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ABSTRACT 
Mobile electronics are undergoing a convergence of formerly 
multiple dedicated-application devices into a single programmable 
device – the smart phone. The programmability of these devices 
increases their vulnerability to malicious attack. In this paper, we 
propose a new malware management system that seeks to use 
program differentiation to reduce the propagation of malware 
when a software vulnerability exists. By modifying aspects of the 
application control flow, we allow portions of an application 
executable to be permuted into unique versions for each 
distributed instance. Differentiation is achieved using hardware 
and systems software modifications that are amenable to and 
scalable in embedded systems. Our initial areas for modification 
include function call/return and system call semantics, as well as a 
hardware-supported Instruction Register File. Differentiation of 
executables hinders analysis for vulnerabilities as well as prevents 
vulnerability exploitation in a single distributed version from 
propagating to other instances of that application. Computational 
demands on any instance of the application are minimized, while 
the resources required to attack multiple systems grows with the 
number of systems attacked. By focusing on prevention of 
malware propagation in addition to traditional absolute defenses, 
we target the economics of malware in order to make attacks 
prohibitively expensive and infeasible. 
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1.  INTRODUCTION 
Like general purpose computing systems, mobile devices and the 
software loaded on these devices are subject to a host of security 
threats and malicious software (malware) attacks due to 
vulnerabilities in their coding. Solutions to preventing malware 
become more challenging as the complexity and interconnectivity 

of these systems increase [34]. The increasingly complex software 
systems used in modern smart phones contain more sites for 
potential vulnerabilities, a problem exacerbated as application 
developers continue to integrate third party software with plugins 
for such user applications as web browsers and search engines. 
Recent exploitations of Google Desktop, Microsoft Internet 
Explorer, and MobileSafari on the Apple iPhone are examples 
[23, 22, 11, 19, 18, 13]. Rootkits are a grave concern due to their 
tenacity, detrimental effect on systems, and difficult detection. 
Typically they target kernel vulnerabilities to infect system-level 
programs and to conceal their existence. The rootkit applications 
themselves include key loggers, network sniffers, and a staging 
system to launch other attacks like Denial-of-Service and more. 
The primary use of Rootkits is to inject malware and to collect 
sensitive user information. This is especially problematic for 
mobile devices that are increasingly used to store private data. 
 
Traditional approaches have sought to provide an absolute 
defense to specific malware attacks by patching software 
vulnerabilities or detecting and blocking malware [26, 25, 5, 4, 
15]. However, the current situation represents a programmatic 
arms race between the patching of existing vulnerabilities and the 
exploitation of new ones. Despite increased awareness, 
vulnerabilities continue to be produced, as observed in McAffee's 
position paper citing Windows Vista as being less secure than its 
predecessors [17, 21, 32]. Most recently, the modified Mac OS X 
system on the Apple iPhone fails to even implement widely 
accepted best practices such as a non-executable heap or address 
randomization of memory area starting locations [18, 13]. 
Ultimately vulnerabilities will be found and malware will go 
undetected long enough to exploit such. We propose a different 
approach to managing malware based on limiting the ability of 
viruses to propagate even in the presence of undiscovered 
software vulnerabilities. When used in conjunction with 
traditional malware defenses, this approach greatly increases the 
difficulty and cost for malware developers to exploit 
vulnerabilities across a wide range of vulnerable systems. 
Mitigation through the use of program differentiation has an 
analogue in biological systems, which not only presume attack 
will occur but in fact have well-known, openly visible 
vulnerabilities [29, 8]. Beyond protective walls, biological entities 
also rely on a system that mitigates subsequent proliferation of 
biological attacks. Biological systems defend both at the 
individual level and the population level. While anti-virus 
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software can convey individual system protection, they do nothing 
to limit the rapid propagation of new viruses across a large set of 
homogeneous application code [38, 20]. The correlation between 
malware propagation and resulting damage leads us to explore 
mitigating attacks by thwarting the propagation. Program 
differentiation seeks to make each executable instance of an 
application unique. There are various ways of achieving this in 
software. One simple method would be to invoke different 
compiler transformations, or a different transformation ordering, 
to obtain different versions of the same application. However, this 
approach has two problems that make it infeasible. First, the 
vulnerable portions of the application must be the ones affected 
and there is no way to guarantee those unknown vulnerabilities 
are modified by this differentiation approach. The second problem 
is a more severe software engineering one. Multiple distinct 
versions of the same program code can be difficult to produce and 
highly impractical to maintain and update; subtle software errors 
in an application will likely change behavior in only a subset of 
differentiated versions. Performance may also differ widely 
between instances of the program. A solution is needed that 
differentiates program executables while preserving program 
semantics and control flow, and maintaining a single code profile 
for maintenance. We propose changes in hardware support for 
control flow instructions to achieve differentiation that changes 
the binary representation of applications without changing the 
execution order of instructions in the processor pipeline. The 
hardware modifications change how functions are called (and 
returned), how system calls are specified and how instructions 
fetched from memory are interpreted. This prevents the 
propagation of viruses by making each instance of a vulnerable 
application sufficiently different to require a nontrivial mutation 
of malware code for each infection. Figure 1 depicts the general 
workflow of our proposed methodology. Differentiation can occur 
before distribution, during initial configuration or even at load 
time for each invocation of the application. Whenever performed, 
differentiation modifies the original application using an 
undifferentiated instance and a configuration database, generating 
a potentially unique executable for each application instance. 
 

