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Abstract

The gap between CPU speed and memory speed in modern computer systems is widening as new genera-

tions of hardware are introduced. Loop blocking and prefetching transformations help bridge this gap for

regular applications; however, these techniques aren’t as effective for irregular applications. This paper

investigates using data and computation reorderings to improve utilization of multi-level memory hierar-

chies for irregular applications. We evaluate the impact of reordering on data reuse at different levels in the

memory hierarchy. We focus on coordinated data and computation reordering based on space-filling curves

and we introduce a new architecture-independent multi-level blocking strategy for irregular applications.

For two particle codes we studied in detail, the most effective reordering reduced overall execution time by

a factor of two for the first and a factor of four for the second. Preliminary experience with a third code

derived from a large unstructured mesh application showed a factor of two improvement in primary cache

misses when using a space-filling curve based ordering of data and computation compared to a random

ordering.
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1. Intr oduction

The gap between CPU speed and memory speed is increasing rapidly as new generations of computer systems are

introduced. Multi-level memory hierarchies are the standard architectural design used to address this memory access bottle-

neck. Asthe gap between CPU speed and memory speed widens, systems are being constructed with deeper hierarchies.

Achieving high performance on such systems requires tailoring the reference behavior of applications to better match the

characteristics of a machine’s memory hierarchy. Techniques such as loop blocking [1, 2, 3, 4, 5, 6] and data prefetching [4,

7, 8] have significantly improved memory hierarchy utilization for regular applications.A l imitation of these techniques is

that they aren’t as effective for irregular applications.Improving performance for irregular applications is extremely impor-

tant since large-scale scientific and engineering simulations are increasingly using adaptive irregular methods.

Irregular applications are characterized by patterns of data and computation that are unknown until run time. In such

applications, accesses to data often have poor spatial and temporal locality, which leads to ineffective use of a memory hierar-

chy. Improving memory system performance for irregular applications requires addressing problems of both latency and

bandwidth. Latency is a problem because poor temporal and spatial reuse result in elevated cache and translation lookaside

buffer (TLB) miss rates. Bandwidth is a problem because indirect references found in irregular applications tend to have poor

spatial locality. Thus, when accesses cause blocks of data to be fetched into various levels of the memory hierarchy, items

within a block are either referenced only a few times or not at all before the block is evicted due to conflict and/or capacity

misses, even though these items will be referenced later in the execution.

One strategy for improving memory hierarchy utilization for such applications is to reorder data dynamically at the

beginning of a major computation phase. This approach assumes that the benefits of increased locality through reordering

will outweigh the cost of the data movement. Datareordering can be particularly effective when used in conjunction with a

compatible computation reordering. The aim of data and computation reorderings is to decrease latency and more effectively

utilize bandwidth at different levels of the memory hierarchy by (1) increasing the probability that items in the same block

will be referenced close together in time and (2) increasing the probability that items in a block will be reused more exten-

sively before the block is replaced. This paper explores strategies for data reordering and computation reordering along with

integrated approaches to evaluate how effectively they improve memory hierarchy utilization on machines with multi-level

memory hierarchies.We also introduce multi-level blocking as a new computation reordering strategy for irregular applica-

tions.
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A common class of irregular applications considers particles or mesh elements in spatial neighborhoods. Figure 1

shows a simple n-body simulation that we use as an example throughout the paper. Although we explain our techniques in

terms of this example, they apply more broadly to other types of irregular applications, especially those that simulate physical

systems in two or more dimensions. Our sample n-body simulation considers particles within a defined volume, represented

here as a two dimensional area for simplicity. Each particle interacts with other particles within a specified cutoff radius.

Particles Pj andPk are shown in the physical space along with a cutoff radius surrounding each particle. Interactions are

between a particle and other particles within its cutoff radius. Theparticles can change positions over time in the physical

space of the problem.To adapt to these changes, the application periodically recalculates which particles can interact.

Figure 1 also shows the problem data space for this sample application. The information for each particle includes its

coordinates in the physical space and other attributes, such as velocity and the force exerted upon it. The interaction list indi-

cates the pairs of particles that can interact. The data for the particles is irregularly accessed since the order of access is deter-

mined by the interaction list. The number of interactions is typically much greater than the number of particles.Note that

there are many possible variations on how the data space can be organized.

The remainder of this paper has the following organization. First,we introduce related work that uses blocking, data

reordering, and space-filling curves to improve the memory hierarchy performance of applications. Second, we outline the

general data and computation reordering techniques that we consider in this paper. Third, we describe three irregular pro-

grams, explain how we manually apply specific combinations of data and computation reordering techniques by inserting

calls to library routines, and present the results of applying these techniques on these programs.Finally, we present a sum-

mary and conclusions of the paper.
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Figure 1: A Classical Irregularly Structured Application
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2. RelatedWork

Blocking for improving the performance of memory hierarchies has been a subject of research for the last few decades.

Early papers focused on blocking to improve paging performance [9, 10], but recent work has focused more narrowly on

improving cache performance [2, 5, 4, 6].Techniques similar to blocking have also been effectively applied to improvement

of reuse in registers [1]. Most of these methods deal with one level of the memory hierarchy only, although the cache and

register techniques can be effectively composed. A recent paper by Navarro et al. examines the effectiveness of multi-level

blocking techniques on dense linear algebra [11] and a paper by Kodukulaet al. presents a data-centric blocking algorithm

that can be effectively applied to multi-level hierarchies [12].

The principal strategy for improving bandwidth utilization for regular problems, aside from blocking for reuse, has

been to transform the program to increase spatial locality. Loop interchange is a standard approach to achieving stride-1

access in regular computations.This transformation has been specifically studied in the context of memory hierarchy

improvement by a number of researchers [13, 14].

