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SUMMARY

Often a computer architecture is designed and implemented without determining whether its associated com-
pilers will actually use all of the architecture’s features. A more effective machine can result when the interac-
tions between an architecture and a compiler are addressed. This paper presents an environment that
integrates the tasks of translating a source program to machine instructions for a proposed architecture, imi-
tating the execution of these instructions, and collecting measurements. The environment, which is easily
retargeted and quickly collects detailed measurements, facilitates experimentation with a proposed architec-
ture and a compiler.
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INTRODUCTION

Several factors have caused architectures to be designed and implemented without determining

whether a compiler can make effective use of the architecture’s features. Many compilers require a

significant amount of time to retarget. In the rapidly changing computer industry, manufacturers may not

wish to delay the implementation of the initial design for such a time period. Even after a compiler has

been retargeted, it is not a simple matter to provide a mechanism to execute instructions and gather meas-

urements on a machine that does not yet exist. Because of the large execution time penalties incurred

with some of these mechanisms, experimentation is discouraged. However, despite these difficulties, we

believe that better computer systems (both hardware and software) are possible if the architecture is

designed to operate synergistically with the compiler. Examples of such systems include the IBM 801

[Rad82] and the MIPS [HJB82] processors. Their designs were influenced largely by the decision to

make pervasive use of high-level languages and powerful compilers.

To effectively evaluate a proposed architecture, one should analyze measurements from typical

programs that are to be executed by the machine. Three tasks must be accomplished to be able to obtain

these program measurements. The first task is generating the machine instructions for the proposed

architecture that correspond to each of the test programs. The second task is providing the ability to imi-

-1-



tate the execution of these machine instructions since the proposed architecture does not exist. The third

task is establishing a method for the extraction of measurements from the execution of the programs.

This paper presents an environment called ease (Environment for Architecture Study and Experi-

mentation) that integrates the tasks of producing instructions for a proposed machine, imitating the exe-

cution of the instructions, and collecting measurements. Integration of these tasks results in a substantial

reduction in effort as compared to traditional methods. Also, by using program-flow information calcu-

lated by the compiler, detailed measurements can be obtained with very little overhead.

PRODUCING CODE FOR THE PROPOSED MACHINE

To be able to analyze measurements from representative test programs for a proposed architecture,

each of the test programs must first be translated to instructions for the proposed machine. If a set of

small test programs is used, the instructions for each of the test programs can be generated by hand. The

measurements extracted from these programs would probably not produce representative results since the

size of the programs would not be realistic and the quality of the code would depend on the skill of the

author of the programs. A more realistic test set would typically require the construction of a compiler.

The problem of generating code is further complicated since most machines require ‘‘optimizing’’ com-

pilers in order for their capabilities to be exploited [HeP90].

The compiler technology used in this environment to develop back ends of compilers is known as

vpo (Very Portable Optimizer) [BeD88, DaF84, Dav86]. The optimizer, vpo, replaces the traditional code

generator used in many compilers and has been used to build C, Pascal, and Ada compilers.1 vpo is retar-

geted by supplying a description of the target machine. Using the diagrammatic notation of Wulf

[WJW75], Figure 1 shows the overall structure of a set of compilers constructed using vpo. Vertical

columns within a box represent logical phases which operate serially. Columns divided horizontally into

rows indicate that the subphases of the column may be executed in an arbitrary order. IL is the Inter-

mediate Language generated by a front end. Register transfers or register transfer lists (RTLs) describe

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
1 While the current version of ease only works with C front ends, the environment can be extended for use with other

languages when the corresponding front ends are updated to be compatible with the latest version of vpo.
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the effects of machine instructions and have the form of conventional expressions and assignments over

the hardware’s storage cells. For example, the RTL

r[1] = r[1] + r[2]; cc = r[1] + r[2] ? 0;

represents a register-to-register integer add on many machines. While any particular RTL is machine-

specific, the form of the RTL is machine-independent. All phases of the optimizer manipulate RTLs.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
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There are a number of advantages to using RTLs as the basis of the intermediate representation.

Because the form is machine-independent, one can construct programs that manipulate RTLs in

machine-independent ways. For example, the phase that performs data-flow analysis on RTLs is largely

machine-independent. Because RTLs represent actual machine instructions, details of the target machine

are exposed to the various optimization phases, resulting in more complete and thorough optimization.

For instance, by performing the optimizations after code generation, all of the instructions that are invari-

ant become candidates for being moved out of loops when code motion is applied. Finally, because

RTLs are well-defined, one can easily construct recognizers to determine whether an RTL represents a

legal target machine instruction, which is essential to our optimization strategy. For example, an RTL

created during instruction selection by combining two or three RTLs together is verified to be legal

before the original RTLs are replaced.

To retarget vpo to a new architecture, one must write a description of the architecture’s instruction

set. This machine description consists of a grammar and semantic actions. The grammar is used to pro-

duce a parser that checks the syntax of an RTL. The semantic actions check context-sensitive constraints

imposed by a particular architecture. Currently, the RTL parsers are constructed using the Unix parser

generator yacc [Joh78].2

Machine description grammars are relatively easy to write [Dav85]. The goal is to compose a

grammar with semantic actions to produce a parser that accepts all legal RTLs (instructions) and rejects

all illegal RTLs. In our experience it is easier to write a machine description for an instruction set than it

is to write a grammar for a programming language. The task is further simplified by the similarity of

RTLs across machines, which permits a grammar for one machine to be used as the model for a descrip-

tion of another machine. We have used this technique to describe the instruction sets of the following

machines: VAX-11, Motorola 68020/68881, National Semiconductor 32016, Concurrent Computer Cor-

poration 3230, Western Electric 32100, Intel 80386/80387, Harris HCX-9, IBM PC/RT, Intergraph

Clipper, SUN SPARC, AT&T DSP32, Hewlett-Packard 800, Motorola 88100, and MIPS R2000. The C

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
2 There is a certain appeal to the symmetry of employing the same tool for constructing both the front and back ends of the

compiler.
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compiler has been ported to new architectures in as little time as two weeks by one experienced with the

technology.

