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Abstract

Predicting the execution time of codgmsents in real-time systems fsaflenging Most recently designed machines con-
tain pipelines and cdwes. Pipelindhazads may result in multicycle delays. Instruction or data memefiglances may

not be found in cache and these misses typicatlyire ®\eral cycles to esolve Whether an instruction will stall due to

a pipeline hazad or a cache miss depends on the dynamic sequencesabps instructions executed and memazier-
ences performedFurthermoe, these penalties armot independent since delays due to pipeline stalls and cache miss
penalties may erlap. Thispaper describes an appaich for bounding the worst and best-case performance gklar
code segments on machines that exploit both pipelining and instructibimga€ir st, a method is used to analyze a-pr
gram’s control flow to statically categorize the caching behavior ofheastruction. Ngt, these categorizationsersed

in the pipeline analysis of sequences of instructi@mesenting paths within the ggram. Atiming analyzer uses the
pipeline path analysis to estimate the worst and best-case execution performande lobpamnd function in the pr
gram. Rnally, a graphical user interface is iroked that allows a user to request timing predictions on portions of the
program. Theresults indicate that the timing analyzefigkntly produces tight predictions of worst and best-case perfor
mance for pipelining and instruction caching.

Index terms: real-timesystems, worst-casex@ution time, best-casexeeution time, timing analysis, instruction cache,
pipelining

1. Introduction

Many architectural features, such as pipelines and caches, present a dilemma for architects of real-
time systems. Use of these architectural features can result in significant performangenrapts.
In order to &ploit these performance imprements in a real-time system, the WCET (Worst Case
Execution Time) must be predicted staticallg addition, sometimes the BCET (Best Caseé&xion
Time) is also neededHowever, the aforementioned performance enhancing features introduce a
potentially high lgel of unpredictability Dependencies between instructions can cause pipeline haz-

ards that may delay the completion of instructions. While there has been much work accomplished
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on analyzing thexecution performance of a sequence of instructions within a basic block, the analy-
sis of pipeline performance across basic blocks is more problematic. Instruction or data cache misses
further complicate the performance prediction problem sincg thguire seeral more cycles to

resole than cache hits. Predicting the caching behavior of an instructismerigmre difficult since

it may be affected by memory references that occurred long before the instructioresvdasde

The timing analysis of these features is further exacerbated since pipelining and cachimg beha
are not independentor instance, consider the codgysent and pipeline diagram in Figure 1 con-
sisting of three SPARC instructions. The pipeliyeles and stages represent tlecation of these
instructions on a MicroSPARC | processor [1]. Each number within the pipeline diagram denotes that
the specified instruction is currently in the pipeline stage shown on the left and is in that stage during
the cycle indicated abe. The first instruction performs a floating-point addition and requires a total
of 20 g/cles. Fetchinghe second instruction results in a cache miss, which is assumectta higs
penalty of nine additionalycles in this paperThe third instruction has a data depengewnith the

first instruction and thexecution of its MEM stage is delayed until the floating-point addition is

SPARC Instructions
inst 1. faddd 9% 2,9%0, % 2
inst 2: sub %04, Y91, % 2
inst 3: std % 2, [ Y%00+8]

Pipeline Diagram

cycle
12| 3| 4| 5/.../11]12|13|14| 15/ 16 17 18 19 2@1|22
stage IF 112|2(2]2|...]2]3
ID 1 213
EX 213|3]3|3] 33
FEX 1(1(21f...]2)21(1{1|21(2|151/1
MEM 2 3/3|3
WB 2
FWB 1

Figure 1. Example of Overlapping Pipeline Stages with a Cache Miss



completedl. The miss penalty associated with the access to main memory to fetch the second instruc-
tion is completely werlapped with the xecution of the floating-point addition in the first instruction.
If pipeline stalls and cache misses were treated independiettythe number of estimategctes

associated with these instructions would be increased from 22 te .31y (the cache miss penalty).

Unfortunately the problem of werestimating WCET and underestimating BCET may become
more sgere in the future.Cache miss penalties are increasing due to the growing gap between pro-
cessor and main memory spee@elays due to pipeline stalls become more likely with the introduc-
tion of superscalar and superpipelined architectures. Thuge maiing analysis of programs on

machines with pipelines and caches will result in increasexligon time prediction errors.

Let us define a task as the portion of codeceted between tav scheduling points (conke
switches) in a system with a non-preemgtkheduling paradigmWhen a task startxecution, the
cache memory is assumed to bealwated. Duringtask eecution, instructions are brought into
cache and often result in mahits and misses that can be predicted staticdlhese caching predic-

tions can be integrated with pipeline analysis to estimate tight WCET and BCET bounds.

Figure 2 depicts anverview of the approach described in this paper for bounding thestwand
best-case performance of large code segments on machines with pipelines and instruction caches.
Control-flov information, which could he been obtained by analyzing assembly or object files, is
stored as the side effect of the compilatidrhis information identifies the loops that are in each
function, the basic blocks that comprise each loop, the instructions that reside in each basic block, and

the register operands associated with each instruction. The contvahlflarmation is passed to a

1 A st d instruction has no write back stage since a store instruction only updates memory andjistéta Tee st d instruction also requires
three cycles to complete the MEM stage on the MicroSPARC |.
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Figure 2. Overvie/ of Bounding Pipelining and Instruction Caching Performance.

static cache simulatorit constructs the control-fl@ graph of the program that consists of the call
graph and the control floof each function. The program’control-flow graph is then analyzed for a

given cache configuration to produce a categorization of each instricpatential caching belvéor.

The timing analyzer uses these gatgzations to determine whether an instruction fetch should be
treated as a hit or a miss during the pipeline analysis. It also reads machine-dependent and control-
flow information to determine moeach instruction proceeds through the pipelifidie timing ana-

lyzer produces a worst and best-case estimatgestigon time for each loop and function within the
program. Finallya window-based intedce is used to allthe user to request the timing bounds for

portions of the program.

2. Instruction Caching Categorization

Static cache simulatiGris used to statically categorize each instruction according to its caching
behaior using a specific cache configuration in gegiprogram. Thestatic simulation consists of
three phases. First, the controlvfigraph of the entire program is constructéchis graph includes

the control-flev information of each function and a function instance graph, which is simply a call

2 Static cache simulation is only briefly introduced in this section. It is described in more detail elsewhere [2, 3, 4, 5, 6].



graph where each function instance is uniquely identified by the sequence of call sites required for its
invocation. Thusa drected acyclic call graph (without recursion) is transformed into a tree of func-

tion instances.

Next, this program control-fle graph is analyzed to determine the program lines that may be in

cache at the entry andieof each basic block within the program. The iteratdgorithm in Figure

3 is wsed to calculate an input and output cache state for each basic block in the function instance
graph. Acache state is simply the subset of all program lines that can potentially be cached at that
point in the control flev. Initially, the top blocks input state (the entry block of thai n function) is

set to all ivalid lines. The input state of a block is calculated by taking the union of the output states
of its immediate predecessors. The output state of a block is calculated by taking the union of its
input state and the program lines accessed by the block and subtracting the program lines with which

the block conflicts. The alve geps are repeated until no more changes occur.

i nput _state(top) = all invalid lines
VWH LE any change DO
FOR each basic bl ock instance B DO
i nput _state(B) = NULL
FOR each imed pred P of B DO
i nput _state(B) += output_state(P)
out put _state(B) =
(input _state(B) + prog_lines(B))
- conf_lines(B)

Figure 3. Algorithm to Calculate Cache States.

The input state for each basic block is used togeaize the caching behavior of each instruction
within the block. The catwrization for each loop Vel is obtained by examining the cache state for
that instruction with a mask representing the program lines that are accessed by t#elowtruc-
tion’s caching behavior is assigned to one of four categories for each hebprievhich an instruc-

tion is contained Note that each function is treated as a loop tketiges for a single iterationThe



cateyorizations of worst and best-case instruction cache behaviorvareigiTables 1 and 2When
processing an outer loop that contains an inner loop, the timing analyzer can adjust the value obtained
from the timing associated with an inner loop by examining the transitions between categorizations of

an instruction from one loop\é to the net. Theseadjustments will be described in Section 5.

Informally, an nstructions worst-case cache categorization for a particular loeg ie determined
as followvs. LetL be the program line that contains an instruction within a basic blble&.instruc-
tion is catgorized as aalways hitif it is not the first instruction encounteredLlinn the block, or ifL
is in the abstract cache state and it does not conflict witlotaer program line in the same abstract

cache state. The instruction is categorized &ssthitif it was afirst hitfor the previous (deeper)

Instruction Catgory | DefinitionAccording to Behavior in the Instruction Cache

always miss The instruction is noguaranteedo be in cache when it is
referenced.
always hit The instruction igjuaranteedo aways be in cache when

it is referenced.

first miss The instruction isnot guaanteedto be in cache on its
first reference each time the loop ieeuted, but iguar-
anteedo be in cache on subsequent references.

first hit The instruction isguaranteedto be in cache on its first
reference each time the loop beeeuted, but imot guar
anteedo be in cache on subsequent references.

Table 1. Definitions of Worst-Case Instruction Caching Categorizations

Instruction Catgory | DefinitionAccording to Behavior in the Instruction Cache

always miss The instruction igguaranteedo notbe in cache when it is
referenced.
always hit It is possiblethat the instruction is in cacheeey time it

is referenced.

first miss The instruction isguaranteedto not be in cache on its
first reference each time the loop ieeuted, it may be
in cache on subsequent references.

first hit The instructiormay bein cache on its first reference each
time the loop is xecuted, but igguaranteedo not be in
cache on subsequent references.

