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13. APPENDIX I: TEST PROGRAMS

 Class Name Description or Emphasis

cal Calendar Generator
cb C Program Beautifer
compact File Compression
diff File differences
grep Search for Pattern

Utilities nroff Text formatter
od Octal dump
sed Stream editor
sort Sort or merge files
spline Interpolate Curve
tr Translate characters
wc Word count

dhrystone Synthetic Benchmark
matmult Matrix multiplication

Benchmarks puzzle Recursion, Arrays
sieve Iteration
whetstone Floating-Point arithmetic

mincost VLSI circuit partitioning
User code vpcc Very Portable C compiler

 



program to wait.  Directing the  instruction  cache to  bring
in  instructions  before they are used will not decrease the
number of cache misses.   It  will,  however, decrease or
eliminate the delay of loading the instruction into the cache
when  it  is  needed  to  be  fetched  and executed. 

The machine must determine if an instruction has been
brought  into an instruction register and thus is ready to be
decoded after  the  corresponding  branch  register  is
referenced  in  the  preceding  instruction.   This can be
accomplished by using a flag register that contains a  set of
bits  that  correspond  to  the  set  of  instruction registers.  The
appropriate bit could be cleared when  the request  is sent to
the cache and set when the instruction is fetched from the
cache.  Note that this  would  require the  compiler  to  ensure
that branch target addresses are always  calculated   before
the   branch   register   is referenced. 

9. FUTURE WORK 
There are several interesting  areas  involving  the use of

branch registers  that  remain  to  be  explored.  The best
cache organization to be  used  with  branch  registers needs
to be investigated.   An  associativity  of  at  least two would
ensure that a branch target could  be  prefetched  without
displacing   the   current  instructions  that  are  being
executed.  A larger number of words in a cache line may be
appropriate  in  order  to less often have cache misses of
sequential instructions while  instructions  at  a  branch target
are  being loaded from memory into the instruction cache.
Another  feature  of  the  cache  organization  to investigate
is  the  total  number of words in the cache. Since instructions
to calculate  branch  target  addresses can  be  moved out of
loops, the number of instructions in loops will be fewer.  This
may improve  cache  performance in machines with small
on-chip caches. 

The exact placement  of  the  branch  target  address
calculation  can affect performance.  The beginning of the
function could be aligned on a cache line boundary and the
compiler would have information about the structure of the
cache.  This information would include 

• the cache line size 
• the number of cache lines in each set 
• the number of cache sets in the cache 

Using this information the compiler could attempt to place
the  calculation  where  there  would  be  less  potential
conflict between cache misses for sequential  instructions
and  cache  misses  for  prefetched  branch  targets.   By
attempting to place these calculations at the beginning of a
cache line, the potential for conflict would be reduced. 

Prefetching  branch  targets  may  result   in   some
instructions  being  brought  into  the cache that are not used
(cache pollution).  Since most branches  tend  to  be taken

[LEE84], we have assumed that this penalty would not be
significant.   By  estimating  the  number  of  cycles required
to execute programs (which includes cache delays) on the
branch register machine and the  baseline  machine, the
performance  penalty due to cache pollution of unused
prefetched branch targets could be determined. 

Other code generation strategies could be investigated.
For  instance, if a fast compare instruction could be used to
test the condition during the  decode  stage  [MCFA86], then
the  compare  instruction  could  update the program counter
directly.  A  bit  may  be  used  in  the  compare instruction
to  indicate  whether  to squash [MCFA86] the following
instruction depending upon  the  result  of  the comparison.
Eight branch registers and eight instruction registers were
used  in  the  experiment.   The  available number of these
registers and the corresponding changes in the instruction
formats could be varied to  determine  the most cost effective
combination. 

10. CONCLUSIONS 
Using branch registers  to  accomplish  transfers  of

control  has  been  shown to be potentially effective.  By
moving the calculation of branch target addresses  out  of
loops, the cost of performing branches inside of loops can
disappear and result in fewer executed  instructions.   By
prefetching  the branch target instruction when the branch
target address is calculated, branch  target  instructions can
be  inserted into the pipeline with fewer delays.  By moving
the assignment of branch registers  away  from  the use  of
the branch register, delays due to cache misses of branch
targets may be decreased.   The  performance  of  a small
instruction  cache, such as the cache for the CRISP
architecture [DITZ87a], could also be enhanced  since  the
number  of instructions in loops will be fewer.  Enhancing
the effectiveness of the code  can  be  accomplished  with
conventional  optimizations  of  code  motion  and  common
subexpression  elimination.    A   machine   with   branch
registers  should  also  be inexpensive to construct since the
hardware would be comparable to  a  conventional  RISC
machine. 
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Figure 11: Instruction Formats for the Branch Register
Machine 

