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Abstract

Predicting the execution time of code segments in real-time systems is challenging. Most recently designed machines con-
tain pipelines and caches. Pipelinehazards may result in multicycle delays. Instruction or data memory references may
not be found in cache and these misses typically require several cycles to resolve. Whether an instruction will stall due to
a pipeline hazard or a cache miss depends on the dynamic sequence of previous instructions executed and memory refer-
ences performed.Furthermore, these penalties are not independent since delays due to pipeline stalls and cache miss
penalties may overlap. Thispaper describes an approach for bounding the worst and best-case performance of large
code segments on machines that exploit both pipelining and instruction caching. First, a method is used to analyze a pro-
gram’s control flow to statically categorize the caching behavior of each instruction. Next, these categorizations are used
in the pipeline analysis of sequences of instructions representing paths within the program. A timing analyzer uses the
pipeline path analysis to estimate the worst and best-case execution performance of each loop and function in the pro-
gram. Finally, a graphical user interface is invoked that allows a user to request timing predictions on portions of the
program. Theresults indicate that the timing analyzer efficiently produces tight predictions of worst and best-case perfor-
mance for pipelining and instruction caching.

Index terms: real-timesystems, worst-case execution time, best-case execution time, timing analysis, instruction cache,
pipelining

1. Intr oduction

Many architectural features, such as pipelines and caches, present a dilemma for architects of real-

time systems. Use of these architectural features can result in significant performance improvements.

In order to exploit these performance improvements in a real-time system, the WCET (Worst Case

Execution Time) must be predicted statically. In addition, sometimes the BCET (Best Case Execution

Time) is also needed.However, the aforementioned performance enhancing features introduce a

potentially high level of unpredictability. Dependencies between instructions can cause pipeline haz-

ards that may delay the completion of instructions. While there has been much work accomplished
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on analyzing the execution performance of a sequence of instructions within a basic block, the analy-

sis of pipeline performance across basic blocks is more problematic. Instruction or data cache misses

further complicate the performance prediction problem since they require several more cycles to

resolve than cache hits. Predicting the caching behavior of an instruction is even more difficult since

it may be affected by memory references that occurred long before the instruction was executed.

The timing analysis of these features is further exacerbated since pipelining and caching behavior

are not independent.For instance, consider the code segment and pipeline diagram in Figure 1 con-

sisting of three SPARC instructions. The pipeline cycles and stages represent the execution of these

instructions on a MicroSPARC I processor [1]. Each number within the pipeline diagram denotes that

the specified instruction is currently in the pipeline stage shown on the left and is in that stage during

the cycle indicated above. The first instruction performs a floating-point addition and requires a total

of 20 cycles. Fetchingthe second instruction results in a cache miss, which is assumed to have a miss

penalty of nine additional cycles in this paper. The third instruction has a data dependency with the

first instruction and the execution of its MEM stage is delayed until the floating-point addition is

inst 1: faddd %f2,%f0,%f2

inst 2: sub %o4,%g1,%i2

inst 3: std %f2,[%o0+8]
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Figure 1. Example of Overlapping Pipeline Stages with a Cache Miss
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completed.1 The miss penalty associated with the access to main memory to fetch the second instruc-

tion is completely overlapped with the execution of the floating-point addition in the first instruction.

If pipeline stalls and cache misses were treated independently, then the number of estimated cycles

associated with these instructions would be increased from 22 to 31 (i.e.by the cache miss penalty).

Unfortunately, the problem of overestimating WCET and underestimating BCET may become

more severe in the future.Cache miss penalties are increasing due to the growing gap between pro-

cessor and main memory speeds.Delays due to pipeline stalls become more likely with the introduc-

tion of superscalar and superpipelined architectures. Thus, naive timing analysis of programs on

machines with pipelines and caches will result in increased execution time prediction errors.

Let us define a task as the portion of code executed between two scheduling points (context

switches) in a system with a non-preemptive scheduling paradigm.When a task starts execution, the

cache memory is assumed to be invalidated. Duringtask execution, instructions are brought into

cache and often result in many hits and misses that can be predicted statically. These caching predic-

tions can be integrated with pipeline analysis to estimate tight WCET and BCET bounds.

Figure 2 depicts an overview of the approach described in this paper for bounding the worst and

best-case performance of large code segments on machines with pipelines and instruction caches.

Control-flow information, which could have been obtained by analyzing assembly or object files, is

stored as the side effect of the compilation.This information identifies the loops that are in each

function, the basic blocks that comprise each loop, the instructions that reside in each basic block, and

the register operands associated with each instruction. The control-flow information is passed to a

1 A std instruction has no write back stage since a store instruction only updates memory and not a register. Thestd instruction also requires
three cycles to complete the MEM stage on the MicroSPARC I.
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Figure 2. Overview of Bounding Pipelining and Instruction Caching Performance.

static cache simulator. It constructs the control-flow graph of the program that consists of the call

graph and the control flow of each function. The program’s control-flow graph is then analyzed for a

given cache configuration to produce a categorization of each instruction’s potential caching behavior.

The timing analyzer uses these categorizations to determine whether an instruction fetch should be

treated as a hit or a miss during the pipeline analysis. It also reads machine-dependent and control-

flow information to determine how each instruction proceeds through the pipeline.The timing ana-

lyzer produces a worst and best-case estimate of execution time for each loop and function within the

program. Finally, a window-based interface is used to allow the user to request the timing bounds for

portions of the program.

2. Instruction Caching Categorization

Static cache simulation2 is used to statically categorize each instruction according to its caching

behavior using a specific cache configuration in a given program. Thestatic simulation consists of

three phases. First, the control-flow graph of the entire program is constructed.This graph includes

the control-flow information of each function and a function instance graph, which is simply a call

2 Static cache simulation is only briefly introduced in this section. It is described in more detail elsewhere [2, 3, 4, 5, 6].
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graph where each function instance is uniquely identified by the sequence of call sites required for its

invocation. Thus,a directed acyclic call graph (without recursion) is transformed into a tree of func-

tion instances.

Next, this program control-flow graph is analyzed to determine the program lines that may be in

cache at the entry and exit of each basic block within the program. The iterative algorithm in Figure

3 is used to calculate an input and output cache state for each basic block in the function instance

graph. Acache state is simply the subset of all program lines that can potentially be cached at that

point in the control flow. Initially, the top block’s input state (the entry block of themain function) is

set to all invalid lines. The input state of a block is calculated by taking the union of the output states

of its immediate predecessors. The output state of a block is calculated by taking the union of its

input state and the program lines accessed by the block and subtracting the program lines with which

the block conflicts. The above steps are repeated until no more changes occur.

input_state(top) = all invalid lines
WHILE any change DO

FOR each basic block instance B DO
input_state(B) = NULL
FOR each immed pred P of B DO

input_state(B) += output_state(P)
output_state(B) =

(input_state(B) + prog_lines(B))
- conf_lines(B)

Figure 3. Algorithm to Calculate Cache States.

The input state for each basic block is used to categorize the caching behavior of each instruction

within the block. The categorization for each loop level is obtained by examining the cache state for

that instruction with a mask representing the program lines that are accessed by the loop.An instruc-

tion’s caching behavior is assigned to one of four categories for each loop level in which an instruc-

tion is contained.Note that each function is treated as a loop that executes for a single iteration.The
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categorizations of worst and best-case instruction cache behavior are given in Tables 1 and 2.When

processing an outer loop that contains an inner loop, the timing analyzer can adjust the value obtained

from the timing associated with an inner loop by examining the transitions between categorizations of

an instruction from one loop level to the next. Theseadjustments will be described in Section 5.

Informally, an instruction’s worst-case cache categorization for a particular loop level is determined

as follows. LetL be the program line that contains an instruction within a basic block.The instruc-

tion is categorized as analways hitif it is not the first instruction encountered inL in the block, or ifL

is in the abstract cache state and it does not conflict with any other program line in the same abstract

cache state. The instruction is categorized as afirst hit if it was afirst hit for the previous (deeper)

Instruction Category DefinitionAccording to Behavior in the Instruction Cache

always miss The instruction is notguaranteedto be in cache when it is
referenced.

always hit The instruction isguaranteedto always be in cache when
it is referenced.

first miss The instruction isnot guaranteedto be in cache on its
first reference each time the loop is executed, but isguar-
anteedto be in cache on subsequent references.

first hit The instruction isguaranteedto be in cache on its first
reference each time the loop is executed, but isnot guar-
anteedto be in cache on subsequent references.

Table 1. Definitions of Worst-Case Instruction Caching Categorizations

Instruction Category DefinitionAccording to Behavior in the Instruction Cache

always miss The instruction isguaranteedto not be in cache when it is
referenced.

always hit It is possiblethat the instruction is in cache every time it
is referenced.

first miss The instruction isguaranteedto not be in cache on its
first reference each time the loop is executed, but may be
in cache on subsequent references.

first hit The instructionmay bein cache on its first reference each
time the loop is executed, but isguaranteedto not be in
cache on subsequent references.

Table 2. Definitions of Best-Case Instruction Caching Categorizations
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loop nesting levels or if all of the following conditions (1)-(6) hold:

(1) Theinstruction is the first reference toL in the block, andL is in the abstract cache state.

