker to retrieve private 
user data or even execute operations on remote domains while impersonating the user [12, 
21]. The extreme integration of third-party applications is another growing threat, as 
demonstrated by the recent discovery of a buffer overflow vulnerability in the MobileSafari 
browser on the new Apple iPhone [20]. Through the exploit, a malicious web site could 
deliver a payload that allowed access to and transmission of any phone data [14]. The threat 
of malware on cell phones has loomed large in the past few years as they increase in 
computational power. Now that modern cell phones are simply full-fledged computer systems 
they are subject to computer system threats, only at much larger distribution scale [29]. 
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Unfortunately, current anti-virus support is limited to identifying existing 
vulnerabilities or a few restricted patterns of attack. This approach means that systems 
security is always lagging behind the discovery of new vulnerabilities and fast propagation can 
defeat even the most active malware defense. Differentiation offers the promise of either 
eliminating or significantly slowing propagation independent of the type of software 
vulnerability exploited. Used in conjunction with existing mitigation techniques, program 
differentiation provides the strongest deterrent to the spread of future malware. 

 
3.  Differentiation Sources 
 
The goal of differentiation is to restructure each instance of an application in a manner that 
makes the exploitation of inherent vulnerabilities in either the application or execution 
environment more difficult. At the same time, the implementation of a differentiation 
technique should not hinder application maintenance, change functional behavior, or result in 
dramatic performance differences between instances. Particularly in embedded systems, the 
ideal differentiation technique should have minimal to no impact on performance and be 
scalable to the available resource budget. Finally, the overhead required to support 
differentiation should be minimal in both space and execution time.  We propose three 
independent mechanisms to provide differentiation using a combination of hardware and 
software techniques. Each of these techniques utilizes indirection and by permuting indices 
supports differentiation. The first two schemes manipulate function call and system call 
semantics using both hardware and software modifications. The third scheme modifies how 
instructions are interpreted when fetched from memory and provides additional restrictions on 
execution of the most vulnerable instructions. These mechanisms are not only orthogonal to 
each other, but can be used in conjunction with all other available protection schemes. 
 
3.2   Return address differentiation 
 
Our first approach is to introduce a level of indirection into the function call return address 
stored on the stack. The return address is the typical target of buffer overflow attacks, which 
attempt to overwrite the address to point to a payload placed in the buffer.  By replacing the 
return address with an index to a table of return addresses, we prevent the injection of a direct 
address and instead force the attacker to analyze the behavior of the new Return Address 
Table (RAT). This requires modification of function call and return semantics to access the 
return address through the RAT. Function calls must utilize a register to pass the index in 
much the same manner as the return address is currently passed. The return instruction must 
be modified to use the index to load the return address from the RAT before jumping to the 
instruction following the function call. Any buffer overflow would now override the RAT 
index. Without knowledge of the ordering of return addresses in the read-only RAT, the 
attacker can only jump to a random return address location in the existing code. With some 
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modification to memory management access, the table itself can be marked unreadable by all 
instructions except function return. This removes code inspection from the arsenal of the 
malware attack. Statistical attacks using random indices can be thwarted by increasing the size 
of the RAT. The cost paid is a fixed increase in storage requirements for the return address 
table and a slight performance penalty on each function return due to the required table 
lookup. Instruction set modifications include the call or jalr instructions and ret. Calling 
conventions replace the automatic movement of the program counter for the next instruction 
(generally PC+4) with an index specifying the RAT entry containing the address of the next 
instruction. This is performed by an additional instruction, though in many cases this 
additional instruction is loop invariant and can thus be performed much less often than the 
function call. The call instruction could be totally eliminated; however, this would have 
implications on micro-architectural resources like the return address stack.  Remaining calling 
conventions remain unchanged. The ret instruction is modified to first read the index off the 
stack, and then use the index to load the return address from the RAT. In a load-store 
architecture, this would be performed by multiple instructions. In either case, the performance 
impact is less than expected since the branch prediction will continue to utilize the return 
address stack, which generally contains the correct address. 