Table 2. Definitions of Best-Case Instruction Caching Categorizations



loop nesting leels or if all of the following conditions (1)-(6) hold:

1)

)

®)

(4)

®)

(6)

Theinstruction is the first reference ltain the block, and. is in the abstract cache state.
Thereexists a program line in the abstract cache state for this loop that conflicts. with
L is in the abstract output cache state of all prehe%détlsis loop.

Noneof the conflicting lines is in the abstract output cache state of the preheaders of this loop. The purpose of this
stipulation is to guarantee that the instruction will be a hit in cache on the first iteration of the loop, in accord with

the definition offirst hitin Table 1.
L is in the post dominator of the loggeadersi.e. the current line will be referenced during each loop iterdtion.

Noneof the conflicting lines is in the linear cache state of the current hileckor each loop iteration, the current
line will be referenced before wrmonflicting line. This requirement guarantees thatan only be replaced by a

conflicting line after the instruction has been referenced at least once.

An instruction is dirst misdf it is not already categorized as akwvays hitor first hit, the instruction

was afirst missat the ngt deeper loop nestingue (if that level exists), it is the first instruction

encountered i in the block and. is in the abstract cache state, and there exist conflicting program

lines but only outside the current loop nestingglle In all other cases, the instruction is conserv

tively categorized as asways miss

The instructiors best-case categorization is determined asvaloTheinstruction is catgorized

as analways missf it is the first reference ta in the block and. is not in the abstract cache state.

The instruction is categorized ardiiest misgf it was afirst missor always hitat the next deeper loop

nesting leel (if that level exists), this instruction is the first referencelton the block,L is in the

3 The loop header of a natural loop is the single basic block in which the loop is initially erteeedreheader is the basic block that precedes

the header.

4 Note that an instruction does novkap be eferenced during each loop iteration to be classifiedfiast aniss
5 The linear cache state of a block represents ypethetical cache state in the absence of loops. During the static cache simulation, no linear ab-

stract cache state information is propagated along back edges of a loop.



abstract cache state, ahds not in the linear cache state of the block. The instruction igadted
as afirst hitif it was afirst hitfor the previous (deeper) loop nestingds or if the following condi-
tions (1)-(5) hold:

(1) Theinstruction is the first reference ltain the block, and. is in the abstract cache state.

(2) Thereexsts a program line in the abstract cache state for this loop that conflicts. with

(3) Lisinthe abstract output cache state of all preheaders of this loop.

(4) Lisinthe post dominator of the logfteadersi.e. the current line will be referenced during each loop iterations.

(5) Lis notin the abstract cache state precedingahnhe back edges.e. L is replaced by a conflicting line during
each loop iteration. The purpose of this requirement is to guarantee that the program line conflictingilivith
encountered onvery iteration after the first. Thus, the instruction will be a cache miss on these iterations, in agree-

ment with the definition diirst hitin Table 2.

In all other cases, the instruction is consgévely categorized as asways hit Formal definitions of

these instruction categorizations areegiin the appendix.

The current implementation of the static simulator imposes some restrictions. First, only direct-
mapped cache configurations are \atal® Second, recurge pograms are not allowed sincgctes
in the call graph would complicate the generation of unique function inst?aﬁdxwlly, indirect calls

are not handled since an explicit call graph must be generated.

® Recent studies ke hown that direct-mapped caches oftenéna Bister access time for hits, which sometimes outweighs the benefit of a higher
hit ratio in set-associat aganizations for large caches [7YVe ae currently investigating the timing analysis of set-assogmtiaches.

" While cycles in a call graph can be detectedy e also difficult to describe to a user and it is difficult for the user to estimate the maximum
number of recurse iterations that will be performed.



3. PipelinePath Analysis

This section describes Wwdhe analysis of the pipeline performance of a sequence of instructions is
accomplished. Informatiofor all levels of timing analysis is stored in data structures as depicted in
Figure 4. First, information about each type of instruction is read from a machine-dependent data file.
This pipeline information for each type of instruction includes the worst and best-case number of
cycles required by each stage of the pipeline for xecation® The analyzer also reads from the
machine-dependent data file other information for each instruction. This information includes the lat-
est stage each source operand of an instruction canedsevalue via hardare forwarding without
causing a pipeline stall and the earliest stage in which the result of the instruction canabeefdrw
Finally, information about the specific instructions in the sequence is obtained and stored in instances
of struct inst_node. This information includes the actual registers associated with the source
and destination operands, which is obtained from the contwlHfiftormation generated by the com-
piler, and the instruction caching caterization of each instruction, which is produced by the static

cache simulator.

A path of instructions consists of all the instructions that carxesuted during a single iteration
of a loop (or in the case of a function, all the instructions that>@e®ited in one imocation of the
function). Thusa path consists of a sequence of basic blocks connected by contraidltsitions.

If a loop has no conditional control Wole.g.i f or swi t ch statements), then there will be only one

path associated with this loop.

During the analysis of a path, the analyzer stores path information in instansgs wét

pat h_node. This information includes the total number gtlkes required by the path and a set of

8 The number of cycles required for some floating-point instructions on processors can vary depending upon the values of its operands.



struct | oop_node { /* Information stored with each [ oop */

int max_iterations; /* Maxi mum nunber of iterations for the loop */
int mn_iterations; /* M ni mum nunber of iterations for the |oop */
int wet; /* Estimated WCET of the |oop */
int bcet; /* Estimated BCET of the |oop */
struct uni on_node *wc_pi pel i ne_i nformati on; /* \Worst-Case pipeline info. for detecting hazards */
struct uni on_node *bc_pi peline_information; /* Best-Case pipeline info. for detecting hazards */
struct path_node *path_list; /* Linked list of loop’s paths */
struct inst_node *first_m sses_encountered; /* Linked list of first nisses encountered in |oop */
struct inst_node *first_hits_encountered; /* Linked list of first hits encountered in loop */
struct exit_block_node *exit_block_list; /* Linked list of blocks to which |loop can exit */
struct |oop_node *next; /* Pointer to next |oop node in program */
b
struct exit_block_node { /* Information stored with loop’s exit block */
int wet; /* Estimated WCET of loop exiting to this block */
int bcet; /* Estimated BCET of |oop exiting to this block */
struct uni on_node *wc_pi pel i ne_i nformati on; /* Worst-case pipeline info. for detecting hazards */
struct uni on_node *bc_pi peline_information; /* Best-case pipeline info. for detecting hazards */
h
struct uni on_node { /* Infornation to detect structural and data hazards */
int cycles_frombegi n[ NUM_STAGES] ; /* Cycle when particular stage is initially occupied */
i nt begi nni ng_occupant [ NUM_STAGES] ; /* Nunber of instruction that first occupies stage */
int cycles_fromend[ NUM STAGES] ; /* When stage is |ast occupied */
int endi ng_occupant [ NUM STAGES] ; /* Nunber of instruction occupying stage |ast */
int reg_first_needed] NUM REGS] ; /* Cycle when value of register is first needed */
int reg_|l ast_produced] NUM REGS] ; /* Cycle when register is |ast used as destination */
b
struct path_node { /* Information stored for each path in a | oop */
int path_type; /* Type of path: continue, exit, or both */
int wcet; /* Estimated WCET of the path */
int bcet; /* Estimated BCET of the path */
struct uni on_node *wc_pi peline_i nformation; /* Worst-Case pipeline info. for detecting hazards */
struct uni on_node *bc_pi peline_information; /* Best-Case pipeline info. for detecting hazards */
struct bl ock_node *bl ock_list; /* Linked list of basic blocks in path */
struct path_node *next; /* Pointer to next path in loop */
b
struct bl ock_node { /* Basic blocks contain list of instructions */
struct inst_node *inst_list; /* Linked list of instructions in block */
struct bl ock_node *next; /* Pointer to next block in path */
h
struct inst_node { /* Infornmation stored for each instruction */
int inst_type; /* Opcode for this instruction */
int register_operands[ NUM REGS_PER_| NST] ; /* Register operands for this instruction */
struct cat_node *cat_list; /* Instruction cache categorization for this inst */
struct inst_node *next; /* Pointer to next instruction in path */
b
struct cat_node { /* Instruction cache categorizations */
char wc_cat; /* \Wbrst-case categorization */
char bc_cat; /* Best-case categorization */
struct cat_node *next; /* Pointer to next deeper nesting level cat’'s */
b

Figure 4. Data Structures for Timing Analysis
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pipeline information. This information includes when each pipeline stage was first and last used
within the path for @oiding structural hazardslt is represented as the number of cycles from the
beginning and end of the path for each pipeline stdgeaddition, information indicating when each
register was first and last used in the path is also maintainegitbdata hazard®’ Again, this infor
mation is represented as the numberyales from the beginning and end of the path for eagis+e
ter. The set of pipeline information, as storedpat h- >wc_pi pel i ne_i nf or mati on, for
avading hazards after the three instructions in Figurevkhmen analyzed is shown in Tables 3 and
4. Table 3 represents the information famoiing structural hazards. Only the numbersvehaon
bold are required to be stored. Thesdues represent when each stage was first used fromgime be
ning of the path and last used from the end. Tdlees in the table correspond to the information
associated with the instruction numbers that are represented in bold in Figlakld 4 represents

the information for woiding data hazards.

