Improving Energy Efficiency by Memoizing Data
Access Information

Michael Stokes!, Ryan Baird!, Zhaoxiang Jin2, David Whalley', and Soner Onder?

1C0mputer Science Department, Florida State University, Tallahassee, FL, USA
{mstokes, baird, whalley}@cs.fsu.edu
2Computer Science Department, Michigan Technological University, Houghton, MI, USA
{z3in3, soner}@mtu.edu

Abstract—Level-one data cache (L1 DC) and data translation
lookaside buffer (DTLB) accesses impact energy usage as they
frequently occur and each L1 DC and DTLB access uses
significantly more energy than a register file access. Often,
multiple memory operations will reference the same cache line
using the same register, such as when iterating through an array.
We propose to memoize L1 DC access information, such as the
L1 DC data array way and the DTLB way, by associating this
information with the register used to access it. When a load
or store calculates the memory address, we detect whether the
calculated address shares the cache line memoized with the base
register. If so, we avoid the L1 DC tag array access and the DTLB
access to determine the .1 DC way and instead use the memoized
information. In addition, only a single data array way in a set-
associative L1 DC needs to be accessed during a load instruction
when the L1 DC way has been memoized. Our nonspeculative
memoization approach can be applied before a speculative
approach, allowing a significant reduction in data access energy
usage for existing executables with no ISA modifications.

Index Terms—Caches, Data Translation Lookaside Buffers

I. INTRODUCTION

Level-one data cache (L1 DC) and data translation lookaside
buffer (DTLB) accesses frequently occur and each of these
accesses use significantly more power than a register file
access. It has been estimated that 28% of embedded processor
energy is due to data supply [1]. Thus, reducing data access
energy on such processors is a reasonable goal.

The tag arrays and data arrays of an L1 DC can be accessed
in parallel for load instructions to improve the latency of
obtaining data from the L1 DC, which is sometimes referred to
as a conventional cache [5]. The tag arrays are often accessed
before the data arrays of level-two (L2) and level-three (L3)
caches to reduce energy usage, which is sometimes referred
to as a phased cache [5]. The advantage of a phased cache is
that at most a single data array need be accessed as the result
of the tag check will be known when the data in the cache
is accessed. However, using a phased L1 DC cache is often
impractical since the reduced energy usage for the phased L1
DC data accesses would be largely offset by the increased
energy required for longer execution times.

Contemporary architectures designed using RISC principles
attempt to implement each instruction using a single micro-
operation (pop). However, memory operations involve many

978-1-7281-2954-9/19/$31.00 ©2019 IEEE

‘ virtual page number ‘ page offset

virtual address
DTLB
physical address

physical page number ‘ page offset
L1 DC block number L1 DC
tag ‘ setindex | offset

Fig. 1: Address Fields

hidden pops performed by the hardware that not only form
dependence chains, but can also use a significant amount of
energy. The load pops are: #1 Add the base register value and
the offset to obtain the virtual address (va); #2 Access the
data translation lookaside buffer (DTLB) using (va) to get the
physical address (pa); #3 Perform the tag check to identify
the way where the data resides in a set-associative cache; and
#4 use the pa index field and the indicated way to access the
cache data and write the value into the destination register.

These pops form dependence chains that can increase the
latency of memory operations. Virtually-indexed, physically-
tagged (VIPT) caches exploit the fact that the cache index
remains invariant during translation with appropriately sized
pages, allowing pops (2), (3), and (4) to be performed in
parallel by accessing all ways of data in the L1 DC set at
the expense of significant energy usage.

We propose the Data Cache Access Memoization (DCAM)
technique to retain data access information so that subse-
quent memory accesses dereferencing the same register avoid
performing redundant pops. These simple memoization tech-
niques often avoid the DTLB access and L1 DC tag check and
directly access a single L1 DC data array.