2.  SOFTWARE EXPLOITS 
Vulnerabilities in software have not only proven costly, but are 
continually increasing in number [34]. They can be broadly 
separated into processor architecture exploits and higher-level 
software exploits that are independent of the target architecture. 
High-level techniques are generally attacks on input strings that 
are interpreted within a source level interpreter in the application, 
such as overwriting of an SQL command string with an 
unauthorized set of commands to compromise the database 
system. Mitigation of such attacks must be handled by the 
application and further coverage is outside the scope of this 
paper’s processor-level security systems. By far the most common 
security exploits related to processor architecture are buffer 
overflow attacks, which overwrite memory locations in vulnerable 
applications [5, 30]. These attacks exploit vulnerabilities in the 
control flow conventions of the target architecture to gain control 
of system resources. The vulnerabilities exploited by the highly 
prolific Code Red worm and recently discovered in the Apple 
iPhone browser are examples of buffer overflow vulnerabilities 
[38, 20, 18, 1]. These attacks require an intimate understanding of 
the program code, including data and program object locations, 
branching, and address usage. The attack requires an unbounded 

input buffer, used to insert a payload of malicious code, and a 
vulnerability that allows the control flow to execute the payload 
code. Unfortunately, distribution of identical versions of a 
software executable facilitates propagation of a successful attack; 
once a vulnerability is found and exploited the attack is applicable 
to every other distributed instance. It is this commonality that 
allowed the 2001 Code Red worm (CRv2), which exploited a 
vulnerability in Windows NT and Windows 2000 operating 
systems, to infect more than 359,000 Internet Information Servers 
on the Internet in less than 14 hours [38, 20]. Mitigation 
techniques, such as hardware restrictions that disable execution of 
code from within the stack region of memory, seek to eliminate 
the vulnerability. Unfortunately, there are buffer overflow variants 
that do not require the insertion of payload code, but instead jump 
to existing routines in the application to compromise the system. 
Commonly referred to as return-to-libc attacks, the target address 
in the application code is often a library routine to manipulate 
systems components (such as to invoke a shell or delete files).  
 
Moreover, despite advances in security methodologies in software 
development the prevalence of software vulnerabilities continues 
to grow. This trend will likely continue as software systems 
become more numerous and complex. Greater opportunities for 
new vulnerabilities arise from the tremendous growth in high-
demand, third-party software applications that require 
administrative privileges or trusted access. The Google Desktop 
application demonstrated several vulnerabilities in user-level 
software that had system-level implications. A flaw discovered in 
December 2004 allowed malicious websites to illicitly read local 
search results from a target machine [23, 22]. The following year, 
a flaw in the Internet Explorer web browser combined with 
Google Desktop allowed an attacker to retrieve private user data 
or even execute operations on remote domains while 
impersonating the user [11, 19]. The extreme integration of third-
party applications is another growing threat, as demonstrated by 
the recent discovery of a buffer overflow vulnerability in the 
MobileSafari browser on the new Apple iPhone [18]. Through the 
exploit, a malicious web site could deliver a payload that allowed 
access to and transmission of any phone data [13]. The threat of 
malware on cell phones has loomed large in the past few years as 
they increase in computational power. Now that modern cell 
phones are simply full-fledged computer systems they are subject 
to computer system threats, only at much larger distribution scale 
[27]. Unfortunately, current anti-virus support is limited to 
identifying existing vulnerabilities or a few restricted patterns of 
attack. This approach means that systems security is always 
lagging behind the discovery of new vulnerabilities and fast 
propagation can defeat even the most active malware defense. 
Differentiation offers the promise of either eliminating or 
significantly slowing propagation independent of the type of 
software vulnerability exploited. Used in conjunction with 
existing mitigation techniques, program differentiation provides 
the strongest deterrent to the spread of future malware. 