Stage IF| ID | EX | FEX | MEM | WB | FWB
Beginning Inst 1 1 2 1 2 2 1
Cycles from Beg| O 1 © 2 3 14 19
Ending Inst 3| 3 3 1 3 2 1
Cycles from End| 10 9 3 3 0 7 2

Table 3. Structural Hazard Information for the Instructions in Figure 1.

Register %gl| .. %00 %04 v | %i2 %f0 %f2
First Needed 12 N/A 13 N/A 12 N/A| N/A | N/A 2 N/A 2 N/A
Last Produced| N/A | N/A | N/A | N/A | N/A | N/A 9 N/A | N/A | N/A 3 N/A

Table 4. Data Hazard Information for the Instructions in Figure 1.

% A structural hazard indicates that a stage of an instruction canngetgted earlier due to the pipeline stage already being used.

10 A data hazard indicates that a particular stage of an instruction cannxcged earlier due to the pipeline stage using a source register that
matches the destination register not yet updated by a pipeline stage of another instruction.
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This set of pipeline information is created by processing one instruction at a time from the
sequence of instructions that comprise a p&ilgure 5 depicts an algorithm that creates this pipeline
information for worst-case analysisThe best-case path analysis algorithm is analogdtech
instruction can be represented by the same form of pipeline information that is shown in Tables 3 and
4 for a path. This information is modified if it is found that the instruct®aching catgorization
indicates that the instruction fetch was a miBse miss penalty is used to increment the total number
of cycles and the cycles from thegir@ning (structural hazard information) for all other stages besides
the IF stage and the first needed registers (data hazard information) for that instrlicgcaddition
of an instruction to the pipeline information for a path will not only update the total numbgries c
and the information associated with the end of the pipeline, but also the beginning of the pipeline if a

referenced stage or register in the instruction had not been previously used.

void Time_Path (struct path_node *path {
struct bl ock_node *bl ock;
struct inst_node *instruction;

pat h- >wc_pi pel i ne_i nformati on= N ULL.
FOR each bl ock in path->block_|ist DO
FOR each instruction in block->inst_|ist DO
IF (instruction->cat_list->wm_cat== first miss AND
this instruction has not been encountered al ready) OR
(instruction->cat_list->w_cat== first hit AND
this instruction has been encountered al ready) OR
instruction->cat_list->w_cat== m ss THEN
Treat this instruction fetch as a mss in the pipeline.
ELSE
Treat this instruction fetch as a hit in the pipeline.
Concatenate w.c. pipeline information for instruction->inst_type
wi t h pat h->wc_pi pel i ne_i nformation
END FOR
END FOR
path_ptr->wet = t enporal |ength of path->wc_pipeline_information

Figure 5. Worst-Case Path Analysis Algorithm.
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Retaining this set of pipeline information all® additions to the beginning or end of a pafimce
both the pipeline requirements for a path and a single instruction can be represented with this set of
pipeline information, concatenating dvaths together can be accomplished in the same manner as
concatenating an instruction onto the end of a path. The concatenation is accomplished one stage at a
time. Astage from the second set of pipeline information isemdo the earliest cycle that does not

violate ary of the following conditions.

(1) Thereis no structural hazard with another instructidfor instance, the lginning of the IF stage of instruction 2 in
Figure 1 could not be placed in cycle 1 since that stage was already occupied.

(2) Thereis no data hazard due to aymis instruction producing a result that is needed by a source operand of-the cur
rent instruction in that stagd=or example, the bginning of the MEM stage for instruction 3 in Figure 1 could not be
moved past the FEX stage of instruction 1 at cycle 19 due to the data hazard betwEaddideandst d instruc-
tions.

(3) Theplacement of the instruction does not violate W& @ipeline requirementds-or instance, the 1D stage of instruc-

tion 2 has to occur at least 10 cycles after the beginning of its IF stage in Figure 1.

Other information associated with the pipeline analysis of a path need not be Starettance,
it does not matter when instruction 2 entered the ID stage after the pipeline information has been cal-
culated for all three instructions in Figure Mo instruction being added to either the beginning or
end of the pipeline could possiblyveaa $ructural hazard with the ID stage of instruction 2 since it
would first have a $ructural hazard with the ID stage of instruction 1 or instruction 3, resplcti
Thus, the amount of pipeline information associated with a path is dramatically reduced as opposed to
storing hav each stage is used duringeey cycle. Furthermoreno limit need be imposed on the

amount of potential\v@rlap when concatenating the analysis ob paths.
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4. LoopAnalysis

In order to predict the worst-casreeution time of a loop, the timing analyzer has to predict the
execution time of each possible path within the loop. The static cache simulator providgsizate
tions for each instruction. The timing analyzer will regeether one gcle or the number ofycles
associated with a cache miss for the IF (instruction fetch) stage for each instructimmizedeas an
always hit or alvays miss, respectely. Note, additional gcles in the IF stage may be required due to
other pipeline stalls. If an instruction is cgdeized as a first miss, then the timing analyzer will treat
the instruction fetch as a miss if the program line has not yet been encountered as a first miss in the
timing of the loop.If the program line has been encountered, then the instruction fetch will be treated
as a hit insteadLikewise, if an instruction is cagerized as a first hit, then the timing analyzer will

treat the instruction fetch as a cache hit on the first reference and a cache miss thereafter.

Each path starts with the loop header and is terminated by a block with a bajclkcec@aansi-
tion to an exit block outside the loop. Figure 6 shows a sinqalmple that identifies a loop header
back edges, exit blocks, continue paths, and exit p&thsh path is designated as either a continue
path (the last block is the head of a back edge transitionkitapagh (the last block has a transition
to an exit block outside the loop), or botfihe number of loop iterations indicates the number of

times the header of the loop iseeuted once the loop is entered.

11 A back edge is a control-flotransition from a basic block in a loop to its loop header.
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Figure 6. Example Introducing Loop Terminology

With pipelining it is possible that the combination of a set of paths may produce a larger w
case recution time than just repeatedly selecting the longest gaghinstance, consider a loop with
two paths that ta @out the same number of cycles i®aite. Onepath has a floating-point addi-
tion near the beginning of the path and the other path has a floating-point addition near the end.
Alternation between the paths will produce the worst caseuéon time since there will be a struc-

tural hazard between thedviloating-point additions.

To avoid the problem of calculating all combinations of paths, whiohld be the only method for
obtaining perfectly accurate estimations, #sadecided to union the pipeline effects of the paths for a
single iteration of a loop togetheA union, an instance &t ruct uni on_node in Figure 4, is
dynamically allocated for each path and loop. Calculating the union of gvenibeg pipeline struc-
tural hazard information for a\gn g¢age in the WCET analysis is accomplished by determining the
earliest initial occupation of that stage byyaath in the union.Likewise, we calculate the WCET
union of the ending pipeline structural hazard information foivangtage by finding the last occu-
pation of that stage, relaé  the last cycle of the longest path, by aath in the union. The BCET
unioning of pipeline information is accomplished in an analogous maiimer beginning (ending)

pipeline structural hazard information for each stage is updated to contain the latest initial (earliest
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final) occupation of that stage. If a path does not use a particular stage, then the BCET union will
record that stage as empiyhe data hazard information is handled similarly with the earliest and lat-
est use of eachgester from the paths in the union being updated. This unioning of pipeline informa-
tion simplified the algorithm and also did not cause a noticeakfesiimation or underestimation in

the worst or best-case analysis, respelgti The beginning pipeline information (stages angise

ters) is rarely affected since all paths through a loop start with the same loop headerPalbsk.
through a loop often end with the same block of instructions. In addition, one path may be signifi-
cantly longer or shorter than the others, so the ending pipeline information for worst and best-case

analysis is often not affected.

Figure 7 shows a yofunction and its corresponding SPARC assembly LBdrhere are tw

C Source Code I nst Assenbl y Code
mai n() 0 nov %90, %01
1 sethi %i (LO1), %00
int i, cnt = 0; 2 | dd [ %00+% o(LO1)], 9% 2
doubl e dcnt = 0.0; 3 nov %90, %02
extern int incr; 4 sethi 9%i (_dincr), %3
extern doubl e dincr; 5 sethi 9%i (_incr), %4
6 cnp %02, 5
for (i=0; i < 10; i++) 7 L8: bge,a L9
if (i <5 8 Id [ %04+% o( _incr)], %0
dcnt += dincr; 9 | dd [Y%03+% o(_dincr)],%0
el se 10 ba L6
cnt += incr; 11 faddd % 2, % 0, % 2
} 12 L9: add %1, %0, %01
13 L6: add %2, 1, %02
14 cnp %02, 10
15 bl,a L8
16 cnp %02, 5
17 retl
18 nop

Figure 7. Example C Source Code and Corresponding SPARC Instructions.