II. BACKGROUND

We describe our proposed techniques in the context of an in-
order pipeline where the benefits are more obvious. However,
our proposed techniques to avoid L1 DC associative data
accesses, L1 DC tag checks, and DTLB accesses could also
be adapted for out-of-order (O00) processors.

Figure 1 shows the address fields used to access the DTLB
and the L1 DC. ! The virtual page number is used to access

'In this figure we depict the physical page number and the tag fields
being the same size, which is often the case for many processors, but the
physical page number field could be smaller for a VIPT cache. To simplify
the description, we assume these two fields are the same size in the paper.

ré=...; r2e=...

L L3:r2=M[r20];
...=M[r6];

r20=r20+4;
M[r6]=...; PC=r20!=r21,L3;

(a) Redundant Accesses (b) Strided Accesses

Fig. 2: Memoization Examples

the DTLB to produce the corresponding physical page number.
The page offset remains the same. The LI DC block number
uniquely identifies the L1 DC line. The LI DC offset indicates
the first byte of the data in the L1 DC line. The set index is
used to access the L1 DC set. The fag contains the remaining
bits that are used to verify if the line resides in the L1 DC.

To load a value from an n-way set associative L1 DC the
virtual memory address is generated by adding a displacement
to a base address in an address generation stage. The dis-
placement is a sign-extended immediate and the base address
is obtained from the register file. In the L1 DC access stage
the data translation lookaside buffer (DTLB), the L1 DC tag
memory, and the L1 DC data memory can all be accessed
in parallel to minimize load hazard stalls and the tag value
of the physical address is compared to the tag value of the
physical page number from the DTLB. This organization is
energy inefficient as all data arrays are accessed, but the value
can reside in at most one way within a cache set.

III. MEMOI1ZING L1 DC AND DTLB INFORMATION

The L1 DC way and DTLB way must be stored in a
structure to allow reuse of data access information. In fact,
a DTLB access and L1 DC tag check will often be redundant
since the same line may be accessed again. Figure 2(a) shows
code for loading from and storing to the same variable. The
store can use the same .1 DC way as the load instruction since
the value of r6 has not been changed. Figure 2(b) shows an
example of accessing sequential array locations, where an L1
DC line is likely to be repeatedly accessed.

One problem is that the address associated with the base
register value may not be associated with the same L1 DC
line as the effective address that is computed by adding the
base register and the displacement value. For a load or store
instruction to be able to use or memoize cache access infor-
mation, the magnitude of the displacement must be smaller
than the L1 DC line size. However, the effective address of
a load or store instruction with such a displacement may still
fall outside of the cache line associated with the base register.
If the displacement is positive and is smaller than the cache
line size, then the effective address must point to either the
current or next sequential cache line. We track both the current
and the next sequential L1 DC line associated with the address
in the base register, which allows dealing with small positive
displacements that cross to the next sequential line in memory.

We associate L1 DC access information with the source
register number of a load or store instruction and detect when
updates to this register do not invalidate this information. Con-
sider the data cache access structure (DCAS) in Figure 3(a)
that contains fields associated with each integer register used

DTLB
DWV way

L1 DC
LWV way

L1DC
LWVN N way PP

31 n-1

(a) Data Cache Access Structure (DCAS)

Fig. 3: Data Cache Access Information

(b) DCAS Valid Info (DCAV)

as a base register in load and store instructions. The DWV
(DTLB Way Valid) bit indicates if the DTLB way field is valid.
If the DWYV bit is not set, then the rest of the DCAS entry is
considered invalid. The DTLB way field holds the DTLB way
in which the associated physical page number resides. The
LWV (L1 DC Way Valid) bit indicates if the LI DC way field
associated with the address in the base register is valid. The
LI DC way field holds the L1 DC way in which the cache
line resides. The LWVN (L1DC Way Valid Next sequential) bit
indicates if the next sequential line has a valid way. The LI DC
N way holds the way for the next sequential line. The L1 DC
set index field (see Figure 1) of the effective address indicates
the L1 DC set and need not be stored in the DCAS since the
set index is available from the effective address calculation.
The PP (Page Protection) field contains page protection bits
from the DTLB entry since the DCAS structure allows DTLB
references to be avoided and these bits need to be checked to
ensure pages are properly accessed. The DCAS entry needs
to be accessed during the EX stage to allow a single L1 DC
data array access for a load in the following cycle.

