
Program Differentiation
Daniel Chang, Stephen Hines, Paul West, Gary Tyson, David Whalley

Florida State University
Tallahassee, Florida 32306-4530

{dchang, hines, west, tyson, whalley}@cs.fsu.edu

ABSTRACT
Mobile electronics are undergoing a convergence of formerly
multiple dedicated-application devices into a single programmable
device – the smart phone. The programmability of these devices
increases their vulnerability to malicious attack. In this paper, we
propose a new malware management system that seeks to use
program differentiation to reduce the propagation of malware
when a software vulnerability exists. By modifying aspects of the
application control flow, we allow portions of an application
executable to be permuted into unique versions for each
distributed instance. Differentiation is achieved using hardware
and systems software modifications that are amenable to and
scalable in embedded systems. Our initial areas for modification
include function call/return and system call semantics, as well as a
hardware-supported Instruction Register File. Differentiation of
executables hinders analysis for vulnerabilities as well as prevents
vulnerability exploitation in a single distributed version from
propagating to other instances of that application. Computational
demands on any instance of the application are minimized, while
the resources required to attack multiple systems grows with the
number of systems attacked. By focusing on prevention of
malware propagation in addition to traditional absolute defenses,
we target the economics of malware in order to make attacks
prohibitively expensive and infeasible.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection - Access
controls, Information flow controls, Invasive software, Security
kernels.

General Terms
Algorithms, Design, Security

Keywords
Program differentiation, Malware prevention and mitigation,
Return address indirection, System call indirection

1. INTRODUCTION
Like general purpose computing systems, mobile devices and the
software loaded on these devices are subject to a host of security
threats and malicious software (malware) attacks due to
vulnerabilities in their coding. Solutions to preventing malware
become more challenging as the complexity and interconnectivity

of these systems increase [34]. The increasingly complex software
systems used in modern smart phones contain more sites for
potential vulnerabilities, a problem exacerbated as application
developers continue to integrate third party software with plugins
for such user applications as web browsers and search engines.
Recent exploitations of Google Desktop, Microsoft Internet
Explorer, and MobileSafari on the Apple iPhone are examples
[23, 22, 11, 19, 18, 13]. Rootkits are a grave concern due to their
tenacity, detrimental effect on systems, and difficult detection.
Typically they target kernel vulnerabilities to infect system-level
programs and to conceal their existence. The rootkit applications
themselves include key loggers, network sniffers, and a staging
system to launch other attacks like Denial-of-Service and more.
The primary use of Rootkits is to inject malware and to collect
sensitive user information. This is especially problematic for
mobile devices that are increasingly used to store private data.

Traditional approaches have sought to provide an absolute
defense to specific malware attacks by patching software
vulnerabilities or detecting and blocking malware [26, 25, 5, 4,
15]. However, the current situation represents a programmatic
arms race between the patching of existing vulnerabilities and the
exploitation of new ones. Despite increased awareness,
vulnerabilities continue to be produced, as observed in McAffee's
position paper citing Windows Vista as being less secure than its
predecessors [17, 21, 32]. Most recently, the modified Mac OS X
system on the Apple iPhone fails to even implement widely
accepted best practices such as a non-executable heap or address
randomization of memory area starting locations [18, 13].
Ultimately vulnerabilities will be found and malware will go
undetected long enough to exploit such. We propose a different
approach to managing malware based on limiting the ability of
viruses to propagate even in the presence of undiscovered
software vulnerabilities. When used in conjunction with
traditional malware defenses, this approach greatly increases the
difficulty and cost for malware developers to exploit
vulnerabilities across a wide range of vulnerable systems.
Mitigation through the use of program differentiation has an
analogue in biological systems, which not only presume attack
will occur but in fact have well-known, openly visible
vulnerabilities [29, 8]. Beyond protective walls, biological entities
also rely on a system that mitigates subsequent proliferation of
biological attacks. Biological systems defend both at the
individual level and the population level. While anti-virus

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
INTERACT-14, March 13, 2001, Pittsburgh, PA, USA
Copyright (c) 2010 ACM 978-1-60558-921-3/10/03...$5.00

Source
Application

Figure 1. Software Differentiation Workflow

Config
Database

Differentiator
(Call/Return, Syscall,

Hardware

Differentiated
Executables

software can convey individual system protection, they do nothing
to limit the rapid propagation of new viruses across a large set of
homogeneous application code [38, 20]. The correlation between
malware propagation and resulting damage leads us to explore
mitigating attacks by thwarting the propagation. Program
differentiation seeks to make each executable instance of an
application unique. There are various ways of achieving this in
software. One simple method would be to invoke different
compiler transformations, or a different transformation ordering,
to obtain different versions of the same application. However, this
approach has two problems that make it infeasible. First, the
vulnerable portions of the application must be the ones affected
and there is no way to guarantee those unknown vulnerabilities
are modified by this differentiation approach. The second problem
is a more severe software engineering one. Multiple distinct
versions of the same program code can be difficult to produce and
highly impractical to maintain and update; subtle software errors
in an application will likely change behavior in only a subset of
differentiated versions. Performance may also differ widely
between instances of the program. A solution is needed that
differentiates program executables while preserving program
semantics and control flow, and maintaining a single code profile
for maintenance. We propose changes in hardware support for
control flow instructions to achieve differentiation that changes
the binary representation of applications without changing the
execution order of instructions in the processor pipeline. The
hardware modifications change how functions are called (and
returned), how system calls are specified and how instructions
fetched from memory are interpreted. This prevents the
propagation of viruses by making each instance of a vulnerable
application sufficiently different to require a nontrivial mutation
of malware code for each infection. Figure 1 depicts the general
workflow of our proposed methodology. Differentiation can occur
before distribution, during initial configuration or even at load
time for each invocation of the application. Whenever performed,
differentiation modifies the original application using an
undifferentiated instance and a configuration database, generating
a potentially unique executable for each application instance.