As described earlier, data reordering can be used to reduce bandwidth requirements of irregular applications. Ding and

Kennedy [15] explored compiler and run-time support for a class of run-time data reordering techniques. They examine an

access sequence and use it to greedily reorder data aiming to increase spatial locality as the access sequence is traversed.

They consider only a very limited form of computation reordering in their work. Namely, for computations expressed in

terms of an access sequence composed of tuples of particles or objects, they apply a grouping transformation to order tuples

in the sequence to consider all interactions involving one object before moving to the next. Das et al. [16] applied this same

computation reordering in an unstructured mesh application. Ding and Kennedy [15]did not specifically consider reordering

for multi-level memory hierarchies although they proposed a strategy for grouping information about data elements to

increase spatial locality, which has the side effect of improving TLB performance. In our work, we applied this grouping

strategy before taking baseline performance measurements. Also, we evaluate Ding and Kennedy’s dynamic strategy, first-

touch reordering, along with other strategies.

In recent years, space-filling curves have been used for managing locality for both regular and irregular applications.A

space-filling curve for some finite space ofd dimensions (d ≥ 2) is a continuous, non-smooth curve that passes arbitrarily

close to every point. Each point in ad-dimensional space can be mapped to the nearest position along a 1-dimensional space-

filling curve by applying a sequence of bit-level logical operations to itsd-dimensional coordinates.A Hilbert space-filling
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curve is one such mapping. Figure 2 shows a fifth-order Hilbert curve in two dimensions. Animportant property of this

curve, is that its recursive structure preserves locality: points close in the original multi-dimensional space are typically close

along the curve. In particular, the successor of any point along the curve is one of its adjacent neighbors along one of the

coordinate dimensions.1 Figure 3 shows a Morton curve. Like a Hilbert curve, a Morton curve also has a recursive structure;

however, lattice points along a Morton curve are not always adjacent neighbors, which results in a slightly lower degree of

locality. Morton curves are popular because they are simple to compute: a point’s position along the curve is determined by a

bitwise interleaving of its coordinates.

Figure 2: Fifth-order Hilbert curve through 2 dimensions.

Figure 3: Fifth-order Morton curve through 2 dimensions.

Space-filling curves or related ordering techniques [19] have been used to partition data and computation among pro-

cessors in parallel computer systems. They hav ebeen applied in problem domains that include n-body problems [20, 19],

graph partitioning [21], and adaptive mesh refinement [22].Ordering data elements by their position along a space-filling

curve and assigning each processor a contiguous range of elements of equal (possibly weighted) size is a fast partitioning

technique that tends to preserve physical locality in the problem domain. Namely, data elements close together in physical

space tend to be in the same partition. Ouet al. [21] present results that show that other methods, such as recursive spectral

bisection and reordering based on eigenvectors, can produce partitionings with better locality according to some metrics;

1 For more details about the history of space-filling curves, the types of curves, their construction, and their properties, see Sagan [17] and Samet
[18].
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however, the differences among the methods (in terms of the locality of partitionings produced) diminished when these meth-

ods were applied to larger problem sizes. Also, they found that using space-filling curves to compute reorderings is orders of

magnitude faster than the other methods they studied.

Several researchers have proposed using recursive data layouts for computation on dense matrices. To improve locality

for matrix multiplication, Thottethodiet al. [23] explored ordering matrix elements by their position along a space-filling

curve rather than typical row-major or column-major orderings, and Frens Wise [24] proposed recursive matrix layouts based

on quad trees. The hierarchical locality resulting from these recursively defined orderings is a good match for divide-and-

conquer matrix algorithms.

Several researchers have inv estigated strategies for improving memory hierarchy performance for algorithms on graphs

and unstructured meshes.Al-Furaih and Ranka [25] used a simple breadth-first node numbering.Das et al. [16] applied

breadth-first traversal strategy known as Reverse Cuthill-McKee to order elements in an unstructured mesh to improve local-

ity. This reordering technique was developed by George [26]for a different purpose: bandwidth and profile minimization of

sparse matrices. George’s strategy was a refinement of a breadth-first ordering technique developed by Cuthill and McKee

[27]. TheCuthill-McKee and Reverse Cuthill-McKee orderings use an adjacency list representation of an undirected graph

and renumber graph nodes using a breadth-first traversal in which all unnumbered neighbors of a nodex are added to a FIFO

queue of nodes to be numbered by order of increasing degree. Sloan [28]developed a related but more sophisticated reorder-

ing strategy. First, he more carefully selects the first node in the ordering to yield orderings with narrower level structure.

Then, at each step instead of simply adding nodes nodes to the queue in order of increasing degree, he uses priorities that are

a function of distance to the end node as well as node degree. Aprincipal application of Sloan’s method is for ordering ele-

ments in a finite element mesh for efficient computation using frontal solution techniques.

Al-Furaih and Ranka [25] also studied the impact of data reorderings based on Hilbert curves for reducing the execu-

tion time of particle-in-cell codes. Our work differs from theirs principally in that we consider coordinated data and computa-

tion reordering, whereas they consider data reorderings exclusively.

3. DataReordering Approaches

A data reordering involves changing the location of the elements of the data, but not the order in which these elements

are referenced. Consider again the data space shown in Figure 1.A data reordering would changes the order of elements
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within the particle information vector and updates the interaction list to point to the new particle locations. By placing data

elements near one another if they are referenced together, data reordering approaches can improve spatial locality. Temporal

locality would not be affected since the order in which data elements are accessed remains unchanged. The following subsec-

tions describe the data reordering approaches investigated.

