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Abstract

The gap between CPU speed and memory speed in modern computer systems is widenirgeasrae
tions of hardware are introduced. Loop blocking and prefetching transformations help bridge this gap for
regular applications; heever, these techniques arérds dfective for irregular applications. This paper
investigates using data and computation reorderings to imepthblization of multi-level memory hierar

chies for irregular applications. &\&/aluate the impact of reordering on data reuse &ereift levels in the
memory hierarcih We focus on coordinated data and computation reordering based on space-fillegy curv
and we introduce a mearchitecture-independent multive blocking strategy for irregular applications.

For two particle codes we studied in detail, the mo&aive reordering reducedwverall execution time by

a factor of two for the first and a factor of four for the second. Preliminary experience with a third code
derived from a large unstructured mesh application showed a factorooitprovement in primary cache
misses when using a space-filling cufased ordering of data and computation compared to a random

ordering.
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1. Introduction

The gap between CPU speed and memory speed is increasing rapidlyw agmerations of computer systems are
introduced. Multi-leel memory hierarchies are the standard architectural design used to address this memory access bottle-
neck. Asthe gap between CPU speed and memory speed widens, systems are being constructed with deeper hierarchies
Achieving high performance on such systems requires tailoring the reference behavior of applications to better match the
characteristics of a machisememory hierarci. Techniques such as loop blocking [1, 2, 3, 4, 5, 6] and data prefetching [4,

7, 8] have sgnificantly improved memory hierarch utilization for regular applicationsA limitation of these techniques is
that they aren't as dfective for irregular applicationslmproving performance for irregular applications is extremely impor

tant since large-scale scientific and engineering simulations are increasingly usingeaadaegtilar methods.

Irregular applications are characterized by patterns of data and computation that are unknown until run time. In such
applications, accesses to data oftevelf@or spatial and temporal localityhich leads to inééctive uise of a memory hierar
chy. Improving memory system performance for grear applications requires addressing problems of both latamt
bandwidth. Latengis a problem because poor temporal and spatial reuse resultvisteglecache and translation lookaside
buffer (TLB) miss rates. Bandwidth is a problem because indirect references founduhairigoplications tend to & poor
spatial locality Thus, when accesses cause blocks of data to be fetched into varasi®fehe memory hierargh items
within a block are either referenced only avfiémes or not at all before the block igi@ed due to conflict and/or capacity

misses, een though these items will be referenced later in tee@tion.

One strategy for improving memory hieraycttilization for such applications is to reorder data dynamically at the
beginning of a major computation phase. This approach assumes that the benefits of increased locality through reordering
will outweigh the cost of the data n@nent. Dataeordering can be particularlyfe€tive when used in conjunction with a
compatible computation reordering. The aim of data and computation reorderings is to decreasanidterce diectively
utilize bandwidth at dferent levels of the memory hierarghby (1) increasing the probability that items in the same block
will be referenced close together in time and (2) increasing the probability that items in a block will be reusedemore e
sively before the block is replaced. This papepleres strategies for data reordering and computation reordering along with
integrated approaches toatuate hov effectively they improve memory hierarch utilization on machines with multi-lel
memory hierarchiesWe dso introduce multi-leel blocking as a n& computation reordering strategy for irregular applica-

tions.



A common class of irregular applications considers particles or mesh elements in spatial neighborhoods. Figure 1
shavs a simple n-body simulation that we use asxamgle throughout the papeAlthough we explain our techniques in
terms of this example, thi@pply more broadly to other types of ig@ar applications, especially those that simulatesiaial
systems in tw or more dimensions. Our sample n-body simulation considers particles within a defined volume, represented
here as a tev dmensional area for simplicityEach particle interacts with other particles within a specified tugafius.
Paticles Pj andP, are shown in the pisical space along with a cutefidius surrounding each particle. Interactions are
between a particle and other particles within its dutaflius. Theparticles can change positiongeptime in the plgsical

space of the problenilo adapt to these changes, the application periodically recalculates which particles can interact.

Figure 1 also shows the problem data space for this sample application. The information for each particle includes its
coordinates in the physical space and other attributes, such as velocity and theeftedeupon it. The interaction list indi-
cates the pairs of particles that can interact. The data for the particlegugarigaccessed since the order of access is-deter
mined by the interaction list. The number of interactions is typically much greater than the number of paltidethat

there are manpossible variations on kothe data space can beyarized.

The remainder of this paper has the followinganization. Firstwe introduce related work that uses blocking, data
reordering, and space-filling curves to impeahe memory hierarghperformance of applications. Second, we outline the
general data and computation reordering techniques that we consider in this apkrwe describe three irregular pro-
grams, explain he we manually apply specific combinations of data and computation reordering techniques by inserting
calls to library routines, and present the results of applying these techniques on these pregaiyiswe resent a sum-

mary and conclusions of the paper.
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Figure 1: A Classical Irregularly Structured Application



2. RelatedWork

Blocking for impraiing the performance of memory hierarchies has been a subject of research for thedastfies.
Early papers focused on blocking to impeopaging performance [9, 10], but recenonk has focused more narrowly on
improving cache performance [2, 5, 4, 6echniques similar to blocking kia dso been déctively applied to impreement
of reuse in registers [1]. Most of these methods deal with argedéthe memory hierarghonly, dthough the cache and
register techniques can befadtively composed. A recent paper by \Weo et al. examines the ééctiveness of multi-leel
blocking techniques on dense linear algebra [11] and a papeodiykilaet al. presents a data-centric blocking algorithm

that can be effeately applied to multi-leel hierarchies [12].

The principal strategy for impuing bandwidth utilization for regular problems, aside from blocking for reuse, has
been to transform the program to increase spatial locdlibpp interchange is a standard approach to achieving stride-1
access in regular computation3his transformation has been specifically studied in the context of memory hyerarch

improvement by a number of researchers [13, 14].