(2) Thereexists a program line in the abstract cache state for this loop that conflicts withL.

(3) L is in the abstract output cache state of all preheaders3 of this loop.

(4) Noneof the conflicting lines is in the abstract output cache state of the preheaders of this loop. The purpose of this

stipulation is to guarantee that the instruction will be a hit in cache on the first iteration of the loop, in accord with

the definition offirst hit in Table 1.

(5) L is in the post dominator of the loop’s headers,i.e. the current line will be referenced during each loop iteration.4

(6) Noneof the conflicting lines is in the linear cache state of the current block,i.e. for each loop iteration, the current

line will be referenced before any conflicting line. This requirement guarantees thatL can only be replaced by a

conflicting line after the instruction has been referenced at least once.5

An instruction is afirst missif it is not already categorized as analways hitor first hit, the instruction

was a first missat the next deeper loop nesting level (if that level exists), it is the first instruction

encountered inL in the block andL is in the abstract cache state, and there exist conflicting program

lines but only outside the current loop nesting level. In all other cases, the instruction is conserva-

tively categorized as analways miss.

The instruction’s best-case categorization is determined as follows. Theinstruction is categorized

as analways missif it is the first reference toL in the block andL is not in the abstract cache state.

The instruction is categorized an afirst missif it was afirst missor always hitat the next deeper loop

nesting level (if that level exists), this instruction is the first reference toL in the block,L is in the

3 The loop header of a natural loop is the single basic block in which the loop is initially entered.The preheader is the basic block that precedes
the header.

4 Note that an instruction does not have to be referenced during each loop iteration to be classified as afirst miss.
5 The linear cache state of a block represents the hypothetical cache state in the absence of loops. During the static cache simulation, no linear ab-

stract cache state information is propagated along back edges of a loop.
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abstract cache state, andL is not in the linear cache state of the block. The instruction is categorized

as afirst hit if it was afirst hit for the previous (deeper) loop nesting levels or if the following condi-

tions (1)-(5) hold:

(1) Theinstruction is the first reference toL in the block, andL is in the abstract cache state.

(2) Thereexists a program line in the abstract cache state for this loop that conflicts withL.

(3) L is in the abstract output cache state of all preheaders of this loop.

(4) L is in the post dominator of the loop’s headers,i.e. the current line will be referenced during each loop iterations.

(5) L is not in the abstract cache state preceding any of the back edges,i.e. L is replaced by a conflicting line during

each loop iteration. The purpose of this requirement is to guarantee that the program line conflicting withL will be

encountered on every iteration after the first. Thus, the instruction will be a cache miss on these iterations, in agree-

ment with the definition offirst hit in Table 2.

In all other cases, the instruction is conservatively categorized as analways hit. Formal definitions of

these instruction categorizations are given in the appendix.

The current implementation of the static simulator imposes some restrictions. First, only direct-

mapped cache configurations are allowed.6 Second, recursive programs are not allowed since cycles

in the call graph would complicate the generation of unique function instances.7 Finally, indirect calls

are not handled since an explicit call graph must be generated.

6 Recent studies have shown that direct-mapped caches often have a faster access time for hits, which sometimes outweighs the benefit of a higher
hit ratio in set-associative org anizations for large caches [7].We are currently investigating the timing analysis of set-associative caches.

7 While cycles in a call graph can be detected, they are also difficult to describe to a user and it is difficult for the user to estimate the maximum
number of recursive iterations that will be performed.
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3. PipelinePath Analysis

This section describes how the analysis of the pipeline performance of a sequence of instructions is

accomplished. Informationfor all levels of timing analysis is stored in data structures as depicted in

Figure 4. First, information about each type of instruction is read from a machine-dependent data file.

This pipeline information for each type of instruction includes the worst and best-case number of

cycles required by each stage of the pipeline for its execution.8 The analyzer also reads from the

machine-dependent data file other information for each instruction. This information includes the lat-

est stage each source operand of an instruction can receive its value via hardware forwarding without

causing a pipeline stall and the earliest stage in which the result of the instruction can be forwarded.

Finally, information about the specific instructions in the sequence is obtained and stored in instances

of struct inst_node. This information includes the actual registers associated with the source

and destination operands, which is obtained from the control-flow information generated by the com-

piler, and the instruction caching categorization of each instruction, which is produced by the static

cache simulator.

A path of instructions consists of all the instructions that can be executed during a single iteration

of a loop (or in the case of a function, all the instructions that are executed in one invocation of the

function). Thus,a path consists of a sequence of basic blocks connected by control-flow transitions.

If a loop has no conditional control flow (e.g.if or switch statements), then there will be only one

path associated with this loop.

During the analysis of a path, the analyzer stores path information in instances ofstruct

path_node. This information includes the total number of cycles required by the path and a set of

8 The number of cycles required for some floating-point instructions on processors can vary depending upon the values of its operands.
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};

struct block_node { /* Basic blocks contain list of instructions */

struct inst_node *inst_list;

struct block_node *next;

/* Linked list of instructions in block */

/* Pointer to next block in path */

struct inst_node {

int inst_type;

struct cat_node *cat_list;

struct inst_node *next;

};

struct cat_node {

char wc_cat;

char bc_cat;

struct cat_node *next;

};

int register_operands[NUM_REGS_PER_INST];

/* Pointer to next deeper nesting level cat’s */

/* Instruction cache categorizations */

/* Worst-case categorization */

/* Best-case categorization */

/* Pointer to next instruction in path */

/* Instruction cache categorization for this inst */

/* Register operands for this instruction */

/* Opcode for this instruction */

/* Information stored for each instruction */

struct loop_node {

int max_iterations;

int min_iterations;

int wcet;

int bcet;

struct union_node *wc_pipeline_information;

struct union_node *bc_pipeline_information;

struct path_node *path_list;

struct inst_node *first_misses_encountered;

struct inst_node *first_hits_encountered;

struct loop_node *next;

};

/* Maximum number of iterations for the loop */

/* Information stored with each loop */

/* Minimum number of iterations for the loop */

/* Estimated WCET of the loop */

/* Estimated BCET of the loop */

/* Best-Case pipeline info. for detecting hazards */

/* Worst-Case pipeline info. for detecting hazards */

/* Linked list of loop’s paths */

/* Linked list of first misses encountered in loop */

/* Linked list of first hits encountered in loop */

/* Linked list of blocks to which loop can exit */

/* Pointer to next loop node in program */

struct exit_block_node *exit_block_list;

struct exit_block_node { /* Information stored with loop’s exit block */

int wcet;

int bcet;

struct union_node *wc_pipeline_information;

struct union_node *bc_pipeline_information;

};

/* Estimated BCET of loop exiting to this block */

/* Estimated WCET of loop exiting to this block */

/* Worst-case pipeline info. for detecting hazards */

/* Best-case pipeline info. for detecting hazards */

struct union_node {

int cycles_from_begin[NUM_STAGES];

int beginning_occupant[NUM_STAGES];

int cycles_from_end[NUM_STAGES];

int ending_occupant[NUM_STAGES];

int reg_first_needed[NUM_REGS];

int reg_last_produced[NUM_REGS];

};

struct path_node {

int path_type;

int wcet;

int bcet;

struct union_node *bc_pipeline_information;

struct path_node *next;

};

/* Information to detect structural and data hazards */

/* Number of instruction that first occupies stage */

/* When stage is last occupied */

/* Number of instruction occupying stage last */

/* Cycle when value of register is first needed */

/* Cycle when register is last used as destination */

/* Information stored for each path in a loop */

/* Type of path: continue, exit, or both */

/* Estimated WCET of the path */

/* Estimated BCET of the path */

struct union_node *wc_pipeline_information; /* Worst-Case pipeline info. for detecting hazards */

/* Best-Case pipeline info. for detecting hazards */

/* Pointer to next path in loop */

/* Cycle when particular stage is initially occupied */

struct block_node *block_list; /* Linked list of basic blocks in path */

Figure 4. Data Structures for Timing Analysis
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pipeline information. This information includes when each pipeline stage was first and last used

within the path for avoiding structural hazards.9 It is represented as the number of cycles from the

beginning and end of the path for each pipeline stage.In addition, information indicating when each

register was first and last used in the path is also maintained to avoid data hazards.10 Again, this infor-

mation is represented as the number of cycles from the beginning and end of the path for each regis-

ter. The set of pipeline information, as stored inpath->wc_pipeline_information, for

avoiding hazards after the three instructions in Figure 1 have been analyzed is shown in Tables 3 and

4. Table 3 represents the information for avoiding structural hazards. Only the numbers shown in

bold are required to be stored. These values represent when each stage was first used from the begin-

ning of the path and last used from the end. The values in the table correspond to the information

associated with the instruction numbers that are represented in bold in Figure 1.Table 4 represents

the information for avoiding data hazards.

Stage IF ID EX FEX MEM WB FWB

Beginning Inst 1 1  2 1 2 2 1
Cycles from Beg 0 1  12 2  13 14 19

Ending Inst 3 3  3 1 3 2 1
Cycles from End 10 9 3 3  0 7 2

Table 3. Structural Hazard Information for the Instructions in Figure 1.