12 Note that the generated assembly code has been optimized by the coffgléocal ariables , count , anddcount have keen allocated to
registers’®2, %01, and % 2, respectrely. The instruction following each transfer of control takes effect before the transfer of control is taken since the
SFARC has delayed branche$hecnp comparison preceding thge branch (instruction 7) has beenwed to both immediately precede the loop and
in the delay slot (instruction 16) of tieé branch (instruction 15)Branches with a,"a" represent that the result of the instruction within the delay slot
will be annulled if the branch is not taken.
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possible paths of instructions through an iteration of the loop in the program, <7,8,12,13,14,15,16>
and <7,8,9,10,11,13,14,15,16>. Figure 8 shows the instructions and the corresponding pipeline dia-
grams for the tw paths within the I00|3.3 To amplify the example, it is assumed that the loop has
already beenxecuted and all of the instructions and data are in caiohehere are no instruction

fetch or data memory misses)able 5 shows the structural hazard information for the paths in

Figure 7 and ho the information in path 1 has to be adjusted before being unioned. dreecase

union of the number of cycles from the beginning and end of the paths feenadgige will simply

be the minimum number encounterddkewse, the best-case union will be the maximum number
encountered. Thstructural hazard information indicating the number of cycles from the end of path

1 has to be adjusted since its total number of cycles is 13 less than the cycles required by path 2.

Path 1 Instructions Path 1 Pipeline Diagram
inst 7: bge,a L19 cycle
inst 8 Id [ %04+% o( _incr)], %0 1|2|3|4|5/6|7|8|9|10/11 1213|14|...|24|25
inst 12: add %1, %00, %01 stagel IF | 7| 8|12|13 1314|1516
inst 13: add %2, 1, %02 ID 7181(12|12 13 14 1516
inst 14: cnp %2, 10 EX 8 12|13 14 16
inst 15: bl,a L18 FEX
inst 16: cnp %2, 5 MEM 8 12|13 14 16

WB 8 12|13 14 16
FWB

Path 2 Instructions Path 2 Pipeline Diagram
inst 7: bge,a L19 cycle
inst 8 Id [ %04+% o( _incr)], %0 12|34/ 5/6|7|8| 910 11 12 14| ./.24|25
inst 9: ldd [%©3+% o(_dincr)],%0 stagel IF |7 |8]| 9|10 1113|13|14(15|16
inst 10: ba L16 ID 718]9|10/ 1111|13|14|15|16
inst 11: faddd % 2,9%0, % 2 EX 8|9 13|14 16
inst 13: add %2, 1, %02 FEX 11/11)11) 13 11 11 1p...|11
inst 14: cnp %2, 10 MEM 8/9|9 13|14 16
inst 15: bl,a L18 WB 8 13|14 16
inst 16: cnp %2, 5 FWB 9 11

Figure 8. Pipeline Diagrams for thevd Paths through the Loop in Figure 7.

13 Note instructions 7, 10, and 15 are transfers of control. The actual transfer of domtugdating the program counter) occurs in the ID stage.
Thus, there are no additional pipeline stages associated with these instructions. Also note the one cycle stall between instructions 8 and 12 in the EX
stage of path 1 due to a load hazard. Find#ilyl dd (instruction 9) requires twgycles to complete the MEM stage [1].
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resulting worst-case union of the structural hazard information of thegeths would be identical to

the structural hazard information for path I2kewise, the best-case union would be identical to the
information for path 1.Note that the data hazard information would change slightly since instruction

12 references gister%®0 as a source operand a¥dl as both a source and destinatiofet, repre-

senting access to these registers would not likelg Baefect when the timing analysis is performed
between this path and its predecessor and successor paths since the EX stage is used before and aftel

cycle 6, which is when instruction 12 enters the EX stage.

Peh 1 Info IF | ID | EX | FEX | MEM | WB | FWB
Cycles from Bg 0 1 3 N/A 4 5 N/A
Cycles from End| 4 3 2 | NA 1 0 N/A

AdjEnd Cycles | 17 | 16 | 15 N/A 14 13 N/A

Pah 2 Info IF | ID | EX | FEX | MEM | WB | FWB

Cycles from Bg 0 1 3 4 5 7
Cycles fromEnd| 15 | 14 | 13 12 11 0

7
1

Table 5. Structural Hazard Information for the Paths in Figure 8.

Let n be the maximum number of iterations associated with a |dde. algorithm for estimating
the worst-casexecution time for a loop is shown in Figure 9. The algorithm contains three phases.
During the first phase, the loop is analyzed one iteration at a thoreeach iteration, the algorithm
chooses the path with the greatest WCHIhe first phase continues as long as fiest miss instruc-
tions are encountered on each iteratidihe WHILE loop in the algorithm represents this first phase,
and it terminates when the number of calculated iterations reachke®r no nore first misses (first
hits) are encountered as misses (hits). Thus, the WHILE loop will iterate up- tb) ©r (m + 1),
wheremis the number of paths in the loop since a first miss (first hit) can miss (hit) at most ence dur

ing the loop ®ecution. Duringthe second phase of the algorithm, a longest path is calculated for all
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struct | oop_node *I oop;
struct path_node *path, *chosen_path;

| oop->first_mi sses_encountered= N ULL.
| oop->first_hits_encountered= N ULL.
| oop->wc_pi peline_i nformati on= N ULL.
curr_iter = 0.
VWHI LE curr_iter '=n - 1 DO
curr_iter += 1.
I nvoke Tinme_Path() for all continue paths in |oop->path_Iist.
chosen_path = | ongest continue path for this iteration.
Append first misses that were msses in chosen_pathto | oop->first_nisses_encountered
Append first hits that were hits in chosen_pathto |oop->first_hits_encountered
For every continue path in | oop->path_li st,
concat enat e path->wc_pi peline_informationwith | oop->wc_pi peline_information
IF no new first msses or first hits are encountered in chosen_path THEN
BREAK.
Concat enat e pat h->wc_pi pel i ne_i nformati onwi th | oop->wc_pi pel i ne_i nformation
for all paths (n- 1 - curr_iter) tines.
FOR each set of exit paths in |oop->path_list that have a transition
to a unique exit block in | oop->exit_block_|istDO
I nvoke Tinme_Path() for each path in the set.
chosen_path = | ongest exit path in the set.
Append first misses that were msses in chosen_pathto | oop->first_nisses_encountered
Append first hits that were hits in chosen_pathto |oop->first_hits_encountered
Concat enat e pat h->wc_pi pel i ne_i nformati onwi th | oop->wc_pi pel i ne_i nfornmati on
for all exit paths in the set.
Store this information with this exit block in | oop->exit_block_list

Figure 9. Worst-Case Loop Analysis Algorithm.

the remaining iterationsxeept the last iteration. In the third and final phase, the last iteration of the
loop is handled separatelyf the loop being analyzed has only one iteration, as is the case with a

function, only this third phase is performed.

The algorithm selects the longest path on each iteration of the lnaprder to demonstrate the
correctness of the algorithm, one mustwhbat no other path for agn iteration of the loop will
produce a longer worst-case time than that calculated by the algorithm. Since the pipeline effects of
each of the paths within the loop are unioned, it only remains to be shown that the caching effects are
treated properly The instruction fetch time used for each instruction depends on whether it is
assumed to be a hit or miss, which depends on itgaraation. Thecache hit time is one cycle on

most machines. The cache miss time is the cache hit time plus the miss, pemaltyis the time
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required to access main memotll categorizations are treated identically on repeated references,
except for first misses and first hits. Assuming that the instructiove lbeen categorized correctly
for each loop and the pipeline analysis was correct, it remains to & shat first misses and first

hits are interpreted appropriately for aeyi iteration of the loop.

A first hit implies that the instruction will be a hit on its first reference after the loop is entered and
all subsequent references to the instruction duringxeeugon of the loop will be misses. The defi-
nition the authors used for a first hit requires that the instruction be witbig path of the loop.
Thus, the first path chosen in the WHILE loop of the algorithm will encoureey &rst hit in the

loop. Afterthe first iteration, first hits are treated as misses.

A first miss implies that the instruction will be a miss on its first reference after the loop is entered
and all subsequent references will be hits. An instruction classified as a first miss will be counted as a
miss only the first time it is encountered within the WHILE loop of Figur&8cause of this dual
caching behavior of a first miss instruction, it is necessary to perform more than one pipeline analysis
of a path since the caching betwa of the instructions comprising the path can change between itera-

tions.

Once no more first miss instructions are encountered that miss, the pipiois aésociated with
the path chosen will not change since the cachingvimehaf the instructions within a path will
always be treated the sam&he pipeline effects of the last chosen continue path are efficiently repli-
cated for all bt one of the remaining iterations. The last iteration of the loop is treated separately
The longest exit path for a loop may be shorter than the longest continudBgagkamining the xat
paths separately ighter estimate can be obtained. Thus, the algorithm estimates a bound that is at

least as great as the actual worst-case bound.
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The algorithm used for estimating the best-casewdion time for a loop is somewhat simpléset
n be the minimum number of iterations associated with a lagipe the corresponding algorithm for
worst case, the best-case loop analysis algorithm contains three phiseser, during the first
phase, a shortest path is found only for the first iteration of the loop. The second phase of the algo-
rithm determines the shortest path for the middie2 iterations of the loop. The third phase finds
the shortest exit path from the loop in the final iteratidhe algorithm for estimating the BCET for a

loop is shown in Figure 10.