As described earliedata reordering can be used to reduce bandwidth requirements of irregular applications. Ding and
Kennedy [15] &plored compiler and run-time support for a class of run-time data reordering techniquesxdinine an
access sequence and use it to greedily reorder data aiming to increase spatial locality as the access segaeseck is tra
They consider only a ery limited form of computation reordering in their work. Namdbr computations expressed in
terms of an access sequence composed of tuples of particles or objgaippthe grouping transformation to order tuples
in the sequence to consider all interaction®liring one object before moving to thexteDas et al. [16] applied this same
computation reordering in an unstructured mesh application. Ding endefly [15Hid not specifically consider reordering
for multi-level memory hierarchies although theroposed a straty for grouping information about data elements to
increase spatial localityvhich has the side effect of improving TLB performance. In oarkwwe applied this grouping
stratgly before taking baseline performance measurements. Alsoyalgte Ding and Knnedys dynamic stratgy, first-

touch reordering, along with other strategies.

In recent years, space-filling curves/ddeen used for managing locality for both regular andyirta applications A
space-filling cure for some finite space af dimensionsd = 2) is a continuous, non-smooth certhat passes arbitrarily
close to gery point. Each point in d-dimensional space can be mapped to the nearest position along a 1-dimensional space-

filling curve by gplying a sequence of bitvd |ogical operations to itd-dimensional coordinatesA Hilbert space-filling



curve is me such mapping. Figure 2 st® a fifth-order Hilbert cury in two dmensions. Animportant property of this
curve, is that its recurge gructure presems locality: points close in the original multi-dimensional space are typically close
along the curg. Inparticular the successor of grpoint along the cum is e of its adjacent neighbors along one of the
coordinate dimension]sFigure 3 shows a Morton curve. leila Hibert curve, a Morton cuevdso has a recungt gructure;
however, lattice points along a Morton cuenae not alvays adjacent neighbors, which results in a slightly lower degree of
locality. Morton curves are popular becauseytae simple to compute: a poigstposition along the cueris cetermined by a

bitwise interleaving of its coordinates.

Figure 2: Fifth-order Hilbert cuevthrough 2 dimensions.
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Figure 3: Fifth-order Morton cuevthrough 2 dimensions.

Space-filling curves or related ordering techniques [19¢Hmen used to partition data and computation among pro-
cessors in parallel computer systems.yThave been applied in problem domains that include n-body problems [20, 19],
graph partitioning [21], and adapti mesh refinement [22]Ordering data elements by their position along a space-filling
curve and assigning each processor a contiguous range of elements of equal (possibly weighted) size is a fast partitioning
technique that tends to presermhysical locality in the problem domain. Nametiata elements close together inygical
space tend to be in the same partition.eDal. [21] present results that shdahat other methods, such as recugspectral

bisection and reordering based on eigetors, can produce partitionings with better locality according to some metrics;

! For more details about the history of space-filling curves, the types of curves, their construction, and their propertiean sg/[@amgl Samet
[18].



however, the differences among the methods (in terms of the locality of partitionings produced) diminished when these meth-
ods were applied to larger problem sizes. Alsoy fieeind that using space-filling curves to compute reorderings is orders of

magnitude faster than the other methody hedied.

Several researchers kia proposed using recuss data layouts for computation on dense matricesniprove locality
for matrix multiplication, Thottethodét al. [23] explored ordering matrix elements by their position along a space-filling
curve rather than typical row-major or column-major orderings, and Frese {24] proposed recuka matrix layouts based
on quad trees. The hierarchical locality resulting from these reelyrsiefined orderings is a good match fovide-and-

conquer matrix algorithms.

Several researchers ke investigated strategies for improving memory hierargerformance for algorithms on graphs
and unstructured meshesl-Furaih and Ranka [25] used a simple breadth-first node numbelbaget al. [16] applied
breadth-first traersal strategy known as Rerse Cuthill-McKee to order elements in an unstructured mesh to venjiyoal-
ity. This reordering technique waswéped by Geaye [26]for a different purpose: bandwidth and profile minimization of
sparse matrices. Geyw's dratggy was a refinement of a breadth-first ordering techniqwelaiged by Cuthill and McKe
[27]. TheCuthill-McKee and Reerse Cuthill-McKee orderings use an adjagehist representation of an undirected graph
and renumber graph nodes using a breadth-fing&ygal in which all unnumbered neighbors of a ne@ee added to a FIFO
gueue of nodes to be numbered by order of increasmigee Sloan [28fleveloped a relatedui more sophisticated reorder
ing stratgy. First, he more carefully selects the first node in the ordering to yield orderings withveatssel structure.
Then, at each step instead of simply adding nodes nodes to the queue in order of increasing degree, he uses priorities that at
a function of distance to the end node as well as nogeede Aprincipal application of Sloas'method is for ordering ele-

ments in a finite element mesh for efficient computation using frontal solution techniques.

Al-Furaih and Ranka [25] also studied the impact of data reorderings based on Hilbert curves for redugienythe e
tion time of particle-in-cell codes. Ourork differs from theirs principally in that we consider coordinated data and computa-

tion reordering, whereas theonsider data reorderings exchay.

3. DataReordering Approaches

A data reordering wolves changing the location of the elements of the data, but not the order in which these elements

are referenced. Considerayg the data space shown in FigureALdata reordering would changes the order of elements



within the particle information vector and updates the interaction list to point to whpamnticle locations. By placing data
elements near one another ifytage referenced togethedata reordering approaches can imgr@atial locality Temporal
locality would not be décted since the order in which data elements are accessed remains unchanged. The following subsec-

tions describe the data reordering approachesiigated.