Figure 3(b) depicts the DCAV structure used to invalidate
DCAS entries when an L1 DC line is evicted or invalidated.
Each DCAV entry contains a bit vector, where each bit
represents an integer register. An entry is indexed by the L/
DC way, where n is the L1 DC associativity level. Each time
a DCAS entry shown in Figure 3(a) is associated with a line,
the bit corresponding to the register number of that way in
the DCAV structure is set. Each time a register’s LWV bit (see
Figure 3(a)) is cleared, the bit corresponding to that register
number is also cleared in every DCAV entry. When an L1
DC line is replaced or invalidated, the corresponding bits set
in the entry accessed by the LI DC way of that line are
used to determine which DCAS entries will have their LWV
bit cleared. Thus, this structure contains an inverse mapping
between each L1 DC way and the DCAS entries. All the
DCAS DWYV bits and the values in the DCAV structure are
cleared upon a DTLB eviction, which infrequently occurs.

IV. DETECTING DCAS RE-USE

There are many cases where the address in a register is
updated, but still is within the same line in the cache and
more frequently within the same page. Figure 4 shows that it
is simple for the processor to detect if the cache line to be
accessed will change during an effective address computation
of a load or store instruction (M[rs+immed]) or during an
integer immediate addition (rd = rs + immed). First, the
magnitude of the immediate has to be less than the size of the
line offset field. Second, the carry out values can be inspected
during the addition to check whether or not the LI DC block

all zeros or all ones

A A -
-~ Ll
31 16 15 | 0
T
I Sign Extension | Immedialte |
31 1 0
I Register Value :
/32-b\tsi 7 32-bits : no
I
ADD
; : ; L carry
" y = out?

Set Index

I VPN Line Offset |

Fig. 4: Detecting Address Changes

L3: r2=M[r20]; foo: sp=sp-12;

M[sp+4]=r20;

jal foo L.

e r20=0;
r20=r20+4; ces
PC=r20!=r21,L3; r20=M[sp+4];

sp=sp+12;
jr ra

Fig. 5: DCAS Refresh Example

number as shown in Figure 1 has changed. If the set index
field is updated during a load or store address computation
with a positive displacement that is smaller than the L1 DC
line size, then either the LI DC N way field can be used or the
tag check has to be performed if the LWVN bit is clear. In the
latter case, a single way in the DTLB can be accessed using
the DTLB way field to obtain the physical tag value when the
virtual page number (VPN) field is not updated. If the VPN
field is updated, then all the ways in the DTLB have to be
accessed. If the set index field is updated during an integer
addition instruction by a small positive value, then the LI DC
way N field is copied to the LI DC way field and the LWVN
bit is cleared. By inspecting the carry out values for integer
add or subtract operations using either two register values or
register and an immediate, we can continue to memoize all or
portions of a register’s data access information after updates to
the base register if the update does not change the cache line
or page associated with the address contained in the register.

If an integer add instruction references a source register with
its DWV bit set, then its corresponding DCAS information is
copied to the destination register DCAS entry if the destination
register differs from the source register. Other integer register
updates cause the DWYV field in the DCAS entry indexed by
the destination register number to be invalidated.

V. THE DCAS REFRESH BUFFER

Frequently, a DCAS entry is invalidated but its contents
continue to point to the correct cache line. The load instruction
in Figure 5 sets DCAS entry 20, as shown in Figure 6(a), and
is overwritten during the function call to foo. During foo’s
epilogue code, r20’s value is restored, again pointing to the
same cache line in its DCAS entry. If we can detect during a
load or a store that the base register’s DCAS entry points to
the same cache line as the value held inside the base register,
then we can restore the DCAS entry contents.