The best-case algorithm selects the shortest path on each iteration of the loop. In order to demon-

strate the correctness of the algorithm, one musw ghat no other path for a\gn iteration will

struct | oop_node *| oop;
struct path_node *path, *chosen_path;

oop->bc_pi peline_informati on= N ULL.
Fn>1 THEN
Invoke Tinme_Path() for all continue paths in |oop->path_Iist,
where all first misses are treated as misses and all first hits are treated as hits.
chosen_path = shortest continue path for this iteration.
For every continue path in | oop->path_li st,
concat enat e pat h->bc_pi pel i ne_i nformati onwi th | oop->bc_pi peline_i nformation
Find the shortest continue path where all first msses are
treated as hits and all first hits are treated as m sses.
Concat enat e pat h- >bc_pi pel i ne_i nfornati onwi th | oop->bc_pi pel i ne_i nformati on
for all paths (n-2) tines.
For each set of exit paths that have a transition to a unique exit block DO
I nvoke Tine_Path() for each path in the set.
Find the shortest exit path in the set where all first msses
are treated as hits and all first hits are treated as mnisses.
Concat enat e pat h->bc_pi pel i ne_i nformati onwi th | oop->bc_pi peline_i nformation
for all the exit paths in this set.
Store this information with this exit block in | oop->exit_block_list

ELSE
For each set of exit paths in |oop->path_list that have a transition

to a unique exit block in | oop->exit_block_|istDO

I nvoke Tinme_Path() for each path in the set.

Find the shortest exit path in the set where all first msses
are treated as nmisses and all first hits are treated as hits.

Concat enat e pat h->bc_pi pel i ne_i nformati onwi th | oop->bc_pi peline_i nformation
for all the exit paths in this set.

Store this information with this exit block in | oop->exit_block_list

Figure 10. Best-Case Loop Analysis Algorithm.
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produce a shorter best-case time than that calculated by the algorithm. The pipeline information for
the first iteration is typically calculated within the IF-THEN portiae.fvhen the loop iterates more
than once).The first time program lines are referenced in a loop, first misses will be misses and first
hits will be hits. Thus, the algorithm will calculate the shortest path for the first iteration. The short-
est continue path will then be calculatedegi that first misses will be hits and first hits will be
misses. Allthe first hits within the loop will be encountered on the first iteration according to the def-
inition of first hits that was used by the authors. Thus; tae be safely treated as misses on subse-
guent iterations.A first miss will be a hit if it has been encounteredrjongsly. Even if a first miss
had not been encountered in the first iteration, treating the reference as a hit in the second iteration
will only cause a slight underestimatiofihe pipeline information for the first iteration will be con-
catenated to the pipeline information calculated for the n iterations. The algorithm in Figure
10 examines the last iteration separately since paths associated with the exit blocks may be shorter
than the shortest continue pathen the number of loop iterations is one.the loop is actually a
function), first misses and first hits will be treated as misses and hits, redpectthe pipeline anal-
ysis of the exit pathThus, the algorithm estimates a bound that is at least as small as the actual best-
case bound.

It is important to note that the worst-case and best-case loop analysis algorithms are not perfectly
analogous. Considex loop having three paths with information depicted in Tabl&®&hs 1 and 2

each hge a dstinct first miss instruction, while Path 3 has no first misses. According todfst-w

How Path Is Ealuated Bth1l | Pah2 | Pah3

Treat first misses as misse¢s 19 18 13
Treat first misses as hits 10 9 13

Table 6. Information about Hypothetical Loop with Three Paths
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case loop analysis algorithm, the timing analyzer seleatts P for the first iteration, Path 2 for the
second iteration, andakh 3 for all other iterationsFor this example, the worst-case algorithm com-
putes the WCET exactly for smumber of loop iterationsFor best case, Path 3 will be chosen for
the first iteration. But starting with the second iteration, all first misses will be treated as hdth so P
2 will be selected for all iterations after the first. Thus, the timing analyzer will compute a BCET of

13 + 9*(h — 1) cycles for this loop, whemis the minimum number of loop iterations.

However, the true BCET of this loop can be slightly greatirthe loop has just one iteration, the
timing analyzer correctly predicts that Path 3 should bertaéind there is no underestimation in the
BCET. If the loop has tw iterations, then Path 3 should beemkor both iterations, yielding 26
cycles for the loop.The timing analyzer would compute 22 cycles if there aceitevations, a BCET
underestimation of fourycles. Onthe other hand, if there are three or more iterations, the BCET is
realized if the loop takes Path 2 foregy iteration. In this case, the timing analyzer will underesti-
mate the BCET of the loop by &wycles, and this underestimation is due to the incorrect prediction
of which path had been chosen for the first iteration. In order teeraalexact prediction in best
case, it becomes necessary toxamsine path choices for prior iterationg/e kelieve that having to
re-examine all combinations of path choices for prior iterations to compute the BCET of a current
iteration is werly inefficient. Asa result, the best-case loop analysis algorithm shown in Figure 10
assumes that the same path will beetakluring the middle iterations of the loop at the expense of a

small underestimation in the total BCET.

5. Program Analysis
A timing analysis tree is constructed to predict thesircase times of code segments containing

nested loops and function calls. In the caht the notation in Figure 4, the root of this tree is an
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instance ot ruct | oop_node representingrai n() . Each node of the tree represents either a
loop or a function in the function instance graph. Each node is assumed to be a natdﬁaﬂtmp.
nodes representing the outevdeof function instances are treated as natural loops that will iterate

only once when entered.

The loops in the timing analysis tree are processed in a bottom-up mamrogner words, the
worst-case and best-case times for a loop are not calculated until the times for all of its immediate
child loops are knon. Thealgorithm gven in the previous section describednwha loop containing
no other loops would be analyze@he timing of a non-leaf loop is accomplished using this algo-
rithm and the pipeline information and total times from its immediate child loops. Associated with
each loop is a set ofi¢ blocks, which indicates the possible blocks outside the loop that can be
reached from the last block in each exit pathunique set of timing information is stored for the
child loop with each of these exit blocks. If a path within a loop enters a child loop, then the pipeline
information and total time from the appropriate exit block are used at that point during the analysis of
the path.For instance, if the loop in Figure 6 exits to block 5, then the last iteration of the loop will
be shorter than if it had exited to block Thus, the possible paths within non-leaf loops that contain
child loops can also be calculated.

The transition of an instruction categorization from the child loopl f® the current loop Ml
will be used to determine if gnadjustment to the child loop time is required. The transitions

between categorizations requiring adjustments are described in Table 7.

14 A natural loop is a loop with a single entry blochile the static simulator can process unnatural loops, the timing analyzer is restricted to
only analyzing natural loops since it would be difficult for both the timing analyzer and the user to determine the set of possible blocks associated with a
single iteration in an unnatural loop. It should be noted that unnatural loops occur quite infrequently.

BThe timing analysis across looés is only briefly introduced in this section. It is described in more detail elsewhere [2, 4].
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Child => Rarent Actionto Adjust Child Loop Time

fm =>fm Use the child loop time for the first iteratig
For al remaining iterations subtract the miss
penalty from the child loop time.

>

m => fh For the first iteration subtract the miss penal
ty from the child loop time.For dl remain-
ing iterations use the child loop time directly

Table 7. Use of Child Loop Times.

The fm=>fm adjustment is necessary since there should be only one miss associated with the
instruction and a miss should only occur the first time the child loop is er]i?elF@djnstance, con-
sider a program with tavnested loops and each loop iterates 10 times. An instruction within both
loops is classified asfan at both the inner and outer loopvés. Theinstruction should miss only
during the first iteration of the inner loop within the first iteration of the outer loop (1 miss, 99 hits).
If no adjustment were made and the inner (child) loop pipeline informatsruged directjythen an
overestimation would result since the analyzexud treat the instruction as initially missing for each
iteration of the outer loop (10 misses, 90 hitEhe m=>fh adjustment is necessary since the first ref-
erence to the instruction in the outer loop will be a hit. These same adjustments were usad in pre

ous work on bounding only instruction cache performance [4, 6].

Making these adjustments when pipelining iglned resulted in some slight mispredictioihe
problem is that the caching behavior of a particular instruction depends on thevddgeieg ana-
lyzed. Whena worst-case adjustment at an outer loogllevould be needed for an instructionvha
ing a transition in @ble 6, we conseatively added the maximum number of cycles associated with a

cache miss penalty to the total time of the path containing the instruction and treated the instruction

16 Note that additional work was required when the number of distinct paths containing first missesetot ¢ifogram lines exceeds the number
of loop iterations. This situation can commonly occur within functiohgnaximum adjustment value was used to compensate irfieierf manner
for the remaining loop iterations.
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fetch as a cache hit within the path pipeline analysis for the inner loop. When the instruction fetch
should be viewed as a cache hit at an outer loggh, live previously added miss penalty cycles were
subtracted from the loop'ime. Thisstratgy permitted a single pipeline analysis of each loop, yet
adjustments could still be made at outeselle of the program.A worst-case werestimation occurs

when the instruction fetch isgaded as a miss and the cache miss penalty cowel teen wer-

lapped with other pipeline delays (as shown in Figure 1).

For best-case estimations we treated the fetch of an instructiongha transition in Table 6 as a
cache miss within the path pipeline analysis of the inner loop. When the instruction fetch should be
viewed as a cache hit at an outer loogelethen the miss penalty will be subtracted from the total
time of the path. If the miss penalty could bertapped with some hazard (as shown in Figure 1),

then an underestimation will result.

The timing analyzer could aclvie an exact prediction by storing pipeline information about both
cases (whether an instruction having such a instruction categorization transition betweenelsop le
should be treated as a miss or a hit in the pipeliigre could be seral instructions within a sin-
gle loop having such caching categorization transitions between logp. l&Storingpipeline infor
mation about both cases for each instructiaul result in an exponential space and cowiple

since all combinations of categorizations wouldehia be analyzed.