 

3.  DIFFERENTIATION SOURCES 
The goal of differentiation is to restructure each instance of an 
application in a manner that makes the exploitation of inherent 
vulnerabilities in either the application or execution environment 
more difficult. At the same time, the implementation of a 
differentiation technique should not hinder application 
maintenance, change functional behavior, or result in dramatic 



performance differences between instances. Particularly in 
embedded systems, the ideal differentiation technique should have 
minimal to no impact on performance and be scalable to the 
available resource budget. Finally, the overhead required to 
support differentiation should be minimal in both space and 
execution time.  We propose three independent mechanisms to 
provide differentiation using a combination of hardware and 
software techniques. Each of these techniques utilizes indirection 
and by permuting indices supports differentiation. The first two 
schemes manipulate function call and system call semantics using 
both hardware and software modifications. The third scheme 
modifies how instructions are interpreted when fetched from 
memory and provides additional restrictions on execution of the 
most vulnerable instructions. These mechanisms are not only 
orthogonal to each other, but can be used in conjunction with all 
other available protection schemes. 
 

3.2   Return Address Differentiation 
Our first approach is to introduce a level of indirection into the 
function call return address stored on the stack. The return address 
is the typical target of buffer overflow attacks, which attempt to 
overwrite the address to point to a payload placed in the buffer.  
By replacing the return address with an index to a table of return 
addresses, we prevent the injection of a direct address and instead 
force the attacker to analyze the behavior of the new Return 
Address Table (RAT). This requires modification of function call 
and return semantics to access the return address through the 
RAT. Function calls must utilize a register to pass the index in 
much the same manner as the return address is currently passed. 
The return instruction must be modified to use the index to load 
the return address from the RAT before jumping to the instruction 
following the function call. Any buffer overflow would now 
override the RAT index. Without knowledge of the ordering of 
return addresses in the read-only RAT, the attacker can only jump 
to a random return address location in the existing code. With 
some modification to memory management access, the table itself 
can be marked unreadable by all instructions except function 
return. This removes code inspection from the arsenal of the 
malware attack. Statistical attacks using random indices can be 
thwarted by increasing the size of the RAT. The cost paid is a 
fixed increase in storage requirements for the return address table 
and a slight performance penalty on each function return due to 
the required table lookup. Instruction set modifications include 
the call or jalr instructions and ret. Calling conventions replace 
the automatic movement of the program counter for the next 
instruction (generally PC+4) with an index specifying the RAT 
entry containing the address of the next instruction. This is 
performed by an additional instruction, though in many cases this 
additional instruction is loop invariant and can thus be performed 
much less often than the function call. The call instruction could 
be totally eliminated; however, this would have implications on 

micro-architectural resources like the return address stack.  
Remaining calling conventions remain unchanged. The ret 
instruction is modified to first read the index off the stack, and 
then use the index to load the return address from the RAT. In a 
load-store architecture, this would be performed by multiple 
instructions. In either case, the performance impact is less than 
expected since the branch prediction will continue to utilize the 
return address stack, which generally contains the correct address. 
 
Modifications to the function return code sequence are outlined in 
Figure 2. The return behavior is updated to: 1) retrieve the index 
from the program stack; 2) access the RAT to obtain the return 
address; and then 3) jump to the return address. The RAT itself is 
made read-only, and in retrieving the return address bounds 
checking can be imposed by using logical instructions to mask the 
index value and prevent the use of any out-of-range indices. Even 
a small number of RAT entries results in a combinatorial number 
of permutations. This directly attacks the economics of a malware 
attack, making a random attack extremely unlikely to produce any 
useful predictable behavior and grossly thwarting the ability to 
have a wide-ranging impact with a single system attack. For the 
attacker who wishes to analyze software or a system to improve 
malware success and propagation, the permutation complexity 
elicits a signature analysis behavior that is easily detectable by 
traditional intrusion detection systems. Still, some consideration 
must be given to the use of shared library routines. Since these 
functions are shared by different applications, care must be taken 
when using any process resources, particularly the RAT.  If all 
system processes use the differentiation calling conventions then 
libraries pose no difficulties; RAT indices are evaluated in the 
context of a process and each process contains a unique RAT. 
Returns from library functions would still use the index into the 
process RAT and jump to the correct location. In a system where 
not all applications use differentiation call semantics, the return 
from a library function would then be undifferentiated, using the 
return address on the stack and jumping to the correct location.  
This mixed environment does not offer the same level of 
protection as a fully differentiated executable; however, only 
library routines are left vulnerable and ideally they would tend to 
be a more stable code base not as easily targeted by malware. 