3.1. First Touch Data Reordering

First-touch data reordering is a greedy approach for improving spatial locality of irregular referencesdiagiter
Figure 4, which represents the data space in Figure 1 before and after data reordering using the first-touch A pimesach.
scan of the interaction list is performed to determine the order in which the particles are first tatrehedrticle informa-
tion is reordered and the indices in the interaction ligt point to the ne positions of the particlesHowever, the order in
which the patrticles are referenced is unchanged. The idea is thatphtticles are referenced near each other in time in the
interaction list, then theshould be placed near each other in the particle Ast.advantage of first-touch data reordering is
that the approach is simple and can be accomplished in linearAilisadwantage is that the computation order (interaction

list in Figure 4) must be known before reordering can be performed.
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Figure 4: Data Reordering Using a First Touch Approach

3.2. Spacd-illing Cur ve Data Reordering

Figure 5 shows anxample data space before and after data reordering using a space-filliag Assumethat the
first three particles on the cenae P, Py, and P,. To use ak-level space-filling cure to reorder data for particles whose
coordinates are represented with real numbeveraesteps are necessailjirst, each particle coordinate must be normalized
into ak-bit integer. The integer coordinates of each partiglgdsition are coverted into a position on the space-filling carv
by a sequence of bitsel logical operations. The particles are then sorted into ascending order by their position onethe curv

Sorting particles into space-filling curarder tends to increase spatial localityamely if two particles are close together in



physical space, then the¢end to be nearby on the carvOneadwantage of using a space-filling carfor data reordering is

that data can be reordered prior to knowing the order of the computation. This allows some computation reorderings to be
accomplished with nowerhead. [Br instance, if the data is reordered prior to establishing the access order (e.g. an interac-
tion list), then the access order will be affected if it is established as a function of the order of tiRepdéantial disadan-

tage of using space-filling curves is that it is possible that the reordering may require verbesad than a first-touch
reordering due the sort of the particle informati@f. course, the relate oveheads of the tav goproaches would depend on

the number of data elements versus the number of references to the data.
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Figure 5: Data Reordering Using a Space Filling Curve

4. Computation Reordering Approaches

A computation reordering uolves changing the order in which data elements are referenced, but not the locations in
which these data elements are stored. Consider again the data space shown in Fgocoenfiutation reordering auld
reorder the pairs of elements within the interaction list. The vector of particle information accessed by the computation
would remain unchangedComputation reordering approaches can inproth temporal and spatial locality by reordering
the accesses so that the same or neighboring data elements are referenced close together in time. The following subsection

describe the computation reordering approaches considered in this work.

4.1. Space-FillingCurve Computation Reordering

Reordering a computation in space-filling auirder requires determining the position along the edor each data
element and using these positions as the basis for reordering accesses to these data elements. Figure 6 shows an example d
space before and after computation reorderidAgsume that the first three particles in space-filling euwrder areP,, Py,
andP,. To reorder the computation, entries in the interaction list, as shown in Figure 5, are sorted according to the space-fill-

ing cune position of the particles tlyereference. Therder of the particle information itself remains unchangadpace-



filling curve based computation reordering can imgrdemporal locality For instance, if particle X interacts with a nearby

particle Y, then it is likely that particle Y will be referenced again soon since Y in turn will interact with other particles.
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Figure 6: Computation Reordering Using a Space-Filling Curve

4.2. ComputationReordering by Blocking

As described earlier in the papdiocking computation via loop nest restructuring has been used successfully to
improve memory hierarci utilization in regular applications for multi-leel memory hierarchies. Here we describenvho

blocking can be used as a computation reordering technique for some irregular applications as well.

In terms of our n-body example, the following loop nest is an abstract representation of the natural computation order

ing for the gven data order:

FORi = 1 to number of particle®©O
FORjin the set particles_that_interact with[{D
process interaction between particles i and j

To block this computation, we first assign each particle to some block. (@efwcomputing a block number for a particle
is to tale its address and ignore some number of low-order bits.) Then, rather than considering all interactions for each parti-
cle at once, one can consider all interactions between particles in each pair of blocks vandiagraairs of blocks in some

orderly fashion. Thdollowing code fragment illustrates this idea for one possibietsal order of the blocks.

FORi = 1 to number of blocks of particle®O
FORj =i to number of blocks of particld3O
process interactions between all interacting
particle pairs with the first particle in block i
and the second in block j

Mitchell, Carter and Ferrante [29] concurrentlweeped a related blocking technique for irregular references thatttle
bucke tiling. They improve the locality of a stream of accesses for a single nfimeafeference by reordering computation
into blocks so that the stream of accesses from the same block of compuatiggiantd the same region of memoryhey

don't consider orderings for multiple references (such as particle pairs), or hierarchical orderings forveutticleory
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hierarchies.

To extend blocking stragges to multi-le@el memory hierarchies, it is necessary to block for eae#l Ia the hierarch.
In an earlier version of this work, we describe#-level blocking strategy folk-level memory hierarchies [30]Unfortu-
nately choosing the best blocking factor for eachelas difficult and experimentation is necessaiihe best blocking factors
for an application depend not only upon the architectural characteristics of the target maohimery hierarci but also
upon characteristics of the application itself. Architectural characteristics that affect the choice of blocking factor for a cache
include the size of the blocks managed by that cache (i.e. line size for data caches or page size for TLB), the number of sets
in the cache, the associaty, and even the replacement poljc Application characteristics that affect the choice of blocking
factors for a computational kernel include the number of data references in the kernel, whether the access streams for eact
reference are disjoint owverlapping, and the spatial and temporal reuse among all of the references. For irregular problems,
the amount of spatial and temporal reuse aechle is a function of an applicatiainput data and depends on factors such

as the werage density of particles per unit of space or theeaae degree of nodes in an unstructured mesh.

Over the last seeral years, recurse dvide and conquer strategiesveaeen advocated for blockinggelar computa-
tions for machines with multiel memory hierarchies in an architecture-independashibn [31, 24]. The rationale for
this approach is that if the computation at a particulsal lef recursion doeshfit into some Ieel of the memory hierargh
the computation at some deeperef recursion will. The diide-and-conquer approach essentially blocks the computation

at all possible leels and some of thoseuvis will be an effectie Hocking for aty particular machine.