IMITATING THE EXECUTION OF CODE FOR THE PROPOSED MACHINE

To be able to evaluate an architecture, one should determine the effect of executing instructions

from representative test programs for the architecture. If the architecture has not yet been implemented,

then one must imitate this execution by other means. One solution is to use a simulator, which imitates

the machine by interpreting the machine instructions [AlW75, BSG77]. Since a simulator can be written

in a high-level language, it can be executed on any machine for which there is a compiler for that

language. Another solution is to produce a program that translates the assembly instructions for the pro-

posed architecture into assembly instructions for an existing machine. Once translated, the programs can

then be executed on the host machine.

There are problems when using either of these schemes. The effort required to construct a simula-

tor is comparable to the effort to construct a compiler. Although not as difficult as constructing a simula-

tor, the effort required to produce a translator to map assembly instructions from one machine to another

is nontrivial. The translator must parse and identify the mnemonic of each instruction and the addressing

mode of each field in the instruction. The time required to implement these schemes may discourage one

from collecting measurements. Furthermore, the total execution time of a simulated program is typically

hundreds of times slower than if the program were executed directly [HLT87]. A large execution time

penalty can lead to extraction of measurements from a small number of simulated instructions and less

meaningful results.

The last step in the vpo compilation process is the conversion of an RTL to assembly language for

the target machine and emitting it to a file that will be processed by the system’s assembler. In the ease

environment, an instruction for the proposed machine can either be generated as an assembly instruction

for the proposed architecture or as one or more equivalent assembly instructions for an existing architec-

ture. As an RTL representing an instruction is parsed, characteristics of the instruction are collected and

used for semantic checks. This semantic record can also be used to produce assembly code that
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corresponds to the RTL. Which assembly code is produced depends upon a switch set when invoking the

compiler. The assembly code for the existing architecture can then be assembled, linked, and executed.

Figure 2 contains the code that allows the VAX-11 increment instruction to be produced in equivalent

SPARC assembly instructions.

/*

* binst - check semantics of binary operation

*/

void binst(i1)

struct sem_rec *i1;

{

.

.

/* Emit an inc inst if an add and the increment is 1 */

if (t->op == ’+’ && strcmp(t->sem.binsti.right->asmb, "$1") == 0)

if (vaxassem)

printf("\tinc%c\t%s\n", typech2(t), i1->sem.binsti.dst->asmb);

else if (sparcassem)

if (MEM(t->sem.binsti.dst)) { /* g7 extra register */

printf("\tld\t%s,%%g7\n", i1->sem.binsti.dst->asmb);

printf("\tadd\t%%g7,1,%%g7\n");

printf("\tst\t%%g7,%s\n", i1->sem.binsti.dst->asmb);

}

else

printf("\tadd\t%s,1,%s\n", i1->sem.binsti.dst->asmb);

.

.

}

Figure 2: Code to Generate an Increment Instruction

ease can also be used to emulate architectural features that are not directly equivalent to features on

an existing architecture. For instance, the number of available registers on a proposed architecture may

exceed the number of registers available on the host machine. In this situation, translation of an RTL to

assembly code on a host machine is accomplished in the following manner. First, a set of currently avail-

able registers, equal in number to the maximum number of unique registers that could be used in one

instruction, are reserved. Any references to the reserved or nonexistent registers are replaced by

corresponding memory references. If one of these registers cannot be directly replaced by a memory
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reference in the instruction (e.g. in an addressing mode), then the value for the register is loaded from

memory into a reserved register prior to the execution of the instruction. The reserved register, instead of

the memory reference, is then used in the instruction. If one of these registers is updated as a side effect

of using a particular addressing mode, then the new value for the register is stored after the instruction.

Updating a vpo compiler for the VAX-11 to emulate its execution with twice the number of available

registers was accomplished in half an hour by adding less than 50 lines of code. An example of translat-

ing VAX-11 RTLs referencing additional registers is shown in Figure 3.

r[30] = r[30] + 1; -- add 1 to register 30

=>

incl R30(fp) -- increment r[30] memory reference

L[a[r[30]++]] = 0; -- store 0 in memory at r[30]

-- and add 4 to r[30]

=>

movl R30(fp),r6 -- load r[30] into available register

clrl (r6)+ -- clear memory and add 4 to register

movl r6,R30(fp) -- store updated value of r[30]

Figure 3: Translating Additional Registers

EXTRACTING MEASUREMENTS FOR THE PROPOSED MACHINE

To be able to evaluate an architecture effectively, one must examine its behavior when executing

real programs. To be able to extract this behavior, one must collect measurements from the program’s

execution. Collecting these measurements with a simulator is straightforward since the simulator must

already recognize the characteristics of each instruction in order to correctly imitate the instruction’s

effects. As each instruction is interpreted, detailed measurements can be updated. Extracting measure-

ments for a proposed architecture can also be accomplished when the technique of translating target

assembly instructions to assembly instructions on a host machine is used. As each assembly instruction is

-7-



translated, characteristics of the instruction can be recorded. Program instrumentation can be used to

modify the translated program by inserting instructions to increment frequency counters or to record

other events. The frequency counts, obtained by executing the instrumented program, can be correlated

with instruction information that was recorded during the translation to produce accurate measurements.

No mapping of assembly instructions is required when the control flow of the basic blocks is identical on

both the proposed and existing machines [HLT87]. Frequency counts can be gathered from the program

executed on the existing machine and correlated with instruction information gathered from the assembly

program on the proposed machine.

The previously mentioned problems with using simulation or assembly translation for imitating the

execution of instructions on a proposed machine also apply when extracting measurements. Both a simu-

lator and an assembly translator require a significant amount of effort to construct. Also, a simulated pro-

gram executes much more slowly than the same program executed directly on the target machine.

Another problem is that these schemes record information on instructions after assembly code has

been produced. Thus, many types of measurements related to the source code are not easily extracted.

