
of Virginia, September 1989.

[DITZ87a] D. R. Ditzel and H. R. McLellan, The
Hardware Architecture of the CRISP
Microprocessor, Proceedings of the 14th
Annual Symposium on Computer
Architecture, Pittsburg, PA, June 1987, 309-
319.

[DITZ87b] D. R. Ditzel and H. R. McLellan, Branch
Folding in the CRISP Microprocessor:
Reducing Branch Delay to Zero, Proceedings
of the 14th Annual Symposium on Computer
Architecture, Pittsburg, PA, June 1987, 2-9.

[GIMA87] C. E. Gimarc and V. Milutinovic, A Survey of
RISC Processors and Computers of the Mid-
1980s, IEEE Computer 20,9 (September 1987),
59-69.

[HENN83] J. Hennessy and T. Gross, Postpass Code
Optimization of Pipeline Constraints, ACM
Transactions on Programming Languages
and Systems 5,3 (July 1983), 422-448.

[LEE84] J. K. F. Lee and A. J. Smith, Branch Prediction
Strategies and Branch Target Buffer Design,
IEEE Computer 17,1 (January 1984), 6-22.

[MCFA86] S. McFarling and J. Hennessy, Reducing the
Cost of Branches, Proceedings of the 13th
Annual Symposium on Computer
Architecture, Tokyo, Japan, June 1986, 396-
403.

[PATT82] D. A. Patterson and C. H. Sequin, A VLSI
RISC, IEEE Computer 15,9 (September 1982),
8-21.

[RAU77] B. R. Rau and G. E. Rossman, The Effect of
Instruction Fetch Strategies upon the
Performance of Pipelined Instruction Units,
Proceedings of the 4th Annual Symposium
on Computer Architecture, Silver Spring, MD,
March 1977, 80-89.

[RISE72] E. M. Riseman and C. C. Foster, The Inhibition
of Potential Parallelism by Conditional
Jumps, IEEE Transactions on Computers,
21,12 (December 1972), 1405-1411.

[SCHE77] R. W. Scheifler, An Analysis of Inline
Substitution for a Structured Programming
Language, Communications of the ACM
20,9 (September 1977), 647-654.

[SUN87] The SPARC Architecture Manual, Sun
Microsystems, Mountain View, CA, 1987.

[WALL86] D. W. Wall, Global Register Allocation at Link
Time, Proceedings of the SIGPLAN Notices
’86 Symposium on Compiler Construction,
Palo Alto, CA, June 1986, 264-275.

[WILK83] M. Wilkes and J. Stringer, Microprogramming
and the Design of the Control Circuits in
an Electronic Digital Computer, Proceedings
of the Cambridge Philosophical Society,
Cambridge, England, April 1983.

13. APPENDIX I: TEST PROGRAMS

 Class Name Description or Emphasis

cal Calendar Generator
cb C Program Beautifer
compact File Compression
diff File differences
grep Search for Pattern

Utilities nroff Text formatter
od Octal dump
sed Stream editor
sort Sort or merge files
spline Interpolate Curve
tr Translate characters
wc Word count

dhrystone Synthetic Benchmark
matmult Matrix multiplication

Benchmarks puzzle Recursion, Arrays
sieve Iteration
whetstone Floating-Point arithmetic

mincost VLSI circuit partitioning
User code vpcc Very Portable C compiler

program to wait. Directing the instruction cache to bring
in instructions before they are used will not decrease the
number of cache misses. It will, however, decrease or
eliminate the delay of loading the instruction into the cache
when it is needed to be fetched and executed.

The machine must determine if an instruction has been
brought into an instruction register and thus is ready to be
decoded after the corresponding branch register is
referenced in the preceding instruction. This can be
accomplished by using a flag register that contains a set of
bits that correspond to the set of instruction registers. The
appropriate bit could be cleared when the request is sent to
the cache and set when the instruction is fetched from the
cache. Note that this would require the compiler to ensure
that branch target addresses are always calculated before
the branch register is referenced.

9. FUTURE WORK
There are several interesting areas involving the use of

branch registers that remain to be explored. The best
cache organization to be used with branch registers needs
to be investigated. An associativity of at least two would
ensure that a branch target could be prefetched without
displacing the current instructions that are being
executed. A larger number of words in a cache line may be
appropriate in order to less often have cache misses of
sequential instructions while instructions at a branch target
are being loaded from memory into the instruction cache.
Another feature of the cache organization to investigate
is the total number of words in the cache. Since instructions
to calculate branch target addresses can be moved out of
loops, the number of instructions in loops will be fewer. This
may improve cache performance in machines with small
on-chip caches.