Modifications to the function return code sequence are outlined in Figure 2. The 
return behavior is updated to: 1) retrieve the index from the program stack; 2) access the RAT 
to obtain the return address; and then 3) jump to the return address. The RAT itself is made 
read-only, and in retrieving the return address bounds checking can be imposed by using 
logical instructions to mask the index value and prevent the use of any out-of-range indices. 
Even a small number of RAT entries results in a combinatorial number of permutations. This 
directly attacks the economics of a malware attack, making a random attack extremely 
unlikely to produce any useful predictable behavior and grossly thwarting the ability to have a 
wide-ranging impact with a single system attack. For the attacker who wishes to analyze 
software or a system to improve malware success and propagation, the permutation 
complexity elicits a signature analysis behavior that is easily detectable by traditional intrusion 
detection systems. Still, some consideration must be given to the use of shared library 
routines. Since these functions are shared by different applications, care must be taken when 
using any process resources, 
particularly the RAT.  If all 
system processes use the 
differentiation calling 
conventions then libraries 
pose no difficulties; RAT 
indices are evaluated in the 
context of a process and each 
process contains a unique 
RAT. Returns from library 

load r1,[sp]    0x13 
 
and r1,r1,0x3ff 0x13 
 
load r1, [r1]   0xF..3A 
 
jump r1         0xF..3A 
 

0x13 

Stack with Indices 

 
0xF..3A 
 
 

Figure 2. Secure Return Code Sequence 
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functions would still use the index into the process RAT and jump to the correct location. In a 
system where not all applications use differentiation call semantics, the return from a library 
function would then be undifferentiated, using the return address on the stack and jumping to 
the correct location.  This mixed environment does not offer the same level of protection as a 
fully differentiated executable; however, only library routines are left vulnerable and ideally 
they would tend to be a more stable code base not as easily targeted by malware. 

 
3.2   System call differentiation 
 
Another candidate for indirection are system call conventions, which specify a system call 
identifier generally passed using a specific data register. System calls can be used to 
manipulate files, memory or process permissions, and can be compromised by malware that 
changes the system call identifier prior to execution. System calls are implemented by 
jumping to a function in the operating system (entSys() in Linux), which then uses the system 
call identifier to index into a jump table to the correct handler function. We thus have the 
same basic approach as with the RAT. Differentiation of the table (the sys_call_table in 
Linux) will provide a different mapping of system call identifiers to handler functions for each 
system (not each application) at no additional overhead. The only requirement to perform 
system call differentiation is to permute the entries in the sys_call_table and update any 
system calls in the applications. It is quite rare for an application to directly reference a system 
call since almost all calls are performed in the standard systems libraries (libC and others). 
This simplifies the differentiation process. Of course, this approach means that all applications 
running on the system share the same system call identifiers. This is likely not a problem since 
viruses tend to propagate by infecting the same application on different systems, not by 
attacking different applications on the same system. However, by duplicating the 
sys_call_table for each process, differentiation can be performed for each process on the same 
system. The only additional requirement is an increase in the stored state of the process and 
de-referencing of the process table pointer in entSys(). This approach again provides a level of 
indirection that requires an attacker to now gain access to a particular executable's custom 
system call table in order to identify targets for control flow redirection. Furthermore, the 
custom sys_call_table can be pruned to only contain those used by the particular program, 
reducing malware ability to 
initiate unexpected system 
calls. Figure 3 depicts the 
general process of accessing 
the lookup table containing the 
system call specifier, which 
ultimately results in one 
additional function call and one 
additional load from a table in 

[syscall specifier X] 

System Call Table 
(Current Process) 

[index] Proc 
System Call Handler 

. . . 
 

Execute System Call 
"X" 

Figure 3. System Call Table Lookup 

[index] 
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memory. Normally a register contains the identifier for the system call to perform. We would 
differentiate modules by replacing the identifier with an index into the system call lookup 
table. 
 