For instance, determining the average number of arguments allocated to registers requires information

not readily available in the assembly code. Also, data-flow and control-flow information can be used to

minimize the overhead of instructions that are inserted from program instrumentation. This information,

accessible in an optimizing compiler, would have to be recalculated if a separate program were used to

instrument the assembly program.

A direct mapping between the basic block structure of assembly programs on the proposed archi-

tecture and the existing architecture cannot be assured when an optimizing compiler is used. For

instance, there is a greater chance that a RISC instruction within a loop will be invariant since more RISC

instructions than CISC instructions are typically required to accomplish the same set of operations.

Therefore, code motion can often be applied more extensively to loops containing RISC instructions.

Applying code motion results in the introduction of a new basic block as a preheader of a loop if no suit-

able basic block that is a predecessor of the header of the loop can be found. Special instructions avail-

able on some architectures to store the results of comparisons for boolean operations and different code
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generation strategies, such as calling sequence conventions, can also affect the basic block structure. If

an optimizing compiler is not used and there are few differences between the proposed architecture and

an existing architecture, then it is possible that there would exist a direct mapping between the basic

block structures of programs compiled on each machine. Even if a one-to-one mapping exists, then the

assembly program for the proposed architecture must still be processed to extract the instruction informa-

tion required to collect detailed measurements.

The method ease uses to collect measurements is to modify the back end of the compiler to store

the characteristics of the instructions to be executed and to instrument the assembly code with instruc-

tions that will either count the number of times that each instruction is executed or invoke a routine to

record events that are dependent on the order of the instructions executed. These modifications have

been implemented in the vpo compiler system and are described in subsequent sections. This method is

illustrated in Figure 4.

Source

File

Front

End

intermediate

code

VPO

system

optimized

rtls
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Updates
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instruction
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Figure 4: Method for Gathering Data

Instruction Characteristics

The first modification of vpo to produce code for collecting measurements is to have the optimizer

save the characteristics of the instructions that will be executed. As an instruction is parsed, information

about the characteristics of the instruction is collected and used for several purposes. One use is to pro-

vide information to translate the RTL to the corresponding assembly instruction on the target machine or

equivalent assembly instructions on a host machine. As each assembly instruction is produced, the

characteristics of the instruction are also written to a file by invoking a machine-independent routine.

The routine is only invoked if the option for collecting frequency measurements is set and the optimizer

had been compiled to allow the collection of measurements. The routine receives the instruction type and
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the semantic record containing the fields of the instruction. It writes the instruction type and the address-

ing mode and data type for each field within the instruction to a file. Thus, very little extra code and no

extra parsing of RTLs are required to collect this information. These instruction characteristics are emit-

ted as if the target architecture exists. Therefore, the measurements are collected on the RTLs, which

represent the target architecture instructions. The translation from RTLs to assembly instructions does

not affect the measurements that are obtained. An example of a routine that stores information about a

Motorola 68020 call instruction is shown in Figure 5.

/*

* call - check semantics of call

*/

void call(i1)

struct sem_rec *i1;

{

/* if generating assembly code */

if (dassem || vaxassem) {

if (dassem)

printf("\tjbsr\t%s\n", i1->sem.call.addr->asmb);

else

printf("\tcalls\t$0,%s\n", i1->sem.call.addr->asmb);

#ifdef MEASURE

if (swe)

stinstinfo(JSBRI, i1);

#endif

}

/* else perform semantic checks */

else {

...

}

}

Figure 5: Storing Instruction Information

Program Instrumentation

The second modification to vpo is to have the compiler instrument the assembly code after all

optimizations have occurred to either increment counters or invoke measurement routines. Counters are

used to obtain information that is independent of the order in which the instructions are executed, such as

the number of times each type of instruction is executed. Measurement routines are invoked to record
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order-dependent events, which includes trace generation and analysis of memory references.

a. Collecting Order-Independent Data

To collect order-independent information, ease must determine the number of times that each

instruction was executed. Within each function there are groups of instructions, called basic blocks, that

are always executed the same number of times. There are also groups or classes of basic blocks that are

executed the same number of times and are denoted as execution classes. Using control-flow informa-

tion, ease only generates an instruction to increment a counter for each execution class rather than for

each basic block.

An example illustrating how control-flow analysis is used to reduce the overhead for collecting fre-

quency measurements is given in Figures 6—9. Figure 6 contains a C function that returns the sum of the

elements of an array. Figure 7 gives the Motorola 68020 assembly code produced by vpo for that C func-

tion. Figure 8 shows the same assembly code broken into basic blocks. Note that although there are five

basic blocks there are four execution classes ({1}, {2, 4}, {3}, {5}). Figure 9 shows the modified 68020

assembly code with three instructions inserted to increment counters. The name of the file being com-

piled, sum in this case, is used to distinguish counters from other files in the same executable.

int sum(a, n)

int a[], n;

{

int i, total;

if (n > 0) {

total = 0;

i = 0;

do

total += a[i];

while (++i < n);

return(total);

}

return (-1);

}

Figure 6: C function
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.globl _sum

_sum:

n.=12

a.=8

link a6,#-8 -- setup frame and stack ptrs

moveml d2/d3,a7@ -- save d2 and d3

movl a6@(n.),d3 -- load argument n into d3

jle L14 -- if d3 <= 0 goto L14

clrl d1 -- clear d1

clrl d2 -- clear d2

movl a6@(a.),a1 -- load argument a into a1

lea a1@,a0 -- move a1 to a0

L17: addl a0@+,d1 -- add mem value at a0 to d1;add 4 to a0

addql #1,d2 -- add 1 to d2

cmpl d3,d2 -- compare d3 and d2

jlt L17 -- if d2 < d3 goto L17

movl d1,d0 -- move d1 to d0 as return value

moveml a7@,d2/d3 -- restore d2 and d3

unlk a6 -- restore frame and stack ptrs

rts -- return

L14: movl #-1,d0 -- move -1 to d0 as return value

moveml a7@,d2/d3 -- restore d2 and d3

unlk a6 -- restore frame and stack ptrs

rts -- return

Figure 7: Motorola 68020 Assembly Code for Function in Figure 6

Apart from using execution classes, there are additional methods to reduce the number of times that

counters need to be incremented. An instruction to increment a counter is not inserted if the execution

class count can be inferred from the counts of other execution classes. As shown in Figure 8 basic block