The  branch  register  machine  executed  6.8%  fewer
instructions and yet performed 2.0% additional data memory
references as compared to the baseline machine.  The ratio of
fewer   instructions   executed  to  additional  data references
for the branch register machine was  10  to  1. Approximately
14%  of  the  instructions  executed on the baseline machine
were transfers of control.  The reduction in  the  number of
instructions executed was mostly due to moving branch
target address calculations  out  of  loops. The  ratio  of
transfers  of  control  executed to branch target address
calculations was  over  2  to  1.   Another factor  was
replacing  36%  (2.6 million) of the noops in delay slots of
branches  in  the  baseline  machine  with branch  target
address calculations at points of transfers of control in the
branch  register  machine.   There  were also   additional
instructions  executed  on  the  branch register machine to
save  and  restore  branch  registers. The  additional  data
references  on  the branch register machine were due to both
fewer variables  being  allocated to  registers  and saves and
restores of branch registers. Table I shows  the  results  from
running  the  test  set through both machines. 

Millions of Millions of
Machine instructions data references

executed

baseline 183.04 61.99
branch register 170.75 63.22
diff -12.29 +1.23

Table I: Dynamic Measurements from the Two Machines 

By prefetching  branch  target  instructions  at  the point
the  branch target address is calculated, delays in the pipeline

opcode cond bs1 rs1 i immediate br

Format 1 (cmp with immed, i = 0):

Format 1 (cmp with reg, i = 1):

Format 2 (sethi, inst addr calc):

Format 3 (Remaining instructions, i = 0):

Format 3 (Remaining instructions, i = 1):

6 4 3 4 1 11 3

opcode cond bs1 rs1 i ignored rs2 br

6 4 3 4 1 7 4 3

opcode rd immediate br

6 4 19 3

opcode rd rs1 i immediate br

6 4 4 1 14 3

opcode rd rs1 i ignored rs2 br
6 4 4 1 10 4 3

can be decreased.  In the  baseline  machine, there were 7.95
million unconditional transfers of control and  17.69  million
conditional  transfers  of   control. Assuming a pipeline of
three stages, not uncommon for RISC machines [GIMA87],
then each branch on the baseline  machine would  require  at
least a one-stage delay.  Also assuming that each instruction
can execute in  one  machine  cycle, and  no  other  pipeline
delays  except  for transfers of control, then the test  set
would  require  about  208.83 million cycles to be executed
on the baseline machine.  As shown previously in Figures 5
and 7, the  branch  register machine  would require no delay
for both unconditional and conditional branches in a three
stage  pipeline  assuming that  the  branch  target instruction
has been prefetched. As shown in Figure 9, the branch target
address  must  be calculated  at least two instructions before
a transfer of control to avoid pipeline delays even with  a
cache  hit. We  estimate  that only 13.86% of the transfers of
control that were executed  would  result  in  a  pipeline
delay. Thus,  the  branch  register  machine  would require
about 22.09 million (10.6%) fewer cycles to be executed.
There  would be greater savings for machines having
pipelines  with  more stages.    For  instance,  we  estimate
that  the  branch register machine would require about 30.04
million (12.8%) fewer  cycles  to  be  executed due to fewer
delays in the pipeline alone assuming a pipeline with four
stages. 

8. HARDWARE CONSIDERATIONS 
An instruction cache typically reduces the number  of

memory  references by exploiting the principles of spatial
and temporal locality.  However, when  a  particular  main
memory   line  is  referenced  for  the  first  time,  the
instructions in that line must be brought into  the  cache and
these misses will cause delays.  When an assignment is made
to a branch register, the value being assigned is the address
of  an  instruction  that eventually will likely be brought into
the instruction cache. 

To take advantage of this knowledge, each  assignment
to  a branch register has the side effect of directing the
instruction cache to prefetch the line associated with the
instruction  address.   Prefetch  requests  could  be performed
efficiently with an instruction cache that would allow
reading a line from main memory at the same time as
requests for instruction words from the CPU that are cache
hits are honored.  This could be accomplished by setting a
busy bit in the line of the cache that is being read  from
memory  at the beginning of a prefetch request and setting it
to not busy  after  the  prefetch  has  completed.   To handle
prefetch requests would require a queuing mechanism with
the  size  of  the  queue  equal  to  the  number  of available
branch registers.  A queue would allow the cache to give
priority to cache misses  for  sequential  fetches over
prefetch requests which do not require the execution of the



To avoid pipeline delays, even when the branch target
instruction  is  in  the  cache, the branch target address must
be calculated early enough to be prefetched from  the cache
and  placed  in the instruction register before the target
instruction is to be input  to  the  decode  stage. Assuming
there is a one cycle delay between the point that the address
is sent to the cache at the end of the execute stage  and  the
instruction is loaded into the instruction register,  this  would
require  that  the  branch  target address  be  calculated at least
two instructions previous to the instruction with the transfer
of control  when  the number  of stages in the pipeline is
three.  This is shown in Figure 9.