We @an achige a gmilar machine-independent multie blocking of irregular computations as well by careful com-
putation ordering. In terms of our n-bodyagnple, computation order is represented by an interaction list and we can block
computation by sorting interactions by the block numbers of the particlegdaference. Applying a lexicographical sort
[32] to the interaction pairs using [block _of(p1), block of(p2)] as the soreggidc pair [pl,p2] achiees a sngle level of
blocking. 10 block for a multi-leveel memory hierarch in a machine-independent fashion, we modify the approach slightly
First, we compute a sorel for an interaction using a bit-wise inteng@g of the block numbers for the particles in the pair
Next, we sort interactions using theseyk. Thiseffectively blocks the interaction list for all possiblevéts in ary memory
hierarcly. Forming an interactios’ ©orting key & the bit-wise interleaving of &' particle block numbers amounts to comput-
ing the position of the interaction along a 2D Morton space-fillingectmough the space of block pairs. Sorting interac-

tions by their position along a Morton cervecursvely blocks the computation. Section 5.1 explaing/ivee accomplish
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this quickly in practice.An alternatve o Smply performing a bit-wise interleaving of the block humbers to aehéeecur-
sive Hocking based on Morton ordering, a pair of block humbers can be simply treated as coordinatesdimeehsional
space that can be ognted to a position along grgpace-filling curve, such as a Hilbert ceanas we describe in Section 5.1.
Sorting by the position along a Hilbert cerwill produce a similar recurgé Hocking. A Morton ordering is faster to com-

pute, but a Hilbert ordering offers more potential locality becausiislong edges.

5. Applying the Techniques

This section describe our experiences in applying data and computation reordering techniquesséotie merfor
mance of tw particle codesmoldynand magi Also, we describe our preliminarkmgeriences with a scatter benchmark
derived from CHAD, a large unstructured mesh applicatiokloldynis a synthetic benchmark, whereaagiand CHAD are
production programsThese codes are described in more detail in the following subsechitiidyn andmagiare irregular
programs that exhibit poor spatial and temporal logalityich are typical problemsxhibited by this class of applications.
CHAD s in large part a vector computation, but spends a significant fraction of time performinudgirgather/scatter oper

ations to mue data between the nodes and edges of an unstructured mesh.

We chose to perform our experiments witioldynand magion an SGI O2 workstation based on the R10000 MIPS
processor since it provides hardware counters that enable collection of detailed performance measurements and we were abls
to use the workstation in isolatioBoth programs were compiled with the highestlef optimization aailable for the
natve C and Fortran compilerg.TabIe | displays the configurations of the differentele of the memory hierarghon this
machine. Eackentry in the TLB contains tawvirtual to physical page number translations, where each page contains 4KB of

data. Thusthe 8KB block size for the TLB is the amount of addressable memoryipages associated with a TLB entry.

Cache Configuration
Cache Type| Cache L Block
. Associativity .
Size Size
L1 Data 32KB 2-way 32B
L2 Data 1MB 2-way 128B
TLB 512KB 64-way 8KB

Table I: SGI O2 Workstation Cache Configurations

2 Although these compilers can insert data prefetch instructions to help reduce, lptefetching is less @& ctive for irregular accesses because
prefetches are issued ovegy reference rather thaivay cache line [8].Our experience was that data prefetching support in the SGI Origin CoatnanF
compilers did not impnee performance for the applications we studied and we did not use it in our experiments.
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5.1. TheMoldynBenchmark

Moldynis a synthetic benchmark for molecular dynamics simulation. The computational struahokelymis similar
to the nonbonded force calculation in CHARMM [33], and closely resembles the structure represented in Figure 1 of the
paper An interaction list is constructed for all pairs of interactions that are within a specifiefl raatiofs. Thesénterac-

tions are processedeay timestep and are periodically updated due to particles changing their spatial location.

A high-level description of the computation fonoldynis shown in Figure 7The time-consuming portion of the algo-
rithm is the innefFOR loop which corresponds to tlemputeforcegunction in the benchmarkThis function traerses the
interaction list performing a force calculation for each pair of partidlés.gplied different data and computation reordering

techniques in an attempt to neaetke computeforcefunction more efficient.

Randomly initialize the coordinates of each of the particles.
FORN time step$O
Update the coordinates of each particle based on their
force and velocity.
Build an interaction list of particles that are within
a ecified radius\eery 20th time step.
FOReach pair of particles in the interaction XD
Update the force on each of the particles in the pair.
Update the velocities of each of the particles.
Print the final results.

Figure 7: Structure of the ComputationNfoldyn

For our experiments, we set the number of particles to 256,000, which resultgdr ig7omillion interactions. We
chose this problem size to cause the data structures tagkee thhan the secondary cache and the amount of memory that can
be contained in the pages associated with the TEiBure 8 depicts the data structures used irctmputeforce$unction.
The coordinates and forcesvieathree elements for each particle since thgsptal space of the problem is in three dimen-
sions. Thdength of the interaction list was long enough to contain all interacting pairs of particles. Each of the elements of
the coordinates and forces are double precisanes and the interaction list elements are integers used as indices into the

coordinate and force arrays.

coordinates array forces array interaction list
1 1 1
2 2 2
3 o 3 e 1 2 727.4 million

1 2 256,000 1 2 256,000

Figure 8: Main Data Structures in thldynBenchmark
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To make the moldyn benchmark more amenable to performing experiments with a large number of particles, we
changed the approach for building the interaction IRteviously a graightforward algorithm WithO(nz) complexity was
used to find all the interacting pairs of particles that were within the specifieflradiofs. V% used an approach ofuiding
the physical space into cubes, where the length of each cube side was the size offtredmgofV¢ then assigned each
particle to its respeate aube. for a given particle, only the particles in current and immediate surrounding cubes had to be
checled as possible interaction partners. (This is a well-known technique that is usedragtheplication as well.)This

allowed the interaction list to be built in a couple of minutes insteadsefadéours.

Before performing xperiments with data and computation reorderings, we manually applied three transformations to

remove athogonal memory hierargtperformance problems.