Register %g1 ... %o0 ... %o4 ... %i2 ... %f0 ... %f2 ...

First Needed 12 N/A 13 N/A 12 N/A N/A N/A 2 N/A 2 N/A
Last Produced N/A N/A N/A N/A N/A N/A 9 N/A N/A N/A 3 N/A

Table 4. Data Hazard Information for the Instructions in Figure 1.

9 A structural hazard indicates that a stage of an instruction cannot be executed earlier due to the pipeline stage already being used.
10 A data hazard indicates that a particular stage of an instruction cannot be executed earlier due to the pipeline stage using a source register that

matches the destination register not yet updated by a pipeline stage of another instruction.
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This set of pipeline information is created by processing one instruction at a time from the

sequence of instructions that comprise a path.Figure 5 depicts an algorithm that creates this pipeline

information for worst-case analysis.The best-case path analysis algorithm is analogous.Each

instruction can be represented by the same form of pipeline information that is shown in Tables 3 and

4 for a path.This information is modified if it is found that the instruction’s caching categorization

indicates that the instruction fetch was a miss.The miss penalty is used to increment the total number

of cycles and the cycles from the beginning (structural hazard information) for all other stages besides

the IF stage and the first needed registers (data hazard information) for that instruction.The addition

of an instruction to the pipeline information for a path will not only update the total number of cycles

and the information associated with the end of the pipeline, but also the beginning of the pipeline if a

referenced stage or register in the instruction had not been previously used.

void Time_Path (struct path_node *path) {
struct block_node *block;
struct inst_node *instruction;

path->wc_pipeline_information= N ULL.
FOR each block in path->block_list DO

FOR each instruction in block->inst_list DO
IF (instruction->cat_list->wc_cat== first miss AND

this instruction has not been encountered already) OR
(instruction->cat_list->wc_cat== first hit AND
this instruction has been encountered already) OR
instruction->cat_list->wc_cat== miss THEN
Treat this instruction fetch as a miss in the pipeline.

ELSE
Treat this instruction fetch as a hit in the pipeline.

Concatenate w.c. pipeline information for instruction->inst_type
with path->wc_pipeline_information.

END FOR
END FOR
path_ptr->wcet = t emporal length of path->wc_pipeline_information.

}

Figure 5. Worst-Case Path Analysis Algorithm.
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Retaining this set of pipeline information allows additions to the beginning or end of a path.Since

both the pipeline requirements for a path and a single instruction can be represented with this set of

pipeline information, concatenating two paths together can be accomplished in the same manner as

concatenating an instruction onto the end of a path. The concatenation is accomplished one stage at a

time. A stage from the second set of pipeline information is moved to the earliest cycle that does not

violate any of the following conditions.

(1) Thereis no structural hazard with another instruction.For instance, the beginning of the IF stage of instruction 2 in

Figure 1 could not be placed in cycle 1 since that stage was already occupied.

(2) Thereis no data hazard due to a previous instruction producing a result that is needed by a source operand of the cur-

rent instruction in that stage.For example, the beginning of the MEM stage for instruction 3 in Figure 1 could not be

moved past the FEX stage of instruction 1 at cycle 19 due to the data hazard between thefaddd andstd instruc-

tions.

(3) Theplacement of the instruction does not violate its own pipeline requirements.For instance, the ID stage of instruc-

tion 2 has to occur at least 10 cycles after the beginning of its IF stage in Figure 1.

Other information associated with the pipeline analysis of a path need not be stored.For instance,

it does not matter when instruction 2 entered the ID stage after the pipeline information has been cal-

culated for all three instructions in Figure 1.No instruction being added to either the beginning or

end of the pipeline could possibly have a structural hazard with the ID stage of instruction 2 since it

would first have a structural hazard with the ID stage of instruction 1 or instruction 3, respectively.

Thus, the amount of pipeline information associated with a path is dramatically reduced as opposed to

storing how each stage is used during every cycle. Furthermore,no limit need be imposed on the

amount of potential overlap when concatenating the analysis of two paths.
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4. LoopAnalysis

In order to predict the worst-case execution time of a loop, the timing analyzer has to predict the

execution time of each possible path within the loop. The static cache simulator provides categoriza-

tions for each instruction. The timing analyzer will reserve either one cycle or the number of cycles

associated with a cache miss for the IF (instruction fetch) stage for each instruction categorized as an

always hit or always miss, respectively. Note, additional cycles in the IF stage may be required due to

other pipeline stalls. If an instruction is categorized as a first miss, then the timing analyzer will treat

the instruction fetch as a miss if the program line has not yet been encountered as a first miss in the

timing of the loop.If the program line has been encountered, then the instruction fetch will be treated

as a hit instead.Likewise, if an instruction is categorized as a first hit, then the timing analyzer will

treat the instruction fetch as a cache hit on the first reference and a cache miss thereafter.

Each path starts with the loop header and is terminated by a block with a back edge11 or a transi-

tion to an exit block outside the loop. Figure 6 shows a simple example that identifies a loop header,

back edges, exit blocks, continue paths, and exit paths.Each path is designated as either a continue

path (the last block is the head of a back edge transition), an exit path (the last block has a transition

to an exit block outside the loop), or both.The number of loop iterations indicates the number of

times the header of the loop is executed once the loop is entered.

11 A back edge is a control-flow transition from a basic block in a loop to its loop header.
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Figure 6. Example Introducing Loop Terminology

With pipelining it is possible that the combination of a set of paths may produce a longer worst-

case execution time than just repeatedly selecting the longest path.For instance, consider a loop with

two paths that take about the same number of cycles to execute. Onepath has a floating-point addi-

tion near the beginning of the path and the other path has a floating-point addition near the end.

Alternation between the paths will produce the worst case execution time since there will be a struc-

tural hazard between the two floating-point additions.

To avoid the problem of calculating all combinations of paths, which would be the only method for

obtaining perfectly accurate estimations, it was decided to union the pipeline effects of the paths for a

single iteration of a loop together. A union, an instance ofstruct union_node in Figure 4, is

dynamically allocated for each path and loop. Calculating the union of the beginning pipeline struc-

tural hazard information for a given stage in the WCET analysis is accomplished by determining the

earliest initial occupation of that stage by any path in the union.Likewise, we calculate the WCET

union of the ending pipeline structural hazard information for a given stage by finding the last occu-

pation of that stage, relative to the last cycle of the longest path, by any path in the union. The BCET

unioning of pipeline information is accomplished in an analogous manner. The beginning (ending)

pipeline structural hazard information for each stage is updated to contain the latest initial (earliest
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final) occupation of that stage. If a path does not use a particular stage, then the BCET union will

record that stage as empty. The data hazard information is handled similarly with the earliest and lat-

est use of each register from the paths in the union being updated. This unioning of pipeline informa-

tion simplified the algorithm and also did not cause a noticeable overestimation or underestimation in

the worst or best-case analysis, respectively. The beginning pipeline information (stages and regis-

ters) is rarely affected since all paths through a loop start with the same loop header block.Paths

through a loop often end with the same block of instructions. In addition, one path may be signifi-

cantly longer or shorter than the others, so the ending pipeline information for worst and best-case

analysis is often not affected.

Figure 7 shows a toy function and its corresponding SPARC assembly code.12 There are two

C Source Code Inst Assembly Code
------------------------- ---- --------------------------
main() 0 mov %g0,%o1
{ 1 sethi %hi(L01),%o0

int i, cnt = 0; 2 ldd [%o0+%lo(L01)],%f2
double dcnt = 0.0; 3 mov %g0,%o2
extern int incr; 4 sethi %hi(_dincr),%o3
extern double dincr; 5 sethi %hi(_incr),%o4

6 cmp %o2,5
for (i=0; i < 10; i++) 7 L8: bge,a L9

if (i < 5) 8 ld [%o4+%lo(_incr)],%o0
dcnt += dincr; 9 ldd [%o3+%lo(_dincr)],%f0

else 10 ba L6
cnt += incr; 11 faddd %f2,%f0,%f2

} 12 L9: add %o1,%o0,%o1
13 L6: add %o2,1,%o2
14 cmp %o2,10
15 bl,a L8
16 cmp %o2,5
17 retl
18 nop

Figure 7. Example C Source Code and Corresponding SPARC Instructions.