During best-case analysis, it is sometimes necessary to ignore a potential data hazard between a
parent and child loop toveid a potential verestimation in gecution time. This situation can occur
when a hazard isverlapped with some other delay (e.g. an instruction cache miss). The timing ana-
lyzer determines the number of cycles that a particular stage is vacant from the point it is first occu-

pied to the point it is last occupiedf a data or structural hazard is detected for a particular stage
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between a parent and child loop, then the delay is reduced by number of vacant cycles for that stage
in the child loop. If there were no vacanfctes, then the hazard could not hertapped with other

delays. Thigotential underestimation could beoaed by storing more information about the child

loop. Again, this would result in increasing the complexity of the algorithhmore detailed discus-

sion about dealing with vacant cycles for best-case timing analysiemsdgewhere [8].

Fortunately these adjustments are not that commba. instance, results indicated that only about
4.5% of the instructions within the function instance graph were classified as first misses or first hits
and maw of these did not require adjustments. Thus, these adjustments resulted in only small and

relatively infrequent worst-caseverestimations and best-case underestimations.

6. Results

Measurements were obtained on code generated for &lRRCSRrchitecture by thepo optimizing
compiler [9]. Six simple programs described in Table 8 were used to assesetheeréss of the
timing analyzer A direct-mapped instruction cache configuration containing 8 lines of 16 bgtes w
used. Thusthe cache contained 128 bytes of instructioAsvery small cache size was chosen
because the test programs were redhtismall themseles. Theinstruction cache performance of
each entire program was predictethe sizes of these test programs may be comparable to the size of
typical code segments containing timing constraints in real-time applications. In addition, the code
executed between tev scheduling points (context switches) in a non-preeveps/stem is often
smaller than the code of a typical program. Using a small cache also provided a more realistic simu-
lation of a typical ratio of program to cache size. The programs were 4 to 17 tigestlan the
cache as shown in column 2 of Table 8. The analysis of test cases with smaller ratios, where test pro-

grams fit into the instruction cache, could be accomplished quite easily and would not represent a
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significant challengelUsing a smaller cache demonstrates the ability of the timing analyzer to predict
tight bounds under a more difficult settinGolumn 3 shows that each program was highly modular
ized to illustrate the handling of timing predictions across functions. Column 4 showsrdtecase

hit ratio of each programOnly Matmulhad a very high ratio due to three tightly nested loops in a

single function to perform the matrix multiplication.

The results ofealuating these programs are shown in Tabld=-&:. each of the six modes of timing
analysis, four values arevgh for each test program. The firstlue is the Observed Cycles, which
represents the actual duration aeeuting the program.The second value is the Estimated Cycles,
which is the timing analyzes’redicted WCET/BCET of the program. The next value, the Estimated
Ratio, is the ratio of the estimated cycles to the obserygldsc Thisis a measure of kwaccurate
the timing analysis isA perfect prediction would result in a ratio of 1. The last valuergis the
Naive Ratio, which is what the estimated ratio would/édeen if the analysis had not been-per

formed.

The observed cycles for these measurements were obtained by enhanEagetteche simulator
[10]. Thissimulator produced thgipeline only observedycles and the timing analyzer produced the
pipeline only estimatedycles by assuming that all instruction fetches (IF stages) were cache hits and

only required a singleycle. Thepipeline only wost-case naiveycles were obtained by assuming

Num Num Hit - .
Name Bytes | Func| Ratio Descriptiomr Emphasis
Des 2,240| 5 81.41% | Encryptand Decrypts 64 Bits

Matcnt 812 8 81.81% | Countend Sums Nonmgtive Values in a 100x100 Integer Matrix
Matmul 768 7 99.24% | MultipliesTwo 50x50 Integer Matrices

Matsum 644 7 | 88.22% | Sums&lonnayative Values in a 100x100 Integer Matrix

Sort 556 5 83.99% | Bubblesorrray of 500 Integers into Ascending Order

Stats 1,428 9 88.41% | StdDev. & Corr. Coef. of Two Arrays of 1000 Floating-point Value

2]

Table 8. Test Programs.
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that only a single pipeline stage could xeceiting at one timei.g€. no overlap). Thecading only
observedcycles andcading only estimatedtycles were obtained with the assumption that the
pipeline had only a single stage (an IF), a cache hit required a syotge @nd a cache miss required
an additional miss penalty of ningates. Thecaching only wost-case naiveycles were calculated
by assuming \ery instruction fetch resulted in a cache mige pipeline and caching estimated
cycles were produced by the techniques that were described in this paperdratingethe analysis
of pipelining and instruction caching bef@r. The best-case pipeline and caching nadyeles were
obtained by assuming that each instruction required only a siyigle. cAll data cache references

were assumed to be hits in the three sets of measurements.

Analysis Worst-Case Best-Case
Pipeline Obsered Estimated | Estim. | Nave || Cbsened | Estimated| Estim. | Nave
Only Cycles Cycles Ratio | Ratio Cycles Cycles Ratio | Ratio
Des 66,594 68,254 1.02 3.82 34,837 15,684 0.45 | 0.36
Matcnt 1,063,572| 1,063,572 1.00 | 2.38 | 1,013,307| 1,013,207 1.00| 0.38
Matmul 4,347,806, 4,347,806 1.00 | 2.13 | 4,347,541 4,347,541 1.00| 0.33
Matsum 933,540 933,540 1.00 2.28 913,275 913,175 1.00 | 0.35
Sort 3,380,660 6,748,925 2.00| 8.13 11,158 4,174 0.37 | 0.32
Stats 900,231 900,231 1.00 1.70 447,478 447,477 1.00 | 0.41
Caching Obserd Estimated | Estim. | Nave || Cbsened | Estimated| Estim. | Nave
Only Cycles Cycles Ratio | Ratio Cycles Cycles Ratio | Ratio
Des 142,956 163,015 1.14 3.86 59,998 19,345 032 | 0.21
Matcnt 1,169,055 1,259,055 1.08| 3.79 929,073 929,073 1.00 | 041
Matmul 1,527,648 1,527,648 1.00| 9.36| 1,527,648 1,527,648 1.00 | 0.94
Matsum 707,219 707,219 1.00 4.85 687,219| 687,219 1.00 | 0.47
Sort 7,639,611 15,253,902 2.00| 8.17 10,439 3,901 0.37 | 0.35
Stats 372,410 372,410 1.00 4.90 372,410 372,410 1.00 | 0.49
Pipeline Obsered Estimated | Estim. | Nave || Cbsened | Estimated| Estim. | Nave
& Caching Cycles Cycles Ratio | Ratio Cycles Cycles Ratio | Ratio
Des 149,706 169,613 1.13 5.02 65,615 22,247 0.34 | 0.19
Matcnt 1,769,321 1,859,323 1.05| 3.69 | 1,549,095 1,548,798 1.00| 0.25
Matmul 4,444911| 4,445,413 1.00 | 4.98 | 4,444,666 4,420,068 0.99 | 0.32
Matsum 1,277,465 1,277,477 1.00| 4.08| 1,257,239 1,157,240 0.92| 0.26
Sort 7,765,125 15,504,172 2.00| 10.78 19,957 4,428 0.22 | 0.18
Stats 1,016,048 1,016,145 1.00| 3.12 607,399| 601,406 0.99 | 0.30

Table 9. Results for the Test Programs.
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The worst-case pipelining onlyiming analysis had exact predictions for all programseptDes
andSort The analysis of these twprograms depicts problems faced by all timing analyz@itse
timing analyzer did not accurately determine th@sircase paths in a function withres primarily
due to data dependencie&.longer path deemed feasible by the timing analyzer could not be taken in
a function due to aariables value in ani f statement. Th&ort program contains an inner loop
whose number of iterations depends on the counter of an outer loop. At this point the timing tool
either automatically recees the maximum loop iterations from the controiflanformation pro-
duced by the compiler or requests a maximum number of iterations from theresehe tool vould
need a sequence of values representing the number of iterations forveaelion of the inner loop.
The number of iterations performed waswepresented onvarage by a factor of tafor this spe-
cific loop. Note that both of these problems are encountered by other timing tools and are not directly

related to the pipeline analysis.

Thebest-case pipeline ontyming analysis resulted in exact predictions MatmulandStats The
predictions foMatcntandMatsumwere slightly underestimated due to diminishing the effect of data
hazard because of vacant cycles within a child Idéyen thoughMatmulhas no conditional control
flow, its BCET is less than its WCET because thegmtenultiply instructiorsmul can spend 1-19
cycles in the EX stage. Floating-point instructions alse takarying time to gecute, which can
result in a WCET that is significantly greater than the corresponding BTES best-case predic-
tions for Des and Sort were substantially underestimated for the same reasopswire weresti-

mated in the worst-case analysis.

