
Improving Memory Hierarchy
Performance For Irregular

Applications

John Mellor-Crummey* David Whalley* Ken Kennedy*

*Dept. of Computer Science
Florida State University

*Dept. of Computer Science
Rice University

Motivation

• Gap between processor and memory speeds is widening

• Modern machines use multi-level memory hierarchies

• High performance requires tailoring programs to match
memory hierarchy characteristics

Exploiting Deep Memory Hierarchies

• Principal strategies
—loop transformations to improve data reuse

– register and cache blocking, loop fusion

—data prefetching

• Limitations
—fail to deal with irregular codes

– loop transformations depend on predictable subscripts

– prefetching can help, but at higher overhead

—primarily focused on latency reduction

– but bandwidth is critical on modern machines

Irregular Codes

Indirect references have poor temporal and spatial locality
—poor spatial locality è low utilization of bandwidth consumed

—poor temporal locality è more bandwidth needed

Memory

L1 Cache 32 Bytes

25 % Utilization

L2 Cache 128 Bytes6.25 % Utilization

Register 8 Bytes

100 % Utilization

A Recipe for High Performance

• Don’t squander memory bandwidth
—use as much of each cache line as possible

• Maximize temporal reuse
—reuse reduces bandwidth needs

Challenges

Irregular and adaptive problems

• Structure of data and computation unknown until runtime

• Structure may change during execution

Our Approach

Coordinated dynamic reorderings

• Dynamic data reordering to improve spatial locality

• Dynamic computation reordering to exploit spatial locality
and improve temporal reuse

Contributions

• Introduce multi-level blocking for irregular computations
• Evaluate two new strategies for coordinated dynamic

reordering of data and computation for irregular
applications

Outline

• Introduction

• Running example

• Improving memory hierarchy performance

—dynamic data reordering

—dynamic computation reorderings

• Experimental results: 2 case studies

• Related work

• Conclusions

Running Example

Moldyn molecular dynamics benchmark

• Modeled after non-bonded force calculation in CHARMM

• Interaction list for all pairs of atoms within a cutoff radius

FOR step = 1 to timesteps DO
 if (MOD(step,20) = 1) compute interaction pairs
 FOR each interaction pair (i,j) DO
 compute forces between part[i] and part[j]
 FOR each particle j
 update position of part[j] based on force

Dynamic Data Reordering

Problem:

—lack of spatial locality in data for irregular problems

Approach:

—reorder data elements used together to be nearby in
memory using space-filling curves to increase spatial
locality available

[Al-Furaih and Ranka, IPPS 98]

Space-Filling Curves

• Continuous, non-smooth curves through n-D space
• Mapping between points in space and those along the curve
• Recursive structure preserves locality

Fifth-order Hilbert curve in 2 dimensions

Space-Filling Curve Data Reordering

• Points nearby in space are nearby (on average) on the curve
− ordering data along the curve co-locates neighborhoods

Space-Filling Curve Data Reordering

Advantages
—increases spatial locality (on average)

—data reordering is independent of computation order

Computation Reordering

Problems:
—lack of temporal locality in data accesses

– values may be evicted before extensive reuse
– premature eviction results in extra misses later

—failure to exploit spatial locality effectively

Trace of L1
misses over 100K

particle interactions
(Moldyn)

Computation Reordering Approaches

• Space-filling curve based reordering of computations

• Multi-level blocking of irregular computations

Space-Filling Curve Computation Order

Example: Moldyn molecular dynamics benchmark
—sort the interaction list based on SFC particle positions

Advantage
—improves temporal locality by ordered traversal of space

SFC(P1) SFC(P2)

interaction sorting key

Blocking for Irregular Codes

FOR each particle p1
 FOR p2 in interacts_with(p1)

F(p1) = F(p1) + ƒ(A(p1), A(p2))
F(p2) = F(p2) + ƒ(A(p2), A(p1))

Unblocked
 code

FOR b1 = 1, Nblocks
 FOR b2 = b1, Nblocks

FOR p1 in block b1

FOR p2 in block b2 ∩ interacts_with(p1)
F(p1) = F(p1) + ƒ(A(p1), A(p2))
F(p2) = F(p2) + ƒ(A(p2), A(p1))

Blocked
(1 Level)

 Consider blocks of data at a time
 Thoroughly process a block before moving to the next

Dynamic Multilevel Blocking

• Associate a tuple of block numbers with each particle
—one block number per level of the memory hierarchy