3.3  ISA differentiation 
 
The final modification to support differentiation provides the strongest level of protection. 
Instructions can be obfuscated by using a level of indirection in the decoding of instructions 
fetched from memory. This enables a portion of the Instruction Set Architecture (ISA) 
encoding to be changed for each program instance while leaving instruction execution 
unchanged. Keeping the decoded/executed instruction stream the same allows software 
engineers to more easily maintain an application, since any version can theoretically be 
transformed into a different version by applying the appropriate mapping of indirection 
specifiers. This facilitates the debugging and patching of differentiated executables, a task 
easily achievable using previous techniques. There have been several possible approaches for 
indirectly accessing instructions that could support differentiation. Computational accelerators 
fuse multiple operations into single operations by providing a programmable set of functional 
units [4]. An accelerator could be configured to use only simple instructions with a specific 
new opcode/operand encoding that could vary amongst differentiated executables. The FITS 
system allows for mapping of an ISA, customized for a particular executable, to a 
configurable processor [3]. The programmability of opcode and operand decoders in FITS 
allows for their permutation in the instructions supported by the ISA. Both, however, have 
drawbacks in either potential performance penalties or increased implementation time. 

Ultimately, a most 
attractive option is instruction 
packing, a technique that can be 
readily adapted to provide 
differentiation at the hardware 
instruction level [15]. This 
technique promotes frequently 
occurring static and/or dynamic 
instructions into instruction 
registers, which can then be 
indexed for execution by using 
just a few bits. The small size of 
these indices allows multiple 
such references to be "packed" 
together into a single 32-bit 
instruction. Parameterization of 
register numbers and immediate 

Figure 4. Indirection with an IRF 
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values increases the number of instructions that can be promoted. This reduces code size and 
improves energy efficiency, as the Instruction Register File (IRF) requires less power to 
access than the instruction cache. Using instruction packing, the indices of the packed 
instructions can be permuted to generate new executables. With a 32-entry IRF (and one 
instruction register reserved for a nop), there are 31! possible permutations, leading to quite a 
large space for differentiation of a single application. Figure 4 shows an example program 
being permuted within the IRF. The four instructions are mapped into the IRF and the 
appropriate identifiers are specified for the packed instruction. Since we only have four 
instructions to pack together, the fifth slot is mapped to the nop, which need not necessarily be 
at entry 0. Packing instructions with an IRF is also the least intrusive solution, as it requires 
the fewest changes to the baseline ISA. The tightly packed instruction format can be supported 
using just a few spare opcodes in almost any existing ISA. An IRF needs to be added to the 
pipeline, and the fetch and decode stages need to be modified to be able to fetch instructions 
from it. Instructions are placed in the IRF at load-time for an application, and must be restored 
on context switches. This allows separate applications to have completely different IRF 
entries. Instruction packing clearly satisfies all of the necessary requirements for providing an 
easily permuted instruction indirection scheme. Furthermore, the additional energy and code 
size savings (with no performance overhead) make this technique even more attractive for 
implementing hardware instruction level differentiation, especially on restrictive embedded 
systems. The IRF structure also allows for scalability, balancing the size of the IRF with the 
amount of differentiation desired. [15]. 

Using an IRF to support differentiation also provides an additional benefit for 
protecting code from malware. Since the IRF provides a totally independent way to specify 
the instructions that reside within it, it is possible to disallow those instructions from being 
fetched directly from the memory system. So if we always promote certain critical instruction 
into the IRF, then we can execute the processor in a safe mode that would not decode those 
actual instructions when being fetched from the memory system. By targeting syscall, call, 
return, adds to the stack pointer and short conditional branches, it becomes difficult for any 
payload malware to perform critical, or even common, instructions without identifying the 
IRF permutation.  Additionally, empty IRF operands can be used to verify proper control flow 
with the inclusion of a simple validating state machine in the beginning of the processor 
pipeline. This could be as simple as requiring some parity calculation for the instructions. This 
has little or no impact on application performance, and while the virus can replicate the 
calculation, each instance of the application can use the free IRF encodings for different 
validation checks. For the malware to propagate, the virus must correctly handle an arbitrarily 
large number of validation checks.  Again, this technique offers scalability in an embedded 
system up to the level of desired or allowable protection. 
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3.4   Intrusion detection with Micro State Machine differentiation 
 