The worst-case and best-casahing onlytiming analysis results were also quite accurdthis

analysis had exact predictions fbfatmul Matsum and Statssince there were ¥ conditional
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constructs except to exit loop3.he Matcnt program used anf - t hen- el se construct to either

add a nonrgstive value to a sum and increment a counter for the number of garedements or

just increment a counter for thegaive dements. Thedding of the nonmgztive value to a sum as
accomplished in a separate function, whichsvpurposely placed in a location thatuhd conflict

with the program line containing the code to increment a counter for ¢fadveedements. Multiple
executions of thet hen path, which includes the call to the function to perform the addition, still
required more ycles than alternating between theotpaths. ‘et, the algorithm for estimating the
worst-case instruction caching performance assumes that the first reference to a program line within a
path would alays be a miss if there were accesses toatimer conflicting program lines within the
same loop. This assumption simplified the algorithm since the effect of all combinations of paths
need not be calculated. Thus, one referenas @ounted repeatedly as a miss instead of a hit in the
worst-case analysis.This path was »ecuted 10,000 times and accounted for a 90,0¥€lec
[10,000*miss penalty] or an 8%verestimation. Notehat the &ecution of this single path accounted

for 40.61% of the total instructions referenced during the progsaeugon. Thebest-case analysis

for Matcntwas exact since the shorter path did not contain the call to add a gaiveevalue. The
programsDes and Sort had werestimations for the worst-case predictions and underestimations for
the best-case predictions due to the same problems described previouslydipeline onlymea-
surements. Theorst-case n&e ratio was lover than initially anticipated by the authors. These test
programs contained mgriong running instructions (floating-point operations andgiatemultiply

and divides) that were frequentlyeeuted and often resulted in stalls. In addition, transfers of con-

trol were also quite frequent and were only considered to requirgpeline stages in our analysis.

The intgratedpipeline and calging worst-case analysis also resulted in quite tight predictions.

-31-



Again the predictions for the programatmul Matsum and Statswere very accurateNote that the
estimated worst-case cycles were slightly greater than the obsewled for these programshis
overestimation was due to the problem of an instrucsiaathing behaor changing between loop
levels. Thesechanges require an adjustment as shown in Tablené.approach used by the authors
was to reat such an instruction as a hit in the pipeline analysis and simply add the miss penalty to the
total time. When the instruction should bewgsl as a hit at an outevi, then this miss penaltyas

simply subtracted and an accurate estimation is obtaihkmvever, in these three programs the
potential werlap between a miss penalty and a stall due to a hazard weravags adetected’ The

Des Matcnt and Sortprograms had its usual worst-caserestimations due to data dependencies, a
cache conflict, and an inaccurate number of estimated loop iterations, rehpedine nave ratio
indicates that much tighter WCET bounds can be obtained when the benefits of pipelining and

instruction caching are analyzed.

The intgratedpipeline and caging best-case analysis for the four programatcnt Matmul
Matsum and Statg without data dependeycor loop iteration problems was within 8% of the
obsered gcles. Theunderestimations were largely due to inaccuracies resulting frémm=afm
transition between inner and outer loops. The timing analyzer treats the instruction in this case as a
miss in the pipeline best-case analysis and subtracts the miss penalty from the time of the path when
the instruction will be viewed as a hit. Thus, if a portion of the miss penalty caretepped with a
delay due to a data hazard, an underestimation will occur on each iteratépi the first. In con-
trast, the worst-case analysiswid treat the instruction as a hit in the pipeline analysis and gaty o

estimate in a similar situation on the first iteration of the loop when the instruction referasce w

Y For instance, the 502 cyclee@estimation inMatmuloccurred from 50 miss penalties completergrtapping with stalls from an integer multi-
ply instruction and 52 misses@lapping with one cycle load hazards.
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regarded as a missln addition, some of the underestimation in the best-case analysis was from disre-
gading data hazard stallycles between a parent and a child loop due to subtracting vaches c

from the stall. Thus, it was common tovieaa Arger underestimation in best-case analysis than an
overestimation in worst-case analysiBortunately most timing constraints are associated with meet-
ing deadlines, which requiresovst-case analysis, instead of finishing a task too soon, wioaldw
require best-case analysis. The other pnograms DesandSorf) were significantly underestimated

due to data dependencies and loop iteration problems discussed previously.

If the pipeline and calesing analysis had been handled independetitgn the cache miss penalty
would not hae the opportunity to werlap with a pipeline stall, as shown in Figure 1. Thus, one
would anticipate a greaterverestimation in predicting WCET with an independent analysis
approach. Theffect of an independent analysis strategy would be to add the cache miss penalty to
the total time of a path when an instruction fetch is predicted to be a miss and treat the instruction as a
hit in the pipeline. The benefit of igeating the pipeline and instruction cache worst-case analysis is
depicted in @ble 10. Without an integrated analysis, the test programs would been weresti-
mated by an additional 3% onesage. Notethat the most significant effect was on therst-case
prediction of Stats which was the only floating-point intemsi st program. Programs requiring
floating-point operations result in more frequent and lgngkays that may sometimes beep
lapped with instruction cache misses oy ather source of multicle pipeline stage occupation.
Thus, the benefit of using an integrated analysis approach would be more pronounced in floating-

point intensie programs.
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Name Estimated Ratio with|  Estimated Ratio with

Integrated Analysis Independent Analysis
Des 1.133 1.174
Matcnt 1.051 1.057
Matmul 1.000 1.000
Matsum 1.000 1.016
Sort 1.997 2.029
Stats 1.000 1.082
Average 1.197 1.226

Table 10. Ratios for Integrated versus Independent Worst-Case Analysis

7. Userlnterface

Once the initial timing analysis has been completed, a graphical useadetésfinoked that is

depicted in Figure 11. The main windmn the left allavs the user to quickly request timing predic-

tions for functions, loops, paths, subpaths, or ranges of machine instructions and reports the
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Select a subpath within path 3
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blocks source lines
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Figure 11. Timing Analyzer User Interface

-34-



associated timing predictions. The middle winddepicts the C source code and the right wimdo
depicts the corresponding assembly codéhenerer a dfferent construct is selected in the main win-

dow, the highlighted lines in the source and assembly wusdare automatically updated and scrolled

to the appropriate position. Note the source lines within the middle wirad® numbered.This

allows the user to identify constructs that are referenced by line numbers within the maiw aiddo

to correlate the source line ranges associated with each basic block depicted in the assembly code
window. Selection of paths via the mouse on the source windaso supported. Since there may

be more than one instance of a function within the timing analysis tree, the usacetisplays the
worst-case and best-case times from all of the instances of the construct associated with the user
request. Whener a dfferent construct is selected, the highlighted lines in windows containing the
source and assembly code are automatically updated and scrolled to the appropriate pbsison.

the user can quickly observhe relationship between timing constraints associated with the source
code and sequences of machine instructions. This @cteris described in more detail elbere

[11].

8. Comparisonwith Previous Work
There has been much work on the issue of predictiaguéon time of programsHowever, most
approaches in the pastvearot dealt with the éécts of pipelining and instruction caching [12, 13,
14]. Therehave dso been some recent studies on predicting pipeline performance by Hetrmlon
[15] and Narasimhan and Nilsen [16Yet, these studies did not address caching is¥lBarther-
more, the former study was limited to nonnested functions and the latter study required the sequence

of executed instructions to be knm. Finally there has been some recent work on predicting

18 Harmon assumed the entire code segment would fit into cache. Thus, at most one miss could occur for each instruction reference.
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instruction caching performancérnold et al. [4] implemented a timing analysis system to tightly

bound instruction cache performance. Heerethis approach did not address pipelining issues.

Li et al.[17, 18] used an inger linear programming (ILP) approach to model instruction caching
behavior Their approach is also used to predict data and set-asseamthing behavior [19].The
authors automatically dered constraints from a prograsy'ontrol-flow graph that could be sad
using ILP Additional usetprovided constraints garding data dependencies within the controiflo
can be easily integrated into the analysis. In their contrel-tioalysis, each set of instructions
within a basic block mapping to the same cache lias identified as a line-block. Three possible
states were identified for each cache line. First, if only one line-block is mapped to it, then it will
experience at most one miss penal8econd, if two or nore non-conflicting line-blocks map to it,
then these line-blocks will ke & most one miss penalty among thefinally, if two or more con-
flicting line-blocks map to it, then a cache conflict graph is constructed for this cach&€imedges
between the line-blocks in this graph represent a possible path betweerothentlicting line-
blocks. Additionalconstraints are generated to represent the number of times these edges are tra-
versed. Wheneer a line-block is reached from a conflicting line-block, it is assumed that there is a

miss penalty associated with iteeeution.

Apparently the pipeline behavior was not modeled and it is unclearvaell Li’'s gpproach will
work when pipelining is addressedHowever, it is possible that pipeline behavior for instructions
within a single basic block can be modeled withsULLP approach. By performing no general
pipeline analysis, this allowed their approach to diack the potential effects of dédrent paths on
pipeline behaior. Thus, thg had only two possible times for the instructions within a line-block, one

with an instruction cache miss and one without a migstortunately the state of the pipeline can
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affect the &ecution time associated with a sequence of instructions. Thus, tlasral®o no method

shown for detecting pipeline stalls or potentiegrtap between stalls and cache misses.