3.1. First Touch Data Reordering

First-touch data reordering is a greedy approach for improving spatial locality of irregular references [15].Consider

Figure 4, which represents the data space in Figure 1 before and after data reordering using the first-touch approach.A l inear

scan of the interaction list is performed to determine the order in which the particles are first touched.The particle informa-

tion is reordered and the indices in the interaction list now point to the new positions of the particles.However, the order in

which the particles are referenced is unchanged. The idea is that if two particles are referenced near each other in time in the

interaction list, then they should be placed near each other in the particle list.An advantage of first-touch data reordering is

that the approach is simple and can be accomplished in linear time.A disadvantage is that the computation order (interaction

list in Figure 4) must be known before reordering can be performed.
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Figure 4: Data Reordering Using a First Touch Approach

3.2. SpaceFilling Cur ve Data Reordering

Figure 5 shows an example data space before and after data reordering using a space-filling curve. Assumethat the

first three particles on the curve are Px, Py, and Pz. To use ak-level space-filling curve to reorder data for particles whose

coordinates are represented with real numbers, several steps are necessary. First, each particle coordinate must be normalized

into ak-bit integer. The integer coordinates of each particle’s position are converted into a position on the space-filling curve

by a sequence of bit-level logical operations. The particles are then sorted into ascending order by their position on the curve.

Sorting particles into space-filling curve order tends to increase spatial locality. Namely, if two particles are close together in
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physical space, then they tend to be nearby on the curve. Oneadvantage of using a space-filling curve for data reordering is

that data can be reordered prior to knowing the order of the computation. This allows some computation reorderings to be

accomplished with no overhead. For instance, if the data is reordered prior to establishing the access order (e.g. an interac-

tion list), then the access order will be affected if it is established as a function of the order of the data.A potential disadvan-

tage of using space-filling curves is that it is possible that the reordering may require more overhead than a first-touch

reordering due the sort of the particle information.Of course, the relative overheads of the two approaches would depend on

the number of data elements versus the number of references to the data.
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Space Filling Curve Data Reordering
Data Space before

Interaction List

•••

•••

•••

•••

•••

•••Elem 2

Elem 1

Particle Information

Px Py Pz •••

Space Filling Curve Data Reordering
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•••

••• •••

••• •••

•••

Elem 1

Elem 2

Figure 5: Data Reordering Using a Space Filling Curve

4. ComputationReordering Approaches

A computation reordering involves changing the order in which data elements are referenced, but not the locations in

which these data elements are stored. Consider again the data space shown in Figure 1.A computation reordering would

reorder the pairs of elements within the interaction list. The vector of particle information accessed by the computation

would remain unchanged.Computation reordering approaches can improve both temporal and spatial locality by reordering

the accesses so that the same or neighboring data elements are referenced close together in time. The following subsections

describe the computation reordering approaches considered in this work.

4.1. Space-FillingCurve Computation Reordering

Reordering a computation in space-filling curve order requires determining the position along the curve for each data

element and using these positions as the basis for reordering accesses to these data elements. Figure 6 shows an example data

space before and after computation reordering.Assume that the first three particles in space-filling curve order arePx, Py,

andPz. To reorder the computation, entries in the interaction list, as shown in Figure 5, are sorted according to the space-fill-

ing curve position of the particles they reference. Theorder of the particle information itself remains unchanged.A space-
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filling curve based computation reordering can improve temporal locality. For instance, if particle X interacts with a nearby

particle Y, then it is likely that particle Y will be referenced again soon since Y in turn will interact with other particles.
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Figure 6: Computation Reordering Using a Space-Filling Curve

4.2. ComputationReordering by Blocking

As described earlier in the paper, blocking computation via loop nest restructuring has been used successfully to

improve memory hierarchy utilization in regular applications for multi-level memory hierarchies. Here we describe how

blocking can be used as a computation reordering technique for some irregular applications as well.

In terms of our n-body example, the following loop nest is an abstract representation of the natural computation order-

ing for the given data order:

FOR i = 1 to number of particlesDO
FOR j in the set particles_that_interact_with[i]DO

process interaction between particles i and j

To block this computation, we first assign each particle to some block. (One way of computing a block number for a particle

is to take its address and ignore some number of low-order bits.) Then, rather than considering all interactions for each parti-

cle at once, one can consider all interactions between particles in each pair of blocks while traversing pairs of blocks in some

orderly fashion. Thefollowing code fragment illustrates this idea for one possible traversal order of the blocks.

FOR i = 1 to number of blocks of particlesDO
FOR j = i to number of blocks of particlesDO

process interactions between all interacting
particle pairs with the first particle in block i
and the second in block j

Mitchell, Carter and Ferrante [29] concurrently developed a related blocking technique for irregular references that they call

buck et tiling. They improve the locality of a stream of accesses for a single non-affine reference by reordering computation

into blocks so that the stream of accesses from the same block of computation falls into the same region of memory. They

don’t consider orderings for multiple references (such as particle pairs), or hierarchical orderings for multi-level memory
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hierarchies.

To extend blocking strategies to multi-level memory hierarchies, it is necessary to block for each level in the hierarchy.

In an earlier version of this work, we described ak-level blocking strategy fork-level memory hierarchies [30].Unfortu-

nately, choosing the best blocking factor for each level is difficult and experimentation is necessary. The best blocking factors

for an application depend not only upon the architectural characteristics of the target machine’s memory hierarchy but also

upon characteristics of the application itself. Architectural characteristics that affect the choice of blocking factor for a cache

include the size of the blocks managed by that cache (i.e. line size for data caches or page size for TLB), the number of sets

in the cache, the associativity, and even the replacement policy. Application characteristics that affect the choice of blocking

factors for a computational kernel include the number of data references in the kernel, whether the access streams for each

reference are disjoint or overlapping, and the spatial and temporal reuse among all of the references. For irregular problems,

the amount of spatial and temporal reuse achievable is a function of an application’s input data and depends on factors such

as the average density of particles per unit of space or the average degree of nodes in an unstructured mesh.

Over the last several years, recursive divide and conquer strategies have been advocated for blocking regular computa-

tions for machines with multi-level memory hierarchies in an architecture-independent fashion [31, 24]. The rationale for

this approach is that if the computation at a particular level of recursion doesn’t fit into some level of the memory hierarchy,

the computation at some deeper level of recursion will. The divide-and-conquer approach essentially blocks the computation

at all possible levels and some of those levels will be an effective blocking for any particular machine.