12 Note that the generated assembly code has been optimized by the compiler. The local variablesi, count, anddcount have been allocated to
registers%o2, %o1, and%f2, respectively. The instruction following each transfer of control takes effect before the transfer of control is taken since the
SPARC has delayed branches.Thecmp comparison preceding thebge branch (instruction 7) has been moved to both immediately precede the loop and
in the delay slot (instruction 16) of thebl branch (instruction 15).Branches with a ",a" represent that the result of the instruction within the delay slot
will be annulled if the branch is not taken.
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possible paths of instructions through an iteration of the loop in the program, <7,8,12,13,14,15,16>

and <7,8,9,10,11,13,14,15,16>. Figure 8 shows the instructions and the corresponding pipeline dia-

grams for the two paths within the loop.13 To simplify the example, it is assumed that the loop has

already been executed and all of the instructions and data are in cache (i.e. there are no instruction

fetch or data memory misses).Table 5 shows the structural hazard information for the two paths in

Figure 7 and how the information in path 1 has to be adjusted before being unioned. The worst-case

union of the number of cycles from the beginning and end of the paths for a given stage will simply

be the minimum number encountered.Likewise, the best-case union will be the maximum number

encountered. Thestructural hazard information indicating the number of cycles from the end of path

1 has to be adjusted since its total number of cycles is 13 less than the cycles required by path 2.The

inst 7: bge,a L19

inst 8: ld [%o4+%lo(_incr)],%o0

inst 12: add %o1,%o0,%o1

inst 13: add %o2,1,%o2

inst 14: cmp %o2,10

inst 15: bl,a L18

inst 16: cmp %o2,5

Path 1 Instructions

EX

ID

IF

MEM

FEX

WB

FWB

1 2 3 4 5

cycle

stage

6 7 8 9

7

7

128 13 13

8

14 15 16

12 12 13 14 1516

8 12 13 14 16

8 12 13 14 16

8 12 13 14 16

10 11 12

Path 1 Pipeline Diagram

13

inst 7: bge,a L19

inst 8: ld [%o4+%lo(_incr)],%o0

inst 9: ldd [%o3+%lo(_dincr)],%f0

inst 10: ba L16

inst 11: faddd %f2,%f0,%f2

inst 13: add %o2,1,%o2

inst 14: cmp %o2,10

inst 15: bl,a L18

inst 16: cmp %o2,5

Path 2 Instructions

EX

ID

IF

MEM

FEX

WB

FWB

1 2 3 4 5

cycle

stage

6 7 8 9 10 11 12 13 ...14

7 8 9 10 11

7 8 9 10 11

8 9

11 11 11 11 11 11

8 9

8

11

11

Path 2 Pipeline Diagram

9

9

11

1615141313

1615141311

161413

24 25

161413

161413

...

2524...14

Figure 8. Pipeline Diagrams for the Two Paths through the Loop in Figure 7.

13 Note instructions 7, 10, and 15 are transfers of control. The actual transfer of control (i.e. updating the program counter) occurs in the ID stage.
Thus, there are no additional pipeline stages associated with these instructions. Also note the one cycle stall between instructions 8 and 12 in the EX
stage of path 1 due to a load hazard. Finally, theldd (instruction 9) requires two cycles to complete the MEM stage [1].

-17-



resulting worst-case union of the structural hazard information of the two paths would be identical to

the structural hazard information for path 2.Likewise, the best-case union would be identical to the

information for path 1.Note that the data hazard information would change slightly since instruction

12 references register%o0 as a source operand and%o1 as both a source and destination.Yet, repre-

senting access to these registers would not likely have an effect when the timing analysis is performed

between this path and its predecessor and successor paths since the EX stage is used before and after

cycle 6, which is when instruction 12 enters the EX stage.

Path 1 Info IF ID EX FEX MEM WB FWB

Cycles from Beg 0  1 3 N/A 4 5 N/A
Cycles from End 4 3  2 N/A 1 0 N/A
Adj End Cycles 17 16 15 N/A 14 13 N/A

Path 2 Info IF ID EX FEX MEM WB FWB

Cycles from Beg 0  1 3 7  4 5 7
Cycles from End 15 14 13 1 12 11 0

Table 5. Structural Hazard Information for the Paths in Figure 8.

Let n be the maximum number of iterations associated with a loop.The algorithm for estimating

the worst-case execution time for a loop is shown in Figure 9. The algorithm contains three phases.

During the first phase, the loop is analyzed one iteration at a time.For each iteration, the algorithm

chooses the path with the greatest WCET. The first phase continues as long as new first miss instruc-

tions are encountered on each iteration.The WHILE loop in the algorithm represents this first phase,

and it terminates when the number of calculated iterations reachesn - 1 or no more first misses (first

hits) are encountered as misses (hits). Thus, the WHILE loop will iterate up to (n - 1) or (m + 1),

wherem is the number of paths in the loop since a first miss (first hit) can miss (hit) at most once dur-

ing the loop execution. Duringthe second phase of the algorithm, a longest path is calculated for all
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struct loop_node *loop;
struct path_node *path, *chosen_path;

loop->first_misses_encountered= N ULL.
loop->first_hits_encountered= N ULL.
loop->wc_pipeline_information= N ULL.
curr_iter = 0 .
WHILE curr_iter != n - 1 D O

curr_iter += 1.
Invoke Time_Path() for all continue paths in loop->path_list.
chosen_path = l ongest continue path for this iteration.
Append first misses that were misses in chosen_path to loop->first_misses_encountered.
Append first hits that were hits in chosen_path to loop->first_hits_encountered.
For every continue path in loop->path_list,

concatenate path->wc_pipeline_informationwith loop->wc_pipeline_information.
IF no new first misses or first hits are encountered in chosen_path THEN

BREAK.
Concatenate path->wc_pipeline_informationwith loop->wc_pipeline_information

for all paths (n - 1 - curr_iter) t imes.
FOR each set of exit paths in loop->path_list that have a transition

to a unique exit block in loop->exit_block_listDO
Invoke Time_Path() for each path in the set.
chosen_path = l ongest exit path in the set.
Append first misses that were misses in chosen_path to loop->first_misses_encountered.
Append first hits that were hits in chosen_path to loop->first_hits_encountered.
Concatenate path->wc_pipeline_informationwith loop->wc_pipeline_information

for all exit paths in the set.
Store this information with this exit block in loop->exit_block_list.

Figure 9. Worst-Case Loop Analysis Algorithm.

the remaining iterations except the last iteration. In the third and final phase, the last iteration of the

loop is handled separately. If the loop being analyzed has only one iteration, as is the case with a

function, only this third phase is performed.

The algorithm selects the longest path on each iteration of the loop.In order to demonstrate the

correctness of the algorithm, one must show that no other path for a given iteration of the loop will

produce a longer worst-case time than that calculated by the algorithm. Since the pipeline effects of

each of the paths within the loop are unioned, it only remains to be shown that the caching effects are

treated properly. The instruction fetch time used for each instruction depends on whether it is

assumed to be a hit or miss, which depends on its categorization. Thecache hit time is one cycle on

most machines. The cache miss time is the cache hit time plus the miss penalty, which is the time
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required to access main memory. All categorizations are treated identically on repeated references,

except for first misses and first hits. Assuming that the instructions have been categorized correctly

for each loop and the pipeline analysis was correct, it remains to be shown that first misses and first

hits are interpreted appropriately for a given iteration of the loop.

A first hit implies that the instruction will be a hit on its first reference after the loop is entered and

all subsequent references to the instruction during the execution of the loop will be misses. The defi-

nition the authors used for a first hit requires that the instruction be within every path of the loop.

Thus, the first path chosen in the WHILE loop of the algorithm will encounter every first hit in the

loop. Afterthe first iteration, first hits are treated as misses.

A first miss implies that the instruction will be a miss on its first reference after the loop is entered

and all subsequent references will be hits. An instruction classified as a first miss will be counted as a

miss only the first time it is encountered within the WHILE loop of Figure 9.Because of this dual

caching behavior of a first miss instruction, it is necessary to perform more than one pipeline analysis

of a path since the caching behavior of the instructions comprising the path can change between itera-

tions.

Once no more first miss instructions are encountered that miss, the pipeline effects associated with

the path chosen will not change since the caching behavior of the instructions within a path will

always be treated the same.The pipeline effects of the last chosen continue path are efficiently repli-

cated for all but one of the remaining iterations. The last iteration of the loop is treated separately.

The longest exit path for a loop may be shorter than the longest continue path.By examining the exit

paths separately, a tighter estimate can be obtained. Thus, the algorithm estimates a bound that is at

least as great as the actual worst-case bound.
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The algorithm used for estimating the best-case execution time for a loop is somewhat simpler. Let

n be the minimum number of iterations associated with a loop.Like the corresponding algorithm for

worst case, the best-case loop analysis algorithm contains three phases.However, during the first

phase, a shortest path is found only for the first iteration of the loop. The second phase of the algo-

rithm determines the shortest path for the middlen − 2 iterations of the loop. The third phase finds

the shortest exit path from the loop in the final iteration.The algorithm for estimating the BCET for a

loop is shown in Figure 10.

The best-case algorithm selects the shortest path on each iteration of the loop. In order to demon-

strate the correctness of the algorithm, one must show that no other path for a given iteration will

struct loop_node *loop;
struct path_node *path, *chosen_path;

loop->bc_pipeline_information= N ULL.
IF n > 1 THEN

Invoke Time_Path() for all continue paths in loop->path_list,
where all first misses are treated as misses and all first hits are treated as hits.

chosen_path = s hortest continue path for this iteration.
For every continue path in loop->path_list,

concatenate path->bc_pipeline_informationwith loop->bc_pipeline_information.
Find the shortest continue path where all first misses are

treated as hits and all first hits are treated as misses.
Concatenate path->bc_pipeline_informationwith loop->bc_pipeline_information

for all paths (n-2) times.
For each set of exit paths that have a transition to a unique exit block DO

Invoke Time_Path() for each path in the set.
Find the shortest exit path in the set where all first misses

are treated as hits and all first hits are treated as misses.
Concatenate path->bc_pipeline_informationwith loop->bc_pipeline_information

for all the exit paths in this set.
Store this information with this exit block in loop->exit_block_list.