1 has two successors, blocks 2 and 5. Both successors have only one predecessor, block 1. The number

of times that block 1 is executed is equal to the sum of the times that blocks 2 and 5 are executed. There-

fore, it is not necessary to increment a counter associated with the execution class representing blocks 2

and 4. The number of iterations of the loop containing block 3 can be determined at compile-time to be

equal to the value in the register d3 at the point where the loop is entered. Thus, the counter associated

with that loop is incremented by the value in the register in the preheader of the loop.

Another type of frequency measurement collected by ease is the number of times that each type of

conditional branch is taken. These values can be obtained by inserting an instruction to increment a
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3

FT

lea a1@,a0

link a6,#-8

1
moveml d2/d3,a7@

movl a6@(n.),d3

jle L14

movl a6@(a.),a1

clrl d2

clrl d1

2

addl a0@+,d1

addql #1,d2

cmpl d3,d2

jlt L17

T

F

5

rts

unlk a6

moveml a7@,d2/d3

movl d1,d0

moveml a7@,d2/d3

unlk a6

rts

movl #-1,d0

Figure 8: Assembly Code of Figure 6 in Basic Blocks

counter after each conditional branch. The counts can then be subtracted from the number of times that

each type of conditional branch is executed to produce the desired measurements. The insertion of such

instructions, however, is usually unnecessary. For instance, there is a conditional branch in blocks 1 and

3 in the example shown in Figure 8. In both situations the block that is executed if the conditional branch

is not taken (2 and 4) has only one predecessor. Therefore, the number of times that each type of condi-

tional branch is not taken is equivalent to the number of times that blocks 2 and 4 are executed. Occa-

sionally, the block that is executed if the conditional branch is not taken has more than one predecessor.

The insertion of an instruction to increment a counter is still unnecessary if the block at the target of the

conditional branch has only one predecessor. In this case the number of times that the conditional branch
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.globl _sum

_sum:

n.=12

a.=8

addql #1,_sum_counts

link a6,#-8

moveml d2/d3,a7@

movl a6@(n.),d3

jle L14

clrl d1

clrl d2

movl a6@(a.),a1

lea a1@,a0

addql d3,_sum_counts+8

L17: addl a0@+,d1

addql #1,d2

cmpl d3,d2

jlt L17

movl d1,d0

moveml a7@,d2/d3

unlk a6

rts

L14: addql #1,_sum_counts+12

movl #-1,d0

moveml a7@,d2/d3

unlk a6

rts

Figure 9: 68020 Assembly Code with Frequency Counters

is not taken is equal to the execution count for the block containing the conditional branch minus the exe-

cution count for the target block.

Instrumenting code naively would result in an instruction being inserted for each basic block and

following each conditional jump. Assuming that n > 0 in the example given in Figure 6, naive instru-

mentation would result in n+5 increments of counters (n+3 increments for the basic blocks and 2

increments following the conditional jumps) for each execution of the function. Only 2 increments for

each execution of the function are required when control-flow analysis is used.

Determining whether a block belongs to an execution class is done in three steps. The first step

calculates the set of blocks that dominate the current block. This information is already available in vpo
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since dominator information is needed to detect loops in a program [ASU86]. The second step deter-

mines if the current block is always a successor to the blocks which dominate it. This is accomplished by

determining if all paths from one block eventually lead to the current block. The third step checks if the

current block is in the same set of loops as the blocks in the execution class. The information for this step

is also already available in vpo. Execution class information has also been used in vpo to help find

instructions to place behind a delayed branch that are not in the current block or an immediately adjacent

block. Figure 10 shows the dominators (DOM), always successors (AS), and execution classes (EC) for

the set of blocks in Figure 8.

EC=(DOM∩AS)−DIFFLOOPS

DOM(1) = {1} AS(1) = {1} EC(1) = {1}

DOM(2) = {1,2} AS(2) = {2} EC(2) = {2}

DOM(3) = {1,2,3} AS(3) = {2,3} EC(3) = {3}

DOM(4) = {1,2,3,4} AS(4) = {2,3,4} EC(4) = {2,4}

DOM(5) = {1,5} AS(5) = {5} EC(5) = {5}

Figure 10: Execution Classes for Blocks in Figure 8

b. Collecting Order-Dependent Data

Instructions can also be inserted to invoke routines to record the occurrence of order-dependent

events. This strategy has been used to simulate instruction, data, or unified caches. The inserted calls

pass information to a cache simulator. Not only does this avoid lengthy trace files, but it also speeds up

the execution. Note that scratch registers can potentially be live at the point that instructions are inserted

to invoke a trace routine. Using data-flow information calculated by the compiler, ease determines which

scratch registers are live at the point where each call is inserted and thus avoids unnecessary saves and

restores around the inserted calls.

ease inserts instructions to invoke a trace routine at the beginning of each basic block for instruc-

tion cache simulation. The instruction addresses are calculated prior to the execution by determining the

size of each instruction. By obtaining size information, the addresses of instructions passed to the cache
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simulator are unaffected by the code that is inserted for capturing measurements. Instruction size infor-

mation for existing machines is determined by placing a label before and after each instruction. The size

of an instruction, calculated by the assembler, is the difference between the two labels.3 To obtain

instruction cache measurements for a proposed architecture, the size of each instruction must be known

by the compiler since an assembler would not be available. A unique basic block number is passed to the

trace routine, which uses this number to access information associated with that block. The trace routine

in turn invokes the cache simulator, passing the beginning address of the basic block and the basic block

size to the cache simulator. The number of cache hits is then adjusted to reflect the actual number of

instructions in the basic block. If it is determined that a periodic context switch could occur during the

execution of the block, then information about each individual instruction within the block is passed to

the cache simulator.