2. SOFTWARE EXPLOITS
Vulnerabilities in software have not only proven costly, but are
continually increasing in number [34]. They can be broadly
separated into processor architecture exploits and higher-level
software exploits that are independent of the target architecture.
High-level techniques are generally attacks on input strings that
are interpreted within a source level interpreter in the application,
such as overwriting of an SQL command string with an
unauthorized set of commands to compromise the database
system. Mitigation of such attacks must be handled by the
application and further coverage is outside the scope of this
paper’s processor-level security systems. By far the most common
security exploits related to processor architecture are buffer
overflow attacks, which overwrite memory locations in vulnerable
applications [5, 30]. These attacks exploit vulnerabilities in the
control flow conventions of the target architecture to gain control
of system resources. The vulnerabilities exploited by the highly
prolific Code Red worm and recently discovered in the Apple
iPhone browser are examples of buffer overflow vulnerabilities
[38, 20, 18, 1]. These attacks require an intimate understanding of
the program code, including data and program object locations,
branching, and address usage. The attack requires an unbounded

input buffer, used to insert a payload of malicious code, and a
vulnerability that allows the control flow to execute the payload
code. Unfortunately, distribution of identical versions of a
software executable facilitates propagation of a successful attack;
once a vulnerability is found and exploited the attack is applicable
to every other distributed instance. It is this commonality that
allowed the 2001 Code Red worm (CRv2), which exploited a
vulnerability in Windows NT and Windows 2000 operating
systems, to infect more than 359,000 Internet Information Servers
on the Internet in less than 14 hours [38, 20]. Mitigation
techniques, such as hardware restrictions that disable execution of
code from within the stack region of memory, seek to eliminate
the vulnerability. Unfortunately, there are buffer overflow variants
that do not require the insertion of payload code, but instead jump
to existing routines in the application to compromise the system.
Commonly referred to as return-to-libc attacks, the target address
in the application code is often a library routine to manipulate
systems components (such as to invoke a shell or delete files).

Moreover, despite advances in security methodologies in software
development the prevalence of software vulnerabilities continues
to grow. This trend will likely continue as software systems
become more numerous and complex. Greater opportunities for
new vulnerabilities arise from the tremendous growth in high-
demand, third-party software applications that require
administrative privileges or trusted access. The Google Desktop
application demonstrated several vulnerabilities in user-level
software that had system-level implications. A flaw discovered in
December 2004 allowed malicious websites to illicitly read local
search results from a target machine [23, 22]. The following year,
a flaw in the Internet Explorer web browser combined with
Google Desktop allowed an attacker to retrieve private user data
or even execute operations on remote domains while
impersonating the user [11, 19]. The extreme integration of third-
party applications is another growing threat, as demonstrated by
the recent discovery of a buffer overflow vulnerability in the
MobileSafari browser on the new Apple iPhone [18]. Through the
exploit, a malicious web site could deliver a payload that allowed
access to and transmission of any phone data [13]. The threat of
malware on cell phones has loomed large in the past few years as
they increase in computational power. Now that modern cell
phones are simply full-fledged computer systems they are subject
to computer system threats, only at much larger distribution scale
[27]. Unfortunately, current anti-virus support is limited to
identifying existing vulnerabilities or a few restricted patterns of
attack. This approach means that systems security is always
lagging behind the discovery of new vulnerabilities and fast
propagation can defeat even the most active malware defense.
Differentiation offers the promise of either eliminating or
significantly slowing propagation independent of the type of
software vulnerability exploited. Used in conjunction with
existing mitigation techniques, program differentiation provides
the strongest deterrent to the spread of future malware.

3. DIFFERENTIATION SOURCES
The goal of differentiation is to restructure each instance of an
application in a manner that makes the exploitation of inherent
vulnerabilities in either the application or execution environment
more difficult. At the same time, the implementation of a
differentiation technique should not hinder application
maintenance, change functional behavior, or result in dramatic

performance differences between instances. Particularly in
embedded systems, the ideal differentiation technique should have
minimal to no impact on performance and be scalable to the
available resource budget. Finally, the overhead required to
support differentiation should be minimal in both space and
execution time. We propose three independent mechanisms to
provide differentiation using a combination of hardware and
software techniques. Each of these techniques utilizes indirection
and by permuting indices supports differentiation. The first two
schemes manipulate function call and system call semantics using
both hardware and software modifications. The third scheme
modifies how instructions are interpreted when fetched from
memory and provides additional restrictions on execution of the
most vulnerable instructions. These mechanisms are not only
orthogonal to each other, but can be used in conjunction with all
other available protection schemes.