There has been only one previous study that attempted to address the issue of predicting the WCET
of programs on machines with both pipelining and an instruction cddheet al.[20] described a
method of predicting the performance of pipelining and instruction caching, which is based on an
extension of a previous timing tool [21T hey havealso etended this tool to address data caching as
well [22]. It has been proposed that the Lim approach can be extended to analyze setvassociati
caching behavior as wellLim’s method differs quite significantly from our approach described in
this paperwhich instead builds on flo analysis techniques found in optimizing compiletam’s
method uses a timing schema associated with each souetéaleguage program constructhey
stored information about the number of cycles at the head and tail of aatesetable produced as a
result of the pipeline analysis on the instructions associated with a program conistraddition,
this method stored information about the set of memory blocks whose first reference depends upon
the cache contents prior to theeeution of the construct. Lim also stored the set of memory blocks
known to remain in cache after thgeeution of the constructEventually this timing information is
concatenated with another construct that woulddeewted immediately before the current construct.
Their timing analyzer attempted toelap the head of the reservation table of the current construct
with the tail of the reservation table of the other construct as much as poSdilelie.row-based
approach of concatenating reservation tables isvalgui to our tables of structural and data hazard
information depicted in Tables 3 and Bikewse, the list of memory blocks kwo to be in cache
after executing the other construct is used to adjust the time of the current construct by comparing this

list to the list of first reference blocks in the current construct. This method stored multiple paths for
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conditional constructs, such as ah-t hen- el se. They pruned or eliminated a particular path
when it was found that the worst-caseaition time of the path was faster than the best-cesmie

tion time of another path within the same construct.

The approach that Lirat al. used to analyze caching bela limits the accurag of the analysis.
They used a single bottom-up pass when performing the timing analysis of a proghentaching
behaior of a large percentage of the instruction fetches within a constaugdtdvbe unknown until
mary of the surrounding constructs were processEdeir approach was to treat the instruction fetch
as a hit within the pipeline and add the cycles associated with a cache miss penalty to the total time of
the construct. When itas later found that an instruction reference was a hit,wbeld subtract the
miss penalty from the total time-dowever, an overestimation may result when the instruction is not
found in cache. As shown in Figure 1, the instruction fetch miss penalty of one instruction (instruc-
tion 2) can be completely hidden by a stall with a long running instruction (data hazard stall on
instruction 3). Whether the fetch of instruction 2 was a hit or a misgdahare ro dfect on the total
number of gcles. TheLim method would rarely detect instruction fetches thault alvays be
misses until the surrounding constructs are analyzed, which is after the pipeline analysis of a con-
struct has already occurred. Our approach of categorizing the cachingdpesfaeach instruction
before starting the timing analysis ait® the detection of such situatiorfSor instance, about 25% of
the instructions within the function instance graphs of the programsaatd were statically cate-
gorized asalways missesAs Table 10 abee indicates, we found that thpepeline and calaing esti-
mated ratio for the six test programs increased \@nage by about 3% when the complete miss

penalty was avays added for each predicted miss.
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9. Future Work

We ae working on seeral enhancements to the timing analy2éke gdan to automate the detection
of mary data dependencies using existing compiler optimization techniques to obtain tighter perfor
mance estimations [23MWe dso plan to accurately calculate the number of iterations for loops which
are dependent on thalue of a loop counter variable of an outer loop. The retargetability of the tim-
ing analyzer will also be enhanced by isolating @maining machine dependent information in data

files.

We ae exploring methods to predict the timing of other architectural features associated with RISC
processors. Wk is currently ongoing to verify that our technique accurately predicts performance
for the MicroSPARC | by using a logic analyzérhis will require predicting the performance of
other features, such as wrap-around filling of cache lines. The effect of data caching is also an area
that we are pursuingUnlike instruction caching, magnof the addresses of references to data can
change during thexecution of a program.Thus, obtaining reasonably tight bounds farst-case
and best-case data cache performance is significantly more challehtgingver, mary of the data
references are kmm. For instance, static or global data references retain the same addresses during
the execution of a program.Due to the analysis of a function instance tree (no recursioweal)o
addresses of run-time stack references can be statically determénedhen the addresses may dif-
fer for different irvocations of the same function. Compilendl@nalysis can be used to detect the
pattern of may calculated references, such as indexing through an.awhyle the benefits of using
a data cache for real-time systems will probably not be as significant as using an instruction cache, its
effect on performance should still be substanti&k ae also currently working on extending the tim-

ing analyzer to predict the performance of set-assuveiaiches.
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10. Conclusions

This paper has presented a technique for predicting the worst and bestecasiere time of pro-
grams on machines with pipelining and instruction cack&st, a static cache simulator analyzes the
control flov of a program to statically categorize the caching behavior of each instruction within the
program. Seconda timing analyzer uses these instruction categorizations when analyzing the
pipeline performance of a path of instructiorihird, the timing analyzer uses a concise representa-
tion of the pipeline information to concatenate the performance of paths ificGnéimanner when
predicting the performance of loopBourth, a timing analysis tree is used to predict the performance
of an entire programFinally, a gaphical user intedce has been implemented that allows users to
obtain timing predictions of portions of the program. The results indicate that the timing analyzer can

quickly obtain tight predictions of performance.
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Appendix

In the following, the informal description on instruction categorization of section 2 will be formalized. The catego-
rization for direct-mapped instruction caches is based on the following definitions:

Definition 1 (Potentially Cached) A program line I can potentially be cached if there exisis a sequence of tran-
sttions in the combined control-flow graphs and function-instance graph such that l is cached when it is reached in
the current block.

The traversal of every possible sequence of blocks leads to an exponential explosion. We avoid this overhead by
restricting the analysis to abstract cache states:

Definition 2 (Abstract Cache State (ACS)) The abstract cache staie of a program line | within a block and a
function instance is the set of program lines that can potenitially be cached prior to the execution of [ within the block
and the function instance.

Given the control-flow information of a program and a cache configuration, the ACSs for each block have to be
calculated. Using data-flow analysis (DFA), each block has an input state and an output state, corresponding to the
ACS before and after the execution of the block, respectively. An iterative algorithm for the calculation of ACS’ via
DFA is given in Figure 3. The DFA requires a time overhead comparable to that of inter-procedural DFA performed
in optimizing compilers. The space overhead is O(pl * bb * f1), where pl, bb, fi denote the number of program lines,
basic blocks, and function instances, respectively. The correctness of iterative DFA has been discussed elsewhere [24].
Additional DFA is required to determine the linear cache state and the post-dominator set for each block before a
definition for instruction categories can be specified.

Definition 3 (Linear Cache State (LCS)) The linear cache state of a program line | within a block and a func-
tion instance is the set of program lines that can potentially be cached in the forward control-flow graph prior to the
execution of I within the block and the function instance.

The forward control-flow graph is the acyclic graph resulting from the removal of back edges (backwards edges
formingloops, see Figure 5 and [24]) in the regular control-flow graph. Informally, the LCS represents the hypothetical
cache state in the absence of loops. It will be used to determine whether a program line may be cached due to loops
or due 1o the sequential control flow.

Definition 4 (Post-dominator Set) The post-dominator set of a program line | within a block and a function
imstance is the self-reflexive transitive closure of post-dominating program lines.

Informally, the post-dominator set describes the program lines certain to be reached from the current block,
regardless of the taken paths in the control flow. A more detailed discussion of post dominators can be found elsewhere
[24]. The instruction categories can now be defined with respect to DFA. The following definition formalizes the
worst-case instruction categories for each loop level.

Definition 5 (Instruction Categorization) :

e Let i be an instruction within a block, a loop A, and a function instance.

o Let [ = iy..i;,—1 be the program line containing #; and let iy;,.;, be the first instruction of [ within the block.
e Let s be the ACS for [ within the block.

e Let [ map into cache line ¢, denoted by | — ¢.

o Let u be the set of program lines in loop A.

o Let child(X) be the child loop (inner-next loop within nesting) of A for this block and function instance, if such
a child loop exists.

-42-



Let header(A) be the set of header blocks and preheader(X) be the set of preheader blocks of loop A,

respectively.1?
Let s(p) be the abstract output cache state of block p.
Let linear be the LCS for ! within the block.

Let postdom(p) be the set of self-reflexive post-dominating programming lines of block p.

Then,
always-hit  ifk # firstv(l€sAN ¥ m¢s)
m—c,m#l
first-hit if worst(iy, child(X)) =first-hitv
k=first N\l€sA T me (sNu)A
m—c,m#El

[ v les(p) N ¥V m¢ (s(p) Nu)]A

WCET—category (lk; )\): pEpreheaders(A) m—c,m#I[
VL€ postdom(p) A ¥V m¢ (linear N u)
pEheaders(A) m—c,m#l

first-miss  if worst(iy, child(X)) =first-missAk = first Al € sA
I mesn ¥V mé(sNu)

m—c,m#l m—c,m#l

always-miss otherwise

always-miss if k = first Nl ¢ s
first-hat of best(iy, chald(X)) =first-hitv
k=firstANlesAh T me (snNu)A
m—c m#l

v L€ s(p)A

BCET-category (i, A)= pEpreheaders(X)
vV | € postdom(p) A v L& s(b)
pEheaders(A) bebackedges(N)

first-miss  if best(ix, child(N)) € {first-miss, always-hit} A
k= first Nl € s Nl & linear
always-hit  otherwise

While the definition seems complex, it can be implemented rather efficiently once DFA has been performed. First,
simple set operations on bit vectors suffice to test the conditions. Second, if one conjunct in a condition fails, the
remaining ones are not tested. Third, the implementation orders the conjuncts such that the least likely ones are
tested first. The informal description in Section 2 describes each conjunct of the above definition verbally and may
be used as a reference to further motivate the formal definition.

19The common notion of “natural loops” defines a loop to have only a single header [24]. This work extends this notion to handle
more general control flow with unstructured loops. Multiple loop headers occur only for unstructured loops, which are handled by the
simulator. Multiple loop preheaders occur when the loop can be entered [rom more than one block outside the loop, which can occur
even for natural loops.
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