For data cache simulation, ease invokes the cache simulator directly before each data memory

reference. ease can easily extract memory references from an RTL and pass them to a cache simulator.

For instance, the RTL below describes the effect of a memory to memory move on the 68020.

L[A[_b]] = L[A[_a]];

ease first examines the src from the dst = src; of the RTL. If it finds a memory reference, it

strips off the memory type character and the outer brackets and uses the resulting string to push it onto

the stack. For the previous RTL, a pea or push effective address instruction, represented by the follow-

ing RTL, is inserted.

L[A[--a[7]]] = A[_a];

Other instructions are inserted to invoke the cache simulator. A similar process then occurs for the dst

portion of the RTL.

All data declarations used for obtaining measurements are placed in a separate file which is

specified to be linked after all the compiled files being measured. Thus, the actual address of each data

reference can be passed to the cache simulator since the data declarations for collecting measurements do

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
3 This task is unnecessary on most RISC machines since typically each instruction is the same size.
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not perturb addresses of other data references in the program. Of course, there may be differences in the

addresses of the data references produced when a program is executed on a host machine instead of the

actual target machine since the organization of the executable file may differ.

To accurately intermix instruction and data references in a unified cache requires some additional

work. Instructions are inserted to store the address for each data memory reference in a buffer immedi-

ately before the instruction containing the memory address is executed. The trace routine invoked at the

beginning of each basic block will store the basic block number and process the last executed basic

block. The number of data memory references associated with each RTL is determined at compile-time.

Rather than processing each instruction individually to intermix instructions and data references, the

cache simulator is invoked for groups of consecutive instructions within the block. Only the last instruc-

tion within a group can contain data memory references. After invoking the cache simulator for a group

of instructions, the cache simulator will be invoked for each of the data references associated with the last

instruction in the order they were stored. The actual point when the cache simulator should be invoked to

process a data reference is machine-dependent since it depends on the pipeline structure of the machine.

Other Modifications

In the past, the code expander generated some instructions in assembly language if optimizations

could not affect them. An instruction must be represented as an RTL, however, if its execution charac-

teristics are to be collected. Therefore, every type of instruction that is executed must be described in the

machine description.

Depending upon the type of measurements required, special cases may be necessary. For instance,

the VAX-11 movc instruction moves a variable number of bytes of memory depending upon the value

in its count operand. This instruction, though its effects could not be accurately described in a single

RTL, is still represented by an RTL in a functional notation as shown below.

addr = CM(expr, addr);

In order to accurately count the number of memory references made by the execution of the instruction,

the value of the count operand must be stored with the other characteristics of the instruction.
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Processing the Collected Data

At the end of the execution of the program, a routine is invoked that will write the collected meas-

urements (either the frequency counts or the results of a cache simulation) to a file. This is accomplished

by inserting the call before any return instructions in the main function and before all calls to the exit

library routine.

The execution counts and the characteristics of the instructions are both used to produce dynamic

frequency measurements, but the instruction characteristics can also be used to produce static measure-

ments. Figure 11 shows how both static and dynamic frequency measurements can be obtained.

VPO

system

instruction

characteristics

static

measurer

static

measurements

VPO

system
executable

program

dynamic

measurer

dynamic

measurementsexecution

counts

instruction characteristics

machine

instructions

Figure 11: Producing Reports

Separating the collection and analysis of measurements has a number of advantages. Even if dif-

ferent evaluations of the data are required, the data is only collected once. If analysis of the execution of

several different programs is needed, then the data can be collected from each program’s execution

separately. The analysis program can then accumulate the data collected from each of the executed pro-

grams and generate a single report. Finally, since the analysis of the data is separated from the genera-

tion of the data, the back end of the compiler requires less modification.

The generation of reports from the frequency measurements is also largely machine-independent.

Most of the code from a 500 line C program that produces several different detailed reports has remained

unchanged when ported to different machines. These reports include information about:
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1. instruction path length
2. instruction path size
3. instruction type distribution
4. addressing mode distribution
5. memory reference size distribution
6. memory reference addressing mode distribution
7. register usage
8. condition code usage
9. conditional branches taken
10. average number of instructions executed between branches
11. data type distribution

The cache simulator invoked during the program’s execution contains no machine-dependent code.

Information about a reference is passed through arguments each time the cache simulator is invoked. The

characteristics of the simulated cache are determined by reading a configuration file at the beginning of

the program’s execution and a cache performance report is generated at the end of the execution of the

program. To acquire a cache performance report with different cache characteristics simply requires

modifying the configuration file and executing the program again.

Overhead of Collecting Measurements

Table I shows the execution overhead for collecting measurements for a set of programs on the

Motorola 68020/68881.4 The execution overheads of collecting frequency information and performing

instruction, data, and unified cache evaluations are depicted. For the cache evaluations both the overhead

for only generating the addresses for the trace and the total overhead including the cache simulation are

given.

The instrumented code to collect frequency information runs on average 16% slower than uninstru-

mented code. This performance compares favorably with that of a different measurement system, called

bkgen, which collects frequency measurements by inserting an instruction to increment a counter at the

beginning of each basic block [HLT87]. Using bkgen on five different programs resulted in an average

of 34% overhead. In addition to determining how often each instruction is executed, ease also collects

information on the frequency that conditional branches are taken. The overhead using ease was less than

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
4 All execution times reported in this paper were obtained by calculating the average of ten executions of each instance of a

program. All cache simulations were run with a 1K byte direct-mapped cache with 16 byte lines. Periodic context switches were
introduced at every 10,000 units of work where a hit required 1 unit and a miss required 10.
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Cache Evaluation
Frequency

Trace Generation Only Cache Simulation Included
Information

Program

inst data unified inst data unified

compact 1.28 11.22 13.40 50.45 55.82 63.41 195.57
cpp 1.28 8.73 13.01 49.50 53.33 64.11 196.27
diff 1.17 8.68 7.90 35.84 43.61 31.68 128.98
matmult 1.01 6.71 6.61 25.28 34.50 30.99 89.16
od 1.13 4.65 5.41 19.27 23.18 23.91 69.22
puzzle 1.30 19.62 8.00 60.55 89.46 36.92 192.24
queens 1.08 8.33 8.46 37.10 50.11 39.35 138.77
spline 1.03 1.62 1.56 3.71 4.05 3.31 10.42

average 1.16 8.70 8.04 35.21 44.26 36.71 127.58

Table I: Ratio to Normal Execution Time

half that required by bkgen since control-flow analysis was used to reduce the number of instructions that

had to be inserted and executed to increment counters.