The exact placement of the branch target address
calculation can affect performance. The beginning of the
function could be aligned on a cache line boundary and the
compiler would have information about the structure of the
cache. This information would include

• the cache line size
• the number of cache lines in each set
• the number of cache sets in the cache

Using this information the compiler could attempt to place
the calculation where there would be less potential
conflict between cache misses for sequential instructions
and cache misses for prefetched branch targets. By
attempting to place these calculations at the beginning of a
cache line, the potential for conflict would be reduced.

Prefetching branch targets may result in some
instructions being brought into the cache that are not used
(cache pollution). Since most branches tend to be taken

[LEE84], we have assumed that this penalty would not be
significant. By estimating the number of cycles required
to execute programs (which includes cache delays) on the
branch register machine and the baseline machine, the
performance penalty due to cache pollution of unused
prefetched branch targets could be determined.

Other code generation strategies could be investigated.
For instance, if a fast compare instruction could be used to
test the condition during the decode stage [MCFA86], then
the compare instruction could update the program counter
directly. A bit may be used in the compare instruction
to indicate whether to squash [MCFA86] the following
instruction depending upon the result of the comparison.
Eight branch registers and eight instruction registers were
used in the experiment. The available number of these
registers and the corresponding changes in the instruction
formats could be varied to determine the most cost effective
combination.

10. CONCLUSIONS
Using branch registers to accomplish transfers of

control has been shown to be potentially effective. By
moving the calculation of branch target addresses out of
loops, the cost of performing branches inside of loops can
disappear and result in fewer executed instructions. By
prefetching the branch target instruction when the branch
target address is calculated, branch target instructions can
be inserted into the pipeline with fewer delays. By moving
the assignment of branch registers away from the use of
the branch register, delays due to cache misses of branch
targets may be decreased. The performance of a small
instruction cache, such as the cache for the CRISP
architecture [DITZ87a], could also be enhanced since the
number of instructions in loops will be fewer. Enhancing
the effectiveness of the code can be accomplished with
conventional optimizations of code motion and common
subexpression elimination. A machine with branch
registers should also be inexpensive to construct since the
hardware would be comparable to a conventional RISC
machine.

11. ACKNOWLEDGEMENTS
 The authors wish to thank Anne Holler and Ron

Williams for providing many helpful suggestions.

12. REFERENCES
[DAVI89a] J. W. Davidson and D. B. Whalley, Methods

for Saving and Restoring Register Values
across Function Calls, Tech. Rep. 89-11,
University of Virginia, November 1989.

[DAVI89b] J. W. Davidson and D. B. Whalley, Ease: An
Environment for Architecture Study and
Experimentation, Tech. Rep. 89-08, University

Figure 11: Instruction Formats for the Branch Register
Machine

The branch register machine executed 6.8% fewer
instructions and yet performed 2.0% additional data memory
references as compared to the baseline machine. The ratio of
fewer instructions executed to additional data references
for the branch register machine was 10 to 1. Approximately
14% of the instructions executed on the baseline machine
were transfers of control. The reduction in the number of
instructions executed was mostly due to moving branch
target address calculations out of loops. The ratio of
transfers of control executed to branch target address
calculations was over 2 to 1. Another factor was
replacing 36% (2.6 million) of the noops in delay slots of
branches in the baseline machine with branch target
address calculations at points of transfers of control in the
branch register machine. There were also additional
instructions executed on the branch register machine to
save and restore branch registers. The additional data
references on the branch register machine were due to both
fewer variables being allocated to registers and saves and
restores of branch registers. Table I shows the results from
running the test set through both machines.

Millions of Millions of
Machine instructions data references

executed

baseline 183.04 61.99
branch register 170.75 63.22
diff -12.29 +1.23

Table I: Dynamic Measurements from the Two Machines

By prefetching branch target instructions at the point
the branch target address is calculated, delays in the pipeline

opcode cond bs1 rs1 i immediate br

Format 1 (cmp with immed, i = 0):

Format 1 (cmp with reg, i = 1):

Format 2 (sethi, inst addr calc):

Format 3 (Remaining instructions, i = 0):

Format 3 (Remaining instructions, i = 1):