ELSE
For each set of exit paths in loop->path_list that have a transition

to a unique exit block in loop->exit_block_listDO
Invoke Time_Path() for each path in the set.
Find the shortest exit path in the set where all first misses

are treated as misses and all first hits are treated as hits.
Concatenate path->bc_pipeline_informationwith loop->bc_pipeline_information

for all the exit paths in this set.
Store this information with this exit block in loop->exit_block_list.

Figure 10. Best-Case Loop Analysis Algorithm.
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produce a shorter best-case time than that calculated by the algorithm. The pipeline information for

the first iteration is typically calculated within the IF-THEN portion (i.e. when the loop iterates more

than once).The first time program lines are referenced in a loop, first misses will be misses and first

hits will be hits. Thus, the algorithm will calculate the shortest path for the first iteration. The short-

est continue path will then be calculated given that first misses will be hits and first hits will be

misses. Allthe first hits within the loop will be encountered on the first iteration according to the def-

inition of first hits that was used by the authors. Thus, they can be safely treated as misses on subse-

quent iterations.A first miss will be a hit if it has been encountered previously. Even if a first miss

had not been encountered in the first iteration, treating the reference as a hit in the second iteration

will only cause a slight underestimation.The pipeline information for the first iteration will be con-

catenated to the pipeline information calculated for the next n-2 iterations. The algorithm in Figure

10 examines the last iteration separately since paths associated with the exit blocks may be shorter

than the shortest continue path.When the number of loop iterations is one (i.e. the loop is actually a

function), first misses and first hits will be treated as misses and hits, respectively in the pipeline anal-

ysis of the exit path.Thus, the algorithm estimates a bound that is at least as small as the actual best-

case bound.

It is important to note that the worst-case and best-case loop analysis algorithms are not perfectly

analogous. Considera loop having three paths with information depicted in Table 6.Paths 1 and 2

each have a distinct first miss instruction, while Path 3 has no first misses. According to the worst-

How Path Is Evaluated Path 1 Path 2 Path 3

Treat first misses as misses 19 18 13
Treat first misses as hits 10 9 13

Table 6. Information about Hypothetical Loop with Three Paths
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case loop analysis algorithm, the timing analyzer selects Path 1 for the first iteration, Path 2 for the

second iteration, and Path 3 for all other iterations.For this example, the worst-case algorithm com-

putes the WCET exactly for any number of loop iterations.For best case, Path 3 will be chosen for

the first iteration. But starting with the second iteration, all first misses will be treated as hits, so Path

2 will be selected for all iterations after the first. Thus, the timing analyzer will compute a BCET of

13 + 9*(n − 1) cycles for this loop, wheren is the minimum number of loop iterations.

However, the true BCET of this loop can be slightly greater. If the loop has just one iteration, the

timing analyzer correctly predicts that Path 3 should be taken, and there is no underestimation in the

BCET. If the loop has two iterations, then Path 3 should be taken for both iterations, yielding 26

cycles for the loop.The timing analyzer would compute 22 cycles if there are two iterations, a BCET

underestimation of four cycles. Onthe other hand, if there are three or more iterations, the BCET is

realized if the loop takes Path 2 for every iteration. In this case, the timing analyzer will underesti-

mate the BCET of the loop by five cycles, and this underestimation is due to the incorrect prediction

of which path had been chosen for the first iteration. In order to make an exact prediction in best

case, it becomes necessary to re-examine path choices for prior iterations.We believe that having to

re-examine all combinations of path choices for prior iterations to compute the BCET of a current

iteration is overly inefficient. Asa result, the best-case loop analysis algorithm shown in Figure 10

assumes that the same path will be taken during the middle iterations of the loop at the expense of a

small underestimation in the total BCET.

5. Program Analysis

A timing analysis tree is constructed to predict the worst-case times of code segments containing

nested loops and function calls. In the context of the notation in Figure 4, the root of this tree is an
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instance ofstruct loop_node representingmain(). Each node of the tree represents either a

loop or a function in the function instance graph. Each node is assumed to be a natural loop.14 The

nodes representing the outer level of function instances are treated as natural loops that will iterate

only once when entered.

The loops in the timing analysis tree are processed in a bottom-up manner. In other words, the

worst-case and best-case times for a loop are not calculated until the times for all of its immediate

child loops are known. Thealgorithm given in the previous section described how a loop containing

no other loops would be analyzed.The timing of a non-leaf loop is accomplished using this algo-

rithm and the pipeline information and total times from its immediate child loops. Associated with

each loop is a set of exit blocks, which indicates the possible blocks outside the loop that can be

reached from the last block in each exit path.A unique set of timing information is stored for the

child loop with each of these exit blocks. If a path within a loop enters a child loop, then the pipeline

information and total time from the appropriate exit block are used at that point during the analysis of

the path.For instance, if the loop in Figure 6 exits to block 5, then the last iteration of the loop will

be shorter than if it had exited to block 7.Thus, the possible paths within non-leaf loops that contain

child loops can also be calculated.15

The transition of an instruction categorization from the child loop level to the current loop level

will be used to determine if any adjustment to the child loop time is required. The transitions

between categorizations requiring adjustments are described in Table 7.

14 A natural loop is a loop with a single entry block.While the static simulator can process unnatural loops, the timing analyzer is restricted to
only analyzing natural loops since it would be difficult for both the timing analyzer and the user to determine the set of possible blocks associated with a
single iteration in an unnatural loop. It should be noted that unnatural loops occur quite infrequently.

15 The timing analysis across loop levels is only briefly introduced in this section. It is described in more detail elsewhere [2, 4].
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Child => Parent Actionto Adjust Child Loop Time

fm => fm Use the child loop time for the first iteration.
For all remaining iterations subtract the miss
penalty from the child loop time.

m => fh For the first iteration subtract the miss penal-
ty from the child loop time.For all remain-
ing iterations use the child loop time directly.

Table 7. Use of Child Loop Times.

The fm=>fm adjustment is necessary since there should be only one miss associated with the

instruction and a miss should only occur the first time the child loop is entered.16 For instance, con-

sider a program with two nested loops and each loop iterates 10 times. An instruction within both

loops is classified as afm at both the inner and outer loop levels. Theinstruction should miss only

during the first iteration of the inner loop within the first iteration of the outer loop (1 miss, 99 hits).

If no adjustment were made and the inner (child) loop pipeline information was used directly, then an

overestimation would result since the analyzer would treat the instruction as initially missing for each

iteration of the outer loop (10 misses, 90 hits).Them=>fh adjustment is necessary since the first ref-

erence to the instruction in the outer loop will be a hit. These same adjustments were used in previ-

ous work on bounding only instruction cache performance [4, 6].

Making these adjustments when pipelining is involved resulted in some slight mispredictions.The

problem is that the caching behavior of a particular instruction depends on the loop level being ana-

lyzed. Whena worst-case adjustment at an outer loop level would be needed for an instruction hav-

ing a transition in Table 6, we conservatively added the maximum number of cycles associated with a

cache miss penalty to the total time of the path containing the instruction and treated the instruction

16 Note that additional work was required when the number of distinct paths containing first misses to different program lines exceeds the number
of loop iterations. This situation can commonly occur within functions.A maximum adjustment value was used to compensate in an efficient manner
for the remaining loop iterations.
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fetch as a cache hit within the path pipeline analysis for the inner loop. When the instruction fetch

should be viewed as a cache hit at an outer loop level, the previously added miss penalty cycles were

subtracted from the loop’s time. Thisstrategy permitted a single pipeline analysis of each loop, yet

adjustments could still be made at outer levels of the program.A worst-case overestimation occurs

when the instruction fetch is regarded as a miss and the cache miss penalty could have been over-

lapped with other pipeline delays (as shown in Figure 1).

For best-case estimations we treated the fetch of an instruction having a transition in Table 6 as a

cache miss within the path pipeline analysis of the inner loop. When the instruction fetch should be

viewed as a cache hit at an outer loop level, then the miss penalty will be subtracted from the total

time of the path. If the miss penalty could be overlapped with some hazard (as shown in Figure 1),

then an underestimation will result.

The timing analyzer could achieve an exact prediction by storing pipeline information about both

cases (whether an instruction having such a instruction categorization transition between loop levels

should be treated as a miss or a hit in the pipeline).There could be several instructions within a sin-

gle loop having such caching categorization transitions between loop levels. Storingpipeline infor-

mation about both cases for each instruction would result in an exponential space and complexity

since all combinations of categorizations would have to be analyzed.