We also propose developing a variety of small state machines that monitor some identifiable 
pattern of behavior of the application, such as sequences of system calls or numbers of 
arguments in function calls within a program. These Micro State Machines (MSMs) can be 
defined at compile-time or load-time, and ultimately can be easily implemented in hardware 
without any effect on the pipelined instructions of a software program. A wide variety of 
micro state machines can be made available, executed by referencing an index from within a 
software executable. These include any state monitoring patterns proposed in the previous 
literature. By requiring a program to execute any or all of these micro state machines, the 
integrity of program behavior can be checked outside of the regular program execution. Given 
the wide variety of small state transitions that can be monitored, differentiation is introduced 
into applications by varying the particular MSM called for a given executable version and/or 
varying the order of calling multiple micro state machines. Indeed, each application instance 
may only need to verify one aspect of the entire state monitoring problem, with variation of 
which MSM is implemented in any given instance. This comes with no direct performance 
penalty and forces an attacker to have to understand and thwart the monitoring of a large 
number of state transition behaviors. The possible combinations of state monitoring are 
ideally too large for any malware to comprehensively determine, and the act of attempting to 
do so is a detectable behavior pattern that can be further used to identify the presence of 
malware. 
 The choice of MSMs is limitless given all the system processes and properties that 
can be tracked and checked for inconsistency. Note that we are not requiring that a given 
verification be perfect or guaranteed - that is, the particular section need not be invariant nor 
must any attack be guaranteed to modify it. Just as with intrusion detection systems, in this 
method we seek to increase the probability of detecting threats and thereby responding to 
them. Subject to resource restrictions we increase the strength of hardening by increasing the 
number and variety of MSMs and the depth to which any single MSM is implemented. At this 
application level the saving of data and restarting of verification for context switching must be 
considered. By parameterizing an MSM to support specification of a starting state, the MSM 
can be properly continued after context switches. 

An example addressing code driven by direct control, such as application code, is the 
tracking of a portion of an application's call graph. With compiler support analysis can be 
performed on an application with the aim of identifying portions that are attractive targets with 
low variability. An MSM can then periodically verify the actual call behavior of the running 
process. 
 Internal events driven by code such as system operations represent another different 
pool of data for MSM analysis. For example, translation look-aside buffer (TLB) behavior can 
be monitored and verified by an MSM for generally anomalous behavior across all user 
applications. A TLB miss that occurs long into the execution of an application would 



Program Differentiation    11 

represent code that had never been previously executed suddenly being called, which suggests 
injected code. Of course, this can sometimes be correct behavior as in the case of just-in-time 
(JIT) compiled code, so careful analysis for such an MSM must be made, for instance to only 
be sensitive to TLB misses from particular ranges of memory. 
 Analyzing system wide operational semantics represents another higher level where 
we can achieve monitoring across all user applications. Common SQL injection attacks can be 
detected by searching database-destined values for special characters or embedded logic 
statements. But another attack behavior is the systematic delivery of varied inputs to evince 
changes in output, typically when direct viewing of SQL query results is not visible. Repeated 
executions of the same SQL query code can be a semantic checked by an MSM when not 
expected in the normal operation of a particular application. The behavior and state of virtual 
machines executing processes also represent system semantics that can be validated by an 
MSM. The Android operating system provides a prime opportunity for such monitoring, as it 
uses a virtual machine for each running process. Validation of erroneous behaviors can be 
monitored, as well as execution of code from memory regions not belonging to the specific 
application within the virtual machine. Since each running process is in a virtual machine, 
operations invalid for the specific application can be documented and tracked, such as phone 
call access from applications that have no business accessing the phone. Other behaviors such 
as the previously mentioned TLB misses can also be monitored specifically relative to the 
application within a given virtual machine. 

The variable selection of micro state machine types and quantity again aids 
embedded system designers by providing a scalable defense method.  Increasing the number 
of micro state machines results in a smooth increase in the level of defense.  The number can 
be increased up to the desired defense level, or as is more likely the case up to the limit of 
available resources for defense. Ideally, if an IRF is employed the unused slots in non-fully 
packed instructions are perfect locations for placing the triggers or counters for implementing 
such micro state machines. These triggers can be sought during the pipeline fetch phase with 
no direct penalty on the application processing performance. 