3.2 Return Address Differentiation
Our first approach is to introduce a level of indirection into the
function call return address stored on the stack. The return address
is the typical target of buffer overflow attacks, which attempt to
overwrite the address to point to a payload placed in the buffer.
By replacing the return address with an index to a table of return
addresses, we prevent the injection of a direct address and instead
force the attacker to analyze the behavior of the new Return
Address Table (RAT). This requires modification of function call
and return semantics to access the return address through the
RAT. Function calls must utilize a register to pass the index in
much the same manner as the return address is currently passed.
The return instruction must be modified to use the index to load
the return address from the RAT before jumping to the instruction
following the function call. Any buffer overflow would now
override the RAT index. Without knowledge of the ordering of
return addresses in the read-only RAT, the attacker can only jump
to a random return address location in the existing code. With
some modification to memory management access, the table itself
can be marked unreadable by all instructions except function
return. This removes code inspection from the arsenal of the
malware attack. Statistical attacks using random indices can be
thwarted by increasing the size of the RAT. The cost paid is a
fixed increase in storage requirements for the return address table
and a slight performance penalty on each function return due to
the required table lookup. Instruction set modifications include
the call or jalr instructions and ret. Calling conventions replace
the automatic movement of the program counter for the next
instruction (generally PC+4) with an index specifying the RAT
entry containing the address of the next instruction. This is
performed by an additional instruction, though in many cases this
additional instruction is loop invariant and can thus be performed
much less often than the function call. The call instruction could
be totally eliminated; however, this would have implications on

micro-architectural resources like the return address stack.
Remaining calling conventions remain unchanged. The ret
instruction is modified to first read the index off the stack, and
then use the index to load the return address from the RAT. In a
load-store architecture, this would be performed by multiple
instructions. In either case, the performance impact is less than
expected since the branch prediction will continue to utilize the
return address stack, which generally contains the correct address.

Modifications to the function return code sequence are outlined in
Figure 2. The return behavior is updated to: 1) retrieve the index
from the program stack; 2) access the RAT to obtain the return
address; and then 3) jump to the return address. The RAT itself is
made read-only, and in retrieving the return address bounds
checking can be imposed by using logical instructions to mask the
index value and prevent the use of any out-of-range indices. Even
a small number of RAT entries results in a combinatorial number
of permutations. This directly attacks the economics of a malware
attack, making a random attack extremely unlikely to produce any
useful predictable behavior and grossly thwarting the ability to
have a wide-ranging impact with a single system attack. For the
attacker who wishes to analyze software or a system to improve
malware success and propagation, the permutation complexity
elicits a signature analysis behavior that is easily detectable by
traditional intrusion detection systems. Still, some consideration
must be given to the use of shared library routines. Since these
functions are shared by different applications, care must be taken
when using any process resources, particularly the RAT. If all
system processes use the differentiation calling conventions then
libraries pose no difficulties; RAT indices are evaluated in the
context of a process and each process contains a unique RAT.
Returns from library functions would still use the index into the
process RAT and jump to the correct location. In a system where
not all applications use differentiation call semantics, the return
from a library function would then be undifferentiated, using the
return address on the stack and jumping to the correct location.
This mixed environment does not offer the same level of
protection as a fully differentiated executable; however, only
library routines are left vulnerable and ideally they would tend to
be a more stable code base not as easily targeted by malware.

3.2 System Call Differentiation
Another candidate for indirection are system call conventions,
which specify a system call identifier generally passed using a
specific data register. System calls can be used to manipulate files,
memory or process permissions, and can be compromised by
malware that changes the system call identifier prior to execution.
System calls are implemented by jumping to a function in the
operating system (entSys() in Linux), which then uses the system
call identifier to index into a jump table to the correct handler
function. We thus have the same basic approach as with the RAT.
Differentiation of the table (the sys_call_table in Linux) will
provide a different mapping of system call identifiers to handler
functions for each system (not each application) at no additional
overhead. The only requirement to perform system call
differentiation is to permute the entries in the sys_call_table and
update any system calls in the applications. It is quite rare for an
application to directly reference a system call since almost all calls
are performed in the standard systems libraries (libC and others).
This simplifies the differentiation process. Of course, this
approach means that all applications running on the system share

load r1,[sp] 0x13

and r1,r1,0x3ff 0x13

load r1, [r1] 0xF..3A

jump r1 0xF..3A

0x13

Stack with Indices

0xF..3A

Figure 2. Secure Return Code Sequence

r1

0x12

0x13
...

RAT (Read-Only)

...

the same system call identifiers. This is likely not a problem since
viruses tend to propagate by infecting the same application on
different systems, not by attacking different applications on the
same system. However, by duplicating the sys_call_table for each
process, differentiation can be performed for each process on the
same system. The only additional requirement is an increase in the
stored state of the process and de-referencing of the process table
pointer in entSys(). This approach again provides a level of
indirection that requires an attacker to now gain access to a
particular executable's custom system call table in order to
identify targets for control flow redirection. Furthermore, the
custom sys_call_table can be pruned to only contain those used
by the particular program, reducing malware ability to initiate
unexpected system calls. Figure 3 depicts the general process of
accessing the lookup table containing the system call specifier,
which ultimately results in one additional function call and one
additional load from a table in memory. Normally a register
contains the identifier for the system call to perform. We would
differentiate modules by replacing the identifier with an index into
the system call lookup table.