(1) We interchanged the dimensions of the coordinates and the forces arrays so information for each particle would be

contiguous in memory.
(2) We fused the coordinates and forces together (approximating an array of structures) to provide better spatial locality.

(3) We djusted the loop that computes forces so that when a sequence of interactions references the same first particle,

the data for the first particle is only loaded from memory once.

The purpose of this static program restructurirgsvio establish a good performance baseline for our experiments so that
improvements in reuse of dynamic data are not "lost in the noisedur results belw, dl of our performance comparisons

are with respect to this statically tuned version of the program that we refeBésame

Table 1l shows information about misses in the caches and the TLB for our Baseline versmdysfbenchmark. @
investigate the nature of the poor memory hiergrgerformance, we used the MHSIM memory hiergreimulator we
developed to collect an L1 miss trace for the application. Figure @stzoplot of L1 missesver the first 100,000 interac-
tions within thecomputeforce$n the Baseline version aholdyn While all memory references were simulated, only the
misses associated with the particle information are displayed in the plot. The block numbers in the plot are the portion of the
addresses (tag and indeused to access the L1 cache and the interaction numbers indicate on which interaction each miss
occurred. Théand of misses is initially as wide as the array of particles. Figure 10 shows a plot of L1 meésd4€9 800
interactions when a Hilbert cuiewvas used to reorder both the particle data and computation. This plot was drawn at the
same scale as the plot in Figure 9 and the total number of misses for the first 100,000 interastiedsi@ed by a factor of

14. Thedifference between these plots illustrates the dramatic performance benefits that canvbe lglgeplying data
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and computation reorderings.

Cache Vpe | Baseline Misses  Baseliviss Ratio

L1 1,613,065,560 0.23439
L2 995,152,174 0.61693
TLB 664,457,217 0.09655

Table Il: Miss Information

Block Number

4
4 5 6 7 8 9 10
Interaction Number x10°

L
0 1 2 3

Figure 9: L1 Baseline Misses@ the First 100,000 Interactions

Block Number

5
Interaction Number < 10°

Figure 10: L1 Misseswer the First 100,000 Interactions after
using Hilbert Curves to Reorder the Data and Computation

To accomplish multi-leel blocking of the moldyn non-bonded forces computation, the interaction list must be
reordered to match the characteristics of the memory higrafctme taget machine. As described in Section 4.2, we com-
pute a ky for each interaction by interleaving the particle block numb@essort interaction pairs quicklywe kreak each

key into 4 bit "digits" and then apply a most significant digit radix sort [32$ dhose 4-bit digits toaid thrashing the TLB
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for large data sizes. Too mahins for the radix sort implies too rmapages?.’

To show how our multi-level blocking algorithm rgularizes the memory accesses of the molecular dynamics force
computation, we include Figures 11-13 whichwhbe pattern of L1 misses due to tt@mputeforcegunction for the first
10,000, 100,000, and 1,000,000 primary cache misses collected using a cache simulator configured for theTB&I O2.
traces for these plots were collected for t@dynforce computation. No reordering has been applied to the data. The com-
putation is blocked using Morton ordering as described in SectiorNm that the scales of these three plots differ on each
axis. Theselots shav only the misses in the particle information; misses for the interaction list were simulated, but not
recorded. Aghe simulation progresses from left to right the increasing interaction numbers mark the progression of the com-
putation. Inary vertical slice of the graph, only tablocks are actie: one to which the first particle in the pairs belongs, and
one to which the second particle belongs. The reaiucture of the blocked computation order can be seen by cempar
ing the three figures at different scales. The reearsiucture of the computation causes the figures e e same form at
all scales. Figures 12 and 13 plot enough L1 misses to distinguish interactions between TLB blocks and L2 blocks, respec-

tively. Figure 13 illustrates that four TLB blocks are accessed repeatedly since there are four TLB blocks for each L2 block.
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Figure 11: Plot of 10K L1 Misses Figure 12: Plot of 100K L1 Misses Figure 13: Plot of 1M L1 Misses

Table 11l shows the results for applying the different combinations of data and computation reordemogiytwmn an
SGI 02 vorkstation. Allreorderings were applied by manually inserting calls to general-purpose library routinegelve de
oped for computing orderingeks and then permutations based on thesgsk RCMstands for the Rerse Cuthill-Mckee
approach described in Section 2. These resultw shitios of end-to-end performance as comparecdoution of the Base-

line version ofmoldynwithout ary run-time data or computation reordering.

s Prolop [31]describes tw dternative orting algorithms that are cache oblivious with asymptotically optimal reuse that would also be appropriate.
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Data Computation| L1 Cache| L2 Cacheg TLB Cycles

Reordering Reordering|| Misses Misses | Misses

RCM None 0.96441 0.81847| 0.49658 | 0.8665(
First Touch | None 0.87487 0.76548| 0.31928| 0.79069
Hilbert None 0.87978 0.78074| 0.26397| 0.80731
None Hilbert 0.45053 0.12157| 0.74006 | 0.37778
None Blocking 0.30376 0.23557| 0.19278 | 0.6191(¢
First Touch | Hilbert 0.33735 0.14314| 0.00806| 0.38773
Hilbert Hilbert 0.25816 0.10139| 0.00624 | 0.26550

Table 1I: Results of the Different Data and Computation Reordering's!ébayn
(Ratios as Compared to the Baseline Measurements)

There are seeral aspects of the results that are worth noting. First, data and computation reorderings arfectiest ef
at reducing misses for caches with ayéablock or line size. For this reason reductions in TLB misses were the greatest, and
those for L2 were greater than those for primary cad®econd, a combination of data and computation reorderings per
formed dramatically better than usingyapecific type of data or computation reordering in isolation. Hilbert data reordering
combined with Hilbert computation reordering reduced TLB misses bgtarfof 160, L2 misses by a factor of 10, and pri-
mary cache misses by actor of 4. This strategy reduced the miss ratios for L1 cache from 23.4% to 6.1%, for L2 cache
from 61.7% to 6.3%, and for TLB from 9.7% to 0.06% terms of reducing»@cution cycles, Hilbert-based data and com-
putation reordering performed the best, yieldingetdr of four eerall reduction in cycles. While the Morton blocking strat-
egy was competitie even without data reordering, once the data and computation are in Hilbert order for this density of inter
actions, there is essentially no benefit to blocking. Particles do weshaiany neighbors thatwaluating all interactions for
a sngle particle causes significant evictions. (Therage interaction density in these experimends W05 interactions per
particle.) Inaddition to the blocking results reported in the table, we also experimented with wallbieking based on
Hilbert rather than Morton orderings. For the interaction density we studied, the higheeadl of computing Hilberteys

for the interactions maskedyapotential performance benefits.