 
4.  Evaluation 
 
We have thus proposed several methods for implementing differentiation of software 
executables using hardware support. To perform an initial test of the worst-case effect on 
performance of our approaches we developed software versions of two of the approaches, 
implementing both a Return Address Table (RAT) and a Linux kernel modification 
implementing system call indirection, targeting binaries to the Alpha architecture. Both were 
evaluated using the M5 Simulator, a modular platform for computer system architecture 
research, encompassing system-level architecture as well as processor microarchitecture [35].  
M5 supports the Alpha architecture and has a system-call emulation mode that can simulate 
Alpha binaries. Moreover, M5 provides a full system simulator that models a DEC Tsunami 
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# $26 holds value originally passed as return address 
# isolate bits 12-3 to get a 1k address to a quadword 
# maximum literal size is 255, so shift left then right 
# must be quad word aligned so zero right 3 bits 
srl $26,3,$26    # >> 3 to get on quad boundary 
sll $26,57,$26   # << 3 then 54 to isolate ten bits 
srl $26,54,$26   # >> to get 10 bits pos [12-3] 
 
# load from return address table 
# base of table+index must also be offset from bp $29 
 
addq $26,$29,$26 # add base pointer to index 
 
# add table offset to base+index 
ldq $26,ratable($26) !literal    
 
# perform return using retrieved address 
ret $31,($26),1 

Figure 5. Return Address Post-Processing 

system in sufficient detail to boot a Linux kernel. We specifically used the M5 full system 
simulator to evaluate the results of our Linux kernel modifications to support system call 
indirection. 

 
4.1   Function call return address 
 
Our actual implementation of the RAT involved modification of a GCC version 4.0.2 cross-
compiler installation using glib version 2.3.6., configured to produce Alpha executables. We 
inserted a program in between the compilation and assembly stages (just before the execution 
of the as assembler program), which post-processed all return (ret) instructions in user code to 
rewrite the program assembly. In addition, an array to hold return addresses was linked in with 
every executable program. The address retrieved from the stack as the "return address" is 
actually treated as an index into the RAT. Logical shift instructions are inserted in order to 
isolate the portion of the address representing the index. The resulting index is then combined 
with the base pointer and offset of the starting point of the RAT. A single load instruction is 
then inserted to retrieve the actual return address to be used. The resulting post-processed 
Alpha assembly file can then be assembled and linked by the remaining GCC compile chain.  

In Alpha assembly ret instructions use a return address stored by convention in 
register $26. Figure 5 shows the assembly added by our post-processing application to replace 
the normal ret instruction. The value being passed through register $26 is now an index into 
our RAT, which we implemented with 1024 entries. Since the maximum literal size in Alpha 
assembly is 255, we use logical shifts to isolate ten bits in position 12-3, zeroing the three 
least-significant bits since the index must be quad-word aligned. Once the index is identified, 
it is added to the base address of our RAT as well as the base pointer to obtain the location in 
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memory from which to retrieve the actual return address. A simple return is now performed, 
with register $26 now containing the actual return address as retrieved from the RAT. 
Differentiation of multiple software executable versions is achieved by permuting the order of 
return addresses in the table. 

We compiled several benchmarks from the MiBench benchmark suite [13] using our 
modified GCC compiler and executed them, verifying their essential correctness. The 
resulting increases in instruction count and committed loads are presented in Figure 6.  
Instruction count increased by only 1.04% on average, with this including a single outlying 
increase of 4.32% for the Telecomm benchmarks. Among the other benchmarks the highest 
increase was only 0.31%. The increase in loads showed somewhat similar behavior, with an 
average increase of 3.38%, which includes two extreme cases of a 7.75% and 8.13% increase 
for the Office and Telecomm benchmarks respectively. Among the remaining benchmarks the 
highest increase was just under 0.6%. 