6 4 3 4 1 11 3

opcode cond bs1 rs1 i ignored rs2 br

6 4 3 4 1 7 4 3

opcode rd immediate br

6 4 19 3

opcode rd rs1 i immediate br

6 4 4 1 14 3

opcode rd rs1 i ignored rs2 br
6 4 4 1 10 4 3

can be decreased. In the baseline machine, there were 7.95
million unconditional transfers of control and 17.69 million
conditional transfers of control. Assuming a pipeline of
three stages, not uncommon for RISC machines [GIMA87],
then each branch on the baseline machine would require at
least a one-stage delay. Also assuming that each instruction
can execute in one machine cycle, and no other pipeline
delays except for transfers of control, then the test set
would require about 208.83 million cycles to be executed
on the baseline machine. As shown previously in Figures 5
and 7, the branch register machine would require no delay
for both unconditional and conditional branches in a three
stage pipeline assuming that the branch target instruction
has been prefetched. As shown in Figure 9, the branch target
address must be calculated at least two instructions before
a transfer of control to avoid pipeline delays even with a
cache hit. We estimate that only 13.86% of the transfers of
control that were executed would result in a pipeline
delay. Thus, the branch register machine would require
about 22.09 million (10.6%) fewer cycles to be executed.
There would be greater savings for machines having
pipelines with more stages. For instance, we estimate
that the branch register machine would require about 30.04
million (12.8%) fewer cycles to be executed due to fewer
delays in the pipeline alone assuming a pipeline with four
stages.

8. HARDWARE CONSIDERATIONS
An instruction cache typically reduces the number of

memory references by exploiting the principles of spatial
and temporal locality. However, when a particular main
memory line is referenced for the first time, the
instructions in that line must be brought into the cache and
these misses will cause delays. When an assignment is made
to a branch register, the value being assigned is the address
of an instruction that eventually will likely be brought into
the instruction cache.

To take advantage of this knowledge, each assignment
to a branch register has the side effect of directing the
instruction cache to prefetch the line associated with the
instruction address. Prefetch requests could be performed
efficiently with an instruction cache that would allow
reading a line from main memory at the same time as
requests for instruction words from the CPU that are cache
hits are honored. This could be accomplished by setting a
busy bit in the line of the cache that is being read from
memory at the beginning of a prefetch request and setting it
to not busy after the prefetch has completed. To handle
prefetch requests would require a queuing mechanism with
the size of the queue equal to the number of available
branch registers. A queue would allow the cache to give
priority to cache misses for sequential fetches over
prefetch requests which do not require the execution of the

To avoid pipeline delays, even when the branch target
instruction is in the cache, the branch target address must
be calculated early enough to be prefetched from the cache
and placed in the instruction register before the target
instruction is to be input to the decode stage. Assuming
there is a one cycle delay between the point that the address
is sent to the cache at the end of the execute stage and the
instruction is loaded into the instruction register, this would
require that the branch target address be calculated at least
two instructions previous to the instruction with the transfer
of control when the number of stages in the pipeline is
three. This is shown in Figure 9.

Figure 9: Prefetching to Avoid Pipeline Delays

7. EXPERIMENTAL EVALUATION
In an attempt to reduce the number of operand memory

references, many RISC machines have thirty-two or more
general-purpose registers (e.g. MIPS-X, ARM, Spectrum).
Without special compiler optimizations, such as inlining
[SCHE77] or interprocedural register allocation
[WALL86], it is infrequent that a compiler can make
effective use of even a majority of these registers for a
function. In a previous study [DAVI89a], we calculated
the number of data memory references that have the
potential for being removed by using registers. We found
that 98.5% could be removed by using only sixteen data
registers. In order to evaluate the effectiveness of the branch
register approach, two machines were designed and
emulated. ease, an environment which allows the fast
construction and emulation of proposed architectures
[DAVI89b], was used to simulate both machines.
Detailed measurements from the emulation of real
programs on a proposed architecture are captured in this
environment. This is accomplished by creating a compiler
for the proposed machine, collecting information
about instructions during the compilation, inserting code to
count the number of times sets of basic blocks are
executed, and generating assembly code for an existing
host machine from the RTLs of the program on the proposed
machine. Appendix I lists the set of test programs used for
this experiment.

The first machine served as a baseline to measure the
effectiveness of the second machine. The baseline machine
was designed to have a simple RISC-like architecture.
Features of this machine include:

F D E
F D E

F D E

F

D E

ADDR CALC

INST

JUMP
NEXT

TARGET

• 32-bit fixed-length instructions

• load and store architecture

• delayed branches

• 32 general-purpose data registers

• 32 floating-point registers

• three-address instructions

Figure 10 shows the instruction formats used in the
baseline machine.