Figure 9: Prefetching to Avoid Pipeline Delays

7. EXPERIMENTAL EVALUATION 
In an attempt to reduce the number of operand  memory

references,  many  RISC  machines  have thirty-two or more
general-purpose registers (e.g.  MIPS-X,  ARM,  Spectrum).
Without  special  compiler optimizations, such as inlining
[SCHE77] or interprocedural register allocation
[WALL86], it is infrequent that a compiler can make
effective use of even a majority of these registers for a
function.   In  a previous  study  [DAVI89a], we calculated
the number of data memory  references  that  have  the
potential  for  being removed  by using registers.  We found
that 98.5% could be removed by using only sixteen data
registers.  In order to evaluate  the effectiveness of the branch
register approach,  two  machines  were  designed and
emulated.  ease, an  environment  which  allows  the  fast
construction   and  emulation  of  proposed  architectures
[DAVI89b], was used  to  simulate  both  machines.
Detailed measurements from the emulation  of  real
programs  on  a proposed  architecture  are captured in this
environment. This is  accomplished  by  creating  a  compiler
for  the proposed    machine,    collecting    information
about instructions during the  compilation,  inserting  code  to
count  the  number  of  times  sets  of  basic  blocks are
executed, and generating assembly  code  for  an  existing
host  machine from the RTLs of the program on the proposed
machine.  Appendix I lists the set of test  programs  used for
this experiment. 

The first machine served as a baseline to measure the
effectiveness of the second machine.  The baseline machine
was designed to have a simple RISC-like architecture.
Features of this machine include: 
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JUMP
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• 32-bit fixed-length instructions 

• load and store architecture 

• delayed branches 

• 32 general-purpose data registers 

• 32 floating-point registers 

• three-address instructions 

Figure 10 shows the instruction formats used in the
baseline machine.

Figure 10: Instruction Formats for the Baseline Machine

The second machine was a modification of the first to
handle  branches  by  using branch registers.  Features of the
branch register machine that differ from the  baseline
machine include: 

• only 16 general-purpose data registers 

• only 16 floating-point registers 

• 8 branch registers 

• 8 instruction registers 

• no branch instructions 

• a compare instruction with an assignment 

• an instruction to calculate branch target addresses 

• smaller range of available constants in some
instructions 

If  one  ignores  floating-point  registers,   there   are
approximately   the  same  number  of  registers  on  each
machine.  Figure 11 shows the instruction formats used  in
the branch register machine.  Since the  only  differences
between the baseline machine and the branch register
machine are the instructions to use branch registers as
opposed to branches, the fewer number of data registers that
can be referenced, and the smaller range of constants
available,  the  reports generated by this environment can
accurately show the impact of using registers for branches.   

opcode cond i displacement

opcode rd rs1 i ignored rs2

Format 1 (branch with disp, i = 0):

6 4 1 21

Format 1 (branch indirect, i = 1):

opcode cond i ignored rs1

6 4 1 16 5

Format 2 (sethi, j ignored):

opcode rd j immediate

6 2 19

Format 3 (Remaining instructions, i = 0):

opcode rd rs1 i immediate

6 5 5 1 15

5

Format 3 (Remaining instructions, i = 1):

6 5 5 1 10 5



fetched.  Since the address in a branch register is
incremented after  being  used  to prefetch   an  instruction
from  the  cache,  the  branch register contains the address of
the instruction after the branch target. 