 

3.2   System Call Differentiation 
Another candidate for indirection are system call conventions, 
which specify a system call identifier generally passed using a 
specific data register. System calls can be used to manipulate files, 
memory or process permissions, and can be compromised by 
malware that changes the system call identifier prior to execution. 
System calls are implemented by jumping to a function in the 
operating system (entSys() in Linux), which then uses the system 
call identifier to index into a jump table to the correct handler 
function. We thus have the same basic approach as with the RAT. 
Differentiation of the table (the sys_call_table in Linux) will 
provide a different mapping of system call identifiers to handler 
functions for each system (not each application) at no additional 
overhead. The only requirement to perform system call 
differentiation is to permute the entries in the sys_call_table and 
update any system calls in the applications. It is quite rare for an 
application to directly reference a system call since almost all calls 
are performed in the standard systems libraries (libC and others). 
This simplifies the differentiation process. Of course, this 
approach means that all applications running on the system share 
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Figure 2. Secure Return Code Sequence 
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the same system call identifiers. This is likely not a problem since 
viruses tend to propagate by infecting the same application on 
different systems, not by attacking different applications on the 
same system. However, by duplicating the sys_call_table for each 
process, differentiation can be performed for each process on the 
same system. The only additional requirement is an increase in the 
stored state of the process and de-referencing of the process table 
pointer in entSys(). This approach again provides a level of 
indirection that requires an attacker to now gain access to a 
particular executable's custom system call table in order to 
identify targets for control flow redirection. Furthermore, the 
custom sys_call_table can be pruned to only contain those used 
by the particular program, reducing malware ability to initiate 
unexpected system calls. Figure 3 depicts the general process of 
accessing the lookup table containing the system call specifier, 
which ultimately results in one additional function call and one 
additional load from a table in memory. Normally a register 
contains the identifier for the system call to perform. We would 
differentiate modules by replacing the identifier with an index into 
the system call lookup table. 
 

3.3  ISA Differentiation 
The final modification to support differentiation provides the 
strongest level of protection. Instructions can be obfuscated by 
using a level of indirection in the decoding of instructions fetched 
from memory. This enables a portion of the Instruction Set 
Architecture (ISA) encoding to be changed for each program 
instance while leaving instruction execution unchanged. Keeping 
the decoded/executed instruction stream the same allows software 
engineers to more easily maintain an application, since any 
version can theoretically be transformed into a different version 
by applying the appropriate mapping of indirection specifiers. 
This facilitates the debugging and patching of differentiated 
executables, a task easily achievable using previous techniques. 
There have been several possible approaches for indirectly 
accessing instructions that could support differentiation. 
Computational accelerators fuse multiple operations into single 
operations by providing a programmable set of functional units 
[3]. An accelerator could be configured to use only simple 
instructions with a specific new opcode/operand encoding that 
could vary amongst differentiated executables. The FITS system 
allows for mapping of an ISA, customized for a particular 
executable, to a configurable processor [2]. The programmability 
of opcode and operand decoders in FITS allows for their 
permutation in the instructions supported by the ISA. Both, 
however, have drawbacks in either potential performance 
penalties or increased implementation time. 
 
Ultimately, a most attractive option is instruction packing, a 
technique that can be readily adapted to provide differentiation at 
the hardware instruction level [14]. This technique promotes 
frequently occurring static and/or dynamic instructions into 

instruction registers, 
which can then be 
indexed for execution by 
using just a few bits. The 
small size of these indices 
allows multiple such 
references to be "packed" 
together into a single 32-
bit instruction. 
Parameterization of 
register numbers and 
immediate values 
increases the number of 
instructions that can be promoted. This reduces code size and 
improves energy efficiency, as the Instruction Register File (IRF) 
requires less power to access than the instruction cache. Using 
instruction packing, the indices of the packed instructions can be 
permuted to generate new executables. With a 32-entry IRF (and 
one instruction register reserved for a nop), there are 31! possible 
permutations, leading to quite a large space for differentiation of a 
single application. Figure 4 shows an example program being 
permuted within the IRF. The four instructions are mapped into 
the IRF and the appropriate identifiers are specified for the packed 
instruction. Since we only have four instructions to pack together, 
the fifth slot is mapped to the nop, which need not necessarily be 
at entry 0. Packing instructions with an IRF is also the least 
intrusive solution, as it requires the fewest changes to the baseline 
ISA. The tightly packed instruction format can be supported using 
just a few spare opcodes in almost any existing ISA. An IRF 
needs to be added to the pipeline, and the fetch and decode stages 
need to be modified to be able to fetch instructions from it. 
Instructions are placed in the IRF at load-time for an application, 
and must be restored on context switches. This allows separate 
applications to have completely different IRF entries. Instruction 
packing clearly satisfies all of the necessary requirements for 
providing an easily permuted instruction indirection scheme. 
Furthermore, the additional energy and code size savings (with no 
performance overhead) make this technique even more attractive 
for implementing hardware instruction level differentiation, 
especially on restrictive embedded systems. The IRF structure 
also allows for scalability, balancing the size of the IRF with the 
amount of differentiation desired. [14]. 
 