5.2. TheMagi Application

The magi application is a particle code used by the U.S. Air Force for performing hydrodynamic computations that

focus on interactions of particles in spatial neighborhoods. The computational domain consists of objects comprised of

41t is worth noting that since we are measuring end-to-end performance, the miss rates quatsditions with reordering include all misses in-
curred performing the reordering as well as misses during the rest of the prograrion. Whernwe consider the performance of tb@mputeforcesou-
tine alone, impreements are far greater.
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particles and void spaceé 3D rectangular space containing particles igd#id into boxes, where the neighboring particles
within a sphere of influence of avgn particle are guaranteed to be in the same box or an adjacenEtroour experiments,
we used DoD-provided test dataaiving 28,000 particles. é this test case, the size of the data structures is larger than the

secondary cache and the amount of memory that can be contained in the pages associated with the TLB.

The utility that created the input data set fiwaigi ordered the particles using Sloamhethod [28]. This ordering as
accomplished by first constructing an undirected graph in which all particles within aradtiofs are linked as neighbors

and then applying Sloamethod to the resulting graph to compute a refined ordering for the particles.

A high-level description of the computation fanagiis given in FHgure 14.

Read in the data for each of the particles.
FORN time step$O
FOReach particle DO
Create an interaction list for particle i containing
neighbors within the sphere of influence.
FOReach particle j within this interaction liBO
Update information for particle j.
Print the final results.

Figure 14: Structure of the Computatiorhiagi

Just as in thenoldynbenchmark, we manually tuned thragiapplication to impree memory hierarch performance

to provide a better baseline for our experiments.
(1) We transposed seral arrays containing particle information so this information would be contiguous in memory.

(2) We fused some arrays together (approximating an array of structures) to provide better spatial localityfereen dif

kinds of particle information are referenced together.

Unlike the moldynbenchmark, a separate interaction list is created for each particle on each time step and is discarded
after being used oncelhere is neer an eplicit representation of all the interactions. Therefore, computation reordering
techniques that require reordering of the interaction list as presentedmmottignbenchmark would not be applicable for
magi Likewise, some types of data reordering cannot be accomplished in the same manner since there is no persistent repre-
sentation of an interaction list that can be updated to point to thionation of the particles. Therefore, we used the ¥ollo

ing approaches to accomplish data and computation reorderingafr

(1) We wsed an indirection vector containing thewngositions of the particles when applying data reordering without

computation reordering so the order in which the particles were referenced would feetadaf Thisrequires an
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additional leel of indirection each time information about a particle is referenced, which can potentislyaha

adverse effect on both the performance of the memory higranchthe &ecution cycles.

(2) Datareordering using a space-filling cerdoes not depend on the order of the interactions and was performed before
the first time stepFirst-touch data reordering was accomplished by (a) collecting the order of the references during
the first time step across the different particle interaction lists and (b) reordering the particles bgfare tofer

enced on the second time step.

(3) Whenapplying computation reordering, we simply did not use the indirecéator Thus, the order of a subse-

guently generated interaction list is affected by the data reordering of the particle information.

(4) We composed a data reordering using a Hilbert space-fillingecfalowed by a data reordering using a first-touch
approach without using an indirection vector to cause computation reordering. Placing the particles in Hilbert order
results in a space-filling cuevbased computation ordewhich increases the likelihood that consemutparticles
being processed will ke mary common neighbors in their interaction lists and inyesotemporal locality Apply-
ing a first-touch reordering to the space-filling @mased computation order after the first time step greedily
increases spatial localityNote this approach is similar to applying computation reordering using a Hilbert space-fill-
ing cune gproach and data reordering using a first-touch approachsaseomplished imoldyn The only difer-
ence is that interaction lists magiare established at the beginning of each time step, which causes the first-touch

data reordering to affect the computation order.

Table IV shavs the results of applying combinations of data and computation reorderings that were beneficial for the
magiapplication. Seeral of the combinations of data and computation reorderings applied teofdgnbenchmark are not
shavn in this table for tw reasons. Firstwe found that applying data reordering only foagi did not imprawe perfor-
mance. Theost of accessing data through an indirection vector offset the benefits that wevedalopieeordering data.
One should note that data reordering without computation reordering cauealdnefits as shown fanoldynin Table Il
However, achieving such benefits may require that there is argaasve method to access the reordered data, such as updat-
ing an interaction list once to refer to thewngata locations rather than incurring the cost of dereferencing an element of the
indirection vector on each data reference. Second, the combinations of data and computation reordering were also restricted
by the fact that the interaction list for a particle wagereerated on each time stdpegeneration of the interaction lists pre-

vented direct computation reorderind.ikewise, separate and small interaction lists for each particle made the use of

-18-



blocking inappropriate.

Data Computation L1 Cache| L2 Cache TLB Cvecles
Reordering Reordering Misses Misses | Misses y
First Touch FirstTouch 0.42959 | 0.27032 | 0.49173 0.56321
Hilbert Hilbert 0.28621 0.11916| 0.15704| 0.43751
Hilbert/First Touch | Hilbert/FirsfTouch 0.32670 0.11695] 0.135130.43607

Table 1V: Results of the Different Data and Computation Reorderingsl&mi
(Ratios as Compared to the Baseline Measurements)

The results in Table IV skothat the combination of reordering particle data and and interaction computations accord-
ing to particle positions along a Hilbert carfwhich probabilistically increases spatial and temporal locality) followed by a
first-touch data reordering (which greedily impes gatial locality) achiees the lowest L2 and TLB misses and the best
overall cycle time by a very slim margin. The table wiahat applying a first-touch data reordering after the Hilbert-based
reordering amortizes the cost of the first-touch reordering by reducing L2 and TLB misses, but the barely perceptible

improvement in averall performance does not justify the additional programming effort.

