Program Differentiation
Daniel Chang, Stephen Hines, Paul West, Gary Tyson, David Whalley

Florida State University
Tallahassee, Florida 32306-4530

{dchang, hines, west, tyson, whalley}@cs.fsu.edu

ABSTRACT

Mobile electronics are undergoing a convergencefooferly

multiple dedicated-application devices into a stnglogrammable
device — the smart phone. The programmability eEénhdevices
increases their vulnerability to malicious attaktkthis paper, we
propose a new malware management system that seekse

program differentiation to reduce the propagatidnmalware

when a software vulnerability exists. By modifyiagpects of the
application control flow, we allow portions of arpgdication

executable to be permuted into unique versions dach

distributed instance. Differentiation is achievesing hardware
and systems software modifications that are amené&bland
scalable in embedded systems. Our initial areasnfadification

include function call/return and system call sertantas well as a
hardware-supported Instruction Register File. Défaiation of

executables hinders analysis for vulnerabilitiesvall as prevents
vulnerability exploitation in a single distributegersion from

propagating to other instances of that applicat@omputational
demands on any instance of the application aremized, while

the resources required to attack multiple systerosg with the

number of systems attacked. By focusing on presantdf

malware propagation in addition to traditional dbs® defenses,
we target the economics of malware in order to maftacks
prohibitively expensive and infeasible.

Categories and Subject Descriptors

D.4.6 [Operating Systems|: Security and Protection Access
controls, Information flow controls, Invasive software, Security
kernels.

General Terms
Algorithms, Design, Security

Keywords
Program differentiation, Malware prevention and igaition,
Return address indirection, System call indirection

1. INTRODUCTION

Like general purpose computing systems, mobileagsvand the
software loaded on these devices are subject twstdi security
threats and malicious software (malware) attacke do
vulnerabilities in their coding. Solutions to pretieg malware
become more challenging as the complexity and dnterectivity

Permission to make digital or fthcopies of all or part of this work °
personal or classroom use is granted without feeiged that copies &
not made or distributed for profit or commercialvadtage and th
copies bear this notice and the full citation oe fhist page. To coj
otherwise, to republish, to post on servers orddistribute to list:
requires prior specific permission and/or a fee.

INTERACT-14, March 13, 2001, Pittsburgh, PA, USA

Copyright (c) 2010 ACM 978-1-60558-921-3/10/03..08b

of these systems increase [34]. The increasinglypbex software
systems used in modern smart phones contain mees fir

potential vulnerabilities, a problem exacerbatedagslication
developers continue to integrate third party soféaaith plugins

for such user applications as web browsers anctlseargines.
Recent exploitations of Google Desktop, Microsofitetnet
Explorer, and MobileSafari on the Apple iPhone aramples
[23, 22, 11, 19, 18, 13]. Rootkits are a grave eomaue to their
tenacity, detrimental effect on systems, and diffidletection.
Typically they target kernel vulnerabilities to éat system-level
programs and to conceal their existence. The roafiplications
themselves include key loggers, network sniffers] a staging
system to launch other attacks like Denial-of-Ssrvand more.
The primary use of Rootkits is to inject malwared &o collect
sensitive user information. This is especially peofatic for

mobile devices that are increasingly used to gtorate data.

Traditional approaches have sought to provide asolate
defense to specific malware attacks by patchingtwsoé
vulnerabilities or detecting and blocking malwag&§ [25, 5, 4,
15]. However, the current situation represents egg@mmatic
arms race between the patching of existing vulriitiab and the
exploitation of new ones. Despite increased awagne
vulnerabilities continue to be produced, as obskimeVicAffee's
position paper citing Windows Vista as being lessuse than its
predecessors [17, 21, 32]. Most recently, the nediifMac OS X
system on the Apple iPhone fails to even implemeidely
accepted best practices such as a non-executadypedneaddress
randomization of memory area starting locations, [118].
Ultimately vulnerabilities will be found and malvearwill go
undetected long enough to exploit such. We proosiferent
approach to managing malware based on limitingathiéity of
viruses to propagate even in the presence of uonbsed
software vulnerabilities. When used in conjunctiosith
traditional malware defenses, this approach grdatiyeases the
difficulty and cost for malware developers to explo
vulnerabilities across a wide range of vulnerablestens.
Mitigation through the use of program differenteti has an
analogue in biological systems, which not only pres attack
will occur but in fact have well-known, openly \b&
vulnerabilities [29, 8]. Beyond protective walldplogical entities
also rely on a system that mitigates subsequenifgredion of
biological attacks. Biological systems defend badh the
individual level and the population level. While tiavirus

Source Differentiator Differentiated
Application (Call/Return, Syscall, Executables

Hardware

Config
Database

Figure 1. Softwar e Differentiation Workflow

software can convey individual system protectiteytdo nothing
to limit the rapid propagation of new viruses asrasarge set of
homogeneous application code [38, 20]. The coiczldtetween
malware propagation and resulting damage leads w¢plore
mitigating attacks by thwarting the propagation.odtam

differentiation seeks to make each executable restaof an
application unique. There are various ways of achgethis in

software. One simple method would be to invoke edéft

compiler transformations, or a different transfotior ordering,

to obtain different versions of the same applicatidowever, this
approach has two problems that make it infeasiblest, the

vulnerable portions of the application must be dnes affected
and there is no way to guarantee those unknownevaihilities

are modified by this differentiation approach. Heeond problem
is a more severe software engineering one. Multilikinct

versions of the same program code can be difftoutroduce and
highly impractical to maintain and update; subtésare errors
in an application will likely change behavior inlpra subset of
differentiated versions. Performance may also diffedely

between instances of the program. A solution isdedethat
differentiates program executables while preservimggram

semantics and control flow, and maintaining a @ingide profile
for maintenance. We propose changes in hardwarposufor

control flow instructions to achieve differentiatidghat changes
the binary representation of applications withobarging the
execution order of instructions in the processgrefime. The
hardware modifications change how functions ardedaland

returned), how system calls are specified and hustractions
fetched from memory are interpreted. This preverie

propagation of viruses by making each instance wiilaerable
application sufficiently different to require a rtdaial mutation

of malware code for each infection. Figure 1 deptbie general
workflow of our proposed methodology. Different@tican occur
before distribution, during initial configurationr @ven at load
time for each invocation of the application. Whesreperformed,
differentiation modifies the original applicationsing an

undifferentiated instance and a configuration dasab generating
a potentially unique executable for each applicaiistance.