Using an IRF to support differentiation also provides an 
additional benefit for protecting code from malware. Since the 
IRF provides a totally independent way to specify the instructions 
that reside within it, it is possible to disallow those instructions 
from being fetched directly from the memory system. So if we 
always promote certain critical instruction into the IRF, then we 
can execute the processor in a safe mode that would not decode 
those actual instructions when being fetched from the memory 
system. By targeting syscall, call, return, adds to the stack pointer 
and short conditional branches, it becomes difficult for any 
payload malware to perform critical, or even common, 
instructions without identifying the IRF permutation.  
Additionally, empty IRF operands can be used to verify proper 
control flow with the inclusion of a simple validating state 
machine in the beginning of the processor pipeline. This could be 
as simple as requiring some parity calculation for the instructions. 
This has little or no impact on application performance, and while 
the virus can replicate the calculation, each instance of the 
application can use the free IRF encodings for different validation 
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# $26 holds value originally passed as return address 
# isolate bits 12-3 to get a 1k address to a quadword 
# maximum literal size is 255, so shift left then right 
# must be quad word aligned so zero right 3 bits 
srl $26,3,$26    # >> 3 to get on quad boundary 
sll $26,57,$26   # << 3 then 54 to isolate ten bits 
srl $26,54,$26   # >> to get 10 bits pos [12-3] 
 
# load from return address table 
# base of table+index must also be offset from bp $29 
 
addq $26,$29,$26 # add base pointer to index 
 
# add table offset to base+index 
ldq $26,ratable($26) !literal    
 
# perform return using retrieved address 
ret $31,($26),1 

Figure 5. Return Address Post-Processing 

checks. For the malware to propagate, the virus must correctly 
handle an arbitrarily large number of validation checks.  Again, 
this technique offers scalability in an embedded system up to the 
level of desired or allowable protection. 
 

3.4   Intrusion Detection with Differentiation 
We also propose developing a variety of small state machines that 
monitor some identifiable pattern of behavior of the application, 
such as sequences of system calls or numbers of arguments in 
function calls within a program (Micro State Machines). These 
micro state machines can be defined at compile-time or load-time, 
and ultimately can be easily implemented in hardware without any 
effect on the pipelined instructions of a software program. A wide 
variety of micro state machines can be made available, executed 
by referencing an index from within a software executable. These 
include any state monitoring patterns proposed in the previous 
literature. By requiring a program to execute any or all of these 
micro state machines, the integrity of program behavior can be 
checked outside of the regular program execution. Given the wide 
variety of small state transitions that can be monitored, 
differentiation is introduced into applications by varying the 
particular micro state machine called for a given executable 
version and/or varying the order of calling multiple micro state 
machines. Indeed, each application instance may only need to 
verify one aspect of the entire state monitoring problem, with 
variation of which micro state machine is implemented in any 
given instance. This comes with no direct performance penalty 
and forces an attacker to have to understand and thwart the 
monitoring of a large number of state transition behaviors. The 
possible combinations of state monitoring are ideally too large for 
any malware to comprehensively determine, and the act of 
attempting to do so is a detectable behavior pattern that can be 
further used to identify the presence of malware. 
 
The variable selection of micro state machine types and quantity 
again aids embedded system designers by providing a scalable 
defense method.  Increasing the number of micro state machines 
results in a smooth increase in the level of defense.  The number 
can be increased up to the desired defense level, or as is more 
likely the case up to the limit of available resources for defense. 
Ideally, if an IRF is employed the unused slots in non-fully 
packed instructions are perfect locations for placing the triggers or 
counters for implementing such micro state machines. These 
triggers can be sought during the pipeline fetch phase with no 
direct penalty on the application processing performance. 

 

4.  EVALUATION 
We have thus proposed several methods for implementing 
differentiation of software executables using hardware support. To 
perform an initial test of the worst-case effect on performance of 
our approaches we developed software versions of two of the 
approaches, implementing both a Return Address Table (RAT) 
and a Linux kernel modification implementing system call 
indirection, targeting binaries to the Alpha architecture. Both were 
evaluated using the M5 Simulator, a modular platform for 
computer system architecture research, encompassing system-
level architecture as well as processor microarchitecture [33].  M5 
supports the Alpha architecture and has a system-call emulation 
mode that can simulate Alpha binaries. Moreover, M5 provides a 
full system simulator that models a DEC Tsunami system in 
sufficient detail to boot a Linux kernel. We specifically used the 

M5 full system simulator to evaluate the results of our Linux 
kernel modifications to support system call indirection. 