3.3 ISA Differentiation
The final modification to support differentiation provides the
strongest level of protection. Instructions can be obfuscated by
using a level of indirection in the decoding of instructions fetched
from memory. This enables a portion of the Instruction Set
Architecture (ISA) encoding to be changed for each program
instance while leaving instruction execution unchanged. Keeping
the decoded/executed instruction stream the same allows software
engineers to more easily maintain an application, since any
version can theoretically be transformed into a different version
by applying the appropriate mapping of indirection specifiers.
This facilitates the debugging and patching of differentiated
executables, a task easily achievable using previous techniques.
There have been several possible approaches for indirectly
accessing instructions that could support differentiation.
Computational accelerators fuse multiple operations into single
operations by providing a programmable set of functional units
[3]. An accelerator could be configured to use only simple
instructions with a specific new opcode/operand encoding that
could vary amongst differentiated executables. The FITS system
allows for mapping of an ISA, customized for a particular
executable, to a configurable processor [2]. The programmability
of opcode and operand decoders in FITS allows for their
permutation in the instructions supported by the ISA. Both,
however, have drawbacks in either potential performance
penalties or increased implementation time.

Ultimately, a most attractive option is instruction packing, a
technique that can be readily adapted to provide differentiation at
the hardware instruction level [14]. This technique promotes
frequently occurring static and/or dynamic instructions into

instruction registers,
which can then be
indexed for execution by
using just a few bits. The
small size of these indices
allows multiple such
references to be "packed"
together into a single 32-
bit instruction.
Parameterization of
register numbers and
immediate values
increases the number of
instructions that can be promoted. This reduces code size and
improves energy efficiency, as the Instruction Register File (IRF)
requires less power to access than the instruction cache. Using
instruction packing, the indices of the packed instructions can be
permuted to generate new executables. With a 32-entry IRF (and
one instruction register reserved for a nop), there are 31! possible
permutations, leading to quite a large space for differentiation of a
single application. Figure 4 shows an example program being
permuted within the IRF. The four instructions are mapped into
the IRF and the appropriate identifiers are specified for the packed
instruction. Since we only have four instructions to pack together,
the fifth slot is mapped to the nop, which need not necessarily be
at entry 0. Packing instructions with an IRF is also the least
intrusive solution, as it requires the fewest changes to the baseline
ISA. The tightly packed instruction format can be supported using
just a few spare opcodes in almost any existing ISA. An IRF
needs to be added to the pipeline, and the fetch and decode stages
need to be modified to be able to fetch instructions from it.
Instructions are placed in the IRF at load-time for an application,
and must be restored on context switches. This allows separate
applications to have completely different IRF entries. Instruction
packing clearly satisfies all of the necessary requirements for
providing an easily permuted instruction indirection scheme.
Furthermore, the additional energy and code size savings (with no
performance overhead) make this technique even more attractive
for implementing hardware instruction level differentiation,
especially on restrictive embedded systems. The IRF structure
also allows for scalability, balancing the size of the IRF with the
amount of differentiation desired. [14].

Using an IRF to support differentiation also provides an
additional benefit for protecting code from malware. Since the
IRF provides a totally independent way to specify the instructions
that reside within it, it is possible to disallow those instructions
from being fetched directly from the memory system. So if we
always promote certain critical instruction into the IRF, then we
can execute the processor in a safe mode that would not decode
those actual instructions when being fetched from the memory
system. By targeting syscall, call, return, adds to the stack pointer
and short conditional branches, it becomes difficult for any
payload malware to perform critical, or even common,
instructions without identifying the IRF permutation.
Additionally, empty IRF operands can be used to verify proper
control flow with the inclusion of a simple validating state
machine in the beginning of the processor pipeline. This could be
as simple as requiring some parity calculation for the instructions.
This has little or no impact on application performance, and while
the virus can replicate the calculation, each instance of the
application can use the free IRF encodings for different validation

Figure 4. Indirection with an IRF

[syscall specifier X]

System Call Table
(Current Process)

[index] Proc
System Call Handler

. . .

Execute System Call
"X"

Figure 3. System Call Table Lookup

[index]

$26 holds value originally passed as return address
isolate bits 12-3 to get a 1k address to a quadword
maximum literal size is 255, so shift left then right
must be quad word aligned so zero right 3 bits
srl $26,3,$26 # >> 3 to get on quad boundary
sll $26,57,$26 # << 3 then 54 to isolate ten bits
srl $26,54,$26 # >> to get 10 bits pos [12-3]

load from return address table
base of table+index must also be offset from bp $29

addq $26,$29,$26 # add base pointer to index

add table offset to base+index
ldq $26,ratable($26) !literal

perform return using retrieved address
ret $31,($26),1

Figure 5. Return Address Post-Processing

checks. For the malware to propagate, the virus must correctly
handle an arbitrarily large number of validation checks. Again,
this technique offers scalability in an embedded system up to the
level of desired or allowable protection.

3.4 Intrusion Detection with Differentiation
We also propose developing a variety of small state machines that
monitor some identifiable pattern of behavior of the application,
such as sequences of system calls or numbers of arguments in
function calls within a program (Micro State Machines). These
micro state machines can be defined at compile-time or load-time,
and ultimately can be easily implemented in hardware without any
effect on the pipelined instructions of a software program. A wide
variety of micro state machines can be made available, executed
by referencing an index from within a software executable. These
include any state monitoring patterns proposed in the previous
literature. By requiring a program to execute any or all of these
micro state machines, the integrity of program behavior can be
checked outside of the regular program execution. Given the wide
variety of small state transitions that can be monitored,
differentiation is introduced into applications by varying the
particular micro state machine called for a given executable
version and/or varying the order of calling multiple micro state
machines. Indeed, each application instance may only need to
verify one aspect of the entire state monitoring problem, with
variation of which micro state machine is implemented in any
given instance. This comes with no direct performance penalty
and forces an attacker to have to understand and thwart the
monitoring of a large number of state transition behaviors. The
possible combinations of state monitoring are ideally too large for
any malware to comprehensively determine, and the act of
attempting to do so is a detectable behavior pattern that can be
further used to identify the presence of malware.