For calculating the overhead of only generating addresses for the trace, addresses were generated

and passed to a dummy cache simulation routine. Instead of determining whether each reference was a

hit or a miss, incrementing counters, and updating the state of the cache, the dummy routine simply

returns immediately. It might seem that unified cache trace generation should require the overhead of the

sum of separate trace generations for instruction and data caches. However, many more instruction refer-

ences need to be generated to accurately intermix instruction and data references since entire basic blocks

cannot be passed to the cache simulator.

As shown in Table I, most of the execution overhead for cache performance evaluation was due to

time spent simulating the cache. Cache simulation using the traditional method of generating a trace to a

file and then reading the trace file during cache simulation can require 1000 times the normal execution

time [Smi82]. Performing instruction, data, and unified cache simulations during the execution of a pro-

gram with ease results in the programs running only about an average of 44, 37, and 128 times slower,

respectively. This overhead could be reduced if a simulator tuned for the particular cache configuration
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being simulated was used. Such a strategy requires relinking the program each time the cache

configuration changes. As with trace generation only, the results with cache simulation included indicate

that cache performance evaluation for a unified cache is more time-consuming than evaluating both

instruction and data caches separately. The increased overhead is mainly due to the increased number of

references processed by the cache simulator.

It is interesting to note the variation in overhead for the different programs. The execution over-

head is affected by a number of factors including the average execution time for each instruction in the

original program. For instance, the program incurring the lowest overhead was spline, which is floating-

point intensive. Since most floating-point operations on the Motorola 68881 are much more time con-

suming than fixed-point operations on the Motorola 68020, the time spent simulating the cache

represented a smaller percentage of the total execution time.

APPLICATIONS

The ease environment can be used to evaluate the impact of adding or deleting an architectural

feature on a machine. First, a set of programs are compiled, executed, and measurements are collected.

Next, the machine description within the compiler is modified to reflect the change in the architecture.

Again, reports are obtained after compiling and executing the same set of programs. By comparing the

two sets of measurements, the effect of the change can be evaluated. This approach was used in an

experiment to determine the effect of varying both the number of user-allocable registers and the number

of scratch versus nonscratch registers on a VAX-11 with a callee-save calling sequence [DaW91].5 The

method illustrated in Figure 3 was used when the number of available registers was increased. Table II

shows the effect the different combinations had on the number of memory references. The results indi-

cate that varying the number of user-allocable registers has little effect on the most effective percentage

of scratch to nonscratch registers (about 40 per cent for the calling sequence used in Table II).

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
5 With the default calling convention on the VAX-11, there are twelve allocable registers, six of which are scratch.
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user-allocable scratch memory
registers registers references

2 98,458,465
4

3 111,117,829

2 78,974,787
3 78,846,6708
4 79,774,990

4 75,512,463
5 75,098,65112
6 75,752,791

5 72,855,408
6 72,841,12416
7 72,924,722

Table II: Results of Scratch/Nonscratch Combinations

ease can be used to evaluate the effect of adding new instructions to an architecture. For instance,

the effect of using three different hardware support mechanisms to save and restore registers was investi-

gated [DaW91]. Measurements were collected assuming that: 1) saves and restores are accomplished via

the call instruction and a mask indicating the registers to save and restore, 2) special instructions are

available to save and restore a specified set of registers on the run-time stack, and 3) saves and restores

are done using primitive load and store instructions. The effect of these three mechanisms with a caller-

save approach for a set of programs on the VAX-11 is shown in Table III. Note that the use of a mask

with the calls instruction on the VAX-11 is available only with a callee-save convention. Likewise,

the special instructions available to save and restore a set of registers, the pushr and popr instruc-

tions, also adjust the stack pointer. These instructions cannot be used in a caller-save approach since

arguments may have already been pushed on the stack at the point of a call. Although measurements

were obtained as if the desired instructions existed, the actual saves and restores were accomplished

using individual mov instructions. The results indicate that while the use of a mask associated with a

call instruction results in the fewest instructions being executed, it causes more memory references to be

performed since for each call two additional memory references are required to save and restore the

mask. The use of special instructions appears to be a good compromise.
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measurement mask special inst load/store

instructions 108,588,162 110,954,490 113,543,904
memory refs 84,976,490 79,071,798 79,071,798

Table III: Results of Different Save/Restore Mechanisms

The ease environment can also be used to assist in the design of a new architecture. A instruction

set was designed to serve as a baseline for comparison in evaluating a new architectural feature

[DaW90a]. The proposed baseline architecture was evaluated using the ease environment with the

VAX-11 architecture serving as the host machine. Less than two weeks were required to generate a com-

piler, imitate the execution of a set of test programs, and collect measurements for the proposed architec-

ture. To illustrate the detailed level of measurements that ease provides for a proposed architecture, vari-

ous reports are shown in Tables IV—VII from measurements for the baseline architecture obtained by

the program compact compacting its own source file. Not only can the total number of executed instruc-

tions be determined, but also the distribution of the different types of instructions that were executed.