 

4.1   Function Call Return Address 
Our actual implementation of the RAT involved modification of a 
GCC version 4.0.2 cross-compiler installation using glib version 
2.3.6., configured to produce Alpha executables. We inserted a 
program in between the compilation and assembly stages (just 
before the execution of the as assembler program), which post-
processed all return (ret) instructions in user code to rewrite the 
program assembly. In addition, an array to hold return addresses 
was linked in with every executable program. The address 
retrieved from the stack as the "return address" is actually treated 
as an index into the RAT. Logical shift instructions are inserted in 
order to isolate the portion of the address representing the index. 
The resulting index is then combined with the base pointer and 
offset of the starting point of the RAT. A single load instruction is 
then inserted to retrieve the actual return address to be used. The 
resulting post-processed Alpha assembly file can then be 
assembled and linked by the remaining GCC compile chain.  
 
In Alpha assembly ret instructions use a return address stored by 
convention in register $26. Figure 5 shows the assembly added by 
our post-processing application to replace the normal ret 
instruction. The value being passed through register $26 is now an 
index into our 
RAT, which we 
implemented 
with 1024 
entries. Since 
the maximum 
literal size in 
Alpha assembly 
is 255, we use 
logical shifts to 
isolate ten bits 
in position 12-
3, zeroing the 
three least-
significant bits 
since the index 
must be quad-
word aligned. 
Once the index 
is identified, it Figure 6. Return Address Table Simulation 



Figure 7. System Call Handler Code 

entSys: 
    SAVE_ALL 
    lda     $8, 0x3fff 
    bic     $sp, $8, $8 
    lda     $4, NR_SYSCALLS($31) 
    stq     $16, SP_OFF+24($sp) 
    /* remove (lda $5, sys_call_table) */ 
    /* we obtain system call elsewhere */ 
    lda     $27, sys_ni_syscall 
    cmpult  $0, $4, $4 
    ldl     $3, TI_FLAGS($8) 
    stq     $17, SP_OFF+32($sp) 
    /* remove (s8addq  $0, $5, $5) 
    /* since no offset */ 
    stq     $18, SP_OFF+40($sp) 
    blbs    $3, strace 
    beq     $4, 1f 
 
    /* set first argument to the offset */ 
    /* (register saved by SAVE_ALL) */ 
    addq    $31, $0, $16 
    /* load retrieval function and call it */ 
    /* register $0 will then have actual index */ 
    lda     $27, get_cur_sys_tbl 
1:  jsr     $26, ($27), alpha_ni_syscall 
    /* restore first argument */ 
    ldq     $16, 160($sp); 
 
    /* use register $27 to make system call.*/ 
    addq    $0, $31, $27 
    jsr     $26, ($27), alpha_ni_syscall 
    ldgp    $gp, 0($26) 
    blt     $0, $syscall_error  /* call failed */ 
    stq     $0, 0($sp) 
    stq     $31, 72($sp)   /* a3=0 => no error */ 
       . . . 

is added to the base address of our RAT as well as the base 
pointer to obtain the location in memory from which to retrieve 
the actual return address. A simple return is now performed, with 
register $26 now containing the actual return address as retrieved 
from the RAT. Differentiation of multiple software executable 
versions is achieved by permuting the order of return addresses in 
the table. 
 
We compiled several benchmarks from the MiBench benchmark 
suite [12] using our modified GCC compiler and executed them, 
verifying their essential correctness. The resulting increases in 
instruction count and committed loads are presented in Figure 6.  
Instruction count increased by only 1.04% on average, with this 
including a single outlying increase of 4.32% for the Telecomm 
benchmarks. Among the other benchmarks the highest increase 
was only 0.31%. The increase in loads showed somewhat similar 
behavior, with an average increase of 3.38%, which includes two 
extreme cases of a 7.75% and 8.13% increase for the Office and 
Telecomm benchmarks respectively. Among the remaining 
benchmarks the highest increase was just under 0.6%. 