The variable selection of micro state machine types and quantity
again aids embedded system designers by providing a scalable
defense method. Increasing the number of micro state machines
results in a smooth increase in the level of defense. The number
can be increased up to the desired defense level, or as is more
likely the case up to the limit of available resources for defense.
Ideally, if an IRF is employed the unused slots in non-fully
packed instructions are perfect locations for placing the triggers or
counters for implementing such micro state machines. These
triggers can be sought during the pipeline fetch phase with no
direct penalty on the application processing performance.

4. EVALUATION
We have thus proposed several methods for implementing
differentiation of software executables using hardware support. To
perform an initial test of the worst-case effect on performance of
our approaches we developed software versions of two of the
approaches, implementing both a Return Address Table (RAT)
and a Linux kernel modification implementing system call
indirection, targeting binaries to the Alpha architecture. Both were
evaluated using the M5 Simulator, a modular platform for
computer system architecture research, encompassing system-
level architecture as well as processor microarchitecture [33]. M5
supports the Alpha architecture and has a system-call emulation
mode that can simulate Alpha binaries. Moreover, M5 provides a
full system simulator that models a DEC Tsunami system in
sufficient detail to boot a Linux kernel. We specifically used the

M5 full system simulator to evaluate the results of our Linux
kernel modifications to support system call indirection.

4.1 Function Call Return Address
Our actual implementation of the RAT involved modification of a
GCC version 4.0.2 cross-compiler installation using glib version
2.3.6., configured to produce Alpha executables. We inserted a
program in between the compilation and assembly stages (just
before the execution of the as assembler program), which post-
processed all return (ret) instructions in user code to rewrite the
program assembly. In addition, an array to hold return addresses
was linked in with every executable program. The address
retrieved from the stack as the "return address" is actually treated
as an index into the RAT. Logical shift instructions are inserted in
order to isolate the portion of the address representing the index.
The resulting index is then combined with the base pointer and
offset of the starting point of the RAT. A single load instruction is
then inserted to retrieve the actual return address to be used. The
resulting post-processed Alpha assembly file can then be
assembled and linked by the remaining GCC compile chain.

In Alpha assembly ret instructions use a return address stored by
convention in register $26. Figure 5 shows the assembly added by
our post-processing application to replace the normal ret
instruction. The value being passed through register $26 is now an
index into our
RAT, which we
implemented
with 1024
entries. Since
the maximum
literal size in
Alpha assembly
is 255, we use
logical shifts to
isolate ten bits
in position 12-
3, zeroing the
three least-
significant bits
since the index
must be quad-
word aligned.
Once the index
is identified, it Figure 6. Return Address Table Simulation

Figure 7. System Call Handler Code

entSys:
 SAVE_ALL
 lda $8, 0x3fff
 bic $sp, $8, $8
 lda $4, NR_SYSCALLS($31)
 stq $16, SP_OFF+24($sp)
 /* remove (lda $5, sys_call_table) */
 /* we obtain system call elsewhere */
 lda $27, sys_ni_syscall
 cmpult $0, $4, $4
 ldl $3, TI_FLAGS($8)
 stq $17, SP_OFF+32($sp)
 /* remove (s8addq $0, $5, $5)
 /* since no offset */
 stq $18, SP_OFF+40($sp)
 blbs $3, strace
 beq $4, 1f

 /* set first argument to the offset */
 /* (register saved by SAVE_ALL) */
 addq $31, $0, $16
 /* load retrieval function and call it */
 /* register $0 will then have actual index */
 lda $27, get_cur_sys_tbl
1: jsr $26, ($27), alpha_ni_syscall
 /* restore first argument */
 ldq $16, 160($sp);

 /* use register $27 to make system call.*/
 addq $0, $31, $27
 jsr $26, ($27), alpha_ni_syscall
 ldgp $gp, 0($26)
 blt $0, $syscall_error /* call failed */
 stq $0, 0($sp)
 stq $31, 72($sp) /* a3=0 => no error */
 . . .

is added to the base address of our RAT as well as the base
pointer to obtain the location in memory from which to retrieve
the actual return address. A simple return is now performed, with
register $26 now containing the actual return address as retrieved
from the RAT. Differentiation of multiple software executable
versions is achieved by permuting the order of return addresses in
the table.

We compiled several benchmarks from the MiBench benchmark
suite [12] using our modified GCC compiler and executed them,
verifying their essential correctness. The resulting increases in
instruction count and committed loads are presented in Figure 6.
Instruction count increased by only 1.04% on average, with this
including a single outlying increase of 4.32% for the Telecomm
benchmarks. Among the other benchmarks the highest increase
was only 0.31%. The increase in loads showed somewhat similar
behavior, with an average increase of 3.38%, which includes two
extreme cases of a 7.75% and 8.13% increase for the Office and
Telecomm benchmarks respectively. Among the remaining
benchmarks the highest increase was just under 0.6%.