2. SOFTWARE EXPLOITS

Vulnerabilities in software have not only proversity, but are
continually increasing in number [34]. They can beadly
separated into processor architecture exploits laigtier-level
software exploits that are independent of the taagehitecture.
High-level techniques are generally attacks on tirgitings that
are interpreted within a source level interpretethie application,
such as overwriting of an SQL command string with a
unauthorized set of commands to compromise thebds¢a
system. Mitigation of such attacks must be handigd the
application and further coverage is outside thepscof this
paper’s processor-level security systems. By famtiost common
security exploits related to processor architectare buffer
overflow attacks, which overwrite memory locations/ulnerable
applications [5, 30]. These attacks exploit vulbdies in the
control flow conventions of the target architecttmegain control
of system resources. The vulnerabilities exploigdthe highly
prolific Code Red worm and recently discovered fie tApple
iPhone browser are examples of buffer overflow etdibilities
[38, 20, 18, 1]. These attacks require an intinoggerstanding of
the program code, including data and program obfsztions,
branching, and address usage. The attack requiresitaounded

input buffer, used to insert a payload of malicimesle, and a
vulnerability that allows the control flow to exdeuthe payload
code. Unfortunately, distribution of identical vierss of a
software executable facilitates propagation of ecsssful attack;
once a vulnerability is found and exploited thaeittis applicable
to every other distributed instance. It is this coonality that
allowed the 2001 Code Red worm (CRv2), which exptbia
vulnerability in Windows NT and Windows 2000 opémngt
systems, to infect more than 359,000 Internet médion Servers
on the Internet in less than 14 hours [38, 20].idaiion
techniques, such as hardware restrictions thablkdisxecution of
code from within the stack region of memory, seeleliminate
the vulnerability. Unfortunately, there are bufererflow variants
that do not require the insertion of payload cdug,instead jump
to existing routines in the application to comprsenthe system.
Commonly referred to asturn-to-libc attacks, the target address
in the application code is often a library routitte manipulate
systems components (such as to invoke a shellleredies).

Moreover, despite advances in security methodotogiesoftware
development the prevalence of software vulneraslitontinues
to grow. This trend will likely continue as softwarsystems
become more numerous and complex. Greater opptesirfor
new vulnerabilities arise from the tremendous gtowt high-
demand, third-party software applications that hequ
administrative privileges or trusted access. Thedbo Desktop
application demonstrated several vulnerabilities uger-level
software that had system-level implications. A fldiscovered in
December 2004 allowed malicious websites to illiciead local
search results from a target machine [23, 22]. folhewing year,
a flaw in the Internet Explorer web browser combudineith
Google Desktop allowed an attacker to retrievegtewiser data
or even execute operations on remote domains while
impersonating the user [11, 19]. The extreme iratgn of third-
party applications is another growing threat, analestrated by
the recent discovery of a buffer overflow vulneli#piin the
MobileSafari browser on the new Apple iPhone [T8jrough the
exploit, a malicious web site could deliver a pagldhat allowed
access to and transmission of any phone data Tt#.threat of
malware on cell phones has loomed large in the fpasyears as
they increase in computational power. Now that modeell
phones are simply full-fledged computer systemy tire subject
to computer system threats, only at much largdriligion scale
[27]. Unfortunately, current anti-virus support Isnited to
identifying existing vulnerabilities or a few rested patterns of
attack. This approach means that systems secugitglways
lagging behind the discovery of new vulnerabilitiead fast
propagation can defeat even the most active maldafense.
Differentiation offers the promise of either elirating or
significantly slowing propagation independent ot thype of
software vulnerability exploited. Used in conjuocti with
existing mitigation techniques, program differetitin provides
the strongest deterrent to the spread of futurevaral

3. DIFFERENTIATION SOURCES

The goal of differentiation is to restructure eanhktance of an
application in a manner that makes the exploitatérinherent
vulnerabilities in either the application or exéontenvironment
more difficult. At the same time, the implementatiof a
differentiation technique should not hinder appglma
maintenance, change functional behavior, or resultiramatic

performance differences between instances. Patlgulin

embedded systems, the ideal differentiation teckmihould have
minimal to no impact on performance and be scalablehe

available resource budget. Finally, the overheaguired to

support differentiation should be minimal in botpase and
execution time. We propose three independent nmésing to
provide differentiation using a combination of haede and
software techniques. Each of these techniquezegilindirection
and by permuting indices supports differentiatidhe first two

schemes manipulate function call and system caibséics using
both hardware and software modifications. The trécheme
modifies how instructions are interpreted when Hett from

memory and provides additional restrictions on akea of the
most vulnerable instructions. These mechanisms nate only

orthogonal to each other, but can be used in catipm with all

other available protection schemes.