Figure 6: Pipeline Actions for Unconditional Transfer of
Control 

Figure  7   contrasts   the   pipeline   delays   for
conditional  transfers of control for the same three types of
machines.  For unconditional transfers  of  control, the
conventional    RISC  machine   without  a   delayed    branch 

Figure 7: Pipeline Delays for Conditional Transfers of
Control 

would have a N-1 pipeline delay and the RISC machine  with
a  delayed  branch  would  have  a  N-2 pipeline delay for
conditional transfers of control.  The compare instruction for
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the  machine with branch registers will assign one of two
branch registers  to  a  destination  branch  register depending
upon the result of the condition in the compare. It will also
make an assignment between the  corresponding instruction
registers.   The conditional jump instruction is performed by
the   instruction   following   the   compare instruction   that
references   the  destination  branch register of the compare
instruction.  The branch  register referenced   is  used  during
the  decode  stage  of  the conditional jump instruction to
cause  the  corresponding instruction  register  to be input as
the next instruction to be decoded.  Therefore, the decode
stage of the  target instruction cannot be accomplished until
the last stage of the compare instruction is finished.  This
results  in  an N-3  pipeline  delay  for conditional transfers
of control for a machine with branch registers. 

The example in Figure 8 shows the  actions  taken  by
each  stage  of the pipeline for a conditional transfer of
control,   assuming   that   the    compare    instruction
sequentially  follows the previously executed instruction.
During the first cycle, the  compare  instruction  is  fetched
from  memory  and  the  PC  is  incremented  to  the  next
sequential instruction.  In the second cycle, the  compare
instruction is decoded and the jump instruction is fetched
from memory.  In the third cycle, the compare  instruction is
executed  (resulting  in  assignments to both b[7] and i[7]),
the  jump  instruction   is   decoded,   and   the instruction
sequentially  following  the jump is fetched. If the condition
of the compare is not true, then b[7] and i[7] receive the same
values from the fetch operation.  During the fourth cycle, the
jump instruction is executed, either the  target  instruction or
the next instruction after the jump is decoded, and the
instruction after the instruction being decoded is fetched. 

Figure 8: Pipeline Actions for Conditional Transfer of
Control 
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b[7] = r[5] < 0 -> b[3] | b[0];

r[1] = r[1] + 1; b[0] = b[7];

(DECODE=i[0];)  (i[0]=M[b[0]];b[0]=b[0]+4;)

i[7] = r[5] < 0 -> i[3] | M[b[0]];)
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    r[1]=L[r[31]+s.]; /* load s
    NZ=r[1]?0; /* compare s to 0
    PC=NZ==0->L14; /* delay cond. jump
    r[2]=0; /* initialize n to 0
    PC=L17; /* jmp to loop test
    NL=NL; /* no-op required 
L18:r[2]=r[2]+1; /* increment n
    r[1]=r[1]+1 /* increment s
L17:r[0]=B[r[1]]; /* load character
    NZ=r[0]?0; /* compare to zero
    PC=NZ!=0->L18; /* delayed cond. jump
    NL=NL; /* no-op required
L14:PC=RT; /* delayed return             
    r[0]=r[2]; /* delay slot filled

Figure 3: RTLs for C Function with Delayed Branches

   b[1]=b[7]; /* save ret address
   b[7]=b[0]+(L14-L2); /* compute exit addr
L2:r[1]=L[r[15]+s.]; /* load s
   b[7]=r[1]==0->b[7]|b[0]; /* test cond.
   r[2]=0; b[0]=b[7];  /* initialize n and jmp
   b[7]=b[0]+(L17-L1); /* compute entry to loop
L1:b[2]=b[0]+(L18-L18);b[0]=b[7]; /*compute loop
                    /* header and jump to entry
L18:r[2]=r[2]+1 /* increment n 
    r[1]=r[1]+1; /* increment s
L17:r[0]=B[r[1]]; /* load character
    b[7]=r[0]!=0->b[2]|b[0]; /* compute target
    NL=NL;b[0]=b[7]; /* jump
L14:r[0]=r[2];b[0]=b[1]; /* return

Figure 4: RTLs for C Function with Branch Registers

6. REDUCTION OF PIPELINE DELAYS 
Most pipeline delays due to branches on  conventional

RISC  machines can be avoided using the branch register
approach.    For a three-stage pipleline, Figure  5  contrasts
the  pipeline  delays  for unconditional transfers of control on
machines without  a delayed branch, with a delayed branch,
and with branch registers.  The three stages  in  the  pipeline
in this figure are: 

1.  Fetch (F) 
2.  Decode (D) 
3.  Execute (E)

The branch target instruction cannot be fetched until  its
address  has been calculated.  For the first two machines, this
occurs in the execute stage of the jump  instruction. A
conventional RISC machine without a delayed branch would
have an N-1 delay in the pipeline for unconditional
transfersof control where N is the number  of  stages  in the
pipeline.  The next instruction for the machine with a delayed
branch  and  the  machine  with  branch  registers represents
the next sequential instruction following the jump
instruction.  Thus, a RISC  machine  with  a  delayed branch,
where  the branch is delayed for one instruction, would have
an N-2 delay in  the  pipeline.   Finding  more than  one
useful  instruction  to  place behind a delayed branch is
difficult for most types of  programs  [MCFA86].   A jump