 
4.2   System calls 
 
Our actual 
implementation for 
system call 
differentiation involved 
modification of the 
Linux 2.6.13 kernel 
distribution provided 
with the M5 simulator. 
Each running process is 
associated with a 
task_struct, which is 
defined in the 
scheduler. We modified 
the scheduler to include 
an array that would 
hold a unique copy of 
the system call table for 
each process, which is 
populated when a new 
process is created. 
Since the actual 
handling of system calls 
occurs in assembly 
routines, we added a Figure 6. Return Address Table Simulation 
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Figure 7. System Call Handler Code 

entSys: 
    SAVE_ALL 
    lda     $8, 0x3fff 
    bic     $sp, $8, $8 
    lda     $4, NR_SYSCALLS($31) 
    stq     $16, SP_OFF+24($sp) 
    /* remove (lda $5, sys_call_table) */ 
    /* we obtain system call elsewhere */ 
    lda     $27, sys_ni_syscall 
    cmpult  $0, $4, $4 
    ldl     $3, TI_FLAGS($8) 
    stq     $17, SP_OFF+32($sp) 
    /* remove (s8addq  $0, $5, $5) 
    /* since no offset */ 
    stq     $18, SP_OFF+40($sp) 
    blbs    $3, strace 
    beq     $4, 1f 
 
    /* set first argument to the offset */ 
    /* (register saved by SAVE_ALL) */ 
    addq    $31, $0, $16 
    /* load retrieval function and call it */ 
    /* register $0 will then have actual index */ 
    lda     $27, get_cur_sys_tbl 
1:  jsr     $26, ($27), alpha_ni_syscall 
    /* restore first argument */ 
    ldq     $16, 160($sp); 
 
    /* use register $27 to make system call.*/ 
    addq    $0, $31, $27 
    jsr     $26, ($27), alpha_ni_syscall 
    ldgp    $gp, 0($26) 
    blt     $0, $syscall_error  /* call failed */ 
    stq     $0, 0($sp) 
    stq     $31, 72($sp)   /* a3=0 => no error */ 
       . . . 

function to the scheduler that is visible from the assembly language routines and that returns 
entries from the system call table. We modified the system call handler to use the current 
system call specifier (normally an index into the default system call table) and pass it to our 
function. The function uses the value as an index into the system call table for the currently 
running process and returns the corresponding actual system call specifier, which is then used 
to make the system call. The most significant changes needed for implementation of system 
call tables involve modification of the system call handler assembly routine. Figure 7 shows 
the modifications to the applicable assembly source file in the Linux kernel (new code 
italicized). Originally the system call identifier (an index into the original system call table) is 
passed through register $31, but now the register contains an index into the system call table 
for the currently running process. We set this index as an argument and call the 
get_cur_sys_tbl function we created in the scheduler to obtain the system call table from the 
currently executing process and retrieve the correct system call identifier corresponding to the 
index argument. The 
retrieved system call 
identifier is then used to 
dispatch a system call 
in the normal fashion. 
Differentiation can be 
achieved by permuting 
the system call table 
contents for each 
process, thus changing 
all the system call 
specifiers used within 
the actual machine 
language of each 
executable version.  
The functional behavior 
of each executable is 
unaffected, since any 
two permutations of 
system call tables will 
ultimately result in the 
same actual function 
call being executed at 
the same points in the 
control flow. 

We ran 
unmodified, Alpha-
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Figure 8. System Call Table Simulation 

compiled versions of several MiBench benchmarks in the M5 simulator using the modified 
Linux kernel with system call implementation. Using a separate system call table per process 
entails some increase in loads due to the work required to retrieve the system call table from 
the running process. The average increases in committed loads are provided in Figure 8, 
which is nominal at 0.15%, with Office benchmarks having the highest average increase of 
0.51%. This can be attributed to the relative infrequency of system calls in typical 
applications. For this reason we did not include any figures for the negligible to undetectable 
change in execution time. This is to be expected given this infrequency as well as the large 
amount of work performed during a system call compared to the small amount of work from 
our few additional loads. 