To accomplish this, we store the tag and set index portions
of the virtual address of the L1 DC line with a DCAS entry
in addition to its L1 DC access information. If a load or store

DCAS

Register File DTLB L1 DC L1 DC Way Refresh Buffer
pDwv Way Lwy Way LWVN Next VPN Set Index
(a) r20[Oxbffffgo4 | [TV 12 1 2 0 X | [oxsffff 0x20 |
w20 oxo | [F 121 2 0 X | [oxsffff 0x20 |
(¢) r20] Oxbffffgos | [TV .12 1 2 0 X | [oxsfff 0x20 |

Fig. 6: DCAS Refresh Buffer Example

detects that its DCAS entry is invalid but its contents still
refer to the cache line associated with the tag and set index
stored alongside it, then we compare the virtual tag and set
index portions of the base register with the virtual tag and set
index portions stored alongside the DCAS entry. If they match,
then we can restore the DWV, DTLB way, LWV, L1 DC way,
LWVN, and LI DC way next fields if they were previously
valid. Furthermore, if the DCAS entry and base register don’t
point to the same cache line but do point to the same page,
then we can restore the DCAS entry’s DWV and DTLB way
fields to avoid a fully associative DTLB access.

DCAS entries can now be in one of three states: 1) valid,
meaning the DCAS entry and base register value point to the
same cache line and/or page and that the way is known, 2) false
invalid, meaning the DCAS entry and base register value may
not point to the same line or page but the DCAS information is
still valid for the line and page stored in the virtual tag and set
index fields of the DCAS entry, and 3) true invalid, meaning
the DCAS entry has no valid cache access information.

A DCAS entry becomes valid after a load or a store
instruction determines the L1 DC way (DTLB way) and the
effective address points to the same line (page) in the base
register value. A DCAS entry becomes true invalid after an
L1 DC line eviction or a DTLB page eviction. A DCAS entry
becomes false invalid if the base register is overwritten by
an instruction that doesn’t change its DCAS information. For
example, after instruction r20=0; executes in Figure 5, the
DCAS contents still refers to the same DTLB way and L1 DC
way shown in Figure 6(b). The DWYV field is marked as false
invalid, indicating that the DCAS cannot guarantee that the
base register contents and DCAS entry refer to the same cache
line, but it can guarantee that the DCAS entry is still valid for
the stored tag and set index. The next time a load or store
refers to a DCAS entry marked as false invalid, the virtual
tag and set index fields of the base register are compared with
those fields stored in the DCAS Refresh Buffer to see if the
DCAS contents can be restored (set the DWV field to true
valid) as shown in Figure 6(c). As the DCAS and the DCAS
Refresh Buffer are both indexed by the base register number,
the cost of accessing this buffer is relatively inexpensive.

VI. EVALUATION FRAMEWORK

In this section we describe the experimental environment.
We use 17 benchmarks from the MiBench benchmark suite [2],
which is a representative set of embedded applications. All
benchmarks are simulated using the large dataset option and
compiled using gcc with the -03 option.

We used the ADL simulator [8] to simulate both a con-
ventional MIPS processor as the baseline and the modified

processor as described in this paper. ADL performs a more
realistic simulation than many commonly used simulators (in
ADL data values are actually loaded from the caches, values
are actually forwarded through the pipeline, branch target
addresses from the branch target buffer are actually used, etc.).
Both configurations are single-issue, in-order processors with
six-stage pipelines as shown in Table I. Table II shows other
details regarding the processor configuration we utilized in our
simulations. Note we separate the DWV bit from the rest of
the DCAS structure and access this bit during the RF (register
fetch) pipeline stage, which allows us to avoid accessing the
rest of the DCAS structure when the DWV bit is not set.