 

Figure 5:   Pipeline Delays for Unconditional Transfers of
Control 

instruction for the machine with branch registers represents
an  instruction  that  references   a   branch register  that  is
not the PC (b[0]).  The branch register referenced is used
during the decode  stage  of  the  jump instruction   to
determine  which  one  of  the  set  of instruction  registers  is
to  be  input  as   the   next instruction  to be decoded.  While
the jump instruction is being decoded, the next sequential
instruction  is  being fetched  and  loaded  into  i[0],  the
default instruction register.  If b[0] had been referenced, then
i[0] would be input  to  the  decode  stage.   Since  a different
branch register is  referenced  for  the  jump  instruction,  its
corresponding  instruction  register containing the branch
target instruction would  be  input  to  the  next  decode stage.
Thus, assuming that the branch target instruction has been
prefetched and is available  in  the  appropriate instruction
register,  the  machine with branch registers would have no
pipeline delay for  unconditional  transfers of  control
regardless  of  the  number  of stages in the pipeline. 

The example in Figure 6 shows the  actions  taken  by
each  stage  in the pipeline for an unconditional transfer of
control in the branch register machine,  assuming  that the
jump  sequentially  follows  the  previously executed
instruction.  The subscript on  the  actions  denotes  the stage
of  the  pipeline.   During the first cycle, the jump instruction
is  fetched  from  memory  and  the   PC   is incremented  to
the  next sequential instruction.  In the second cycle, the
jump instruction is decoded and the next sequential
instruction  after  the  jump  is fetched from memory.  In the
third  cycle,  the  jump  instruction  is executed,  the
prefetched branch target in i[4]  is  decoded,  and  the
instruction  sequentially following the branch target is
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Indirect Jumps 

For implementation of  indirect  jumps,  the  virtual
address is loaded from memory into a branch register and
then referenced  in  a  subsequent  instruction.   The
following  RTLs  illustrate how a switch statement might be
implemented. 

r[2]=r[2]<<2;       /* r2 is index in table 
r[1]=HI(L01);       /* store high part of L01 
r[1]=r[1]+LO(L01);  /* add low part of L01 
b[3]=L[r[1]+r[2]];  /* load addr of switch case 
   ... 
r[0]=r[0]+1; b[0]=b[3];
/* next inst is at switch case 
L01:  .long Ldst1   /* case label
      .long Ldst2   /* case label
      ...
      ...

5. COMPILER OPTIMIZATIONS
Initially, it may seem there is no advantage  to  the

branch register approach.  Indeed,  it appears more expensive
since an instruction is required to calculate  the  branch target
address and a set of bits to specify a  branch  register  is
sacrificed  from  each instruction.  However, one only needs
to consider that the branch target  address for  unconditional
jumps, conditional jumps, and calls are usually constants.
Therefore, the assignment of  these  addresses to  branch
registers can be moved out of loops.  Because transfers of
control occur during execution of other instructions, the cost
of these branches disappears after the first iteration of a loop.

Since there is a limited number of  available  branch
registers,  often every branch target cannot be allocated to  a
unique  branch  register.   Therefore,  the  branch targets  are
first ordered by estimating the frequency of the execution of
the  branches  to  these  targets.   The estimated  frequency
of execution of each branch is used, rather  than  the
execution   of   each   branch   target instruction,  since  it  is
the calculation of the virtual address used by each branch
that  has  the  potential  for being  moved  out  of  loops.   If
there is more than one branch to the  same  branch  target,
then  the frequency estimates of each of these branches are
added together. 

After calculating the estimated frequency of reference,
the compiler attempts to move the  calculation of  the branch
target with the highest estimated frequency to the preheader
of the innermost loop in which the branch occurs.   The
preheader  is the basic block that precedes the first basic
block that is executed in the loop (or the head  of  the  loop).
At this point the compiler tries to allocate the calculation of
the branch target address to a branch  register.  If the loop
contains calls, then a non-scratch  branch  register  must  be
used.   If  a  branch register  is  only associated with branches
in other loops that do not overlap with  the  execution  of  the
current loop, then the branch target calculation for the branch

in the current loop can  be  allocated  to  the  same  branch
register.   If  the calculation for a branch target can be
allocated to a branch register, then  the  calculation  is
associated  with that branch register and the preheader of that
loop (rather than  the  basic  block  containing  the transfer
of  control)  and the estimated frequency of the branch target
is reduced to the frequency of the preheader of  the  loop.
Next, the compiler attempts to move the calculation of the
branch target with the currently highest frequency estimate
out of the loop.  This process continues until all branch target
calculations have been  moved  out of loops or no more
branch registers can be allocated. 