 
4.3   Instruction level indirection 
 
Implementing instruction level indirection will require the addition of an IRF and its 
associated instruction extensions to the processor along with modification of the compiler to 
support instruction packing. The actual permuting of the contents of the IRF randomly at 
compile/link-time is a simple operation. Since the IRF is relatively performance-neutral, the 
resulting processor design will feature reduced application code size, improved energy 
efficiency, and an increased resistance to malware propagation. Previous application of 
instruction packing on these MiBench benchmarks has shown an energy savings of 15.8% 
with a corresponding code size reduction of 26.8%. This is for a 4-window 32-entry IRF that 
seeks to maximize code density both statically and dynamically. Reserving a few unused 
instruction registers to trigger micro state machines minimally impacts the overall 
improvements provided by instruction packing. Reserving 5 additional slots (beyond the one 
for nop) results in a code size reduction of 24.2% and a corresponding energy reduction of 
14.9%. Average 
execution time is 
within 0.3% of the 
original case. The vast 
majority of tightly 
packed instructions do 
not utilize all 5 slots, 
and thus there is 
ample room to extend 
these instructions with 
references to micro 
state machine 
changing operations. 
Simultaneously, not 
all instructions that 
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feature a loosely packed instruction field can actually make use of that available storage area. 
Having micro state operations fill these slots prevents any additional code size increase or 
execution time increase by providing a simply-decoded mechanism for modifying intrusion 
detection state machines. In extremely rare stretches of code that are very densely packed with 
few free slots, additional tightly or loosely packed instructions can be inserted to trigger the 
appropriate state changes, thus keeping our mechanism applicable to all software applications. 

 
5.  Related Work 
 
There has recently been growing activity in the cell phone industry regarding security in cell 
phone applications and hardening of cell phone systems against viruses and other malware. 
One example is the Symbian Signed initiative to digitally “sign” applications for use on 
Symbian OS devices [33]. Although this can help to verify the integrity of participating 
software it entails increased development costs and complexity. Also, as with any 
certification-based system it is not scalable. Any successful application development will 
promote increasing code quantities that inevitably outstrip available code review resources. 
Signing may limit the applications a user may voluntarily install, but ultimately malware may 
infiltrate a system through means other than a user’s active installation. Again the real 
problem is limiting and even stopping the malicious behavior of viruses and malware, given 
the assumption that malware will eventually have a chance to execute. 

Many techniques have been proposed to defend against buffer overflow attacks, 
including implementation of non-executable stack areas [27], placement of canary marker 
values on the stack [6], encryption of pointer values in memory [5]. The approaches entail 
various levels of effectiveness and performance impact, and have met with various proposed 
shortcomings or defeats, including the failure to actually implement such well-accepted 
defenses. A stunning example is the most recent Mac OS X system on the Apple iPhone, 
which simply failed to implement a non-executable heap [20, 14]. Attempts to audit code to 
identify common vulnerabilities, either by hand [10, 26], or by automated methods [8, 39], 
such as searching for the use of unsafe library functions, have proven costly, sometimes 
prohibitively so [17, 11]. Indeed, writing correct code seems the most difficult defense to 
implement, with United States Computer Emergency Readiness Team (US-CERT) statistics 
showing an increase from 1,090 vulnerabilities reported in 2000 to over 4,200 in the first three 
quarters of 2005 alone [36]. Given a successful attack, Intrusion Detection Systems (IDS) 
have focused on detecting violations of security policy by monitoring and analyzing some 
characteristic of system behavior, with the goal of identifying, reporting on, and ultimately 
terminating anomalous behavior that may be indicative of an attack [16]. 

Actual randomization of the otherwise predictable code footprint of software has 
been considered in techniques such as Address Space Layout Randomization (ASLR), which 
inserts random memory gaps before the stack base and heap base (and optionally other 
memory areas such as the mmap() base). Attacks become less likely to succeed in executing a 
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malicious payload and more detectable due to the behavior pattern of failed attacks (typically 
program crashes) [28]. PaX is a patch for Linux kernels that, among other security measures, 
employs ASLR. 