5.3. ScatterBenchmark from CHAD

CHAD is a parallel unstructured mesh applicatiomdttgped at Los Alamos National Laboratory for simulating three-
dimensional fluid flows with chemical reactions and fuel sprays. The code operates on a static unstructured mesh composed
of arbitrarily mixed hexahedral andwer-order degenerate elements (e.g., pyramids, prisms, or tetrahddiiladugh an

arbitrary number of elements can be associated with a node, most neglelsdnee close to six.

Computation inCHAD is principally carried out as dense vector operations on e associated with the edges
and mesh elements. The principal irregular data access patterns occur in gather/scatter operations. On a 16039 node mes
with 47718 edges (the largest test casilable to us, but a small one compared to those used in production runs), a sequen-
tial version of the code spent 25% of its time performiathgr and scatter operations between mesh nodes and endpoints or
midpoints of edges. Initiallyour aim was to study thefetts of data and computation reordering in the context of the entire
CHAD code; havever, working remotely on an unfamiliar code of this size (roughly 88,000 lineskgpto be a bttleneck
for completing this imestigation. T accelerate our research, we abstracted out a scatter benchmark that represents the data

access patterns moving data between nodes and edges.
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In our experiments with this benchmark, we used a memory higrarollator to @aluate locality because it enabled
us to collect detailed information about misses, including traces. Miss traces enable us to see wheyarisgbsvbccur
and provide insight into the structure of the computatido.ollect these traces we used MHSIM, our locallydigped
memory hierarch simulator, which we configured to simulate a 2-way set-asseeid®KB primary cache--the configura-

tion found in the MIPS R10K processor used in the SGI O2.

Our scatter benchmark performs a scadidd that independently accumulates Xal Z quantities at each node from
the appropriate endpoint of each incident edge. Figure 15 showsgtmzation of the nodes of the mesh we used in our
experiments. The nodes are closely spaced along radial spines centered at the origin. The ordering of the nodes is largely in
terms of concentric shells. Figure 16 wisaa plot of node vector position versus distance of the node from the dfihien
the original node ordering is drawn by connecting all of the nodes, the resulting figure leockdalkof string. The struc-
ture becomes apparent whenwiieg the plot at high magnifications, or plots of subsets of the data. Figure 17 shows a plot
connecting the positions of 600 consegatindes from the node vector in the orderegiby the original dataset. The line
moves through a node on each spine, then repeats therged of the spines in the same order at a different radial distance.

0.4
0.2

-0.2
-0.4
-0.6
-0.8

0.5 1
05

-05

Figure 15: Oganization of 16038 mesh nodes foHAD scatter benchmark.

Figure 16: Node vector position versus distance from the origin.
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Figure 17: Plot connecting 600 node<THAD scatter benchmark mesh (Original Order)

In our experiments, we measured the number of primary cache misses that occurred during one trip thtdt§b the
scatter krnel to accumulate edge-based data at the node endpoints. Figure 18 shows the pattern of missesciaticone e
of the CHAD scatter kernel using the original node ordéhe irregular accesses for updating the Xand Z node values in
the scatter operation appear as three parallel roughly horizontal bands at the top of the figure. At the left edge of these bands
are three diagonal lines where the values are initialized to zero. The three central diagonal bands correspond to misses for
stride-1 accesses to the separate a0 Z vectors that hold values for each of the edge endpoints. The bottommost diagonal
shavs the misses to the vector contains a pair of node coordinates for eachaedbes érdering, 12% of the misses come
from the irrgular access pattern to the node valuesveder, the irregular misses are important forotweasons. First, tlye
represent an opportunity for temporal reuse. The only other temporal reuse is that each mofte emiedge endpoint is
used three times to scatter X, &d Z data. Second, the other stride-1 misses are predictable and can be mitigated by

prefetching.

Miss Address

Figure 18: L1 Misses foEHAD Scatter Benchmark using Original Node Order

To investigate the impact of data and computation reordering on this scatter benchmarkestigaited seeral differ-

ent node and edge ordering strategies. Node and edge orderings determine the spatial and temporal localitgwdérthe irre
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accesses in the scattakithout a good node ordering, no spatial locality will be realized for the irregular accesses in the scat-
ter computation.An edge ordering amounts to a computation ordering, since it determines the pattern of irregular access to
the nodes during a scatter computation. A good edge order will capitalize on spatial locality in the node ordering and orches-

trate temporal reuse of data by bringing multiple irregular accesses to the same node close together in time.

We onsidered four different node orderings, and threferdint edge orderings. Not all combinations are considered.

The node orderings we compared include the original order from the test dataset, Hilberaodien orderand the order
determined by applying Rerse Cuthill-McKee to the sparse adjacgntatrix representing the edges. After a node reerder
ing, edge endpoints must be renumbered. The edge orderings we considered include the origitatiavgeaphic order

(of the (src,dest) edge pairs), and Hilbert or@mparing different data orderings with random is interesting because the
parallel version of th€HAD code uses theadPMETIS graph partitioner [34] to partition the nodes and edges of the computa-
tional mesh amongvailable processors.@&METIS computes its partitionings in a hierarchical fashion and swaps nodes and
edges between partitions. After partitioning, the locality properties of the mesh pieces ase lieliesemble those for

meshes with random node orderings [35].