Figure 10: Instruction Formats for the Baseline Machine

The second machine was a modification of the first to
handle branches by using branch registers. Features of the
branch register machine that differ from the baseline
machine include:

• only 16 general-purpose data registers

• only 16 floating-point registers

• 8 branch registers

• 8 instruction registers

• no branch instructions

• a compare instruction with an assignment

• an instruction to calculate branch target addresses

• smaller range of available constants in some
instructions

If one ignores floating-point registers, there are
approximately the same number of registers on each
machine. Figure 11 shows the instruction formats used in
the branch register machine. Since the only differences
between the baseline machine and the branch register
machine are the instructions to use branch registers as
opposed to branches, the fewer number of data registers that
can be referenced, and the smaller range of constants
available, the reports generated by this environment can
accurately show the impact of using registers for branches.

opcode cond i displacement

opcode rd rs1 i ignored rs2

Format 1 (branch with disp, i = 0):

6 4 1 21

Format 1 (branch indirect, i = 1):

opcode cond i ignored rs1

6 4 1 16 5

Format 2 (sethi, j ignored):

opcode rd j immediate

6 2 19

Format 3 (Remaining instructions, i = 0):

opcode rd rs1 i immediate

6 5 5 1 15

5

Format 3 (Remaining instructions, i = 1):

6 5 5 1 10 5

fetched. Since the address in a branch register is
incremented after being used to prefetch an instruction
from the cache, the branch register contains the address of
the instruction after the branch target.

Figure 6: Pipeline Actions for Unconditional Transfer of
Control

Figure 7 contrasts the pipeline delays for
conditional transfers of control for the same three types of
machines. For unconditional transfers of control, the
conventional RISC machine without a delayed branch

Figure 7: Pipeline Delays for Conditional Transfers of
Control

would have a N-1 pipeline delay and the RISC machine with
a delayed branch would have a N-2 pipeline delay for
conditional transfers of control. The compare instruction for

r[1] = r[1] + 1; b[0] = b[4];

F

D

E

F

D F

(i[0] = M[b[0]];b[0] = b[0] + 4;)

(DECODE = i[0];)

(i[0] = M[b[0]]; b[0] = b[0] + 4;)

(r[1] = r[1] + 1;) (DECODE = i[4];)

(i[0] = M[b[4]];b[0] = b[4] + 4;)

F

D

F

E D

F

P
M
U
J

T
X
E
N

T
E
G
R
A
T

R
E
T
F
A

F D E

F D E

F D E

F D E

F D E

F D E

F D E

F D E
F D E

F
D E

COMPARE
JUMP

TARGET

COMPARE
JUMP

NEXT

TARGET

COMPARE

JUMP

NEXT

TARGET

(a) no delayed branch

(b) with delayed branch

(c) with branch registers

the machine with branch registers will assign one of two
branch registers to a destination branch register depending
upon the result of the condition in the compare. It will also
make an assignment between the corresponding instruction
registers. The conditional jump instruction is performed by
the instruction following the compare instruction that
references the destination branch register of the compare
instruction. The branch register referenced is used during
the decode stage of the conditional jump instruction to
cause the corresponding instruction register to be input as
the next instruction to be decoded. Therefore, the decode
stage of the target instruction cannot be accomplished until
the last stage of the compare instruction is finished. This
results in an N-3 pipeline delay for conditional transfers
of control for a machine with branch registers.

The example in Figure 8 shows the actions taken by
each stage of the pipeline for a conditional transfer of
control, assuming that the compare instruction
sequentially follows the previously executed instruction.
During the first cycle, the compare instruction is fetched
from memory and the PC is incremented to the next
sequential instruction. In the second cycle, the compare
instruction is decoded and the jump instruction is fetched
from memory. In the third cycle, the compare instruction is
executed (resulting in assignments to both b[7] and i[7]),
the jump instruction is decoded, and the instruction
sequentially following the jump is fetched. If the condition
of the compare is not true, then b[7] and i[7] receive the same
values from the fetch operation. During the fourth cycle, the
jump instruction is executed, either the target instruction or
the next instruction after the jump is decoded, and the
instruction after the instruction being decoded is fetched.

Figure 8: Pipeline Actions for Conditional Transfer of
Control

F

D

E

F

D

E

F

D F

E
R
A
P
M
O
C

P
M
U
J

T
X
E
N

T
E
G
R
A
T

R
E
T
F
A

b[7] = r[5] < 0 -> b[3] | b[0];

r[1] = r[1] + 1; b[0] = b[7];

(DECODE=i[0];) (i[0]=M[b[0]];b[0]=b[0]+4;)

i[7] = r[5] < 0 -> i[3] | M[b[0]];)
(b[7] = r[5] < 0 -> b[3] | b[0] + 4;

(i[0] = M[b[0]]; b[0] = b[0] + 4;)

(DECODE = i[0];)

(i[0] = M[b[0]]; b[0] = b[0] + 4;)

(r[1] = r[1] + 1;) (DECODE = i[7];)

(i[0] = M[b[7]]; b[0] = b[7] + 4;)