TABLE I: DCAM Pipeline Stages

Stage Name DCAM Pipeline

IF Inst. Fetch

ID Inst. Decode

RF Reg. Fetch Read DWYV Bit

EX Execute Read DCAS if DWV Set
MEM | Mem. Access Update DWV/DCAS
WB Write Back

TABLE II: Processor Configuration

page size 8KB

32KB, 64B line size, 4-way associative,
L1 DC . .

1 cycle hit, 10 cycle miss penalty
DTLB 32 entries, fully associative
DCAS 64 total bytes
DCAS Refresh Buffer | 96 total bytes
DCAV 4 total bytes

TABLE III: Energy for L1 DC and DTLB Components

[Component [Energy |
Read L1 DC Tags - All Ways 0.495 pJ
Read L1 DC Data - All Ways 5.860 pJ
Read L1 DC Tag - One Way 0.124 pJ
Write L1 DC Data - One Way 2.730 pJ
Read L1 DC Data - One Way 1.369 pJ
Read DTLB - Fully Associative 1.240 pJ
Read DTLB - One Way 0.067 pJ
Read DCAS - 1 Entry 0.028 pJ
Write DCAS - 1 Entry 0.030 pJ
Read DCAV - 32 Bits in All 4 Entries | 0.072 pJ
Write DCAV - 1 Bit in All 4 Entries 0.036 pJ
Refresh Buffer Read - 1 Entry 0.074 pJ
Refresh Buffer Write - 1 Entry 0.142 pJ

We used CACTI to estimate L1 DC and DTLB energy usage
assuming 22-nm CMOS process technology with low standby
power (LSTP) cells. Table III shows the energy required
for accessing the various components. Leakage energy was
gathered assuming a 1 GHZ clock rate.

VII. RESULTS

Figure 7 shows the ratio of L1 DC data array load accesses
that are direct (single L1 DC way) or set associative (all L1
DC ways). About 63% of the loads on average are now direct.
In the baseline all loads access all L1 DC data arrays and all
stores access a single L1 DC data array as the tag check must
occur before the L1 DC data is updated.

Figure 8 shows the ratio of tag checks and DTLB accesses
that remain after applying the DCAM technique. On average
about 65% of the L1 DC tag checks are eliminated and about
71% of the fully associative DTLB accesses are eliminated.

Set-Associative

’ o Direct = —,
@ 17 | | |
2 0.9
§0.8*
g 071
%\0.6’
£ 059
g 041
© 4
Z 03
< 024
8 0.1
-
0-] L] L]
€ € £ ¢ 8 ¥ E T P8 Q9 £t g © £ c £ c
g 32 5 3 2 8828 384G g § = §
€ 38 3 < e = 3 s E § 3 E
® 5 3 ° a = S £
(=4 =
Benchmarks ﬁ ®

Fig. 7: L1 DC Data Array Load Accesses

o L1 DC Tag Check m DTLB Direct = DTLB Set Associative

, 087
&S 0.7
1%
& 06+
3
< 054
4 0.4
=
0 0.3
2
€ 02
o A didnn
0 =
EE £ @ 8 E E T 98 & T S5 £ E E
g8 3 € o5 % g 882 8283846 £ 8 = §
5 o 32 X a = £ o 2 S 2 I
® 3 3 ° a = % £
c =
Benchmarks @ ®

Fig. 8: Remaining DTLB and Tag Checks

About 6% of the original DTLB accesses are now just ac-
cessing a single way of the DTLB, which occurs when the
set index field is updated, but the virfual page number field
is unaffected. A single way DTLB access requires much less
energy than a fully associative DTLB access, as shown in
Table III. On average about 6.6% of these avoided L1 DC
tag checks are due to memoizing the next sequential line and
9.4% are due utilizing the DCAS refresh buffer.