This information indicates whether the compiler makes use of the different instruction types. Likewise, a

machine architect should be interested in whether the available addressing modes are used. The address-

ing mode and instruction type distributions for the program compact on the proposed baseline architec-

ture are given in Tables IV and V, respectively.

addr mode number executed per cent

DISP 568,106 4.28
IMMED 2,715,704 20.48
INDEX 423,418 3.19
LABEL 818,555 6.17
REGDFR 776,319 5.85
REGISTER 7,959,571 60.02

total 13,261,673 100.00

Table IV: Addressing Mode Distribution for Compact
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inst type number executed per cent

ADD 1,088,762 17.57
AND 314,040 5.07
CALL 28,009 0.45
CMP 735,542 11.87
DIV 5 0.00
JMP 93,071 1.50
JEQ 270,270 4.36
JGE 10,058 0.16
JGT 53,341 0.86
JLE 5,994 0.10
JLT 67,642 1.09
JNE 318,179 5.14
LOAD 1,226,515 19.80
MOV 174,836 2.82
MUL 3 0.00
NOP 199,300 3.22
OR 7,716 0.12
RESTORE 20,200 0.33
RET 28,004 0.45
SAVE 20,200 0.33
SETHI 246,193 3.97
SLA 504,748 8.15
SRA 51,808 0.84
STORE 513,319 8.29
SUB 208,788 3.37
XOR 8,760 0.14

total 6,195,303 100.00

Table V: Instruction Type Distribution for Compact

Some machines in the past have been designed with the goal of tightly encoding information in the

instruction format. For instance, there are several instructions on the Motorola 68020 that do not allow

specific operands to use certain addressing modes. If it was desired to design such a machine, then ease

can provide this level of detail. Table VI shows, for the program compact, the different addressing

modes and data type combinations used in the operand fields for load and store instructions.

It is useful to determine the cache performance for various cache configurations before the proces-

sor is actually implemented. Without requiring recompilation or relinking, cache performance results for

different cache characteristics can be obtained in the ease environment by simply changing parameters in

a configuration file and reexecuting the program. The hit ratios for the program compact with different
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inst type field addressing mode data type number executed per cent

LOAD DST REGISTER LONG 1,226,515 100.00

MEM DISP BYTE 6,481 0.53
WORD 34,071 2.78
LONG 364,105 29.69

INDEX LONG 391,826 31.95
REGDFR BYTE 10,054 0.82

WORD 52,144 4.25
LONG 367,834 29.99

STORE MEM DISP BYTE 1 0.00
WORD 10,061 1.96
LONG 125,378 24.42

INDEX LONG 31,592 6.15
REGDFR BYTE 6,478 1.26

WORD 75,992 14.80
LONG 263,817 51.39

SRC REGISTER LONG 513,319 100.00

Table VI: Load and Store Operand Information for Compact

instruction cache sizes and associativity are given in Table VII.

Besides evaluating proposed architectures or new architectural features, ease can be used for other

purposes. The environment has been ported to ten different machines, including three RISCs to compare

current architectures. Measurements were obtained and analyzed from executing nineteen programs on

each of the architectures and an analysis was performed [Wha90]. Figure 12 shows the number of data

cache associativity

size 1 2 4

1K 92.10 92.13 92.24
2K 94.90 98.18 98.19
4K 96.11 98.19 98.81
8K 98.81 98.81 98.81

Table VII: Instruction Cache Hit Ratios for Compact
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memory references for each machine. The number of memory references due to referencing variables

and spilling of temporaries is shown in solid lines. Dashed lines denote the additional number of memory

references due to saving and restoring allocable registers. Dotted lines represent the additional number of

memory references due to handling function linkage (stack pointer, frame pointer, program counter, etc.).

Thus, ease calculates not only the total number of memory references, but also why each memory refer-

ence occurred. It is interesting to note that about 25% of the VAX-11 memory references are due to

function linkage, implying that function calls on the VAX-11 are very expensive. On the other hand, the

SPARC architecture, with its register windows, had very few memory references due to saving and res-

toring registers or function linkage (spilling and loading register windows).
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Figure 12: Number of Memory References

ease has also been used to analyze different code generation strategies. By recompiling the source

files from the C run-time library, calling sequence conventions can be modified. By extracting measure-

ments before and after each modification, the effect of a change can easily be analyzed. Six different

methods for saving and restoring registers without interprocedural analysis or special hardware have been

examined [DaW91]. Also, the benefits of passing arguments through registers as a calling sequence con-

vention have been analyzed and the use of primitive call and return instructions has been compared with

the use of their more complex counterpart instructions [DaW90b].
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RELATED WORK

Traditional methods for obtaining architectural measurements for a proposed machine involve the

use of a simulator [Bar81]. The awb (Architect’s Workbench) environment uses an approach that allows

the gathering of architectural measurements for different architectures from a single simulation of the

execution of a program [FlW90]. Each high-level source program is translated to intermediate code and

then separated into basic blocks. The intermediate-code operations are executed by an interpreter written

in a high-level language. During the simulation, a trace routine is invoked at the beginning of each basic

block that writes the basic block number being executed to a file. Characteristics of the instructions gen-

erated for each basic block with each architecture being studied are stored. Architectural analysis is

based on the intermediate code basic block trace. Attributes of an architecture can easily be varied and

the effect of each change can be determined. Unfortunately, using this approach results in no check for

the validity of the translation since the target instructions for a proposed architecture are neither simu-

lated nor translated to equivalent instructions and executed on a host machine. Even though several dif-

ferent architectures can be evaluated after obtaining the trace, the overhead of this approach is large.

While actual times were not given, it was stated that the interpretive execution of each program, which

excludes the overhead for producing the trace, required at least 100 times that of direct execution. A

trace containing only basic block numbers can still be quite lengthy and require much disk space. While

the interpretive execution of a program need only be performed once, the time required to read the basic

block trace will also slow the analysis programs. Another problem with this approach is that it requires

that a program always have the same basic block structure when translated for different architectures.

When all optimizations are performed prior to code generation, such an assumption may be valid. Com-

piler optimizations may be more thoroughly applied to a program, however, when the characteristics of

the target architecture are exposed to the optimizer [BeD88].