D

 F

F

 E

FD

E D

F

 r[1]=L[r[31]+s.]; /* load s
 NZ=r[1]?0; /* compare s to 0
 PC=NZ==0->L14; /* delay cond. jump
 r[2]=0; /* initialize n to 0
 PC=L17; /* jmp to loop test
 NL=NL; /* no-op required
L18:r[2]=r[2]+1; /* increment n
 r[1]=r[1]+1 /* increment s
L17:r[0]=B[r[1]]; /* load character
 NZ=r[0]?0; /* compare to zero
 PC=NZ!=0->L18; /* delayed cond. jump
 NL=NL; /* no-op required
L14:PC=RT; /* delayed return
 r[0]=r[2]; /* delay slot filled

Figure 3: RTLs for C Function with Delayed Branches

 b[1]=b[7]; /* save ret address
 b[7]=b[0]+(L14-L2); /* compute exit addr
L2:r[1]=L[r[15]+s.]; /* load s
 b[7]=r[1]==0->b[7]|b[0]; /* test cond.
 r[2]=0; b[0]=b[7]; /* initialize n and jmp
 b[7]=b[0]+(L17-L1); /* compute entry to loop
L1:b[2]=b[0]+(L18-L18);b[0]=b[7]; /*compute loop
 /* header and jump to entry
L18:r[2]=r[2]+1 /* increment n
 r[1]=r[1]+1; /* increment s
L17:r[0]=B[r[1]]; /* load character
 b[7]=r[0]!=0->b[2]|b[0]; /* compute target
 NL=NL;b[0]=b[7]; /* jump
L14:r[0]=r[2];b[0]=b[1]; /* return

Figure 4: RTLs for C Function with Branch Registers

6. REDUCTION OF PIPELINE DELAYS
Most pipeline delays due to branches on conventional

RISC machines can be avoided using the branch register
approach. For a three-stage pipleline, Figure 5 contrasts
the pipeline delays for unconditional transfers of control on
machines without a delayed branch, with a delayed branch,
and with branch registers. The three stages in the pipeline
in this figure are:

1. Fetch (F)
2. Decode (D)
3. Execute (E)

The branch target instruction cannot be fetched until its
address has been calculated. For the first two machines, this
occurs in the execute stage of the jump instruction. A
conventional RISC machine without a delayed branch would
have an N-1 delay in the pipeline for unconditional
transfersof control where N is the number of stages in the
pipeline. The next instruction for the machine with a delayed
branch and the machine with branch registers represents
the next sequential instruction following the jump
instruction. Thus, a RISC machine with a delayed branch,
where the branch is delayed for one instruction, would have
an N-2 delay in the pipeline. Finding more than one
useful instruction to place behind a delayed branch is
difficult for most types of programs [MCFA86]. A jump

Figure 5: Pipeline Delays for Unconditional Transfers of
Control

instruction for the machine with branch registers represents
an instruction that references a branch register that is
not the PC (b[0]). The branch register referenced is used
during the decode stage of the jump instruction to
determine which one of the set of instruction registers is
to be input as the next instruction to be decoded. While
the jump instruction is being decoded, the next sequential
instruction is being fetched and loaded into i[0], the
default instruction register. If b[0] had been referenced, then
i[0] would be input to the decode stage. Since a different
branch register is referenced for the jump instruction, its
corresponding instruction register containing the branch
target instruction would be input to the next decode stage.
Thus, assuming that the branch target instruction has been
prefetched and is available in the appropriate instruction
register, the machine with branch registers would have no
pipeline delay for unconditional transfers of control
regardless of the number of stages in the pipeline.

The example in Figure 6 shows the actions taken by
each stage in the pipeline for an unconditional transfer of
control in the branch register machine, assuming that the
jump sequentially follows the previously executed
instruction. The subscript on the actions denotes the stage
of the pipeline. During the first cycle, the jump instruction
is fetched from memory and the PC is incremented to
the next sequential instruction. In the second cycle, the
jump instruction is decoded and the next sequential
instruction after the jump is fetched from memory. In the
third cycle, the jump instruction is executed, the
prefetched branch target in i[4] is decoded, and the
instruction sequentially following the branch target is

F D E

F D E

JUMP

TARGET

F D E
F D E

F D E

F D E

F

D E

(a) no delayed branch

JUMP

NEXT

TARGET

JUMP

NEXT

TARGET

(b) with delayed branch

(c) with branch registers

Indirect Jumps

For implementation of indirect jumps, the virtual
address is loaded from memory into a branch register and
then referenced in a subsequent instruction. The
following RTLs illustrate how a switch statement might be
implemented.

r[2]=r[2]<<2; /* r2 is index in table
r[1]=HI(L01); /* store high part of L01
r[1]=r[1]+LO(L01); /* add low part of L01
b[3]=L[r[1]+r[2]]; /* load addr of switch case
 ...
r[0]=r[0]+1; b[0]=b[3];
/* next inst is at switch case
L01: .long Ldst1 /* case label
 .long Ldst2 /* case label
 ...
 ...