Figure 9 shows the breakdown of energy used by the
components involved in a data access operation. For each
benchmark the left bar shows results for the baseline and the
right bar shows results for our DCAM technique. On average
about 0.7% of the energy is due to leakage. For the average
baseline energy, 59.6% is due to data array reads from loads,
13.5% is due to data array writes from stores, 7.5% is due
to L1 DC tag checks, and 18.7% is due to DTLB accesses.
DCAM reduces the energy on average for data array reads
to 31.4%, L1 DC tag checks to 2.6%, and DTLB accesses
to 5.3%. Note that writes are direct accesses in both the
baseline and DCAM. There is an average overhead of 1.5%
for accessing the DCAS and DCAV structures when using the
DCAM technique. Overall, the data access energy is reduced
to roughly 55.1% of the baseline on average. The overall
data access energy savings ranges from 71.1% for the susan
benchmark to 20.8% for the adpcm benchmark. These energy
reductions are significant given that these benefits are obtained
on existing binaries with no ISA changes.

We simulated other L1 DC energy usage reducing tech-
niques and used CACTI to estimate their energy usage (Fig-
ure 10). Using DCAM alone (55.1%) does worse than way

0 Leakage

1 —
0.9 4
0.8
0.7
0.6
0.5 1
0.4
0.3 4
0.2
0.1 4

0 ,

o Data Array Read = Data Array Write

Data Access Energy

adpem]
bitcount |
blowfish
orc |
dijkstra
ft]
gsm
ispell

[0 Leakage [DARead [E DA Write
0.9

0.8
0.7
0.6
0.5
0.4 -
0.3
0.2
0.1

B TARead H DTLB M Overhead

=
<<
(&}
[a]

Fig. 10: Comparison of Energy Techniques

Data Access Energy

Baseline

WayPred

ocavewe [T

FilterCache
WayCache

prediction (53.0%) and way caching (51.9%). Way caching
fails when the address generation affects the L1 DC tag bits
as we optimistically assumed it uses virtual tags to avoid
DTLB accesses and L1 DC index bits are computed before
the way cache tag comparison. DCAM in combination with
way prediction achieves the best results (37.5%) because
way prediction and other speculative techniques cannot avoid
accessing the DTLB and the tag array. Other techniques that
can avoid these accesses do so at a higher cost in overhead
energy than DCAM, such as way caching. The disadvantages
of other evaluated techniques are described in Section VIII.

VIII. RELATED WORK

Many techniques have been investigated to reduce data
access energy. Most of these techniques require trade-offs
that may affect how they can be implemented or used. Not
all of these techniques conflict with the DCAM approach, as
combining some approaches with DCAM could result in lower

=)
@
R

Fig. 9: DCAM Energy Relative to Baseline

Tag Array Read m DTLB

m DCAS+DCAV+Refresh

patricia

pop -f

gsort
rijndael

sha
stringsearch
susan
tiff

arith. mean |

data access energy than using either approach alone. Taken
together, these various characteristics provide a taxonomy of
data access efficiency techniques that can be used to compare
against the DCAM approach that is shown in Table IV.

Way prediction (WP) predicts the data cache way to be
accessed and performs a L1 DC tag check and DTLB access
(TD) to verify this prediction. Unlike our DCAM approach,
WP can have a performance penalty of several percent [3],
[9] (OM). Newer WP versions are more accurate, but require
a custom SRAM implementation (CS) to mitigate accessing
WP information before the L1 DC. Nicolaescu et al. propose
to save the L1 DC way of the last 16 cache lines in a
table (WC) and perform a fully associative tag search on
this table during address generation (CP). If there is a match,
then only the corresponding way is activated [7]. In contrast,
DCAM structures are much less expensive to access. Way
halting (WH) is another method for reducing the number of
tag comparisons [13], where partial tags are stored in a fully
associative memory (the halt tag array) with as many ways as
there are cache sets. In parallel with decoding the word line
address the partial tag is searched in the halt tag array. Only
for the set where a partial tag match is detected can the word
line be enabled by the word line decoder, which halts access to
ways that cannot contain the data. WH requires a specialized
SRAM implementation that might have a negative impact
on the maximum operational frequency (CS). A speculative
way halting approach has been proposed that avoids these
problems [6]. WP and WH could be combined with our
DCAM approach to reduce energy usage even further (COM).