3.2 Return Address Differentiation

Our first approach is to introduce a level of irdtion into the
function call return address stored on the stablk. fBturn address
is the typical target of buffer overflow attackshieh attempt to
overwrite the address to point to a payload pldcethe buffer.
By replacing the return address with an index tatde of return
addresses, we prevent the injection of a directesddand instead
force the attacker to analyze the behavior of tee mReturn
Address Table (RAT). This requires modificationfafiction call
and return semantics to access the return addnesagh the
RAT. Function calls must utilize a register to péss index in
much the same manner as the return address imtturpassed.
The return instruction must be modified to useitigex to load
the return address from the RAT before jumpingh®inhstruction
following the function call. Any buffer overflow wid now
override the RAT index. Without knowledge of thedering of
return addresses in the read-only RAT, the attac&erronly jump
to a random return address location in the existiode. With
some modification to memory management accessatiie itself
can be marked unreadable by all instructions exdepttion
return. This removes code inspection from the aiserf the
malware attack. Statistical attacks using randodicas can be
thwarted by increasing the size of the RAT. Thet quad is a
fixed increase in storage requirements for thernetddress table
and a slight performance penalty on each funct&nrn due to
the required table lookup. Instruction set modifimas include
the call or jalr instructions andet. Calling conventions replace
the automatic movement of the program counter Fa& mext
instruction (generallyPC+4) with an index specifying the RAT
entry containing the address of the next instructidhis is
performed by an additional instruction, though iany cases this
additional instruction is loop invariant and cangtbe performed
much less often than the function call. The cadtrimction could
be totally eliminated; however, this would have licgtions on

Stack with Indices

r1
load r1,[sp] 0x13 4—t ox13
RAT (Read-Onl
and ri,r1,0x3ff 0x13 (Read-Oniv)
0x12
load r1, [r1] OxF..3A 4&— OxF..3A 0x13
junp r1l OxF. . 3A

Figure 2. Secure Return Code Sequence

micro-architectural resources like the return adslrestack.
Remaining calling conventions remain unchanged. Tke
instruction is modified to first read the index diffe stack, and
then use the index to load the return address fhenRAT. In a
load-store architecture, this would be performed by multiple
instructions. In either case, the performance imp@dess than
expected since the branch prediction will continoiautilize the
return address stack, which generally containgtine=ct address.

Modifications to the function return code sequeaceoutlined in
Figure 2. The return behavior is updated to: Ijge¢ the index
from the program stack; 2) access the RAT to obtlaénreturn
address; and then 3) jump to the return address RAT itself is
made read-only, and in retrieving the return adgirbeunds
checking can be imposed by using logical instrurtito mask the
index value and prevent the use of any out-of-randiees. Even
a small number of RAT entries results in a comhriat number
of permutations. This directly attacks the econenaita malware
attack, making a random attack extremely unlikelptoduce any
useful predictable behavior and grossly thwartihg ability to
have a wide-ranging impact with a single systerachtt For the
attacker who wishes to analyze software or a systeimprove
malware success and propagation, the permutatiompleaity
elicits a signature analysis behavior that is gaddtectable by
traditional intrusion detection systems. Still, ®oepnsideration
must be given to the use of shared library routir®sce these
functions are shared by different applicationseacaust be taken
when using any process resources, particularlyRA&. If all
system processes use the differentiation callinventions then
libraries pose no difficulties; RAT indices are knaed in the
context of a process and each process containsgaieuiRAT.
Returns from library functions would still use thelex into the
process RAT and jump to the correct location. Bystem where
not all applications use differentiation call setizs) the return
from a library function would then be undifferenéd, using the
return address on the stack and jumping to thescblocation.
This mixed environment does not offer the same lleve
protection as a fully differentiated executable;whwger, only
library routines are left vulnerable and ideallgyhwould tend to
be a more stable code base not as easily targgtedloare.

3.2 System Call Differentiation

Another candidate for indirection are system cahwentions,
which specify a system call identifier generallysped using a
specific data register. System calls can be usetatdpulate files,
memory or process permissions, and can be compedmy
malware that changes the system call identifiesrpgo execution.
System calls are implemented by jumping to a famctin the
operating systemefitSys() in Linux), which then uses the system
call identifier to index into a jump table to thereect handler
function. We thus have the same basic approaclithgive RAT.
Differentiation of the table (theys call_table in Linux) will
provide a different mapping of system call ideeti§i to handler
functions for each system (not each applicatiomatdditional
overhead. The only requirement to perform systenil ca
differentiation is to permute the entries in gy call_table and
update any system calls in the applications. tuge rare for an
application to directly reference a system caltsianlmost all calls
are performed in the standard systems libratie€ (@nd others).
This simplifies the differentiation process. Of csel this
approach means that all applications running orsyiséem share

System Call Table
(Current Process)

[index] System Call Handler | |
Proc o [index] |
—

Execute System Call l _I
X! [syscall specifier X]

Figure 3. System Call Table L ookup

the same system call identifiers. This is likely agporoblem since
viruses tend to propagate by infecting the samdicgiipn on

different systems, not by attacking different apgiions on the
same system. However, by duplicating $i& call_table for each

process, differentiation can be performed for gaitess on the
same system. The only additional requirement imarease in the
stored state of the process and de-referencinigeopttocess table

pointer in entSys(). This approach again provides a level of

indirection that requires an attacker to now gaateas to a
particular executable's custom system call tableoider to
identify targets for control flow redirection. Fbermore, the

customsys call_table can be pruned to only contain those used

by the particular program, reducing malware abitity initiate
unexpected system calls. Figure 3 depicts the gepeocess of
accessing the lookup table containing the systelnspacifier,
which ultimately results in one additional functicall and one
additional load from a table in memory. Normallyregister
contains the identifier for the system call to perf. We would
differentiate modules by replacing the identifiathxan index into
the system call lookup table.