To  reduce  further the   number   of   instructions
executed,  the  compiler  attempts to replace no-operation
(noop) instructions, that occur when no other  instruction can
be  used  at the point of a transfer of control, with branch
target   address   calculations.    These    noop instructions
are   employed  most  often  after  compare instructions.
Since there  are  no  dependencies  between branch  target
address  calculations  and  other types of instructions that are
not used for transfers  of  control, noop instructions can often
be replaced. 

Figures  2  through  4  illustrate   these   compiler
optimizations.   Figure 2 contains a C function.  Figure 3
shows  the  RTLs  produced  for  the  C  function  for   a
conventional RISC machine with a delayed branch.  Figure
4 shows the RTLs produced for the C function for  a
machine with  branch  registers.  In order to make the RTLs
easier to read, assignments to b[0] that  are  not  transfers  of
control  and  updates  to  b[7]  at  instructions that are
transfers of control are  not  shown.   The  machine  with
branch  registers  had  one less instruction (eleven as opposed
to fourteen) due to a noop being replaced with branch  target
address  calculations. Since branch target address
calculations were moved out of loops, there was only five
instructions inside of  the loop for  the branch register
machine as opposed to six for the machine with a delayed
branch.

strlen(s)
char *s;
{
   int n = 0;

   if (s)
      for (; *s; s++)
         n++;
   return(n);
}

Figure 2: C function



4. CODE  GENERATION 
The following  sections  describe  how  code  can  be

generated to accomplish various transfers of control using
branch registers. 

Calculating Branch Target Addresses

For all instructions where the next instruction to  be
executed   is  not  the  next  sequential  instruction,  a different
branch register from the PC  must  be  specified and  the
virtual  address  it  contains  must  have  been previously
calculated.  If we assume  a virtual address of thirty-two bits,
an address cannot be referenced as a  constant  in  a single
instruction.  Consequently, most instructions would use an
offset from the PC to calculate branch addresses.   The
compiler  knows the distance between the PC and the branch
target if both are in the same routine.  This is shown  in the
following RTLs: 

b[1]=b[0]+(L2-L1);  /* store address of L2 
L1:  ... 
     ...  
L2:  ... 

For calls or branch targets that are known to be  too far
away,  the calculation of the branch address requires two
instructions.  One part of the address is computed  by the
first  instruction  and  then  the  other part in the second.
Global addresses are calculated in  this  fashion for  programs
on  the  SPARC  architecture  [SUN87].  An address
calculation   requiring   two   instructions   is illustrated by
the following RTLs: 

r[5]=HI(L1);       /* store high part of addr 
b[1]=r[5]+LO(L1);  /* add low part of addr 

   ...  
L1:  r[0]=r[0]+1;  /* inst at branch target

   ...

Unconditional Branches 

Unconditional  branches  are handled  in   the following
manner.   First,  the  virtual  address  of the branch target is
calculated and stored in  a  branch register.  To perform the
transfer of control, this branch register is moved into the PC
(b[0]),  which  causes the  instruction  at  the target address
to be decoded and executed next.  While the instruction at the
branch target  is  being  decoded, the instruction sequentially
following the  branch  target  is  fetched.   An   example   of
an unconditional branch is depicted in the following RTLs: 

b[2]=b[0]+(L2-L1);      /* store addr of L2 
L1:  ... 
     ...  
r[1]=r[1]+1; b[0]=b[2]; /*  next inst at L2 
     ...  
L2:  .

Conditional Branches

Conditional  branches  are generated  by   the following
method.   First,  the  virtual  address  of the branch  target  is
calculated  and  stored  in  a  branch register.   At some point
later, an instruction determines if the condition for the
branch  is  true.   Three  branch registers  are  used  in  this
instruction.   One  of two registers  is  assigned  to   the
destination   register depending  upon  the  value  of  the
condition.   To more effectively encode this compare
instruction,  two  of  the three  registers could be implied.  For
instance, the RTLs in the following example show how  a
typical  conditional branch is handled.  The destination
branch register is b[7], which is by convention a trash
branch  register. The  other  implied  branch  register, the
source register used when the  condition  is  not  true,  is  b[0],
which represents  the  address  of  the instruction sequentially
following  the  transfer  of  control instruction.  An
instruction following  this conditional assignment would
reference the destination branch register.  This is illustrated
below. 