5. COMPILER OPTIMIZATIONS
Initially, it may seem there is no advantage to the

branch register approach. Indeed, it appears more expensive
since an instruction is required to calculate the branch target
address and a set of bits to specify a branch register is
sacrificed from each instruction. However, one only needs
to consider that the branch target address for unconditional
jumps, conditional jumps, and calls are usually constants.
Therefore, the assignment of these addresses to branch
registers can be moved out of loops. Because transfers of
control occur during execution of other instructions, the cost
of these branches disappears after the first iteration of a loop.

Since there is a limited number of available branch
registers, often every branch target cannot be allocated to a
unique branch register. Therefore, the branch targets are
first ordered by estimating the frequency of the execution of
the branches to these targets. The estimated frequency
of execution of each branch is used, rather than the
execution of each branch target instruction, since it is
the calculation of the virtual address used by each branch
that has the potential for being moved out of loops. If
there is more than one branch to the same branch target,
then the frequency estimates of each of these branches are
added together.

After calculating the estimated frequency of reference,
the compiler attempts to move the calculation of the branch
target with the highest estimated frequency to the preheader
of the innermost loop in which the branch occurs. The
preheader is the basic block that precedes the first basic
block that is executed in the loop (or the head of the loop).
At this point the compiler tries to allocate the calculation of
the branch target address to a branch register. If the loop
contains calls, then a non-scratch branch register must be
used. If a branch register is only associated with branches
in other loops that do not overlap with the execution of the
current loop, then the branch target calculation for the branch

in the current loop can be allocated to the same branch
register. If the calculation for a branch target can be
allocated to a branch register, then the calculation is
associated with that branch register and the preheader of that
loop (rather than the basic block containing the transfer
of control) and the estimated frequency of the branch target
is reduced to the frequency of the preheader of the loop.
Next, the compiler attempts to move the calculation of the
branch target with the currently highest frequency estimate
out of the loop. This process continues until all branch target
calculations have been moved out of loops or no more
branch registers can be allocated.

To reduce further the number of instructions
executed, the compiler attempts to replace no-operation
(noop) instructions, that occur when no other instruction can
be used at the point of a transfer of control, with branch
target address calculations. These noop instructions
are employed most often after compare instructions.
Since there are no dependencies between branch target
address calculations and other types of instructions that are
not used for transfers of control, noop instructions can often
be replaced.

Figures 2 through 4 illustrate these compiler
optimizations. Figure 2 contains a C function. Figure 3
shows the RTLs produced for the C function for a
conventional RISC machine with a delayed branch. Figure
4 shows the RTLs produced for the C function for a
machine with branch registers. In order to make the RTLs
easier to read, assignments to b[0] that are not transfers of
control and updates to b[7] at instructions that are
transfers of control are not shown. The machine with
branch registers had one less instruction (eleven as opposed
to fourteen) due to a noop being replaced with branch target
address calculations. Since branch target address
calculations were moved out of loops, there was only five
instructions inside of the loop for the branch register
machine as opposed to six for the machine with a delayed
branch.

strlen(s)
char *s;
{
 int n = 0;

 if (s)
 for (; *s; s++)
 n++;
 return(n);
}

Figure 2: C function

4. CODE GENERATION
The following sections describe how code can be

generated to accomplish various transfers of control using
branch registers.

Calculating Branch Target Addresses

For all instructions where the next instruction to be
executed is not the next sequential instruction, a different
branch register from the PC must be specified and the
virtual address it contains must have been previously
calculated. If we assume a virtual address of thirty-two bits,
an address cannot be referenced as a constant in a single
instruction. Consequently, most instructions would use an
offset from the PC to calculate branch addresses. The
compiler knows the distance between the PC and the branch
target if both are in the same routine. This is shown in the
following RTLs:

b[1]=b[0]+(L2-L1); /* store address of L2
L1: ...
 ...
L2: ...

For calls or branch targets that are known to be too far
away, the calculation of the branch address requires two
instructions. One part of the address is computed by the
first instruction and then the other part in the second.
Global addresses are calculated in this fashion for programs
on the SPARC architecture [SUN87]. An address
calculation requiring two instructions is illustrated by
the following RTLs:

r[5]=HI(L1); /* store high part of addr
b[1]=r[5]+LO(L1); /* add low part of addr

 ...
L1: r[0]=r[0]+1; /* inst at branch target

 ...