We can achieve a similar machine-independent multi-level blocking of irregular computations as well by careful com-

putation ordering. In terms of our n-body example, computation order is represented by an interaction list and we can block

computation by sorting interactions by the block numbers of the particles they reference. Applying a lexicographical sort

[32] to the interaction pairs using [block_of(p1), block_of(p2)] as the sorting key for pair [p1,p2] achieves a single level of

blocking. To block for a multi-level memory hierarchy in a machine-independent fashion, we modify the approach slightly.

First, we compute a sort key for an interaction using a bit-wise interleaving of the block numbers for the particles in the pair.

Next, we sort interactions using these keys. Thiseffectively blocks the interaction list for all possible levels in any memory

hierarchy. Forming an interaction’s sorting key as the bit-wise interleaving of it’s particle block numbers amounts to comput-

ing the position of the interaction along a 2D Morton space-filling curve through the space of block pairs. Sorting interac-

tions by their position along a Morton curve recursively blocks the computation. Section 5.1 explains how we accomplish
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this quickly in practice.An alternative to simply performing a bit-wise interleaving of the block numbers to achieve a recur-

sive blocking based on Morton ordering, a pair of block numbers can be simply treated as coordinates in a two-dimensional

space that can be converted to a position along any space-filling curve, such as a Hilbert curve, as we describe in Section 5.1.

Sorting by the position along a Hilbert curve will produce a similar recursive blocking. A Morton ordering is faster to com-

pute, but a Hilbert ordering offers more potential locality because it avoids long edges.

5. Applying the Techniques

This section describe our experiences in applying data and computation reordering techniques to improve the perfor-

mance of two particle codes,moldynand magi. Also, we describe our preliminary experiences with a scatter benchmark

derived from CHAD, a large unstructured mesh application.Moldyn is a synthetic benchmark, whereasmagiandCHAD are

production programs.These codes are described in more detail in the following subsections.Moldynandmagiare irregular

programs that exhibit poor spatial and temporal locality, which are typical problems exhibited by this class of applications.

CHAD is in large part a vector computation, but spends a significant fraction of time performing irregular gather/scatter oper-

ations to move data between the nodes and edges of an unstructured mesh.

We chose to perform our experiments withmoldynandmagi on an SGI O2 workstation based on the R10000 MIPS

processor since it provides hardware counters that enable collection of detailed performance measurements and we were able

to use the workstation in isolation.Both programs were compiled with the highest level of optimization available for the

native C and Fortran compilers.2 Table I displays the configurations of the different levels of the memory hierarchy on this

machine. Eachentry in the TLB contains two virtual to physical page number translations, where each page contains 4KB of

data. Thus,the 8KB block size for the TLB is the amount of addressable memory in two pages associated with a TLB entry.

Cache Configuration

Cache Block
Size Size

Associativity
Cache Type

L1 Data 32KB 2-way 32B
L2 Data 1MB 2-way 128B
TLB 512KB 64-way 8KB

Table I: SGI O2 Workstation Cache Configurations

2 Although these compilers can insert data prefetch instructions to help reduce latency, prefetching is less effective for irregular accesses because
prefetches are issued on every reference rather than every cache line [8].Our experience was that data prefetching support in the SGI Origin C and Fortran
compilers did not improve performance for the applications we studied and we did not use it in our experiments.
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5.1. TheMoldynBenchmark

Moldyn is a synthetic benchmark for molecular dynamics simulation. The computational structure inmoldynis similar

to the nonbonded force calculation in CHARMM [33], and closely resembles the structure represented in Figure 1 of the

paper. An interaction list is constructed for all pairs of interactions that are within a specified cutoff radius. Theseinterac-

tions are processed every timestep and are periodically updated due to particles changing their spatial location.

A high-level description of the computation formoldynis shown in Figure 7.The time-consuming portion of the algo-

rithm is the innerFOR loop which corresponds to thecomputeforcesfunction in the benchmark.This function traverses the

interaction list performing a force calculation for each pair of particles.We applied different data and computation reordering

techniques in an attempt to make thecomputeforcesfunction more efficient.

Randomly initialize the coordinates of each of the particles.
FORN time stepsDO

Update the coordinates of each particle based on their
force and velocity.

Build an interaction list of particles that are within
a specified radius every 20th time step.

FOR each pair of particles in the interaction listDO
Update the force on each of the particles in the pair.

Update the velocities of each of the particles.
Print the final results.

Figure 7: Structure of the Computation inMoldyn

For our experiments, we set the number of particles to 256,000, which resulted in over 27 million interactions. We

chose this problem size to cause the data structures to be larger than the secondary cache and the amount of memory that can

be contained in the pages associated with the TLB.Figure 8 depicts the data structures used in thecomputeforcesfunction.

The coordinates and forces have three elements for each particle since the physical space of the problem is in three dimen-

sions. Thelength of the interaction list was long enough to contain all interacting pairs of particles. Each of the elements of

the coordinates and forces are double precision values and the interaction list elements are integers used as indices into the

coordinate and force arrays.
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Figure 8: Main Data Structures in theMoldynBenchmark
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To make the moldyn benchmark more amenable to performing experiments with a large number of particles, we

changed the approach for building the interaction list.Previously, a straightforward algorithm withO(n2) complexity was

used to find all the interacting pairs of particles that were within the specified cutoff radius. We used an approach of dividing

the physical space into cubes, where the length of each cube side was the size of the cutoff radius. We then assigned each

particle to its respective cube. For a given particle, only the particles in current and immediate surrounding cubes had to be

checked as possible interaction partners. (This is a well-known technique that is used by themagiapplication as well.)This

allowed the interaction list to be built in a couple of minutes instead of several hours.