There has been much recent work on techniques that replace the use of simulators to collect archi-

tectural measurements. Several systems gather measurements by inserting instructions in the assembly

code of a program produced by a compiler. Some packages instrument assembly programs by inserting

instructions to increment counters to capture frequency information [Cme90, MMM90]. There have also
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been a variety of methods used to capture trace data efficiently for cache performance evaluations. The

cache simulator can be linked directly with the executing program and trace information passed via func-

tion calls [StF89]. Alternatively, the cache simulator can be a separate task with the program being

measured writing the trace data to trace buffers shared between the tasks [BKW90, EKK90].

The ease environment also captures frequency and trace information for similar measurements.

One difficulty with retargeting some of the previously described systems is that they take assembly pro-

grams as input. While this allows measurements on assembly code to be captured even when the

corresponding source code is not available, retargeting to another machine requires more effort since

each assembly instruction needs to be parsed and analyzed. Program flow information may also need to

be recalculated to avoid the situation in which the instructions inserted to obtain measurements change

the value of live registers or condition codes. In most systems that capture frequency measurements,

instructions are inserted at each basic block to increment counters. The ease environment attempts to

minimize the incrementing of counters by using control and data-flow information available in vpo.

Since the characteristics of the program are obtained during the compilation, some information not typi-

cally available from assembly code alone can also be measured.

The portion of ease that collects measurements for unified cache performance evaluation is similar

to trapeds [StF89]. Both systems link the cache simulator with the program being traced and simulate the

cache as the program executes. There are, however, some differences between trapeds and ease. trapeds

is a separate program that takes assembly code as input. Therefore, trapeds would presumably be much

more difficult to retarget since the syntax for assembly languages on various machines differ. The

trapeds system also does not use data-flow analysis to minimize the number of registers to be saved and

restored at each inserted call. Even so, faster trace generation and analysis times were reported for

trapeds. The trapeds system required 30 times the execution overhead for trace generation only and 50

times the execution overhead when cache simulation was included. Since the techniques used were simi-

lar, the lower execution overheads reported with the trapeds system were probably due to the choice of
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three floating-point intensive programs to simulate, a much larger cache resulting in higher hit ratios,6

and differences between the cache simulators.7

One measurement system that neither uses simulation nor parses assembly instructions is the ae

environment [Lar90]. ae traces events using a technique called abstract execution. Similar to the ease

environment being integrated into the vpo compiler system, the ae environment is integrated into the gcc

compiler system.8 Unlike the vpo compiler system, the structure of gcc complicates the task of storing

information about a program. In both compiler systems programs are represented in an intermediate

form called RTLs. Since an RTL in the vpo compiler system corresponds to a single assembly instruc-

tion, information about each instruction can easily be obtained by examining the semantic record

representing the RTL. RTLs in a gcc compiler can often correspond to several machine instructions,

making it more difficult to collect information about each instruction in the generated program and to

insert instructions to collect measurements. The ae environment must monitor the code generation phase

to count the number of instructions produced for each RTL. Details concerning the attributes of an

instruction, such as the data type and addressing mode of each field, would also be more difficult to

obtain. Both systems attempt to store information about each instruction when the assembly instructions

are produced. vpo performs all optimizations, including instruction scheduling, before each RTL is

translated to assembly code. Since there is not a one-to-one correspondence between an RTL and an

assembly instruction in gcc, optimizations such as instruction scheduling must occur after assembly code

generation, causing the RTLs and their corresponding assembly instructions to appear in different orders.

The ae system must therefore recompute the relationship between the assembly code programs before

and after instruction scheduling. Finally, since each RTL in gcc may be translated to more than one

instruction, it would be difficult to extend the ae environment to imitate the execution and to collect

measurements for a proposed architecture.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
6 There is less work required to simulate a cache hit than a cache miss.
7 The cache simulator described in this paper allows the program to be executed again with a different cache configuration by

simply changing a parameter in an input file. Some systems require relinking with a version of a cache simulator tuned for a
particular cache configuration. Also, ease introduced periodic context switches in the simulations.

8 gcc and vpo are descended from a common ancestor, po [DaF80].
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The technique of program instrumentation has also been used recently to capture measurements for

a proposed architecture. A system called bkgen [HLT87] produces a version of a program to be meas-

ured for a proposed machine that can be directly executed on an existing machine. bkgen requires either

a direct mapping between the basic block structures of the assembly programs for the proposed and exist-

ing architectures or requires the construction of an assembly-to-assembly translator. A direct mapping

between the basic block structures of the assembly programs for a proposed and existing architectures

often does not occur when a compiler performs optimizations across basic blocks. The effort required to

construct an assembly-to-assembly translator is nontrivial and can significantly delay the time required to

develop a system for obtaining measurements. As shown in Figures 2 and 3, in the ease environment the

translation of an RTL to assembly language of a different machine is quite simple.

CONCLUSIONS

The ease environment has been designed to minimize the effort involved in producing instructions

for a proposed machine, imitating the execution of these instructions, and collecting measurements. The

vpo system performs most optimizations in machine-independent code, which facilitates retargeting the

compiler to a new machine. The same semantic record constructed while parsing an RTL to produce

assembly code for an instruction on a proposed architecture can also be used to produce assembly code

for an existing architecture and to store instruction information for the collection of measurements. Most

of the code to perform the extraction of measurements is also machine-independent. The vpo compilers

for ten different machines were modified to collect measurements [Wha90]. It typically took only three

or four hours to make the machine-dependent modifications for the compiler on each machine. The ease

environment collects measurements with little overhead as compared to more traditional techniques. ease

also only required 15 to 20 percent overhead in compilation time.

The ease environment has been shown to be an efficient tool for architectural evaluation and design

[DaW90a]. Since accurate and detailed reports can be produced for a variety of measurements, the

impact of each modification can easily be determined. This allows one to use an iterative design method

for evaluation of performance in a quantitative manner.
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