3.3 ISA Differentiation

The final modification to support differentiationrquides the
strongest level of protection. Instructions candiduscated by
using a level of indirection in the decoding oftimstions fetched
from memory. This enables a portion of the InsinrctSet
Architecture (ISA) encoding to be changed for egachgram
instance while leaving instruction execution unafeth Keeping
the decoded/executed instruction stream the sdowsasoftware
engineers to more easily maintain an applicatiances any
version can theoretically be transformed into ded#nt version
by applying the appropriate mapping of indirectispecifiers.
This facilitates the debugging and patching of edhtiated
executables, a task easily achievable using previechniques.
There have been several possible approaches fdredtig
accessing instructions that could support diffeetion.
Computational accelerators fuse multiple operatione single
operations by providing a programmable set of fiomat units
[3]. An accelerator could be configured to use oslyple
instructions with a specific new opcode/operandodimy that
could vary amongst differentiated executables. FHES system
allows for mapping of an ISA, customized for a [zartar
executable, to a configurable processor [2]. Treg@mmability
of opcode and operand decoders in FITS allows fairt
permutation in the instructions supported by thé.IBoth,
however, have drawbacks in either potential peréoree
penalties or increased implementation time.

Ultimately, a most attractive option is instructiggacking, a
technique that can be readily adapted to provifferdntiation at
the hardware instruction level [14]. This technigpemotes
frequently occurring static and/or dynamic instioies into

instruction registers, [program

which can then be]|. _IRF__
indexed for execution by |83 s
using just a few bits. The |muLss s« se
small size of these indices

allows multiple such
references to be "packed'

together into a single 32-

SUB §7, $5, $4

ADD $3, 84, $5

Packed Instruction

LDQ $2, 0($5)

bit instruction. T WOL 56, 54, %6
Parameterization of
register numbers and

immediate values Figure 4. Indirection with an IRF
increases the number o

instructions that can be promoted. This reduces cside and
improves energy efficiency, as the Instruction RegiFile (IRF)
requires less power to access than the instrucamme. Using
instruction packing, the indices of the packedringions can be
permuted to generate new executables. With a 32-&RF (and
one instruction register reserved fonap), there are 31! possible
permutations, leading to quite a large space fiferéntiation of a
single application. Figure 4 shows an example Enogbeing
permuted within the IRF. The four instructions amapped into
the IRF and the appropriate identifiers are spedifor the packed
instruction. Since we only have four instructiongack together,
the fifth slot is mapped to theop, which need not necessarily be
at entry 0. Packing instructions with an IRF isoathe least
intrusive solution, as it requires the fewest cleap the baseline
ISA. The tightly packed instruction format can lgorted using
just a few spare opcodes in almost any existing. I8A IRF
needs to be added to the pipeline, and the fetdldanode stages
need to be modified to be able to fetch instructidrom it.
Instructions are placed in the IRF at load-timedorapplication,
and must be restored on context switches. Thisvallseparate
applications to have completely different IRF esgrilnstruction
packing clearly satisfies all of the necessary irequents for
providing an easily permuted instruction indirenticcheme.
Furthermore, the additional energy and code sizimga (with no
performance overhead) make this technique even mitnactive
for implementing hardware instruction level diffetiation,
especially on restrictive embedded systems. The dRé&cture
also allows for scalability, balancing the sizetlod IRF with the
amount of differentiation desired. [14].

Using an IRF to support differentiation also prasd an
additional benefit for protecting code from malwag&ince the
IRF provides a totally independent way to spedify instructions
that reside within it, it is possible to disallowose instructions
from being fetched directly from the memory systedo. if we
always promote certain critical instruction intettRF, then we
can execute the processor in a safe mode that wmtldecode
those actual instructions when being fetched frowm tmemory
system. By targeting syscall, call, return, addth®stack pointer
and short conditional branches, it becomes diffidalr any
payload malware to perform critical, or even common
instructions without identifying the IRF permutatio
Additionally, empty IRF operands can be used tdfwerroper
control flow with the inclusion of a simple validlag state
machine in the beginning of the processor pipelifigs could be
as simple as requiring some parity calculationtffierinstructions.
This has little or no impact on application perfamoe, and while
the virus can replicate the calculation, each mstaof the
application can use the free IRF encodings foedtffit validation

checks. For the malware to propagate, the virust roosectly
handle an arbitrarily large number of validatiorecks. Again,
this technique offers scalability in an embeddestesy up to the
level of desired or allowable protection.

3.4 Intrusion Detection with Differentiation

We also propose developing a variety of small staehines that
monitor some identifiable pattern of behavior of #pplication,
such as sequences of system calls or numbers ofmargs in
function calls within a program (Micro State Maok®). These
micro state machines can be defined at compile-timead-time,
and ultimately can be easily implemented in haréweithout any
effect on the pipelined instructions of a softwaregram. A wide
variety of micro state machines can be made avajlaxecuted
by referencing an index from within a software exable. These
include any state monitoring patterns proposedhin pirevious
literature. By requiring a program to execute anyalb of these
micro state machines, the integrity of program b&fracan be
checked outside of the regular program executioversthe wide
variety of small state transitions that can be noyed,
differentiation is introduced into applications lwarying the
particular micro state machine called for a giverecaitable
version and/or varying the order of calling mukiphicro state
machines. Indeed, each application instance may peéd to
verify one aspect of the entire state monitoringbfem, with
variation of which micro state machine is implengehtin any
given instance. This comes with no direct perforoeapenalty
and forces an attacker to have to understand awdrththe
monitoring of a large number of state transitiomdsgors. The
possible combinations of state monitoring are igetab large for
any malware to comprehensively determine, and tbe od
attempting to do so is a detectable behavior patteat can be
further used to identify the presence of malware.