However, Several methods for defeating ASLR protection have been proposed.  For 
stack-based attacks, adding a nop slide to the beginning of the payload increases the chance of 
having the effective code land past the beginning of the targeted memory area. Also, the 
ASLR mmap() base randomization ignores the 12 least significant bits representing the page 
offset. Given a buffer entry function and a printf() call within the same page, the printf() can 
be repeatedly returned to using a format string bug to report the stack frame contents and 
determine the actual stack base offset [7]. The number of randomized bits used in an ASLR 
scheme can be effectively reduced by only requiring discovery of the 16-bit mmap() base 
randomization, thus allowing any buffer-overflow exploit to be converted to a tractable attack  
[30]. 

SHARK provides architectural support for protection from Rootkits [37]. By 
generating Process Identifiers (PID) in hardware and then encrypting page tables, SHARK 
attempts to prevent compromised operating systems from running malicious code. Program 
differentiation differs in that SHARK attempts to provide a single wall of protection, while 
Program Differentiation provides a Defense-in-Depth approach. Defense-in-Depth adds to 
overall defense since, if an attacker manages to break the security on one machine, the attack 
will not be spread to others. Furthermore, SHARK requires a significant architectural 
addition, while a significant portion of Program Differentiation can be implemented in 
software. In fact, program differentiation works well in combination with other protection 
schemes. Overall security is enhanced with any new hardware or software protection 
mechanism since it must be exploited for virus propagation to occur. Not only can other 
protections exist independently of our proposed differentiation schemes, the methodology of 
differentiation may be readily applied to other protection mechanism to make propagation 
even more challenging. 

Other related research has attempted to analogize software defense to biological 
immune defense systems. Natural immune systems are designed to operate in an imperfect, 
uncontrolled, open environment that is analogous to current computer system environments. It 
has been proposed that principles of immune systems, including distributability of response, 
multi-layering of defense responsibilities, and diversity, be applied to computer systems to 
increase security [31]. Given that diversity is an important source of robustness in biological 
systems, computing machines are notable in that they suffer from their extreme lack of such 
diversity. Proposed diversification methods have included random addition of nonfunctional 
code, reordering of code, and various software and system transformations [9]. 
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6.  Conclusions 
 
While vulnerabilities in software systems will continue to invite new malware attacks, we 
believe that proper mitigation techniques can reduce the impact of these attacks. Towards this 
goal, we propose expanding our current malware defense focus from the traditional 
approaches of absolute attack prevention to include efforts toward preventing malware 
propagation. By differentiating software program executables, we seek to thwart malware 
propagation when a vulnerability exists in a given software application. This is accomplished 
through virtualizing the control flow of the application, enabling function call/return and 
system call semantics to be permuted into unique versions for each application instance. We 
also show how an existing processor design utilizing an Instruction Register File (IRF) can 
achieve further security though the use of differentiation of instructions in the IRF as well as 
by restricting vital instructions from being fetched directly from memory. We show that these 
techniques require minimal overhead with respect to increased memory footprint and 
execution time. In worst-case software simulations of our control flow differentiation method 
using function calls and returns we found only a 1.04% average increase in instruction count 
and 3.38% average increase in loads. In software simulation of a Linux kernel implementing a 
per process system call table the increase in committed loads is nominal at 0.15%. Automation 
by the compiler and implementation of actual simple hardware support structures can 
ultimately result in little to no performance degradation for such differentiation. 

The benefits of the minimal performance impact of our techniques, as well as their 
scalability, are ideal for embedded systems. These techniques can be implemented in whatever 
quantities are desired or allowable in a system without draining precious performance 
resources in the pursuit of defense. Current trends show that software programs will continue 
to possess vulnerabilities that are discoverable by attackers. However, inherent in 
differentiation is the targeting of the economics of malware, making profitable high-impact 
attacks prohibitively expensive and infeasible.  While we accept that there may be successful 
attacks on any single distributed executable version, by dramatically increasing the ratio of 
effort to damage scope, attackers incur a substantial disincentive to developing malware even 
in the presence of an exploitable software vulnerability. This research was supported in part 
by NSF grants CNS-0615085 and CNS-0915926. 
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