4.2 System Calls
Our actual implementation for system call differentiation involved
modification of the Linux 2.6.13 kernel distribution provided with
the M5 simulator. Each running process is associated with a
task_struct, which is defined in the scheduler. We modified the
scheduler to include an array that would hold a unique copy of the
system call table for each process, which is populated when a new
process is created. Since the actual handling of system calls
occurs in assembly routines, we added a function to the scheduler
that is visible from the assembly language routines and that
returns entries from the system call table. We modified the system
call handler to use the current system call specifier (normally an
index into the default system call table) and pass it to our
function. The function uses the value as an index into the system
call table for the currently running process and returns the
corresponding actual system call specifier, which is then used to
make the system call. The most significant changes needed for
implementation of system call tables involve modification of the
system call handler assembly routine. Figure 7 shows the
modifications to the applicable assembly source file in the Linux
kernel (new code italicized). Originally the system call identifier
(an index into the original system call table) is passed through
register $31, but now the register contains an index into the
system call table for the currently running process. We set this
index as an argument and call the get_cur_sys_tbl function we
created in the scheduler to obtain the system call table from the
currently executing process and retrieve the correct system call
identifier corresponding to the index argument. The retrieved
system call identifier is then used to dispatch a system call in the
normal fashion. Differentiation can be achieved by permuting the
system call table contents for each process, thus changing all the
system call specifiers used within the actual machine language of
each executable version. The functional behavior of each
executable is unaffected, since any two permutations of system
call tables will ultimately result in the same actual function call
being executed at the same points in the control flow.

We ran unmodified, Alpha-compiled versions of several MiBench
benchmarks in the M5 simulator using the modified Linux kernel

with system call implementation. Using a separate system call
table per process entails some increase in loads due to the work
required to retrieve the system call table from the running process.
The average increases in committed loads are provided in Figure
8, which is nominal at 0.15%, with Office benchmarks having the
highest average increase of 0.51%. This can be attributed to the
relative infrequency of system calls in typical applications. For
this reason we did not include any figures for the negligible to
undetectable change in execution time. This is to be expected
given this infrequency as well as the large amount of work
performed during a system call compared to the small amount of
work from our few additional loads.

4.3 Instruction Level Indirection
Implementing instruction level indirection will require the
addition of an IRF and its associated instruction extensions to the
processor along with modification of the compiler to support
instruction packing. The actual permuting of the contents of the
IRF randomly at compile/link-time is a simple operation. Since
the IRF is relatively performance-neutral, the resulting processor
design will feature reduced application code size, improved
energy efficiency, and an increased resistance to malware
propagation. Previous application of instruction packing on these
MiBench benchmarks has shown an energy savings of 15.8% with
a corresponding code size reduction of 26.8%. This is for a 4-
window 32-entry IRF that seeks to maximize code density both
statically and dynamically. Reserving a few unused instruction
registers to trigger micro state machines minimally impacts the
overall improvements provided by instruction packing. Reserving
5 additional slots (beyond the one for nop) results in a code size
reduction of 24.2% and a corresponding energy reduction of
14.9%. Average execution time is within 0.3% of the original

Figure 8. System Call Table Simulation

case. The vast
majority of
tightly packed
instructions do
not utilize all 5
slots, and thus
there is ample
room to extend
these
instructions
with references
to micro state
machine
changing operations. Simultaneously, not all instructions that
feature a loosely packed instruction field can actually make use of
that available storage area. Having micro state operations fill these
slots prevents any additional code size increase or execution time
increase by providing a simply-decoded mechanism for modifying
intrusion detection state machines. In extremely rare stretches of
code that are very densely packed with few free slots, additional
tightly or loosely packed instructions can be inserted to trigger the
appropriate state changes, thus keeping our mechanism applicable
to all software applications.

5. RELATED WORK
The cell phone industry has seen growing concern over security in
phone applications and hardening against viruses and other
malware. The Symbian Signed initiative offers to digitally “sign”
applications for use on Symbian OS devices [31]. This may help
to verify participating software integrity but only at increased
development cost and complexity. Certification systems lack
scalability as the quantity of code produced in successful
application development inevitably outstrips review resources.
Ultimately malware may infiltrate a system through means other
than a user’s active installation. The real goal is to limit malicious
behavior with the assumption that malware will eventually have a
chance to execute.

Many techniques have been proposed to defend against buffer
overflow attacks, including implementation of non-executable
stack areas [25], placement of canary marker values on the stack
[5], encryption of pointer values in memory [4]. The approaches
entail various levels of effectiveness and performance impact, and
have various shortcomings including the failure to actually
implement such defenses, such as the lack of a non-executable
heap on the Apple iPhone Mac OS X system [18, 13]. Auditing
code to identify common vulnerabilities, either by hand [9, 24], or
by automated methods [7, 37], has proven prohibitively costly
[16, 10]. Indeed, writing correct code seems the most difficult
defense to implement, with United States Computer Emergency
Readiness Team (US-CERT) statistics showing an increase from
1,090 vulnerabilities reported in 2000 to over 4,200 in the first
three quarters of 2005 alone [34]. Intrusion Detection Systems
(IDS) have focused on monitoring system behavior to detect
violations of security policy, with the goal of terminating suspect
anomalous behavior [15]. The Address Space Layout
Randomization (ASLR) technique, used in the PaX Linux kernel
patch, looks to randomize code footprint by inserting random
memory gaps before areas such as the stack and heap base.
Attacks become less likely to successfully execute and more
detectable due to the behavior pattern of failed attacks [26].