The variable selection of micro state machine tyged quantity
again aids embedded system designers by providisgakble
defense method. Increasing the number of micre stechines
results in a smooth increase in the level of deferiBhe number
can be increased up to the desired defense levas és more
likely the case up to the limit of available resms for defense.
Ideally, if an IRF is employed the unused slots nion-fully
packed instructions are perfect locations for plgd¢he triggers or
counters for implementing such micro state machirEsese
triggers can be sought during the pipeline fetchsghwith no
direct penalty on the application processing pemnforce.

4. EVALUATION

We have thus proposed several methods for implengent
differentiation of software executables using hasupport. To
perform an initial test of the worst-case effectpmrformance of
our approaches we developed software versions of divthe
approaches, implementing both a Return AddresseTERAT)
and a Linux kernel modification implementing systecall
indirection, targeting binaries to the Alpha arehitire. Both were
evaluated using the M5 Simulator, a modular platfofor
computer system architecture research, encompassistem-
level architecture as well as processor microaechire [33]. M5
supports the Alpha architecture and has a systdnewamlation
mode that can simulate Alpha binaries. Moreover, (M&vides a
full system simulator that models a DEC Tsunamiteysin
sufficient detail to boot a Linux kernel. We spexfly used the

$26 holds value originally passed as return address
isolate bits 12-3 to get a 1k address to a quadword
maximumliteral size is 255, so shift left then right
nust be quad word aligned so zero right 3 bits

srl $26, 3, $26 # >> 3 to get on quad boundary

sl $26,57, $26 # << 3 then 54 to isolate ten bits
srl $26,54,%$26 # >> to get 10 bits pos [12-3]

load fromreturn address table
base of tabl e+index nust also be offset frombp $29

addq $26, $29, $26 # add base pointer to index

add table offset to base+i ndex
I dg $26, ratabl e($26) !literal

performreturn using retrieved address
ret $31,(%$26),1

Figure 5. Return Address Post-Processing

M5 full system simulator to evaluate the resultsoof Linux
kernel modifications to support system call indii@g.

4.1 Function Call Return Address

Our actual implementation of the RAT involved machfion of a
GCC version 4.0.2 cross-compiler installation usgtip version
2.3.6., configured to produce Alpha executables. ifgerted a
program in between the compilation and assemblgestdjust
before the execution of thas assembler program), which post-
processed all returrref) instructions in user code to rewrite the
program assembly. In addition, an array to holdrreaddresses
was linked in with every executable program. Thedrasds
retrieved from the stack as the "return addressatisally treated
as an index into the RAT. Logical shift instructsoare inserted in
order to isolate the portion of the address reptasg the index.
The resulting index is then combined with the bpsmter and
offset of the starting point of the RAT. A singtsall instruction is
then inserted to retrieve the actual return addies® used. The
resulting post-processed Alpha assembly file caenthhe
assembled and linked by the remaining GCC compidenc

In Alpha assemblyet instructions use a return address stored by
convention in register $26. Figure 5 shows therabgeadded by
our post-processing application to replace the abrmet

instruction. The value being passed through reg®26é is now an
index into our

RAT’ Which We Return Address - Instruction Count
implemented

with 1024 oy

entries. Since o

the maximum | “""*" 2o

literal size in Toon

Alpha assembly e

is 255, we use A T ooy

logical shifts to
isolate ten bits

Return Address - Committed Loads

in position 12- o0

3, zeroing the o

three least- pone

significant bits | """ o z
since the index aeo

must be quad- o

Word aligned, Automative Consumer B’t“f::imkc:‘)rjjw Telecomm Average
Once the index

is identified, it Figure6. Return Address Table Simulation

is added to the base address of our RAT as wethasbase
pointer to obtain the location in memory from whithretrieve
the actual return address. A simple return is neviopmed, with
register $26 now containing the actual return asklees retrieved
from the RAT. Differentiation of multiple softwarexecutable
versions is achieved by permuting the order ofrreaddresses in
the table.

We compiled several benchmarks from the MiBenchcherark
suite [12] using our modified GCC compiler and exed them,
verifying their essential correctness. The resgltincreases in
instruction count and committed loads are presemtdeigure 6.
Instruction count increased by only 1.04% on aweragth this
including a single outlying increase of 4.32% fbe tTelecomm
benchmarks. Among the other benchmarks the highestase
was only 0.31%. The increase in loads showed somesimilar
behavior, with an average increase of 3.38%, whicludes two
extreme cases of a 7.75% and 8.13% increase foDffiee and
Telecomm benchmarks respectively. Among the remagini
benchmarks the highest increase was just under.0.6%

4.2 System Calls

Our actual implementation for system call diffefation involved
modification of the Linux 2.6.13 kernel distributiprovided with
the M5 simulator. Each running process is assatiatéh a
task_struct, which is defined in the scheduler. We modifiee th
scheduler to include an array that would hold @ueaicopy of the
system call table for each process, which is pdpdlavhen a new
process is created. Since the actual handling efesy calls
occurs in assembly routines, we added a functichacsscheduler
that is visible from the assembly language routiaesl that
returns entries from the system call table. We fiedlthe system
call handler to use the current system call spac{fiormally an
index into the default system call table) and passo our
function. The function uses the value as an indéx the system
call table for the currently running process andunes the
corresponding actual system call specifier, whihhien used to
make the system call. The most significant changeeded for
implementation of system call tables involve matifion of the
system call handler assembly routine. Figure 7 shdhe
modifications to the applicable assembly soure ifil the Linux
kernel (new code italicized). Originally the systesil identifier
(an index into the original system call table) ssged through
register $31, but now the register contains an xnif¢o the
system call table for the currently running procéad& set this
index as an argument and call thet_cur_sys thl function we
created in the scheduler to obtain the systemtahble from the
currently executing process and retrieve the corsgstem call
identifier corresponding to the index argument. Tietrieved
system call identifier is then used to dispatclystesn call in the
normal fashion. Differentiation can be achievedpeymuting the
system call table contents for each process, thasging all the
system call specifiers used within the actual maehanguage of
each executable version. The functional behavibreach
executable is unaffected, since any two permutatioinsystem
call tables will ultimately result in the same adtfunction call
being executed at the same points in the contal. fl