b[2]=b[0]+(L2-L1);      /* store addr of L2 
L1:  ... 
     ... 
b[7]=r[5]<0->b[2]|b[0]; /* set branch register 
r[1]=r[1]+1; b[0]=b[7]; /* jump to at addr in b[7]

     ... 
L2:

Function Calls and Returns 

Function calls and returns can  also  be  implemented
efficiently  with  this  approach.  Since the beginning of a
function is often an unknown distance from  the  PC,  its
virtual  address  is  calculated  in  two instructions and stored
in a branch register.  Then, an instruction at some point
following  this  calculation  would  reference that branch
register.  To accomplish a return from a  function, the address
of the instruction following the call would be stored in an
agreed-on branch register (for example b[7]). Every
instruction  that references a branch register that is not the
program counter, b[0], would store the  address of the next
physical instruction into b[7].  If the called routine has any
branches other than a  return,  then  b[7] would  need  to  be
saved and restored.  When a return to the caller is desired, the
branch register is restored (if necessary)  and  referenced in
an instruction.  An example that illustrates a call and a return
on  this  machine  is given in the following RTLs. 

r[2]=HI(_foo);      /* store high part of addr 
b[3]=r[2]+LO(_foo); /* add low part of addr 
   ... 
r[0]=r[0]+1; b[0]=b[3]; b[7]=b[0];
/* next inst is first inst in foo
   ... 
_foo: 
   ... 
r[0]= r[12]; b[0]=b[7];   /* return to caller 



correct instruction   can  be  fetched  with  no  pipeline  delay.
Otherwise, if the  incorrect  path  is  chosen,  then  the
pipeline  must  be flushed.  The problems with this scheme
include the  complex  hardware  needed  to  implement  the
technique and the large size of the  instruction cache since
each decoded instruction is 192 bits in length. 

An approach to reduce delays due to cache  misses  is to
prefetch  instructions  into  a  buffer  [RAU77].  The
conditional branch instruction causes problems  since either
one of  two  target  addresses  could  be  used [RISE72].  One
scheme involves prefetching instructions along both
potential execution paths [LEE84].  This scheme requires
more complicated hardware  and  also must deal  with  future
conditional branch instructions.  Other approaches use
branch prediction in an attempt to choose  the most   likely
branch  target  address  [LEE84].   If  the incorrect path is
selected, then  execution  must  be halted and the pipeline
flushed. 

3. THE BRANCH REGISTER APPROACH 
As in Wilke’s proposed microprogrammed  control  unit

[WILK83]  and  the  CRISP  architecture  [DITZ87a],  every
instruction in the branch register approach is  a  branch. Each
instruction  specifies  the  location  of  the  next instruction
to be executed.  To  accomplish  this  without greatly
increasing  the  size  of  instructions,  a field within all
instructions specifies a register that  contains the virtual
address of the next instruction to execute. 

Examples depicting instructions  in  this  paper  are
represented   using  register  transfer  lists (RTLs).   RTLs
describe  the effect  of  machine  instructions  and  have  the
form of conventional  expressions   and   assignments   over
the hardware’s storage cells.  For example, the RTL 

r[3]=r[1]+r[2]; cc=r[1]+r[2]?0; 

represents a  register-to-register  integer  addition instruction
on  many machines.   The  first register transfer stores the
sum of the two registers into a third register, while the
second register transfer compares the sum of the two
registers to set the condition codes.  All  register  transfers
within the  same RTL represent operations that are
performed in parallel. 

For instructions specifying that the next instruction to
be  executed  is  the  next  sequential instruction, a branch
register  is   referenced   which   contains   the appropriate
address.   This  register  is, in effect, the program counter
(PC).   While  an  instruction  is  being fetched  from  the
instruction  cache,  the  PC is always incremented by the
machine to point to the next sequential instruction.   If  every
instruction  is thirty-two bits wide, then this operation  can
always  be performed  in  a  uniform manner.  Once an
instruction has been fetched, the value of the branch  register
specified in  the  instruction  is  used  as an address for the

next instruction.  At the point the PC is referenced,  it  will
represent  the address of the next sequential instruction. An
example of this is shown in the RTL below,  where  b[0] (a
branch register) has been predefined to be the PC. 

r[1]=r[1]+1; b[0]=b[0]; /* go to next seq. inst. 

Since references to b[0] do  not  change  the  address  in b[0],
subsequent  RTLs  do  not show this default assignment. 