 

4.2   System Calls 
Our actual implementation for system call differentiation involved 
modification of the Linux 2.6.13 kernel distribution provided with 
the M5 simulator. Each running process is associated with a 
task_struct, which is defined in the scheduler. We modified the 
scheduler to include an array that would hold a unique copy of the 
system call table for each process, which is populated when a new 
process is created. Since the actual handling of system calls 
occurs in assembly routines, we added a function to the scheduler 
that is visible from the assembly language routines and that 
returns entries from the system call table. We modified the system 
call handler to use the current system call specifier (normally an 
index into the default system call table) and pass it to our 
function. The function uses the value as an index into the system 
call table for the currently running process and returns the 
corresponding actual system call specifier, which is then used to 
make the system call. The most significant changes needed for 
implementation of system call tables involve modification of the 
system call handler assembly routine. Figure 7 shows the 
modifications to the applicable assembly source file in the Linux 
kernel (new code italicized). Originally the system call identifier 
(an index into the original system call table) is passed through 
register $31, but now the register contains an index into the 
system call table for the currently running process. We set this 
index as an argument and call the get_cur_sys_tbl function we 
created in the scheduler to obtain the system call table from the 
currently executing process and retrieve the correct system call 
identifier corresponding to the index argument. The retrieved 
system call identifier is then used to dispatch a system call in the 
normal fashion. Differentiation can be achieved by permuting the 
system call table contents for each process, thus changing all the 
system call specifiers used within the actual machine language of 
each executable version.  The functional behavior of each 
executable is unaffected, since any two permutations of system 
call tables will ultimately result in the same actual function call 
being executed at the same points in the control flow. 
 
We ran unmodified, Alpha-compiled versions of several MiBench 
benchmarks in the M5 simulator using the modified Linux kernel 

with system call implementation. Using a separate system call 
table per process entails some increase in loads due to the work 
required to retrieve the system call table from the running process. 
The average increases in committed loads are provided in Figure 
8, which is nominal at 0.15%, with Office benchmarks having the 
highest average increase of 0.51%. This can be attributed to the 
relative infrequency of system calls in typical applications. For 
this reason we did not include any figures for the negligible to 
undetectable change in execution time. This is to be expected 
given this infrequency as well as the large amount of work 
performed during a system call compared to the small amount of 
work from our few additional loads. 

 

4.3   Instruction Level Indirection 
Implementing instruction level indirection will require the 
addition of an IRF and its associated instruction extensions to the 
processor along with modification of the compiler to support 
instruction packing. The actual permuting of the contents of the 
IRF randomly at compile/link-time is a simple operation. Since 
the IRF is relatively performance-neutral, the resulting processor 
design will feature reduced application code size, improved 
energy efficiency, and an increased resistance to malware 
propagation. Previous application of instruction packing on these 
MiBench benchmarks has shown an energy savings of 15.8% with 
a corresponding code size reduction of 26.8%. This is for a 4-
window 32-entry IRF that seeks to maximize code density both 
statically and dynamically. Reserving a few unused instruction 
registers to trigger micro state machines minimally impacts the 
overall improvements provided by instruction packing. Reserving 
5 additional slots (beyond the one for nop) results in a code size 
reduction of 24.2% and a corresponding energy reduction of 
14.9%. Average execution time is within 0.3% of the original 



Figure 8. System Call Table Simulation 

case. The vast 
majority of 
tightly packed 
instructions do 
not utilize all 5 
slots, and thus 
there is ample 
room to extend 
these 
instructions 
with references 
to micro state 
machine 
changing operations. Simultaneously, not all instructions that 
feature a loosely packed instruction field can actually make use of 
that available storage area. Having micro state operations fill these 
slots prevents any additional code size increase or execution time 
increase by providing a simply-decoded mechanism for modifying 
intrusion detection state machines. In extremely rare stretches of 
code that are very densely packed with few free slots, additional 
tightly or loosely packed instructions can be inserted to trigger the 
appropriate state changes, thus keeping our mechanism applicable 
to all software applications. 

 

5.  RELATED WORK 
The cell phone industry has seen growing concern over security in 
phone applications and hardening against viruses and other 
malware. The Symbian Signed initiative offers to digitally “sign” 
applications for use on Symbian OS devices [31]. This may help 
to verify participating software integrity but only at increased 
development cost and complexity. Certification systems lack 
scalability as the quantity of code produced in successful 
application development inevitably outstrips review resources. 
Ultimately malware may infiltrate a system through means other 
than a user’s active installation. The real goal is to limit malicious 
behavior with the assumption that malware will eventually have a 
chance to execute. 
 