Unconditional Branches

Unconditional branches are handled in the following
manner. First, the virtual address of the branch target is
calculated and stored in a branch register. To perform the
transfer of control, this branch register is moved into the PC
(b[0]), which causes the instruction at the target address
to be decoded and executed next. While the instruction at the
branch target is being decoded, the instruction sequentially
following the branch target is fetched. An example of
an unconditional branch is depicted in the following RTLs:

b[2]=b[0]+(L2-L1); /* store addr of L2
L1: ...
 ...
r[1]=r[1]+1; b[0]=b[2]; /* next inst at L2
 ...
L2: .

Conditional Branches

Conditional branches are generated by the following
method. First, the virtual address of the branch target is
calculated and stored in a branch register. At some point
later, an instruction determines if the condition for the
branch is true. Three branch registers are used in this
instruction. One of two registers is assigned to the
destination register depending upon the value of the
condition. To more effectively encode this compare
instruction, two of the three registers could be implied. For
instance, the RTLs in the following example show how a
typical conditional branch is handled. The destination
branch register is b[7], which is by convention a trash
branch register. The other implied branch register, the
source register used when the condition is not true, is b[0],
which represents the address of the instruction sequentially
following the transfer of control instruction. An
instruction following this conditional assignment would
reference the destination branch register. This is illustrated
below.

b[2]=b[0]+(L2-L1); /* store addr of L2
L1: ...
 ...
b[7]=r[5]<0->b[2]|b[0]; /* set branch register
r[1]=r[1]+1; b[0]=b[7]; /* jump to at addr in b[7]

 ...
L2:

Function Calls and Returns

Function calls and returns can also be implemented
efficiently with this approach. Since the beginning of a
function is often an unknown distance from the PC, its
virtual address is calculated in two instructions and stored
in a branch register. Then, an instruction at some point
following this calculation would reference that branch
register. To accomplish a return from a function, the address
of the instruction following the call would be stored in an
agreed-on branch register (for example b[7]). Every
instruction that references a branch register that is not the
program counter, b[0], would store the address of the next
physical instruction into b[7]. If the called routine has any
branches other than a return, then b[7] would need to be
saved and restored. When a return to the caller is desired, the
branch register is restored (if necessary) and referenced in
an instruction. An example that illustrates a call and a return
on this machine is given in the following RTLs.

r[2]=HI(_foo); /* store high part of addr
b[3]=r[2]+LO(_foo); /* add low part of addr
 ...
r[0]=r[0]+1; b[0]=b[3]; b[7]=b[0];
/* next inst is first inst in foo
 ...
_foo:
 ...
r[0]= r[12]; b[0]=b[7]; /* return to caller

correct instruction can be fetched with no pipeline delay.
Otherwise, if the incorrect path is chosen, then the
pipeline must be flushed. The problems with this scheme
include the complex hardware needed to implement the
technique and the large size of the instruction cache since
each decoded instruction is 192 bits in length.

An approach to reduce delays due to cache misses is to
prefetch instructions into a buffer [RAU77]. The
conditional branch instruction causes problems since either
one of two target addresses could be used [RISE72]. One
scheme involves prefetching instructions along both
potential execution paths [LEE84]. This scheme requires
more complicated hardware and also must deal with future
conditional branch instructions. Other approaches use
branch prediction in an attempt to choose the most likely
branch target address [LEE84]. If the incorrect path is
selected, then execution must be halted and the pipeline
flushed.

3. THE BRANCH REGISTER APPROACH
As in Wilke’s proposed microprogrammed control unit

[WILK83] and the CRISP architecture [DITZ87a], every
instruction in the branch register approach is a branch. Each
instruction specifies the location of the next instruction
to be executed. To accomplish this without greatly
increasing the size of instructions, a field within all
instructions specifies a register that contains the virtual
address of the next instruction to execute.

Examples depicting instructions in this paper are
represented using register transfer lists (RTLs). RTLs
describe the effect of machine instructions and have the
form of conventional expressions and assignments over
the hardware’s storage cells. For example, the RTL

r[3]=r[1]+r[2]; cc=r[1]+r[2]?0;

represents a register-to-register integer addition instruction
on many machines. The first register transfer stores the
sum of the two registers into a third register, while the
second register transfer compares the sum of the two
registers to set the condition codes. All register transfers
within the same RTL represent operations that are
performed in parallel.

For instructions specifying that the next instruction to
be executed is the next sequential instruction, a branch
register is referenced which contains the appropriate
address. This register is, in effect, the program counter
(PC). While an instruction is being fetched from the
instruction cache, the PC is always incremented by the
machine to point to the next sequential instruction. If every
instruction is thirty-two bits wide, then this operation can
always be performed in a uniform manner. Once an
instruction has been fetched, the value of the branch register
specified in the instruction is used as an address for the

next instruction. At the point the PC is referenced, it will
represent the address of the next sequential instruction. An
example of this is shown in the RTL below, where b[0] (a
branch register) has been predefined to be the PC.

r[1]=r[1]+1; b[0]=b[0]; /* go to next seq. inst.