We ran unmodified, Alpha-compiled versions of sal@fiBench
benchmarks in the M5 simulator using the modifiédulx kernel

with system call implementation. Using a separatetesn call
table per process entails some increase in loadgalthe work
required to retrieve the system call table fromrtlning process.
The average increases in committed loads are prdviid Figure
8, which is nominal at 0.15%, with Office benchnghaving the
highest average increase of 0.51%. This can bibagd to the
relative infrequency of system calls in typical bBqgtions. For
this reason we did not include any figures for tegligible to

undetectable change in execution time. This is éoekpected
given this infrequency as well as the large amoohtwork

performed during a system call compared to the Isambunt of
work from our few additional loads.

4.3 Instruction Level Indirection

Implementing instruction level indirection will rege the
addition of an IRF and its associated instructigtersions to the
processor along with modification of the compiler support
instruction packing. The actual permuting of theteots of the
IRF randomly at compile/link-time is a simple opéra. Since
the IRF is relatively performance-neutral, the hésg processor
design will feature reduced application code simaproved
energy efficiency, and an increased resistance tiwane
propagation. Previous application of instructiorcipag on these
MiBench benchmarks has shown an energy savings.8#d with
a corresponding code size reduction of 26.8%. Thifor a 4-
window 32-entry IRF that seeks to maximize codesdgrboth
statically and dynamically. Reserving a few unusestruction
registers to trigger micro state machines minimaiypacts the
overall improvements provided by instruction pagkiReserving
5 additional slots (beyond the one fap) results in a code size
reduction of 24.2% and a corresponding energy témtucof
14.9%. Average execution time is within 0.3% of theginal

ent Sys:
SAVE_ALL
| da $8, Ox3fff
bi c $sp, $8, $8
| da $4, NR_SYSCALLS($31)
stq $16, SP_OFF+24($sp)

/* renove (lda $5,
/* we obtain systemcall

sys_call _table) */
el sewhere */

| da $27, sys_ni_syscall
cnpult $0, $4, $4

I dl $3, TI_FLAGS($8)
stq $17, SP_OFF+32($sp)

/* renpve (s8addgq $0, $5, $5)
/* since no offset */

stq $18, SP_OFF+40($sp)
bl bs $3, strace
beq $4, 1f

/* set first argunent to the offset */
/* (register saved by SAVE_ALL) */
addq $31, $0, $16

/* load retrieval function and call
/* register $0 will then have actual
| da $27, get_cur_sys_tbl

it */
index */

1. jsr $26, ($27), alpha_ni_syscall
/* restore first argunent */
I dg $16, 160($sp);
/* use register $27 to nake systemcall.*/
addq $0, $31, $27
jsr $26, ($27), alpha_ni_syscall
| dgp $gp, 0($26)
bl t $0, $syscall_error /* call failed */

stq $0, O($sp)

stq $31, 72($sp) /* a3=0 => no error */

Figure 7. System Call Handler Code

(ri']aasj(e;nt;—he V(;afSt System Call - Committed Loads

tightly packed e

instructions do 050% =

not utilize all 5 L40%

slots, and thus | s 0w

there is ample wa

room to extend o

these . th_m
instructions
with references

to micro state
machine
changing operations. Simultaneously, not all irgtams that
feature a loosely packed instruction field can altiyumake use of
that available storage area. Having micro stateatipas fill these
slots prevents any additional code size increasxecution time
increase by providing a simply-decoded mechanisnmiadifying
intrusion detection state machines. In extremefg sretches of
code that are very densely packed with few freéssiadditional
tightly or loosely packed instructions can be itesgito trigger the
appropriate state changes, thus keeping our mesthaapplicable
to all software applications.

Figure 8. System Call Table Simulation

5. RELATED WORK

The cell phone industry has seen growing conceem se&curity in
phone applications and hardening against virused ather
malware. The Symbian Signed initiative offers tgiilly “sign”
applications for use on Symbian OS devices [31]s Thay help
to verify participating software integrity but onbt increased
development cost and complexity. Certification sgst lack
scalability as the quantity of code produced in cessful
application development inevitably outstrips revieasources.
Ultimately malware may infiltrate a system througieans other
than a user’s active installation. The real goabimit malicious
behavior with theassumption that malware will eventually have a
chance to execute.

Many techniques have been proposed to defend adairifer
overflow attacks, including implementation of naxeeutable
stack areas [25], placement @hary marker values on the stack
[5], encryption of pointer values in memory [4]. &lapproaches
entail various levels of effectiveness and perfaroeaimpact, and
have various shortcomings including the failure d@otually
implement such defenses, such as the lack of aerecdtable
heap on the Apple iPhone Mac OS X system [18, A8Hiting
code to identify common vulnerabilities, eithertgnd [9, 24], or
by automated methods [7, 37], has proven prohgditicostly
[16, 10]. Indeed, writing correct code seems thestrbifficult
defense to implement, with United States Computaefgency
Readiness Team (US-CERT) statistics showing are&ser from
1,090 vulnerabilities reported in 2000 to over 4,20 the first
three quarters of 2005 alone [34]. Intrusion DéteciSystems
(IDS) have focused on monitoring system behaviordatect
violations of security policy, with the goal of teinating suspect
anomalous behavior [15]. The Address Space
Randomization (ASLR) technique, used in the PaXukikernel
patch, looks to randomize code footprint by insgrtrandom
memory gaps before areas such as the stack and beesp
Attacks become less likely to successfully execae more
detectable due to the behavior pattern of failewhcks [26].