A tagless cache (TLC) design has been proposed that uses
an extended TLB (ETLB) to avoid tag checks [10]. While

TABLE IV: Comparison of DCAM Approach to Various L1 DC Access Techniques

[Data Access Techniques I

Characteristics of Techniques]l [MS [OM [CP [HC [[[S [™D [COM l
WP Way Prediction MS more space required WP X X X X X
wC Way Caching OM overhead on misses WC < X
WH Way Halting Cp may be on critical path
TLC TagLess Cache CI compiler/ISA changes ’IY\I:I({Z X § X X §
LB Line Buffer CS custom SRAM required iB < X X
FC Filter Cache TD Tag/DTLB access
TCE Tag Check Elision COM complements DCAM FC X X X
DAGDA | Decoupled AddrGen HC higher complexity TCE X X X
& Data Access DAGDA X

the TLC approach can significantly reduce energy usage, the
authors assume the ETLB is accessed first to subsequently
allow accessing a single L1 DC data array, which could either
increase the cycle time or require an additional cycle to service
an L1 DC access (CP). The DCAM approach could be used
in conjunction with the TLC approach as the ETLB can be
avoided when memoization detects that the L1 DC way is
already known (COM). Unlike DCAM, the TLC approach
does not avoid TLB accesses (TD). Finally, the use of a
TLC requires dealing with synonyms, homonyms, and other
problems associated with virtually addressed data accesses.

Other small structures have been suggested to reduce L1 DC
energy usage. A line buffer (LB) can be used to hold the last
line accessed in the L1 DC [12]. The buffer must however be
checked before accessing the L1 DC, placing it on the critical
path, which can degrade performance (CP). A line buffer also
has a high miss rate, which may increase the L1 DC energy
usage due to continuously fetching full lines from the L1 DC
memory (OM). A small filter cache (FC) accessed before the
L1 DC has been proposed to reduce the power dissipation of
data accesses [4]. However, filter caches reduce energy usage
at the expense of a significant performance penalty due to
their high miss rate (OM), which mitigates some of the energy
benefits and has likely discouraged its use.

There are some similarities between the Tag Check Elision
(TCE) approach our DCAM approach [14]. Like DCAM, the
TCE approach stores an L1 DC way with each integer register.
However, there are several significant differences between
TCE and DCAM. The TCE approach is likely to memoize
more cases with large displacements. However, this feature
comes with several disadvantages as compared to the DCAM
approach, as depicted in Table IV, including that the TCE
complexity may increase the critical path that could affect the
cycle time (CP). Unlike TCE, DCAM retains the DTLB way to
avoid DTLB accesses when a different line is accessed within
the same page. TCE stores a bound with every register to
memoize L1 DC ways, which in their evaluation was a 29-bit
value (MS). In contrast, DCAM requires no immediate value
with DCAS entries, which should require much less power
to access. TCE requires two comparisons and an addition to
verify that the effective address of the memory reference is
within the bounds of the cache line as well as an extra addition
and a bound read and write each time an integer register is
incremented by a value (CP, HC). DCAM'’s check for a carry
out of an addition into the set index field and VPN fields
is much simpler. Finally, TCE’s invalidation scheme requires
much more space than DCAM’s invalidation method (MS).

The Decoupled Address Generation and Data Access
(DAGDA) technique exploits memoization to improve data
access energy efficiency. However, all loads and stores are
required to utilize zero displacements, requiring both compiler
and instruction set architecture (ISA) changes [11].

IX. CONCLUSIONS

We have described an approach to reduce energy usage by
saving L1 DC access information with the register used to

access memory. By associating the DTLB access and L1 DC
tag check with the base register used in a memory operation we
are often able to avoid L1 DC tag array accesses and DTLB
accesses, and access a single L1 DC data array for loads.
Furthermore, we show a technique to retain this information
across pointer updates if the updated value falls within the
same cache line or page of the source register. We were able
to obtain these energy benefits on unmodified binaries.

X. ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their comments.
This work was supported in part by the US National Science
Foundation (NSF) under grants DUE-1259462, CCF-1533828,
CCF-1533846, DGE-1565215, DRL-1640039, CRI-1822737,
CCF-1823398, and CCF-1823417. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the authors and may not reflect the views of the NSF.

REFERENCES

[1] W. Dally, J. Balfour, D. Black-Shaffer, J. Chen, R. Harting, V. Parikh,
J. Park, and D. Sheffield. Efficient embedded computing. [EEE
Computer, 41(7):27-32, July 2008.

[2] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown. MiBench: A free, commercially representative embedded
benchmark suite. In Proc. Int. Workshop on Workload Characterization,
pages 3—-14, Dec. 2001.

[3] K. Inoue, T. Ishihara, and K. Murakami. Way-predicting set-associative
cache for high performance and low energy consumption. In Proc. IEEE
Int. Symp. on Low Power Design (ISLPED), pages 273-275, Aug. 1999.

[4] J. Kin, M. Gupta, and W. Mangione-Smith. The filter cache: An energy
efficient memory structure. In Proc. Int. Symp. on Microarchitecture,
pages 184—193, Dec. 1997.

[5] R. Megalingam, K. Deepu, 1. Joseph, and V. Vandana. Phased set
associative cache design for reduced power consumption. In Proceedings
of International Conference on Computer Science and Information
Technology, pages 551-556, 2009.

[6] D. Moreau, A. Bardizbanyan, M. Sjédlander, D. Whalley, and P. Larsson-
Edefors. Practical way halting by speculatively accessing halt tags. In
Proceedings of the IEEE Design, Automation, and Test in Europe (DATE
2016), Mar. 2016.

[7]1 D. Nicolaescu, B. Salamat, A. Veidenbaum, and M. Valero. Fast
speculative address generation and way caching for reducing 11 data
cache energy. In Proceedings of International Conference on Computer
Design, Oct. 2007.

[8] S. Onder and R. Gupta. Automatic generation of microarchitecture
simulators. In IEEE International Conference on Computer Languages,
pages 80-89, Chicago, May 1998.

[9] M. D. Powell, A. Agarwal, T. N. Vijaykumar, B. Falsafi, and K. Roy.

Reducing set-associative cache energy via way-prediction and selective

direct-mapping. In Proc. ACM/IEEE Int. Symp. on Microarchitecture

(MICRO), pages 5465, Dec. 2001.

A. Sembrant, E. Hagersten, and D. Black-Shaffer. Tlc: A tag-less cache

for reducing dynamic first level cache energy. In Proc. 46th ACM/IEEE

Int. Symp. on Microarchitecture (MICRO), pages 351-356, Dec. 2013.

M. Stokes, R. Baird, Z. Jin, D. Whalley, and S. Onder. Decoupling

address generation from loads and stores to improve data access energy

efficiency. In Proceedings of the 19th ACM SIGPLAN/SIGBED Interna-
tional Conference on Languages, Compilers, and Tools for Embedded

Systems, LCTES 2018, pages 65-75, New York, NY, USA, 2018. ACM.

C. Su and A. Despain. Cache design trade-offs for power and perfor-

mance optimization: A case study. In Proc. Int. Symp. on Low Power

Design (ISLPED), pages 63-68, 1995.

C. Zhang, F. Vahid, J. Yang, and W. Najjar. A way-halting cache for low-

energy high-performance systems. ACM Transactions on Architecture

and Compiler Optimizations (TACO), 2(1):34-54, Mar. 2005.

Z. Zheng, Z. Wang, and M. Lipasti. Tag check elision. In International

Symposium on Low Power Electronics and Design, pages 351-356, New

York, NY, USA, 2014. ACM.

[10]

[11]

[12]

[13]

[14]