Before performing experiments with data and computation reorderings, we manually applied three transformations to

remove orthogonal memory hierarchy performance problems.

(1) We interchanged the dimensions of the coordinates and the forces arrays so information for each particle would be

contiguous in memory.

(2) We fused the coordinates and forces together (approximating an array of structures) to provide better spatial locality.

(3) We adjusted the loop that computes forces so that when a sequence of interactions references the same first particle,

the data for the first particle is only loaded from memory once.

The purpose of this static program restructuring was to establish a good performance baseline for our experiments so that

improvements in reuse of dynamic data are not "lost in the noise."In our results below, all of our performance comparisons

are with respect to this statically tuned version of the program that we refer to asBaseline.

Table II shows information about misses in the caches and the TLB for our Baseline version ofmoldynbenchmark. To

investigate the nature of the poor memory hierarchy performance, we used the MHSIM memory hierarchy simulator we

developed to collect an L1 miss trace for the application. Figure 9 shows a plot of L1 misses over the first 100,000 interac-

tions within thecomputeforcesin the Baseline version ofmoldyn. While all memory references were simulated, only the

misses associated with the particle information are displayed in the plot. The block numbers in the plot are the portion of the

addresses (tag and index) used to access the L1 cache and the interaction numbers indicate on which interaction each miss

occurred. Theband of misses is initially as wide as the array of particles. Figure 10 shows a plot of L1 misses over 100,000

interactions when a Hilbert curve was used to reorder both the particle data and computation. This plot was drawn at the

same scale as the plot in Figure 9 and the total number of misses for the first 100,000 interactions was reduced by a factor of

14. Thedifference between these plots illustrates the dramatic performance benefits that can be achieved by applying data
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and computation reorderings.

Cache Type Baseline Misses BaselineMiss Ratio

L1 1,613,065,560 0.23439
L2 995,152,174 0.61693

TLB 664,457,217 0.09655

Table II: Miss Information
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Figure 9: L1 Baseline Misses over the First 100,000 Interactions
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Figure 10: L1 Misses over the First 100,000 Interactions after
using Hilbert Curves to Reorder the Data and Computation

To accomplish multi-level blocking of the moldyn non-bonded forces computation, the interaction list must be

reordered to match the characteristics of the memory hierarchy of the target machine. As described in Section 4.2, we com-

pute a key for each interaction by interleaving the particle block numbers.To sort interaction pairs quickly, we break each

key into 4 bit "digits" and then apply a most significant digit radix sort [32].We chose 4-bit digits to avoid thrashing the TLB
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for large data sizes. Too many bins for the radix sort implies too many pages.3

To show how our multi-level blocking algorithm regularizes the memory accesses of the molecular dynamics force

computation, we include Figures 11-13 which show the pattern of L1 misses due to thecomputeforcesfunction for the first

10,000, 100,000, and 1,000,000 primary cache misses collected using a cache simulator configured for the SGI O2.The

traces for these plots were collected for themoldynforce computation. No reordering has been applied to the data. The com-

putation is blocked using Morton ordering as described in Section 5.2.Note that the scales of these three plots differ on each

axis. Theseplots show only the misses in the particle information; misses for the interaction list were simulated, but not

recorded. Asthe simulation progresses from left to right the increasing interaction numbers mark the progression of the com-

putation. Inany vertical slice of the graph, only two blocks are active: one to which the first particle in the pairs belongs, and

one to which the second particle belongs. The recursive structure of the blocked computation order can be seen by compar-

ing the three figures at different scales. The recursive structure of the computation causes the figures to have the same form at

all scales. Figures 12 and 13 plot enough L1 misses to distinguish interactions between TLB blocks and L2 blocks, respec-

tively. Figure 13 illustrates that four TLB blocks are accessed repeatedly since there are four TLB blocks for each L2 block.
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Figure 11: Plot of 10K L1 Misses
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Figure 12: Plot of 100K L1 Misses
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Figure 13: Plot of 1M L1 Misses

Table III shows the results for applying the different combinations of data and computation reorderings tomoldynon an

SGI O2 workstation. Allreorderings were applied by manually inserting calls to general-purpose library routines we devel-

oped for computing ordering keys and then permutations based on these keys. RCMstands for the Reverse Cuthill-McKee

approach described in Section 2. These results show ratios of end-to-end performance as compared to execution of the Base-

line version ofmoldynwithout any run-time data or computation reordering.

3 Prokop [31]describes two alternative sorting algorithms that are cache oblivious with asymptotically optimal reuse that would also be appropriate.

-15-



Data Computation L1 Cache L2 Cache TLB
Reordering Reordering Misses Misses Misses

Cycles

RCM None 0.96441 0.81847 0.49658 0.86650
First Touch None 0.87487 0.76548 0.31928 0.79069
Hilbert None 0.87978 0.78074 0.26397 0.80731
None Hilbert 0.45053 0.12157 0.74006 0.37778
None Blocking 0.30376 0.23557 0.19278 0.61910
First Touch Hilbert 0.33735 0.14314 0.00806 0.38773
Hilbert Hilbert 0.25816 0.10139 0.00624 0.26550

Table III: Results of the Different Data and Computation Reorderings forMoldyn
(Ratios as Compared to the Baseline Measurements)

There are several aspects of the results that are worth noting. First, data and computation reorderings are most effective

at reducing misses for caches with a large block or line size. For this reason reductions in TLB misses were the greatest, and

those for L2 were greater than those for primary cache.Second, a combination of data and computation reorderings per-

formed dramatically better than using any specific type of data or computation reordering in isolation. Hilbert data reordering

combined with Hilbert computation reordering reduced TLB misses by a factor of 160, L2 misses by a factor of 10, and pri-

mary cache misses by a factor of 4. This strategy reduced the miss ratios for L1 cache from 23.4% to 6.1%, for L2 cache

from 61.7% to 6.3%, and for TLB from 9.7% to 0.06%.4 In terms of reducing execution cycles, Hilbert-based data and com-

putation reordering performed the best, yielding a factor of four overall reduction in cycles. While the Morton blocking strat-

egy was competitive even without data reordering, once the data and computation are in Hilbert order for this density of inter-

actions, there is essentially no benefit to blocking. Particles do not have so many neighbors that evaluating all interactions for

a single particle causes significant evictions. (The average interaction density in these experiments was 105 interactions per

particle.) Inaddition to the blocking results reported in the table, we also experimented with multi-level blocking based on

Hilbert rather than Morton orderings. For the interaction density we studied, the higher overhead of computing Hilbert keys

for the interactions masked any potential performance benefits.