If the next instruction to be  executed  is  not  the next
sequential  instruction,  then  code is generated to calculate
and  store  the   virtual   address   of   that instruction   in   a
different  branch  register  and  to reference that branch
register in the current instruction. Storing the virtual address
of a branch target instruction into a branch register also
causes  the address  to  be  sent to the instruction cache to
prefetch the  instruction.   The prefetched instruction will be
stored into an instruction register that corresponds to the
branch register receiving the virtual address.  The address in
the branch register will be incremented to point to the
instruction after the branch target.  The  instruction register
i[0], that corresponds to the branch register b[0], which is
used as the  program counter,   is  always  loaded  with  the
next  sequential instruction. 

To implement this technique, an organization shown in
Figure 1 could be used.  During the decode stage of the
current  instruction,  the  bit  field specifying  one  of  the
branch registers is also used to determine which instruction
register to use in the  decode stage  of the next instruction.
When a branch register is referenced in an instruction to
indicate that  a  transfer of  control  is to occur, the next
instruction to execute is taken from the  corresponding
instruction  register. 

Figure 1:  Dataflow for Branch Register Machine 

CACHE

INST

REGS

DATA

REGS

B

REGS

FETCH

DECODE

EXECUTE

pipeline



ABSTRACT
In an attempt to  reduce  the  number  of  operand

memory references,  many  RISC  machines  have thirty-two
or more general-purpose registers (e.g.,  MIPS,  ARM,
Spectrum, 88K). Without  special  compiler optimizations,
such as inlining or interprocedural register allocation, it  is
rare that  a compiler will use a  majority of these registers for
a function.  This paper explores the possibility of using some
of these registers to hold branch target addresses and the
corresponding instruction at each branch target. To evaluate
the effectiveness of this scheme, two machines were
designed  and  emulated.  One  machine had thirty-two
general-purpose registers used for data references, while the
other machine  had  sixteen data  registers  and sixteen
registers used for branching. The results show that using
registers  for  branching  can effectively reduce the cost of
transfers of control. 

1. INTRODUCTION
Branch instructions cause many problems for machines.

Branches  occur  frequently and thus a large percentage of a
program’s execution time  is  spent   branching   to   different
instructions.   Branches can result in the pipeline having to
be flushed, which reduces its effectiveness  and  makes
pipelines  with  smaller  number of stages more attractive.
Furthermore, when the target of a branch instruction is not in
the cache, additional delays are incurred as the instruction
must be fetched from slower main memory. 

This paper describes a technique that  can  eliminate
much  of  the  cost  due to branches by using a new set of
registers.  A field is dedicated within  each  instruction to
indicate  a  branch register that contains the address of the  

next  instruction  to  be  executed.   Branch  target address
calculations   are performed by instructions that are separate
from the instruction causing the transfer  of control.   By
exposing to the compiler the calculation of branch target
addresses  as  separate  instructions,  the number  of  executed
instructions can be reduced since the calculation of branch
target addresses can often be moved out of loops.   Much  of
the delay due to pipeline interlocks is eliminated since the
instruction at  a  branch  target  is prefetched  at  the point the
address is calculated.  This prefetching  of  branch  targets
can  also  decrease  the penalty for cache misses. 

2. REVIEW
Due to the high cost of branches, there has been much

work  proposing  and  evaluating  approaches to reduce the
cost of these instructions.  One scheme  that  has  become
popular  with  the  advent of RISC machines is the delayed
branch. While the machine is fetching the  instruction  at the
branch  target, the instruction after the branch is executed.
For  example,  this  scheme  is  used  in  the Stanford MIPS
[HENN83] and Berkeley RISC [PATT82] machines.
Problems  with  delayed  branches  include  requiring  the
compiler  or  assembler  to  find  an instruction to place after
the branch and the cost  of  executing  the  branch itself. 

Branch folding is another technique that reduces the
cost of executing branches.   This  has  been implemented in
the CRISP architecture  [DITZ87b].   Highly encoded
instructions  are  decoded and placed into a wide instruction
cache.   Each  instruction  in   this   cache contains   an
address  of  the  next  instruction  to  be executed.
Unconditional  branches  are  folded  into  the preceding
instruction   since  the  program  counter  is assigned  this
new   address   for   each   instruction. Conditional  branches
are handled by having two potential addresses for the next
instruction  and  by  inspecting  a static  prediction  bit  and
the  condition  code flag to determine which path to take.  If
the  setting  of the  condition  code  (the  compare)  is spread
far enough apart  from  the  conditional  branch,  then  the
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