During best-case analysis, it is sometimes necessary to ignore a potential data hazard between a

parent and child loop to avoid a potential overestimation in execution time. This situation can occur

when a hazard is overlapped with some other delay (e.g. an instruction cache miss). The timing ana-

lyzer determines the number of cycles that a particular stage is vacant from the point it is first occu-

pied to the point it is last occupied.If a data or structural hazard is detected for a particular stage
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between a parent and child loop, then the delay is reduced by number of vacant cycles for that stage

in the child loop. If there were no vacant cycles, then the hazard could not be overlapped with other

delays. Thispotential underestimation could be avoided by storing more information about the child

loop. Again, this would result in increasing the complexity of the algorithm.A more detailed discus-

sion about dealing with vacant cycles for best-case timing analysis is given elsewhere [8].

Fortunately, these adjustments are not that common.For instance, results indicated that only about

4.5% of the instructions within the function instance graph were classified as first misses or first hits

and many of these did not require adjustments. Thus, these adjustments resulted in only small and

relatively infrequent worst-case overestimations and best-case underestimations.

6. Results

Measurements were obtained on code generated for the SPARC architecture by thevpooptimizing

compiler [9]. Six simple programs described in Table 8 were used to assess the effectiveness of the

timing analyzer. A direct-mapped instruction cache configuration containing 8 lines of 16 bytes was

used. Thus,the cache contained 128 bytes of instructions.A very small cache size was chosen

because the test programs were relatively small themselves. Theinstruction cache performance of

each entire program was predicted.The sizes of these test programs may be comparable to the size of

typical code segments containing timing constraints in real-time applications. In addition, the code

executed between two scheduling points (context switches) in a non-preemptive system is often

smaller than the code of a typical program. Using a small cache also provided a more realistic simu-

lation of a typical ratio of program to cache size. The programs were 4 to 17 times larger than the

cache as shown in column 2 of Table 8. The analysis of test cases with smaller ratios, where test pro-

grams fit into the instruction cache, could be accomplished quite easily and would not represent a
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significant challenge.Using a smaller cache demonstrates the ability of the timing analyzer to predict

tight bounds under a more difficult setting.Column 3 shows that each program was highly modular-

ized to illustrate the handling of timing predictions across functions. Column 4 shows the worst-case

hit ratio of each program.Only Matmul had a very high ratio due to three tightly nested loops in a

single function to perform the matrix multiplication.

The results of evaluating these programs are shown in Table 9.For each of the six modes of timing

analysis, four values are given for each test program. The first value is the Observed Cycles, which

represents the actual duration of executing the program.The second value is the Estimated Cycles,

which is the timing analyzer’s predicted WCET/BCET of the program. The next value, the Estimated

Ratio, is the ratio of the estimated cycles to the observed cycles. Thisis a measure of how accurate

the timing analysis is.A perfect prediction would result in a ratio of 1. The last value given is the

Naive Ratio, which is what the estimated ratio would have been if the analysis had not been per-

formed.

The observed cycles for these measurements were obtained by enhancing theEasecache simulator

[10]. Thissimulator produced thepipeline only observedcycles and the timing analyzer produced the

pipeline only estimatedcycles by assuming that all instruction fetches (IF stages) were cache hits and

only required a single cycle. Thepipeline only worst-case naivecycles were obtained by assuming

Num Num Hit
Bytes Func Ratio

Name Descriptionor Emphasis

Des 2,240 5 81.41% Encryptsand Decrypts 64 Bits
Matcnt 812 8 81.81% Countsand Sums Nonnegative Values in a 100x100 Integer Matrix
Matmul 768 7 99.24% MultipliesTw o 50x50 Integer Matrices
Matsum 644 7 88.22% SumsNonnegative Values in a 100x100 Integer Matrix
Sort 556 5 83.99% BubblesortArray of 500 Integers into Ascending Order
Stats 1,428 9 88.41% Std.Dev. & Corr. Coef. of Two Arrays of 1000 Floating-point Values

Table 8. Test Programs.
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that only a single pipeline stage could be executing at one time (i.e. no overlap). Thecaching only

observedcycles andcaching only estimatedcycles were obtained with the assumption that the

pipeline had only a single stage (an IF), a cache hit required a single cycle, and a cache miss required

an additional miss penalty of nine cycles. Thecaching only worst-case naivecycles were calculated

by assuming every instruction fetch resulted in a cache miss.The pipeline and caching estimated

cycles were produced by the techniques that were described in this paper for integrating the analysis

of pipelining and instruction caching behavior. Thebest-case pipeline and caching naivecycles were

obtained by assuming that each instruction required only a single cycle. All data cache references

were assumed to be hits in the three sets of measurements.

Analysis Worst-Case Best-Case

Pipeline Observed Estimated Estim. Naive Observed Estimated Estim. Naive
Only Cycles Cycles Ratio Ratio Cycles Cycles Ratio Ratio

Des 66,594 68,254 1.02 3.82 34,837 15,684 0.45 0.36
Matcnt 1,063,572 1,063,572 1.00 2.38 1,013,307 1,013,207 1.00 0.38
Matmul 4,347,806 4,347,806 1.00 2.13 4,347,541 4,347,541 1.00 0.33
Matsum 933,540 933,540 1.00 2.28 913,275 913,175 1.00 0.35
Sort 3,380,660 6,748,925 2.00 8.13 11,158 4,174 0.37 0.32
Stats 900,231 900,231 1.00 1.70 447,478 447,477 1.00 0.41

Caching Observed Estimated Estim. Naive Observed Estimated Estim. Naive
Only Cycles Cycles Ratio Ratio Cycles Cycles Ratio Ratio

Des 142,956 163,015 1.14 3.86 59,998 19,345 0.32 0.21
Matcnt 1,169,055 1,259,055 1.08 3.79 929,073 929,073 1.00 0.41
Matmul 1,527,648 1,527,648 1.00 9.36 1,527,648 1,527,648 1.00 0.94
Matsum 707,219 707,219 1.00 4.85 687,219 687,219 1.00 0.47
Sort 7,639,611 15,253,902 2.00 8.17 10,439 3,901 0.37 0.35
Stats 372,410 372,410 1.00 4.90 372,410 372,410 1.00 0.49

Pipeline Observed Estimated Estim. Naive Observed Estimated Estim. Naive
& Caching Cycles Cycles Ratio Ratio Cycles Cycles Ratio Ratio

Des 149,706 169,613 1.13 5.02 65,615 22,247 0.34 0.19
Matcnt 1,769,321 1,859,323 1.05 3.69 1,549,095 1,548,798 1.00 0.25
Matmul 4,444,911 4,445,413 1.00 4.98 4,444,666 4,420,068 0.99 0.32
Matsum 1,277,465 1,277,477 1.00 4.08 1,257,239 1,157,240 0.92 0.26
Sort 7,765,125 15,504,172 2.00 10.78 19,957 4,428 0.22 0.18
Stats 1,016,048 1,016,145 1.00 3.12 607,399 601,406 0.99 0.30

Table 9. Results for the Test Programs.
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The worst-case pipelining onlytiming analysis had exact predictions for all programs exceptDes

andSort. The analysis of these two programs depicts problems faced by all timing analyzers.The

timing analyzer did not accurately determine the worst-case paths in a function withinDesprimarily

due to data dependencies.A longer path deemed feasible by the timing analyzer could not be taken in

a function due to a variable’s value in anif statement. TheSort program contains an inner loop

whose number of iterations depends on the counter of an outer loop. At this point the timing tool

either automatically receives the maximum loop iterations from the control-flow information pro-

duced by the compiler or requests a maximum number of iterations from the user. Yet, the tool would

need a sequence of values representing the number of iterations for each invocation of the inner loop.

The number of iterations performed was overrepresented on average by a factor of two for this spe-

cific loop. Note that both of these problems are encountered by other timing tools and are not directly

related to the pipeline analysis.

Thebest-case pipeline onlytiming analysis resulted in exact predictions forMatmulandStats. The

predictions forMatcntandMatsumwere slightly underestimated due to diminishing the effect of data

hazard because of vacant cycles within a child loop.Even thoughMatmulhas no conditional control

flow, its BCET is less than its WCET because the integer multiply instructionsmul can spend 1-19

cycles in the EX stage. Floating-point instructions also take a varying time to execute, which can

result in a WCET that is significantly greater than the corresponding BCET. The best-case predic-

tions for Des and Sort were substantially underestimated for the same reasons they were overesti-

mated in the worst-case analysis.

The worst-case and best-casecaching only timing analysis results were also quite accurate.This

analysis had exact predictions forMatmul, Matsum, and Stats since there were few conditional
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constructs except to exit loops.The Matcnt program used anif-then-else construct to either

add a nonnegative value to a sum and increment a counter for the number of nonnegative elements or

just increment a counter for the negative elements. Theadding of the nonnegative value to a sum was

accomplished in a separate function, which was purposely placed in a location that would conflict

with the program line containing the code to increment a counter for the negative elements. Multiple

executions of thethen path, which includes the call to the function to perform the addition, still

required more cycles than alternating between the two paths. Yet, the algorithm for estimating the

worst-case instruction caching performance assumes that the first reference to a program line within a

path would always be a miss if there were accesses to any other conflicting program lines within the

same loop.This assumption simplified the algorithm since the effect of all combinations of paths

need not be calculated. Thus, one reference was counted repeatedly as a miss instead of a hit in the

worst-case analysis.This path was executed 10,000 times and accounted for a 90,000 cycle

[10,000*miss penalty] or an 8% overestimation. Notethat the execution of this single path accounted

for 40.61% of the total instructions referenced during the program execution. Thebest-case analysis

for Matcntwas exact since the shorter path did not contain the call to add a nonnegative value. The

programsDesandSort had overestimations for the worst-case predictions and underestimations for

the best-case predictions due to the same problems described previously for thepipeline onlymea-

surements. Theworst-case naive ratio was lower than initially anticipated by the authors. These test

programs contained many long running instructions (floating-point operations and integer multiply

and divides) that were frequently executed and often resulted in stalls. In addition, transfers of con-

trol were also quite frequent and were only considered to require two pipeline stages in our analysis.