5.2. TheMagi Application

The magi application is a particle code used by the U.S. Air Force for performing hydrodynamic computations that

focus on interactions of particles in spatial neighborhoods. The computational domain consists of objects comprised of

4 It is worth noting that since we are measuring end-to-end performance, the miss rates quoted for executions with reordering include all misses in-
curred performing the reordering as well as misses during the rest of the program execution. Whenwe consider the performance of thecomputeforcesrou-
tine alone, improvements are far greater.
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particles and void space.A 3D rectangular space containing particles is divided into boxes, where the neighboring particles

within a sphere of influence of a given particle are guaranteed to be in the same box or an adjacent box.For our experiments,

we used DoD-provided test data involving 28,000 particles. For this test case, the size of the data structures is larger than the

secondary cache and the amount of memory that can be contained in the pages associated with the TLB.

The utility that created the input data set formagiordered the particles using Sloan’s method [28]. This ordering was

accomplished by first constructing an undirected graph in which all particles within a cutoff radius are linked as neighbors

and then applying Sloan’s method to the resulting graph to compute a refined ordering for the particles.

A high-level description of the computation formagi is given in Figure 14.

Read in the data for each of the particles.
FORN time stepsDO

FOR each particle iDO
Create an interaction list for particle i containing

neighbors within the sphere of influence.
FOR each particle j within this interaction listDO

Update information for particle j.
Print the final results.

Figure 14: Structure of the Computation inMagi

Just as in themoldynbenchmark, we manually tuned themagiapplication to improve memory hierarchy performance

to provide a better baseline for our experiments.

(1) We transposed several arrays containing particle information so this information would be contiguous in memory.

(2) We fused some arrays together (approximating an array of structures) to provide better spatial locality when different

kinds of particle information are referenced together.

Unlike themoldynbenchmark, a separate interaction list is created for each particle on each time step and is discarded

after being used once.There is never an explicit representation of all the interactions. Therefore, computation reordering

techniques that require reordering of the interaction list as presented in themoldynbenchmark would not be applicable for

magi. Likewise, some types of data reordering cannot be accomplished in the same manner since there is no persistent repre-

sentation of an interaction list that can be updated to point to the new location of the particles. Therefore, we used the follow-

ing approaches to accomplish data and computation reordering formagi.

(1) We used an indirection vector containing the new positions of the particles when applying data reordering without

computation reordering so the order in which the particles were referenced would be unaffected. Thisrequires an
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additional level of indirection each time information about a particle is referenced, which can potentially have an

adverse effect on both the performance of the memory hierarchy and the execution cycles.

(2) Datareordering using a space-filling curve does not depend on the order of the interactions and was performed before

the first time step.First-touch data reordering was accomplished by (a) collecting the order of the references during

the first time step across the different particle interaction lists and (b) reordering the particles before they are refer-

enced on the second time step.

(3) Whenapplying computation reordering, we simply did not use the indirection vector. Thus, the order of a subse-

quently generated interaction list is affected by the data reordering of the particle information.

(4) We composed a data reordering using a Hilbert space-filling curve followed by a data reordering using a first-touch

approach without using an indirection vector to cause computation reordering. Placing the particles in Hilbert order

results in a space-filling curve based computation order, which increases the likelihood that consecutive particles

being processed will have many common neighbors in their interaction lists and improves temporal locality. Apply-

ing a first-touch reordering to the space-filling curve based computation order after the first time step greedily

increases spatial locality. Note this approach is similar to applying computation reordering using a Hilbert space-fill-

ing curve approach and data reordering using a first-touch approach as was accomplished inmoldyn. The only differ-

ence is that interaction lists inmagi are established at the beginning of each time step, which causes the first-touch

data reordering to affect the computation order.

Table IV shows the results of applying combinations of data and computation reorderings that were beneficial for the

magiapplication. Several of the combinations of data and computation reorderings applied to themoldynbenchmark are not

shown in this table for two reasons. First,we found that applying data reordering only formagi did not improve perfor-

mance. Thecost of accessing data through an indirection vector offset the benefits that were achieved by reordering data.

One should note that data reordering without computation reordering can achieve benefits as shown formoldynin Table III.

However, achieving such benefits may require that there is an inexpensive method to access the reordered data, such as updat-

ing an interaction list once to refer to the new data locations rather than incurring the cost of dereferencing an element of the

indirection vector on each data reference. Second, the combinations of data and computation reordering were also restricted

by the fact that the interaction list for a particle was regenerated on each time step.Regeneration of the interaction lists pre-

vented direct computation reordering.Likewise, separate and small interaction lists for each particle made the use of
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blocking inappropriate.

Data Computation L1 Cache L2 Cache TLB
Reordering Reordering Misses Misses Misses

Cycles

First Touch FirstTouch 0.42959 0.27032 0.49173 0.56321
Hilbert Hilbert 0.28621 0.11916 0.15704 0.43751
Hilbert/First Touch Hilbert/FirstTouch 0.32670 0.11695 0.13513 0.43607

Table IV: Results of the Different Data and Computation Reorderings forMagi
(Ratios as Compared to the Baseline Measurements)

The results in Table IV show that the combination of reordering particle data and and interaction computations accord-

ing to particle positions along a Hilbert curve (which probabilistically increases spatial and temporal locality) followed by a

first-touch data reordering (which greedily improves spatial locality) achieves the lowest L2 and TLB misses and the best

overall cycle time by a very slim margin. The table shows that applying a first-touch data reordering after the Hilbert-based

reordering amortizes the cost of the first-touch reordering by reducing L2 and TLB misses, but the barely perceptible

improvement in overall performance does not justify the additional programming effort.