However, methods for defeating ASLR protection have been
proposed, including adding a nop slide to the beginning of a stack
attack payload to promote its landing within the target area, or use
of format string bugs to have a printf() call report stack frame
contents to determine the actual stack base offset [6]. The number
of randomized bits used in an ASLR scheme can be effectively
reduced by only targeting the 16-bit mmap() base randomization,
thus allowing for a tractable attack solution [28]. SHARK
provides architectural support for protection from Rootkits [35].
By generating Process Identifiers (PID) in hardware and then
encrypting page tables, SHARK attempts to prevent compromised
operating systems from running malicious code. Program
differentiation differs in that SHARK attempts to provide a single
wall of protection, while Program Differentiation provides a
Defense-in-Depth approach. Defense-in-Depth adds to overall
defense since, if an attacker manages to break the security on one
machine, the attack will not be spread to others. Furthermore,
SHARK requires a significant architectural addition, while a
significant portion of Program Differentiation can be implemented
in software. In fact, program differentiation works well in
combination with other protection schemes. Overall security is
enhanced with any new hardware or software protection
mechanism since it must be exploited for virus propagation to
occur. Not only can other protections exist independently of our
proposed differentiation schemes, the methodology of
differentiation may be readily applied to other protection
mechanism to make propagation even more challenging. Other
related research has attempted to analogize software defense to
biological immune defense systems. Natural immune systems are
designed to operate in an imperfect, uncontrolled, open
environments, analogous to computer environments, and immune
system principles such as distributability of response, multi-
layered defense responsibility and diversity, might be applied to
computer systems to increase security [29]. Proposed
diversification methods have included random addition of
nonfunctional code, reordering of code, and various software and
system transformations [8].

6. CONCLUSIONS
While vulnerabilities in software systems will continue to invite
new malware attacks, we believe that proper mitigation techniques
can reduce the impact of these attacks. Towards this goal, we
propose expanding our current malware defense focus from the
traditional approaches of absolute attack prevention to include
efforts toward preventing malware propagation. By differentiating
software program executables, we seek to thwart malware
propagation when a vulnerability exists in a given software
application. This is accomplished through virtualizing the control
flow of the application, enabling function call/return and system
call semantics to be permuted into unique versions for each
application instance. We also show how an existing processor
design utilizing an Instruction Register File (IRF) can achieve
further security though the use of differentiation of instructions in
the IRF as well as by restricting vital instructions from being
fetched directly from memory. We show that these techniques
require minimal overhead with respect to increased memory
footprint and execution time. In worst-case software simulations
of our control flow differentiation method using function calls and
returns we found only a 1.04% average increase in instruction
count and 3.38% average increase in loads. In software simulation
of a Linux kernel implementing a per process system call table the

increase in committed loads is nominal at 0.15%. Automation by
the compiler and implementation of actual simple hardware
support structures can ultimately result in little to no performance
degradation for such differentiation. The benefits of the minimal
performance impact of our techniques, as well as their scalability,
are ideal for embedded systems. These techniques can be
implemented in whatever quantities are desired or allowable in a
system without draining precious performance resources in the
pursuit of defense. Current trends show that software programs
will continue to possess vulnerabilities that are discoverable by
attackers. However, inherent in differentiation is the targeting of
the economics of malware, making profitable high-impact attacks
prohibitively expensive and infeasible. While we accept that there
may be successful attacks on any single distributed executable
version, by dramatically increasing the ratio of effort to damage
scope, attackers incur a substantial disincentive to developing
malware even in the presence of an exploitable software
vulnerability. This research was supported in part by NSF grants
CNS-0615085 and CNS-0915926.

7. REFERENCES
1. S. Bahtkar, D. C. DuVarney, and R. Sekar. Address Obfuscation: an

Efficient Approach to Combat a Broad Range of Memory Error
Exploits. 12th USENIX Security Symposium, Washington, D.C. Aug.
2003.

2. A. C. Cheng, G. S. Tyson. An Energy Efficient Instruction Set
Synthesis Framework for Low Power Embedded System Designs.
IEEE Transactions on Computers, vol. 54, no. 6, pp. 698-713. June,
2005.

3. N. Clark, H. Zhong, and S. Mahlke. Processor Acceleration Through
Automated Instruction Set Customization. In Proceedings of the 36th
Annual IEEE/ACM international Symposium on Microarchitecture,
pp. 129-140. 2003.

4. C. Cowan, S. Beattie, J. Johansen, and P. Wagle. PointGuard(TM):
Protecting Pointers from Buffer Overflow Vulnerabilities. In
Proceedings of the 12th USENIX Security Symposium, pp. 91-104.
Aug. 2003.

5. C. Cowan, P. Wagle, C. Pu, S. Beattie, J. Walpole. Buffer overflows:
Attacks and Defenses for the Vulnerability of the Decade. In
Proceedings of the DARPA Information Survivability Conference and
Exposition, Hilton Head, SC, pp. 119-129. January 2000.

6. T. Durden. Bypassing PaX ASLR protection. Phrack Magazine, Volume
59, http://www.phrack.org /issues.html?issue=59

7. HalVar Flake. Auditing Closed-Source Applications. The Black Hat
Briefings 2000, Oct. 2000.

8. S. Forrest, A. Somayaji, D. Ackley. Building Diverse Computer Systems. In
Sixth Workshop on Hot Topics in Operating Systems, pp. 67-72, 1997.

9. Gentoo Linux Security Project. http://www.gentoo.org/proj/en/security/
audit.xml.

10. GCC Extensions. Bounds Checking Patches for GCC Releases and
GCC Snapshots. http://gcc.gnu.org/extensions.html.

11. M. Gillon. Google Desktop Exposed: Exploiting an Internet Explorer
Vulnerability to Phish User Information.
http://www.hacker.co.il/security/ie/css_import.html. Nov. 30, 2005.