Since references to b[0] do not change the address in b[0],
subsequent RTLs do not show this default assignment.

If the next instruction to be executed is not the next
sequential instruction, then code is generated to calculate
and store the virtual address of that instruction in a
different branch register and to reference that branch
register in the current instruction. Storing the virtual address
of a branch target instruction into a branch register also
causes the address to be sent to the instruction cache to
prefetch the instruction. The prefetched instruction will be
stored into an instruction register that corresponds to the
branch register receiving the virtual address. The address in
the branch register will be incremented to point to the
instruction after the branch target. The instruction register
i[0], that corresponds to the branch register b[0], which is
used as the program counter, is always loaded with the
next sequential instruction.

To implement this technique, an organization shown in
Figure 1 could be used. During the decode stage of the
current instruction, the bit field specifying one of the
branch registers is also used to determine which instruction
register to use in the decode stage of the next instruction.
When a branch register is referenced in an instruction to
indicate that a transfer of control is to occur, the next
instruction to execute is taken from the corresponding
instruction register.

Figure 1: Dataflow for Branch Register Machine

CACHE

INST

REGS

DATA

REGS

B

REGS

FETCH

DECODE

EXECUTE

pipeline

ABSTRACT
In an attempt to reduce the number of operand

memory references, many RISC machines have thirty-two
or more general-purpose registers (e.g., MIPS, ARM,
Spectrum, 88K). Without special compiler optimizations,
such as inlining or interprocedural register allocation, it is
rare that a compiler will use a majority of these registers for
a function. This paper explores the possibility of using some
of these registers to hold branch target addresses and the
corresponding instruction at each branch target. To evaluate
the effectiveness of this scheme, two machines were
designed and emulated. One machine had thirty-two
general-purpose registers used for data references, while the
other machine had sixteen data registers and sixteen
registers used for branching. The results show that using
registers for branching can effectively reduce the cost of
transfers of control.

1. INTRODUCTION
Branch instructions cause many problems for machines.

Branches occur frequently and thus a large percentage of a
program’s execution time is spent branching to different
instructions. Branches can result in the pipeline having to
be flushed, which reduces its effectiveness and makes
pipelines with smaller number of stages more attractive.
Furthermore, when the target of a branch instruction is not in
the cache, additional delays are incurred as the instruction
must be fetched from slower main memory.

This paper describes a technique that can eliminate
much of the cost due to branches by using a new set of
registers. A field is dedicated within each instruction to
indicate a branch register that contains the address of the

next instruction to be executed. Branch target address
calculations are performed by instructions that are separate
from the instruction causing the transfer of control. By
exposing to the compiler the calculation of branch target
addresses as separate instructions, the number of executed
instructions can be reduced since the calculation of branch
target addresses can often be moved out of loops. Much of
the delay due to pipeline interlocks is eliminated since the
instruction at a branch target is prefetched at the point the
address is calculated. This prefetching of branch targets
can also decrease the penalty for cache misses.

2. REVIEW
Due to the high cost of branches, there has been much

work proposing and evaluating approaches to reduce the
cost of these instructions. One scheme that has become
popular with the advent of RISC machines is the delayed
branch. While the machine is fetching the instruction at the
branch target, the instruction after the branch is executed.
For example, this scheme is used in the Stanford MIPS
[HENN83] and Berkeley RISC [PATT82] machines.
Problems with delayed branches include requiring the
compiler or assembler to find an instruction to place after
the branch and the cost of executing the branch itself.

Branch folding is another technique that reduces the
cost of executing branches. This has been implemented in
the CRISP architecture [DITZ87b]. Highly encoded
instructions are decoded and placed into a wide instruction
cache. Each instruction in this cache contains an
address of the next instruction to be executed.
Unconditional branches are folded into the preceding
instruction since the program counter is assigned this
new address for each instruction. Conditional branches
are handled by having two potential addresses for the next
instruction and by inspecting a static prediction bit and
the condition code flag to determine which path to take. If
the setting of the condition code (the compare) is spread
far enough apart from the conditional branch, then the

Reducing the Cost of Branches
 by Using Registers†

JACK W. DAVIDSON AND DAVID B. WHALLEY
Department of Computer Science

University of Virginia

Charlottesville, VA 22903, U. S. A.

†This work was supported in part by the National Science Foundation under
Grant CCR-8611653.