5.3. ScatterBenchmark from CHAD

CHAD is a parallel unstructured mesh application developed at Los Alamos National Laboratory for simulating three-

dimensional fluid flows with chemical reactions and fuel sprays. The code operates on a static unstructured mesh composed

of arbitrarily mixed hexahedral and lower-order degenerate elements (e.g., pyramids, prisms, or tetrahedra).Although an

arbitrary number of elements can be associated with a node, most nodes have degree close to six.

Computation inCHAD is principally carried out as dense vector operations on data values associated with the edges

and mesh elements. The principal irregular data access patterns occur in gather/scatter operations. On a 16039 node mesh

with 47718 edges (the largest test case available to us, but a small one compared to those used in production runs), a sequen-

tial version of the code spent 25% of its time performing gather and scatter operations between mesh nodes and endpoints or

midpoints of edges. Initially, our aim was to study the effects of data and computation reordering in the context of the entire

CHAD code; however, working remotely on an unfamiliar code of this size (roughly 88,000 lines) proved to be a bottleneck

for completing this investigation. To accelerate our research, we abstracted out a scatter benchmark that represents the data

access patterns moving data between nodes and edges.
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In our experiments with this benchmark, we used a memory hierarchy simulator to evaluate locality because it enabled

us to collect detailed information about misses, including traces. Miss traces enable us to see where and why misses occur

and provide insight into the structure of the computation.To collect these traces we used MHSIM, our locally-developed

memory hierarchy simulator, which we configured to simulate a 2-way set-associative 32KB primary cache--the configura-

tion found in the MIPS R10K processor used in the SGI O2.

Our scatter benchmark performs a scatter-add that independently accumulates X, Y, and Z quantities at each node from

the appropriate endpoint of each incident edge. Figure 15 shows the organization of the nodes of the mesh we used in our

experiments. The nodes are closely spaced along radial spines centered at the origin. The ordering of the nodes is largely in

terms of concentric shells. Figure 16 shows a plot of node vector position versus distance of the node from the origin.When

the original node ordering is drawn by connecting all of the nodes, the resulting figure looks like a ball of string. The struc-

ture becomes apparent when viewing the plot at high magnifications, or plots of subsets of the data. Figure 17 shows a plot

connecting the positions of 600 consecutive nodes from the node vector in the order given by the original dataset. The line

moves through a node on each spine, then repeats the traversal of the spines in the same order at a different radial distance.
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Figure 15: Organization of 16038 mesh nodes forCHADscatter benchmark.
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Figure 16: Node vector position versus distance from the origin.
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Figure 17: Plot connecting 600 nodes inCHADscatter benchmark mesh (Original Order)

In our experiments, we measured the number of primary cache misses that occurred during one trip through theCHAD

scatter kernel to accumulate edge-based data at the node endpoints. Figure 18 shows the pattern of misses for one execution

of theCHAD scatter kernel using the original node order. The irregular accesses for updating the X, Y, and Z node values in

the scatter operation appear as three parallel roughly horizontal bands at the top of the figure. At the left edge of these bands

are three diagonal lines where the values are initialized to zero. The three central diagonal bands correspond to misses for

stride-1 accesses to the separate X, Y, and Z vectors that hold values for each of the edge endpoints. The bottommost diagonal

shows the misses to the vector contains a pair of node coordinates for each edge. For this ordering, 12% of the misses come

from the irregular access pattern to the node values. However, the irregular misses are important for two reasons. First, they

represent an opportunity for temporal reuse. The only other temporal reuse is that each node index for an edge endpoint is

used three times to scatter X, Y, and Z data. Second, the other stride-1 misses are predictable and can be mitigated by

prefetching.
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Figure 18: L1 Misses forCHADScatter Benchmark using Original Node Order

To inv estigate the impact of data and computation reordering on this scatter benchmark, we investigated several differ-

ent node and edge ordering strategies. Node and edge orderings determine the spatial and temporal locality of the irregular
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accesses in the scatter. Without a good node ordering, no spatial locality will be realized for the irregular accesses in the scat-

ter computation.An edge ordering amounts to a computation ordering, since it determines the pattern of irregular access to

the nodes during a scatter computation. A good edge order will capitalize on spatial locality in the node ordering and orches-

trate temporal reuse of data by bringing multiple irregular accesses to the same node close together in time.

We considered four different node orderings, and three different edge orderings. Not all combinations are considered.

The node orderings we compared include the original order from the test dataset, Hilbert order, random order, and the order

determined by applying Reverse Cuthill-McKee to the sparse adjacency matrix representing the edges. After a node reorder-

ing, edge endpoints must be renumbered. The edge orderings we considered include the original order, lexicographic order

(of the (src,dest) edge pairs), and Hilbert order. Comparing different data orderings with random is interesting because the

parallel version of theCHAD code uses the ParMETIS graph partitioner [34] to partition the nodes and edges of the computa-

tional mesh among available processors. ParMETIS computes its partitionings in a hierarchical fashion and swaps nodes and

edges between partitions. After partitioning, the locality properties of the mesh pieces are believed to resemble those for

meshes with random node orderings [35].