12. M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R. Brown.
MiBench: A Free, Commercially Representative Embedded Benchmark
Suite. IEEE Workshop on Workload Characterization. Dec. 2001.

13. S. Hansell. Stealing Data From an iPhone Is Easy, but Don’t You Dare Use
a Ringtone You Didn’t Pay For. The New York Times Online.
http://bits.blogs.nytimes.com/2007/07/23/stealing-data-from-an-iphone-is-
easy-but-dont-you-dare-use-a-ringtone-you-didnt-pay-for/. July 23, 2007.

14. S. Hines, J. Green, G. Tyson and D. Whalley. Improving Program
Efficiency by Packing Instructions into Registers. In Proceedings of
the 32nd Annual International Symposium on Computer Architecture,
pp. 260-271. IEEE Computer Society June 2005.

15. S. A. Hofmeyr, A. Somayaji, and S. Forrest. Intrusion Detection using
Sequences of System Calls. Journal of Computer Security Vol. 6, pp.
151-180. 1998.

16. R. Jones and P. Kelly, Backwards-compatible Bounds Checking for
Arrays and Pointers in C Programs. In Proceedings of the Third
International Workshop on Automatic Debugging, pp. 13-26, May
1997.

17. McAfee. McAfee's Position on Vista.
http://www.mcafee.com/us/local_content/misc/vista_position.pdf.

18. C. Miller, J. Honoroff, J. Mason. Security Evaluation of Apple's iPhone.
Independent Security Advisors, http://www.securityevaluators.com/iphone/
exploitingiphone.pdf. July 19, 2007.

19. N. Mook. IE Flaw Puts Google Desktop at Risk.
http://www.betanews.com/article
/IE_Flaw_Puts_Google_Desktop_at_Risk/1133545790. Dec. 2, 2005.

20. D. Moore. The Spread of the Code-Red Worm (CRv2).
http://www.caida.org/analysis/security/code-red/coderedv2_analysis.xml.

21. E. Montalbano. McAfee Cries Foul Over Vista Security. InfoWorld (via
IDG News Service). http://www.infoworld.com/article/06/10/03/
HNmcafeefoul_1.html. Oct. 3, 2006.

22. R. Naraine. Google Patches Desktop Search Flaw. eWeek.com.
http://www.eweek.com/article2 /0,1895,1744115,00.asp. Dec. 20, 2004

23. S. Nielson, S. Fogarty, D. Wallach. Google Desktop Security Issue
(Technical Report TR04-445). Computer Security Lab: Rice University.
http://seclab.cs.rice.edu/2004/12/20/google-desktop/. Dec. 20, 2004.

24. OpenBSD Project. Security. http://openbsd.org/security.html.
25. Openwall Project. Linux Kernel Patch from the Openwall Project.

http://www.openwall.com/linux/.
26. PaX Team, Documentation for the PaX Project,

http://pax.grsecurity.net/docs/aslr.txt, 2003
27. J. Schwartz. IPhone Flaw Lets Hackers Take Over, Security Firm Says.

The New York Times Online.
http://www.nytimes.com/2007/07/23/technology/23iphone.html?ex=118628
6400&en=24cdfcebb35507dd&ei=5070. July 23, 2007.

28. H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh.
On the Effectiveness of Address Space Randomization. ACM Conference
on Computer Security, 2004.

29. A. Somayaji, S. Hofmeyr, and S. Forrest. Principles of a Computer Immune
System. In Proceedings of the Second New Security Paradigms Workshop,
pp. 75-82. 1997

30. G. Suh, J. Lee, D. Zhang and S. Devadas. Secure Program Execution
via Dynamic Information Flow Tracking. In Proceedings of the 11th
International Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 85-96, 2004.

31. Symbian Signed. The Complete Guide to Symbian Signed.
http://www.symbiansigned.com/. Oct. 2, 2006.

32. TechWeb. McAfee Slams Microsoft Over Vista Security. Software
Technology News by Techweb.
http://www.techweb.com/wire/software/193101281. Oct. 2, 2006.

33. University of Michigan, Department of Electrical Engineering and
Computer Science. The M5 Simulator System.
http://m5.eecs.umich.edu/wiki/index.php/Main_Page.

34. U.S Cert Coordination Center. CERT/CC Statistics 1998-2005.
http://www.cert.org/stats/#vulnerabilities.

35. V. R. Vasisht, H. S. Lee. SHARK: Architectural Support for
Autonomic Protection Against Stealth by Rootkit Exploits.
Proceedings of the 2008 41st IEEE/ACM International Symposium on
Microarchitecture, pp. 106-116, Nov. 2008.

36. D. Wagner and D. Dean. Intrusion Detection via Static Analysis. In
Proceedings of the 2001 IEEE Symposium on Security and Privacy,
pp. 156-169, May 2001.

37. D. Wagner, J. Foster, E. Brewer, and A. Aiken. A First Step Towards
Automated Detection of Buffer Overrun Vulnerabilities. In
Proceedings of the 2000 Network and Distributed System Security
Symposium, Feb. 2000.

38. C. C. Zou, W. Gong, D. Towsley. Code Red Worm Propagation
Modeling and Analysis. In Proceedings of the 9th ACM Conference
on Computer and Communications Security, pp. 138-147. 2002.