The integratedpipeline and caching worst-case analysis also resulted in quite tight predictions.
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Again the predictions for the programsMatmul, Matsum, and Statswere very accurate.Note that the

estimated worst-case cycles were slightly greater than the observed cycles for these programs.This

overestimation was due to the problem of an instruction’s caching behavior changing between loop

levels. Thesechanges require an adjustment as shown in Table 6.The approach used by the authors

was to treat such an instruction as a hit in the pipeline analysis and simply add the miss penalty to the

total time. When the instruction should be viewed as a hit at an outer level, then this miss penalty was

simply subtracted and an accurate estimation is obtained.However, in these three programs the

potential overlap between a miss penalty and a stall due to a hazard were not always detected.17 The

Des, Matcnt, and Sortprograms had its usual worst-case overestimations due to data dependencies, a

cache conflict, and an inaccurate number of estimated loop iterations, respectively. The naive ratio

indicates that much tighter WCET bounds can be obtained when the benefits of pipelining and

instruction caching are analyzed.

The integratedpipeline and caching best-case analysis for the four programs (Matcnt, Matmul,

Matsum, and Stats) without data dependency or loop iteration problems was within 8% of the

observed cycles. Theunderestimations were largely due to inaccuracies resulting from afm=>fm

transition between inner and outer loops. The timing analyzer treats the instruction in this case as a

miss in the pipeline best-case analysis and subtracts the miss penalty from the time of the path when

the instruction will be viewed as a hit. Thus, if a portion of the miss penalty can be overlapped with a

delay due to a data hazard, an underestimation will occur on each iteration except the first. In con-

trast, the worst-case analysis would treat the instruction as a hit in the pipeline analysis and only over-

estimate in a similar situation on the first iteration of the loop when the instruction reference was

17 For instance, the 502 cycle overestimation inMatmuloccurred from 50 miss penalties completely overlapping with stalls from an integer multi-
ply instruction and 52 misses overlapping with one cycle load hazards.
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regarded as a miss.In addition, some of the underestimation in the best-case analysis was from disre-

garding data hazard stall cycles between a parent and a child loop due to subtracting vacant cycles

from the stall. Thus, it was common to have a larger underestimation in best-case analysis than an

overestimation in worst-case analysis.Fortunately, most timing constraints are associated with meet-

ing deadlines, which requires worst-case analysis, instead of finishing a task too soon, which would

require best-case analysis. The other two programs (DesandSort) were significantly underestimated

due to data dependencies and loop iteration problems discussed previously.

If the pipeline and caching analysis had been handled independently, then the cache miss penalty

would not have the opportunity to overlap with a pipeline stall, as shown in Figure 1. Thus, one

would anticipate a greater overestimation in predicting WCET with an independent analysis

approach. Theeffect of an independent analysis strategy would be to add the cache miss penalty to

the total time of a path when an instruction fetch is predicted to be a miss and treat the instruction as a

hit in the pipeline. The benefit of integrating the pipeline and instruction cache worst-case analysis is

depicted in Table 10. Without an integrated analysis, the test programs would have been overesti-

mated by an additional 3% on average. Notethat the most significant effect was on the worst-case

prediction ofStats, which was the only floating-point intensive test program. Programs requiring

floating-point operations result in more frequent and lengthy delays that may sometimes be over-

lapped with instruction cache misses or any other source of multicycle pipeline stage occupation.

Thus, the benefit of using an integrated analysis approach would be more pronounced in floating-

point intensive programs.
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Estimated Ratio with Estimated Ratio with
Integrated Analysis Independent Analysis

Name

Des 1.133 1.174
Matcnt 1.051 1.057
Matmul 1.000 1.000
Matsum 1.000 1.016
Sort 1.997 2.029
Stats 1.000 1.082

Av erage 1.197 1.226

Table 10. Ratios for Integrated versus Independent Worst-Case Analysis

7. UserInterface

Once the initial timing analysis has been completed, a graphical user interface is invoked that is

depicted in Figure 11. The main window on the left allows the user to quickly request timing predic-

tions for functions, loops, paths, subpaths, or ranges of machine instructions and reports the

Figure 11. Timing Analyzer User Interface
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associated timing predictions. The middle window depicts the C source code and the right window

depicts the corresponding assembly code.Whenever a  different construct is selected in the main win-

dow, the highlighted lines in the source and assembly windows are automatically updated and scrolled

to the appropriate position. Note the source lines within the middle window are numbered.This

allows the user to identify constructs that are referenced by line numbers within the main window and

to correlate the source line ranges associated with each basic block depicted in the assembly code

window. Selection of paths via the mouse on the source window is also supported. Since there may

be more than one instance of a function within the timing analysis tree, the user interface displays the

worst-case and best-case times from all of the instances of the construct associated with the user

request. Whenever a different construct is selected, the highlighted lines in windows containing the

source and assembly code are automatically updated and scrolled to the appropriate position.Thus,

the user can quickly observe the relationship between timing constraints associated with the source

code and sequences of machine instructions. This interface is described in more detail elsewhere

[11].

8. Comparisonwith Previous Work

There has been much work on the issue of predicting execution time of programs.However, most

approaches in the past have not dealt with the effects of pipelining and instruction caching [12, 13,

14]. Therehave also been some recent studies on predicting pipeline performance by Harmonet al.

[15] and Narasimhan and Nilsen [16].Yet, these studies did not address caching issues.18 Further-

more, the former study was limited to nonnested functions and the latter study required the sequence

of executed instructions to be known. Finally, there has been some recent work on predicting

18 Harmon assumed the entire code segment would fit into cache. Thus, at most one miss could occur for each instruction reference.
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instruction caching performance.Arnold et al. [4] implemented a timing analysis system to tightly

bound instruction cache performance. However, this approach did not address pipelining issues.

Li et al. [17, 18] used an integer linear programming (ILP) approach to model instruction caching

behavior. Their approach is also used to predict data and set-associative caching behavior [19].The

authors automatically derived constraints from a program’s control-flow graph that could be solved

using ILP. Additional user-provided constraints regarding data dependencies within the control flow

can be easily integrated into the analysis. In their control-flow analysis, each set of instructions

within a basic block mapping to the same cache line was identified as a line-block. Three possible

states were identified for each cache line. First, if only one line-block is mapped to it, then it will

experience at most one miss penalty. Second, if two or more non-conflicting line-blocks map to it,

then these line-blocks will have at most one miss penalty among them.Finally, if two or more con-

flicting line-blocks map to it, then a cache conflict graph is constructed for this cache line.The edges

between the line-blocks in this graph represent a possible path between the two conflicting line-

blocks. Additionalconstraints are generated to represent the number of times these edges are tra-

versed. Whenever a line-block is reached from a conflicting line-block, it is assumed that there is a

miss penalty associated with its execution.

Apparently, the pipeline behavior was not modeled and it is unclear how well Li’ s approach will

work when pipelining is addressed.However, it is possible that pipeline behavior for instructions

within a single basic block can be modeled with Li’s ILP approach. By performing no general

pipeline analysis, this allowed their approach to disregard the potential effects of different paths on

pipeline behavior. Thus, they had only two possible times for the instructions within a line-block, one

with an instruction cache miss and one without a miss.Unfortunately, the state of the pipeline can

-36-



affect the execution time associated with a sequence of instructions. Thus, there was also no method

shown for detecting pipeline stalls or potential overlap between stalls and cache misses.

There has been only one previous study that attempted to address the issue of predicting the WCET

of programs on machines with both pipelining and an instruction cache.Lim et al. [20] described a

method of predicting the performance of pipelining and instruction caching, which is based on an

extension of a previous timing tool [21].They hav ealso extended this tool to address data caching as

well [22]. It has been proposed that the Lim approach can be extended to analyze set-associative

caching behavior as well.Lim’s method differs quite significantly from our approach described in

this paper, which instead builds on flow analysis techniques found in optimizing compilers.Lim’s

method uses a timing schema associated with each source-level language program construct.They

stored information about the number of cycles at the head and tail of a reservation table produced as a

result of the pipeline analysis on the instructions associated with a program construct.In addition,

this method stored information about the set of memory blocks whose first reference depends upon

the cache contents prior to the execution of the construct. Lim also stored the set of memory blocks

known to remain in cache after the execution of the construct.Eventually, this timing information is

concatenated with another construct that would be executed immediately before the current construct.