We compute Hilbert order for nodes by normalizing each node’s X, Y, and Z coordinates, which are a triple of integer

coordinates, each in the range [0..2ˆ21]. We then convert this triple to a position along a 63-bit Hilbert curve running through

this space, and sort the nodes by their position along the curve. ComputingHilbert order for edges is analogous: we treat the

pair of node numbers identifying the edge endpoints as coordinates in a two-dimensional space, normalize them, and then

convert them to Hilbert position and sort them.To improve the quality of lexicographic and Hilbert edge orderings, we flip

edges, if necessary, to ensure that the smallest numbered endpoint is always the first in the edge pair.

Table V shows the relative number of primary cache misses measured for a scatter operation performed using different

combinations of node and edge orderings for theCHAD test mesh.We didn’t measure secondary cache or TLB misses at all

for this experiment because of the modest data size. The values shown for L1 cache misses are all ratios between the number

of misses measured with the simulator for that particular data and computation ordering, divided by the number of misses

measured using the original node and computation orderings.Unlike moldynand magi, which both have degrees of data

reuse on the order of 100 and 20 for each particle in each timestep, theCHAD test mesh used by the scatter benchmark has an

av erage degree of 6. Thus, there is less reuse to exploit with good node and edge orderings. For the test mesh, our results

show that the original node and edge order is quite good: it is nearly a factor of 2 better than random. Both the space-filling
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Node Edge L1 Cache
Reordering Reordering Misses

original lexicographic 0.962
Hilbert original 1.28
Hilbert lexicographic 0.978
Hilbert Hilbert 1.03
RCM lexicographic 0.972
RCM Hilbert 1.01
random original 1.61
random lexicographic 1.92

Table V: Results of the Different Data and Computation Reorderings
for Scatter Benchmark

curve and the Reverse Cuthill-McKee node order produce similar results. In these experiments, the Hilbert edge order is 4-6%

slower than the lexicographic order. Comparing the two orders, lexicographic order greedily exploits temporal locality of the

first node of an edge pair at the expense of the second. Combined with a good edge order, lexicographic order can be quite

effective when the number of incident edges per node is modest (the data for all of a node’s partners fits in cache). Hilbert

edge order attempts to balance locality between the edge endpoints. This can be beneficial when the number of neighbors per

node is high, but here the sacrifice of greedy temporal locality for the first endpoint of an edge is a net loss.

6. Conclusions

Typically, irregular applications make poor use of memory hierarchies and performance suffers as a result. Improving

memory hierarchy utilization involves improving reuse at multiple levels, typically including TLB and one or more levels of

cache. Ourmeasurements show how coordinated orderings of data and computation can dramatically improve utilization in

memory hierarchies at multiple levels. We also have shown that neither data reordering nor computation reordering alone is

nearly as effective as a coordinated approach involving both. We introduced multi-level blocking as a new computation

reordering strategy for irregular applications and demonstrated significant benefits by combining reordering techniques based

on space-filling curves with other data or computation reordering techniques.

Using space-filling curves as the basis for data and computation reorderings offers several benefits. First, reordering

data elements according to their position along a space-filling curve probabilistically increases spatial locality. In space-filling

curve order, neighboring elements in physical space, which tend to be referenced together during computation, are clustered

together in memory. This clustering helps improve utilization of long cache lines and TLB entries.Second, reordering com-

putation to traverse data elements in their order along a space-filling curve also improves temporal locality. By following the
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space-filling curve, neighboring elements in physical space are processed close together in time, and thus computations that

operate on a data element and its spatial neighbors repeatedly encounter the same elements as the computation traverses all

elements in a neighborhood.Finally, data reordering based on position along a space-filling curve is fast. Thecost of such a

reordering is typically small relative to the rest of a program’s computation.

With the moldyn application, we demonstrated dramatic improvements in memory hierarchy utilization by using

Hilbert-based data reordering and either multi-level blocking or a Hilbert-based strategy for reordering computation.The

Hilbert-based computation reordering has an advantage over blocking formoldynin that it is accomplished at no cost by sim-

ply performing Hilbert-based data reordering before building the interaction list in the canonical fashion. Inour experiments,

blocking offered no additional benefit over Hilbert computation order because the interaction density was not high enough to

cause capacity misses while computing interactions for a single particle. Blocking would offer benefits with higher interac-

tion densities.

With themagiapplication, Hilbert curve based strategies for data and computation reordering improved end-to-end per-

formance by over a factor of two. The best memory hierarchy utilization came from considering particles in space-filling

curve order to improve temporal locality, and using that as the basis for a first-touch data and computation reordering that

greedily improves spatial locality. It is interesting to note that the improvements we achieved for magiwith our data reorder-

ings are relative to a baseline computation for which input particle data has already been carefully ordered using Sloan’s

method for profile minimization [28].Similarly, space-filling curve based reordering methods provided substantially superior

overall performance than the Reverse Cuthill-McKee profile minimization method formoldyn.

With the scatter benchmark from theCHAD application, the Hilbert and Reverse Cuthill-McKee data orderings com-

bined with lexicographic data ordering produced results closely comparable to the original careful ordering. The key point, is

that these ordering strategies achieved this level of performance without any a priori knowledge and that the level of locality

they achieved is nearly a factor of two better than that achieved for a random ordering. These results suggest that these

reordering techniques may provide substantial benefits when applied to pieces of partitioned meshes that are not well ordered.

As the gap between processor and memory speeds continues to grow and large-scale scientific computations continue

their shift towards using adaptive and irregular structures, techniques for improving the memory hierarchy performance of

irregular adaptive applications will become increasingly important. In this paper, we hav edemonstrated that data and compu-

tation reordering based on space-filling curves can be used to improve the locality of sequential computations. However, these
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techniques are more broadly applicable. Our colleagues have recently also applied space-filling curve based reorderings to

improve the parallel efficiency of shared-memory and software distributed shared memory computations by improving data

locality, which reduces communication and false sharing [36, 37]. Our experiences show that good data and computation

orders can be achieved for irregular problems using dynamic reorderings, and that the gain in locality from using good data

and computation orders can be dramatic.
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