Layout

However, methods for defeating ASLR protection hdween
proposed, including addingrep slide to the beginning of a stack
attack payload to promote its landing within theyéd area, or use
of format string bugs to have @intf() call report stack frame
contents to determine the actual stack base gf$eThe number
of randomized bits used in an ASLR scheme can fetafely
reduced by only targeting the 16-bimap() base randomization,
thus allowing for a tractable attack solution [28HARK
provides architectural support for protection fr&uootkits [35].
By generating Process Identifiers (PID) in hardwarel then
encrypting page tables, SHARK attempts to preventgromised
operating systems from running malicious code. Rnog
differentiation differs in that SHARK attempts toopide a single
wall of protection, while Program Differentiationrqvides a
Defense-in-Depth approach. Defense-in-Depth addouerall
defense since, if an attacker manages to breakettigrity on one
machine, the attack will not be spread to othersthermore,
SHARK requires a significant architectural additiowhile a
significant portion of Program Differentiation cbe implemented
in software. In fact, program differentiation worksell in
combination with other protection schemes. Oveselturity is
enhanced with any new hardware or software pratecti
mechanism since it must be exploited for virus pggiion to
occur. Not only can other protections exist indejsarly of our
proposed differentiation schemes, thenethodology of
differentiation may be readily applied to other teaion
mechanism to make propagation even more challenghber
related research has attempted to analogize seftdeiense to
biological immune defense systems. Natural immuwstesns are
designed to operate in an imperfect, uncontrolleghen
environments, analogous to computer environments$,immune
system principles such as distributability of rezpm multi-
layered defense responsibility and diversity, mibatapplied to
computer systems to increase security [29]. Prapose
diversification methods have included random additiof
nonfunctional code, reordering of code, and varisofsware and
system transformations [8].

6. CONCLUSIONS

While vulnerabilities in software systems will conte to invite
new malware attacks, we believe that proper mitgatechniques
can reduce the impact of these attacks. Towards gbal, we
propose expanding our current malware defense féroms the
traditional approaches of absolute attack prevantm include
efforts toward preventing malwapeopagation. By differentiating
software program executables, we seek to thwartwaral
propagation when a vulnerability exists in a giveoftware
application. This is accomplished through virtuialigthe control
flow of the application, enabling function calliveh and system
call semantics to be permuted into unique versiforseach
application instance. We also show how an existingcessor
design utilizing an Instruction Register File (IREan achieve
further security though the use of differentiatmfrinstructions in
the IRF as well as by restricting vital instrucofrom being
fetched directly from memory. We show that thesehméques
require minimal overhead with respect to increaseeimory
footprint and execution time. In worst-case sofevaimulations
of our control flow differentiation method usingnittion calls and
returns we found only a 1.04% average increasensiruction
count and 3.38% average increase in loads. In acdtgimulation
of a Linux kernel implementing a per process systathtable the

increase in committed loads is nominal at 0.15%o/ation by
the compiler and implementation of actual simplerdinare

support structures can ultimately result in litbeno performance
degradation for such differentiation. The benefitgshe minimal
performance impact of our techniques, as well ag ttalability,

are ideal for embedded systems. These techniquas bea
implemented in whatever quantities are desiredllowable in a
system without draining precious performance resesiin the
pursuit of defense. Current trends show that seéwaograms
will continue to possess vulnerabilities that argcdverable by
attackers. However, inherent in differentiatiorthie targeting of
the economics of malware, makipgofitable high-impact attacks
prohibitively expensive and infeasible. While veeept that there
may be successful attacks on any single distribeteztutable
version, by dramatically increasing the ratio dbdfto damage
scope, attackers incur a substantial disincentivedeéveloping
malware even in the presence of an exploitable software

vulnerability. This research was supported in part by NSF grants

CNS-0615085 and CNS-0915926.

7. REFERENCES

1. S. Bahtkar, D. C. DuVarney, and R. Sekar. Assl@bfuscation: an
Efficient Approach to Combat a Broad Range of Mentemror
Exploits. 12th USENIX Security Symposium, Washington, D.C. Aug.
2003.

2. A. C. Cheng, G. S. Tyson. An Energy Efficiaméttuction Set
Synthesis Framework for Low Power Embedded Systesigns.
|EEE Transactions on Computers, vol. 54, no. 6, pp. 698-713. June,
2005.

. N. Clark, H. Zhong, and S. Mahlke. Processareferation Through
Automated Instruction Set Customization. Piroceedings of the 36th
Annual |IEEE/ACM international Symposium on Microarchitecture,
pp. 129-140. 2003.

4. C. Cowan, S. Beattie, J. Johansen, and P. WaglmtGuard(TM):
Protecting Pointers from Buffer Overflow Vulneratis. In
Proceedings of the 12th USENIX Security Symposium, pp. 91-104.
Aug. 2003.

5. C. Cowan, P. Wagle, C. Pu, S. Beattie, J. Wal@®uffer overflows:
Attacks and Defenses for the Vulnerability of thecBde. In
Proceedings of the DARPA Information Survivability Conference and
Exposition, Hilton Head, SC, pp. 119-129. January 2000.

6. T. Durden. Bypassing PaX ASLR protectid?hrack Magazine, Volume

59, http://lwww.phrack.org /issues.html?issue=59

. HalVar Flake. Auditing Closed-Source Applicatso The Black Hat

Briefings 2000, Oct. 2000.

w

~

15. S. A. Hofmeyr, A. Somayaji, and S. Forrestrusion Detection using
Sequences of System Call3ournal of Computer Security Vol. 6, pp.
151-180. 1998.