Many techniques have been proposed to defend against buffer 
overflow attacks, including implementation of non-executable 
stack areas [25], placement of canary marker values on the stack 
[5], encryption of pointer values in memory [4]. The approaches 
entail various levels of effectiveness and performance impact, and 
have various shortcomings including the failure to actually 
implement such defenses, such as the lack of a non-executable 
heap on the Apple iPhone Mac OS X system [18, 13]. Auditing 
code to identify common vulnerabilities, either by hand [9, 24], or 
by automated methods [7, 37], has proven prohibitively costly 
[16, 10]. Indeed, writing correct code seems the most difficult 
defense to implement, with United States Computer Emergency 
Readiness Team (US-CERT) statistics showing an increase from 
1,090 vulnerabilities reported in 2000 to over 4,200 in the first 
three quarters of 2005 alone [34]. Intrusion Detection Systems 
(IDS) have focused on monitoring system behavior to detect 
violations of security policy, with the goal of terminating suspect 
anomalous behavior [15]. The Address Space Layout 
Randomization (ASLR) technique, used in the PaX Linux kernel 
patch, looks to randomize code footprint by inserting random 
memory gaps before areas such as the stack and heap base. 
Attacks become less likely to successfully execute and more 
detectable due to the behavior pattern of failed attacks [26]. 

However, methods for defeating ASLR protection have been 
proposed, including adding a nop slide to the beginning of a stack 
attack payload to promote its landing within the target area, or use 
of format string bugs to have a printf() call report stack frame 
contents to determine the actual stack base offset [6]. The number 
of randomized bits used in an ASLR scheme can be effectively 
reduced by only targeting the 16-bit mmap() base randomization, 
thus allowing for a tractable attack solution [28]. SHARK 
provides architectural support for protection from Rootkits [35]. 
By generating Process Identifiers (PID) in hardware and then 
encrypting page tables, SHARK attempts to prevent compromised 
operating systems from running malicious code. Program 
differentiation differs in that SHARK attempts to provide a single 
wall of protection, while Program Differentiation provides a 
Defense-in-Depth approach. Defense-in-Depth adds to overall 
defense since, if an attacker manages to break the security on one 
machine, the attack will not be spread to others. Furthermore, 
SHARK requires a significant architectural addition, while a 
significant portion of Program Differentiation can be implemented 
in software. In fact, program differentiation works well in 
combination with other protection schemes. Overall security is 
enhanced with any new hardware or software protection 
mechanism since it must be exploited for virus propagation to 
occur. Not only can other protections exist independently of our 
proposed differentiation schemes, the methodology of 
differentiation may be readily applied to other protection 
mechanism to make propagation even more challenging. Other 
related research has attempted to analogize software defense to 
biological immune defense systems. Natural immune systems are 
designed to operate in an imperfect, uncontrolled, open 
environments, analogous to computer environments, and immune 
system principles such as distributability of response, multi-
layered defense responsibility and diversity, might be applied to 
computer systems to increase security [29]. Proposed 
diversification methods have included random addition of 
nonfunctional code, reordering of code, and various software and 
system transformations [8]. 
 

6.  CONCLUSIONS 
While vulnerabilities in software systems will continue to invite 
new malware attacks, we believe that proper mitigation techniques 
can reduce the impact of these attacks. Towards this goal, we 
propose expanding our current malware defense focus from the 
traditional approaches of absolute attack prevention to include 
efforts toward preventing malware propagation. By differentiating 
software program executables, we seek to thwart malware 
propagation when a vulnerability exists in a given software 
application. This is accomplished through virtualizing the control 
flow of the application, enabling function call/return and system 
call semantics to be permuted into unique versions for each 
application instance. We also show how an existing processor 
design utilizing an Instruction Register File (IRF) can achieve 
further security though the use of differentiation of instructions in 
the IRF as well as by restricting vital instructions from being 
fetched directly from memory. We show that these techniques 
require minimal overhead with respect to increased memory 
footprint and execution time. In worst-case software simulations 
of our control flow differentiation method using function calls and 
returns we found only a 1.04% average increase in instruction 
count and 3.38% average increase in loads. In software simulation 
of a Linux kernel implementing a per process system call table the 



increase in committed loads is nominal at 0.15%. Automation by 
the compiler and implementation of actual simple hardware 
support structures can ultimately result in little to no performance 
degradation for such differentiation. The benefits of the minimal 
performance impact of our techniques, as well as their scalability, 
are ideal for embedded systems. These techniques can be 
implemented in whatever quantities are desired or allowable in a 
system without draining precious performance resources in the 
pursuit of defense. Current trends show that software programs 
will continue to possess vulnerabilities that are discoverable by 
attackers. However, inherent in differentiation is the targeting of 
the economics of malware, making profitable high-impact attacks 
prohibitively expensive and infeasible.  While we accept that there 
may be successful attacks on any single distributed executable 
version, by dramatically increasing the ratio of effort to damage 
scope, attackers incur a substantial disincentive to developing 
malware even in the presence of an exploitable software 
vulnerability. This research was supported in part by NSF grants 
CNS-0615085 and CNS-0915926. 
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