Their timing analyzer attempted to overlap the head of the reservation table of the current construct

with the tail of the reservation table of the other construct as much as possible.Their row-based

approach of concatenating reservation tables is equivalent to our tables of structural and data hazard

information depicted in Tables 3 and 4.Likewise, the list of memory blocks known to be in cache

after executing the other construct is used to adjust the time of the current construct by comparing this

list to the list of first reference blocks in the current construct. This method stored multiple paths for
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conditional constructs, such as anif-then-else. They pruned or eliminated a particular path

when it was found that the worst-case execution time of the path was faster than the best-case execu-

tion time of another path within the same construct.

The approach that Limet al. used to analyze caching behavior limits the accuracy of the analysis.

They used a single bottom-up pass when performing the timing analysis of a program.The caching

behavior of a large percentage of the instruction fetches within a construct would be unknown until

many of the surrounding constructs were processed.Their approach was to treat the instruction fetch

as a hit within the pipeline and add the cycles associated with a cache miss penalty to the total time of

the construct. When it was later found that an instruction reference was a hit, they would subtract the

miss penalty from the total time.However, an overestimation may result when the instruction is not

found in cache. As shown in Figure 1, the instruction fetch miss penalty of one instruction (instruc-

tion 2) can be completely hidden by a stall with a long running instruction (data hazard stall on

instruction 3). Whether the fetch of instruction 2 was a hit or a miss would have no effect on the total

number of cycles. TheLim method would rarely detect instruction fetches that would always be

misses until the surrounding constructs are analyzed, which is after the pipeline analysis of a con-

struct has already occurred. Our approach of categorizing the caching behavior of each instruction

before starting the timing analysis allows the detection of such situations.For instance, about 25% of

the instructions within the function instance graphs of the programs we evaluated were statically cate-

gorized asalways misses. As Table 10 above indicates, we found that thepipeline and caching esti-

mated ratio for the six test programs increased on average by about 3% when the complete miss

penalty was always added for each predicted miss.

-38-



9. Future Work

We are working on several enhancements to the timing analyzer. We plan to automate the detection

of many data dependencies using existing compiler optimization techniques to obtain tighter perfor-

mance estimations [23].We also plan to accurately calculate the number of iterations for loops which

are dependent on the value of a loop counter variable of an outer loop. The retargetability of the tim-

ing analyzer will also be enhanced by isolating any remaining machine dependent information in data

files.

We are exploring methods to predict the timing of other architectural features associated with RISC

processors. Work is currently ongoing to verify that our technique accurately predicts performance

for the MicroSPARC I by using a logic analyzer. This will require predicting the performance of

other features, such as wrap-around filling of cache lines. The effect of data caching is also an area

that we are pursuing.Unlike instruction caching, many of the addresses of references to data can

change during the execution of a program.Thus, obtaining reasonably tight bounds for worst-case

and best-case data cache performance is significantly more challenging.However, many of the data

references are known. For instance, static or global data references retain the same addresses during

the execution of a program.Due to the analysis of a function instance tree (no recursion allowed),

addresses of run-time stack references can be statically determined even when the addresses may dif-

fer for different invocations of the same function. Compiler flow analysis can be used to detect the

pattern of many calculated references, such as indexing through an array. While the benefits of using

a data cache for real-time systems will probably not be as significant as using an instruction cache, its

effect on performance should still be substantial.We are also currently working on extending the tim-

ing analyzer to predict the performance of set-associative caches.
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10. Conclusions

This paper has presented a technique for predicting the worst and best-case execution time of pro-

grams on machines with pipelining and instruction caches.First, a static cache simulator analyzes the

control flow of a program to statically categorize the caching behavior of each instruction within the

program. Second,a timing analyzer uses these instruction categorizations when analyzing the

pipeline performance of a path of instructions.Third, the timing analyzer uses a concise representa-

tion of the pipeline information to concatenate the performance of paths in an efficient manner when

predicting the performance of loops.Fourth, a timing analysis tree is used to predict the performance

of an entire program.Finally, a graphical user interface has been implemented that allows users to

obtain timing predictions of portions of the program. The results indicate that the timing analyzer can

quickly obtain tight predictions of performance.
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AppendixIn the following, the informal description on instruction categorization of section 2 will be formalized. The catego-rization for direct-mapped instruction caches is based on the following de�nitions:De�nition 1 (Potentially Cached) A program line l can potentially be cached if there exists a sequence of tran-sitions in the combined control-ow graphs and function-instance graph such that l is cached when it is reached inthe current block.The traversal of every possible sequence of blocks leads to an exponential explosion. We avoid this overhead byrestricting the analysis to abstract cache states:De�nition 2 (Abstract Cache State (ACS)) The abstract cache state of a program line l within a block and afunction instance is the set of program lines that can potentially be cached prior to the execution of l within the blockand the function instance.Given the control-ow information of a program and a cache con�guration, the ACSs for each block have to becalculated. Using data-ow analysis (DFA), each block has an input state and an output state, corresponding to theACS before and after the execution of the block, respectively. An iterative algorithm for the calculation of ACS' viaDFA is given in Figure 3. The DFA requires a time overhead comparable to that of inter-procedural DFA performedin optimizing compilers. The space overhead is O(pl � bb � fi), where pl; bb; fi denote the number of program lines,basic blocks, and function instances, respectively. The correctness of iterative DFA has been discussed elsewhere [24].Additional DFA is required to determine the linear cache state and the post-dominator set for each block before ade�nition for instruction categories can be speci�ed.De�nition 3 (Linear Cache State (LCS)) The linear cache state of a program line l within a block and a func-tion instance is the set of program lines that can potentially be cached in the forward control-ow graph prior to theexecution of l within the block and the function instance.The forward control-ow graph is the acyclic graph resulting from the removal of back edges (backwards edgesforming loops, see Figure 5 and [24]) in the regular control-ow graph. Informally, the LCS represents the hypotheticalcache state in the absence of loops. It will be used to determine whether a program line may be cached due to loopsor due to the sequential control ow.De�nition 4 (Post-dominator Set) The post-dominator set of a program line l within a block and a functioninstance is the self-reexive transitive closure of post-dominating program lines.Informally, the post-dominator set describes the program lines certain to be reached from the current block,regardless of the taken paths in the control ow. A more detailed discussion of post dominators can be found elsewhere[24]. The instruction categories can now be de�ned with respect to DFA. The following de�nition formalizes theworst-case instruction categories for each loop level.De�nition 5 (Instruction Categorization) :� Let ik be an instruction within a block, a loop �, and a function instance.� Let l = i0::im�1 be the program line containing ik and let ifirst be the �rst instruction of l within the block.� Let s be the ACS for l within the block.� Let l map into cache line c, denoted by l ! c.� Let u be the set of program lines in loop �.� Let child(�) be the child loop (inner-next loop within nesting) of � for this block and function instance, if sucha child loop exists.
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� Let header(�) be the set of header blocks and preheader(�) be the set of preheader blocks of loop �,respectively.19� Let s(p) be the abstract output cache state of block p.� Let linear be the LCS for l within the block.� Let postdom(p) be the set of self-reexive post-dominating programming lines of block p.Then, WCET-category (ik; �)=8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:
always-hit if k 6= first _ (l 2 s ^ 8m!c;m 6=lm 62 s)�rst-hit if worst(ik; child(�)) =�rst-hit_k = first ^ l 2 s ^ 9m!c;m6=lm 2 (s \ u)^[ 8p2preheaders(�)l 2 s(p) ^ 8m!c;m6=lm 62 (s(p) \ u)]^8p2headers(�)l 2 postdom(p) ^ 8m!c;m6=lm 62 (linear \ u)�rst-miss if worst(ik; child(�)) =�rst-miss^k = first ^ l 2 s^9m!c;m6=lm 2 s ^ 8m!c;m6=lm 62 (s \ u)always-miss otherwiseBCET-category (ik; �)=8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:always-miss if k = first ^ l 62 s�rst-hit if best(ik; child(�)) =�rst-hit_k = first ^ l 2 s ^ 9m!c;m6=lm 2 (s \ u)^8p2preheaders(�)l 2 s(p)^8p2headers(�)l 2 postdom(p) ^ 8b2backedges(�)l 62 s(b)�rst-miss if best(ik; child(�)) 2 f�rst-miss,always-hitg^k = first ^ l 2 s ^ l 62 linearalways-hit otherwiseWhile the de�nition seems complex, it can be implemented rather e�ciently once DFA has been performed. First,simple set operations on bit vectors su�ce to test the conditions. Second, if one conjunct in a condition fails, theremaining ones are not tested. Third, the implementation orders the conjuncts such that the least likely ones aretested �rst. The informal description in Section 2 describes each conjunct of the above de�nition verbally and maybe used as a reference to further motivate the formal de�nition.

19The common notion of \natural loops" de�nes a loop to have only a single header [24]. This work extends this notion to handlemore general control ow with unstructured loops. Multiple loop headers occur only for unstructured loops, which are handled by thesimulator. Multiple loop preheaders occur when the loop can be entered from more than one block outside the loop, which can occureven for natural loops.
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