16. R. Jones and P. Kelly, Backwards-compatiblerBisuChecking for
Arrays and Pointers in C Programs Piroceedings of the Third
International Workshop on Automatic Debugging, pp. 13-26, May
1997.

17. McAfee. McAfee's Position on Vista.
http://mww.mcafee.com/us/local_content/misc/vistsipon.pdf.

18. C. Miller, J. Honoroff, J. Mason. Security lwation of Apple's iPhone.
Independent Security Advisors, http://www.seg@valuators.com/iphone/
exploitingiphone.pdf. July 19, 2007.

19. N. Mook. IE Flaw Puts Google Desktop at Risk.
http://www.betanews.com/article
/IE_Flaw_Puts_Google_Desktop_at_Risk/1133545796c. R, 2005.

20. D. Moore. The Spread of the Code-Red Worm @Rv
http://www.caida.org/analysis/security/code-red&edv2_analysis.xml.

21. E. Montalbano. McAfee Cries Foul Over Vista@&dy. Infoworld (via
IDG News Service). http://www.infoworld.com/article/06/10/03/
HNmcafeefoul_1.html. Oct. 3, 2006.

22. R. Naraine. Google Patches Desktop Search Feigek.com.
http://www.eweek.com/article2 /0,1895,1744115,00.aBec. 20, 2004

23. S. Nielson, S. Fogarty, D. Wallach. Googleki&s Security Issue
(Technical Report TR04-445Computer Security Lab: Rice University.
http://seclab.cs.rice.edu/2004/12/20/google-degktBec. 20, 2004.

24. OpenBSD Project. Security. http://openbsdsadrity.html.

25. Openwall Project. Linux Kernel Patch from @yeenwall Project.
http://www.openwall.com/linux/.

26. PaX Team, Documentation for the PaX Project,
http://pax.grsecurity.net/docs/aslr.txt, 2003

27.J. Schwartz. IPhone Flaw Lets Hackers Take,Beacurity Firm Says.
The New York Times Online.
http://mww.nytimes.com/2007/07/23/technology/23ipaditml|?ex=118628
6400&en=24cdfcebb35507dd&ei=5070. July 23, 2007.

28. H. Shacham, M. Page, B. Pfaff, E.-J. Goh, Ndatlugu, and D. Boneh.
On the Effectiveness of Address Space Randomizaf\@M Conference
on Computer Security, 2004.

29. A. Somayaiji, S. Hofmeyr, and S. Forrest. Rpies of a Computer Immune
System. IrProceedings of the Second New Security Paradigms Workshop,
pp. 75-82. 1997

30. G. Suh, J. Lee, D. Zhang and S. Devad&esure Program Execution
via Dynamic Information Flow Trackingin Proceedings of the 11th
International Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 85-96, 2004.

31. Symbian Signed. The Complete Guide to SymSBigned.
http://www.symbiansigned.com/. Oct. 2, 2006.

32. TechWeb. McAfee Slams Microsoft Over Vista8éy. Software
Technology News by Techweb.

8. S. Forrest, A. Somayaji, D. Ackley. Buildingvarse Computer Systems. In ptp:/mww.techweb.com/wire/software/193101281.t.Q¢ 2006.

Sixth Workshop on Hot Topics in Operating Systems, pp. 67-72, 1997.

9. Gentoo Linux Security Project. http://www.gentarg/proj/en/security/
audit.xml.

10. GCC Extensions. Bounds Checking Patches f&€ R€leases and
GCC Snapshots. http://gcc.gnu.org/extensions.html.

11. M. Gillon. Google Desktop Exposed: Exploitiug Internet Explorer
Vulnerability to Phish User Information.
http://www.hacker.co.il/security/ie/css_import.htniNlov. 30, 2005.

12. M. Guthaus, J. Ringenberg, D. Ernst, T. Austinyludge, and R. Brown.

MiBench: A Free, Commercially Representative EmleeldBenchmark
Suite. |EEE Workshop on Workload Characterization. Dec. 2001.

13. S. Hansell. Stealing Data From an iPhone &yHaut Don't You Dare Use

a Ringtone You Didn’t Pay ForfThe New York Times Online.

http://bits.blogs.nytimes.com/2007/07/23/stealirdadfrom-an-iphone-is-
easy-but-dont-you-dare-use-a-ringtone-you-didntfoaly July 23, 2007.

14. S. Hines, J. Green, G. Tyson and D. Whalleyprbving Program
Efficiency by Packing Instructions into Registets.Proceedings of
the 32nd Annual International Symposium on Computer Architecture,
pp. 260-271. IEEE Computer Society June 2005.

33. University of Michigan, Department of Electli€ngineering and
Computer Science. The M5 Simulator System.
http://m5.eecs.umich.edu/wiki/index.php/Main_Page.

34. U.S Cert Coordination Center. CERT/CC Statistig98-2005.
http://www.cert.org/stats/#vulnerabilities.

35. V. R. Vasisht, H. S. Lee. SHARK: Architectuglpport for
Autonomic Protection Against Stealth by Rootkit ©ifs.
Proceedings of the 2008 41st IEEE/ACM International Symposium on
Microarchitecture, pp. 106-116, Nov. 2008.

36. D. Wagner and D. Dean. Intrusion DetectionStiatic Analysis. In
Proceedings of the 2001 |EEE Symposium on Security and Privacy,
pp. 156-169, May 2001.

37. D. Wagner, J. Foster, E. Brewer, and A. AikénFirst Step Towards
Automated Detection of Buffer Overrun Vulnerabdgi In
Proceedings of the 2000 Network and Distributed System Security
Symposium, Feb. 2000.

38. C. C. Zou, W. Gong, D. Towsley. Code Red Wémwpagation
Modeling and Analysis. IRroceedings of the 9th ACM Conference
on Computer and Communications Security, pp. 138-147. 2002.