We compute Hilbert order for nodes by normalizing each mode’Y, and Z coordinates, which are a triple of ip¢e
coordinates, each in the range [0..2°21¢ ¥én comert this triple to a position along a 63-bit Hilbert camunning through
this space, and sort the nodes by their position along the.c@emputingHilbert order for edges is analogous: we treat the
pair of node numbers identifying the edge endpoints as coordinates ordint@nsional space, normalize them, and then
convert them to Hilbert position and sort therfio improve the quality of lexicographic and Hilbert edge orderings, we flip

edges, if necessanp ensure that the smallest numbered endpoinwisyal the first in the edge pair.

Table V shows the relate rumber of primary cache misses measured for a scatter operation performed fisiegtdif
combinations of node and edge orderings forGHAD test mesh.We ddn’t measure secondary cache or TLB misses at all
for this experiment because of the modest data size. The valwes fird_1 cache misses are all ratios between the number
of misses measured with the simulator for that particular data and computation ordeited diy the number of misses
measured using the original node and computation orderidgike moldynand magi which both hae degees of data
reuse on the order of 100 and 20 for each particle in each timest€p;&iztest mesh used by the scatter benchmark has an
avaage degree of 6. Thus, there is less reuspoie with good node and edge orderings. For the test mesh, our results

shaw that the original node and edge order is quite good: it is nearly a factor of 2 better than random. Both the space-filling
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Node Edge L1 Cache
Reordering Reordering|| Misses
original lexicographic 0.962
Hilbert original 1.28
Hilbert lexicographic 0.978
Hilbert Hilbert 1.03
RCM lexicographic 0.972
RCM Hilbert 1.01
random original 1.61
random l&icographic 1.92

Table V: Results of the Different Data and Computation Reorderings
for Scatter Benchmark

curve and the Reerse Cuthill-McKee node order produce similar results. In thegeranents, the Hilbert edge order is 4-6%

slower than the lexicographic ord€omparing the tw orders, lexicographic order greedily exploits temporal locality of the

first node of an edge pair at the expense of the second. Combined with a good eddexeamgaphic order can be quite

effective when the number of incident edges per node is modest (the data for all of & penttesrs fits in cache). Hilbert

edge order attempts to balance locality between the edge endpoints. This can be beneficial when the number of neighbors pe

node is high, but here the sacrifice of greedy temporal locality for the first endpoint of an edge is a net loss.

6. Conclusions

Typically, irregular applications makpoor use of memory hierarchies and performancéesufs a result. Impving
memory hierarch utilization involves improving reuse at multiplevigs, typically including TLB and one or morevkds of
cache. Oumeasurements stwhow ooordinated orderings of data and computation can dramatically weapfitization in
memory hierarchies at multiplevids. We dso hare shown that neither data reordering nor computation reordering alone is
nearly as déctive & a mordinated approachvolving both. We introduced multi-leel blocking as a n& computation
reordering strategy for irgrlar applications and demonstrated significant benefits by combining reordering techniques based

on space-filling curves with other data or computation reordering techniques.

Using space-filling cums as the basis for data and computation reorderings off@rslskenefits. First, reordering
data elements according to their position along a space-filling @otabilistically increases spatial locality space-filling
curve ader, neighboring elements in ghical space, which tend to be referenced together during computation, are clustered
together in memoryThis clustering helps impve uilization of long cache lines and TLB entrieSecond, reordering com-

putation to traerse data elements in their order along a space-fillingecéiso improves temporal locality By following the
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space-filling curve, neighboring elements irygibal space are processed close together in time, and thus computations that
operate on a data element and its spatial neighbors repeatedly encounter the same elements as the congoséstiah tra
elements in a neighborhooétinally, data reordering based on position along a space-fillingedarfast. Thecost of such a

reordering is typically small relag o the rest of a program’computation.

With the moldyn application, we demonstrated dramatic imraents in memory hierarghutilization by using
Hilbert-based data reordering and either multeléblocking or a Hilbert-based strategy for reordering computatibne
Hilbert-based computation reordering has an advantegebtmcking for moldynin that it is accomplished at no cost by sim-
ply performing Hilbert-based data reordering befandding the interaction list in the canonicalkshion. Inour experiments,
blocking ofered no additional benefitver Hilbert computation order because the interaction density was not high enough to
cause capacity misses while computing interactions for a single particle. Bloakind offer benefits with higher interac-

tion densities.

With themagiapplication, Hilbert cure based strategies for data and computation reordering ireghemd-to-end per
formance by wer a factor of two. The best memory hieraycttilization came from considering particles in space-filling
curve ader to imprae emporal locality and using that as the basis for a first-touch data and computation reordering that
greedily impraoes gatial locality It is interesting to note that the impeanents we achieed for magiwith our data reorder
ings are relatie © a kaseline computation for which input particle data has already been carefully ordered using Sloan’
method for profile minimization [28]Similarly, space-filling cure based reordering methods provided substantially superior

overall performance than the R&se Cuthill-McKee profile minimization method foroldyn

With the scatter benchmark from tB#1AD application, the Hilbert and Rerse Cuthill-McKee data orderings com-
bined with lexicographic data ordering produced results closely comparable to the original careful orderiey. e, ks
that these ordering strategies agbtkthis level of performance without gna priori knowledge and that theuel of |ocality
they achieved is rearly a factor of tw better than that achied for a random ordering. These results suggest that these

reordering techniques may provide substantial benefits when applied to pieces of partitioned meshes that are not well ordered.

As the gap between processor and memory speeds continuesvtangrtarge-scale scientific computations continue
their shift tavards using adapte and irregular structures, techniques for imgrg the memory hierarghperformance of
irregular adaptie gplications will become increasingly important. In this paper havedemonstrated that data and compu-

tation reordering based on space-filling @s¢can be used to immete locality of sequential computations.wwer, these
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techniques are more broadly applicable. Our colleagues feaently also applied space-filling certased reorderings to
improve the parallel dfciengy of shared-memory and software distrited shared memory computations by improving data
locality, which reduces communication analde sharing [36, 37]. Our experiencesvgtibat good data and computation
orders can be achied for irregular problems using dynamic reorderings, and that the gain in locality from using good data

and computation orders can be dramatic.
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