– block number = selected bits of particle address
particle address

• For an interaction pair, interleave particle block numbers

A B C

A(p1) B(p1) C(p1)A(p2) B(p2) C(p2)

• Sort by composite block number Ô multi-level blocking

L1 capacity

TLB capacity

L2 capacity

Effects of Multi-Level Blocking

10K
L1 misses

1M
L1 misses

100K
L1 misses

L1 miss patterns for Moldyn using dynamic multi-level blocking

Coord inated Appro aches

L1 misses,
100K interactions,
original data order

original computation order

L1 misses,
100K interactions,
Hilbert data order

blocked computation order

Programs

• Moldyn: a synthetic molecular dynamics benchmark

• MAGI: Air Force particle hydrodynamics code
FOR N timesteps DO
 FOR each particle p DO

create an interaction list for particle p
FOR each particle j in interaction_list(p)
 update information for particle j

28K particles, 253 timesteps (DOD testcase)

256K atoms, 27 million interactions, 20 timesteps

Experimental Platform

Cache Configuration
Cache Type Cache Size Associativity Block Size
L1 Cache 32KB 2-way 32B
L2 Cache 1MB 2-way 128B
TLB 512KB 64-way 8KB

SGI O2: R10K hardware performance monitoring support

Moldyn Results

0

0.2

0.4

0.6

0.8

1

1.2

1.4

L1
Misses

L2
Misses

TLB
Misses

Cycles

FD
HD
HC
BC
FD + HC
HD + HC
HD + BC

FD = first touch data order HD = Hilbert data order
HC = Hilbert computation order BC = Blocked Computation

MAGI Results

0

0.1

0.2

0.3

0.4

0.5

0.6

L1
Misses

L2
Misses

TLB
Misses

Cycles

FD + FC
HD + HC
HD/FD + HC/FT

FD = first touch data order HD = Hilbert data order
FC = First-touch computation HC = Hilbert Computation

Related Work

• Blocking/tiling of regular codes
—paging, (mostly 1 level) cache, registers

• Loop interchange, fusion

• Software-driven data prefetching

• Space-filling curves
—domain partitioning, AMR

—improving locality through SFC data order

– divide and conquer algorithms, PIC codes

• Breadth-first traversals for ordering data for iterative
graph algorithms

Conclusions

• Matching data and computation order improves performance
—data reordering: improves spatial locality

—computation reordering: boosts spatial and temporal reuse

—big improvements with coordinated approaches

– factor of 4 reduction in cycles for Moldyn

– factor of 2.3 reduction in cycles for MAGI

• Implications for other codes
—space-filling curve reorderings for “neighborhood-based”

computations

—dynamic multi-level blocking: regularize memory hierarchy use
of any explicitly-specified computation order

Extra Slides

MAGI Results

Data
Order

Comp
Order

L1
Misses

L2
Misses

TLB
Misses

Cycles

First T. First T. .43 .27 .49 .56
Hilbert Hilbert .28 .12 .16 .44
Hilbert/
First T.

Hilbert/
First T.

.32 .12 .14 .44

Results on SGI O2

Relative change (baseline result = 1.0)

Moldyn Results

Data
Order

Comp
Order

L1
Misses

L2
Misses

TLB
Misses

Cycles

First T. None .87 .77 .31 .79
Hilbert None .88 .78 .26 .81
None Hilbert .45 .12 .74 .38
None Blocked 1.3 .46 .21 .63
First T. Hilbert .34 .14 .0080 .39
Hilbert Hilbert .26 .10 .0062 .27
Hilbert Blocked .25 .11 .0063 .30

Results on SGI O2

Relative change (baseline result = 1.0)

L1 Miss Ratio L2 Miss Ratio TLB Miss Ratio
.23 .62 .10

Baseline program miss ratios

The Bandwidth Bottleneck

Machine Balance: Average number of bytes a machine can transfer
per floating point operation

Program Balance: Average number of bytes a program transfers per
floating point operation

L1–Reg L2–L1 Mem–L2
SGI Origin 4 4 0.8

Source: Ding and Kennedy. PLDI ‘99.

Benchmarks L1–Reg L2–L1 Mem–L2
Sweep3D 15.0 9.1 7.8
Convolution 6.4 5.1 5.2
Dmxpy 8.3 8.3 8.4
FFT 8.3 3.0 2.7
NAS SP 10.8 6.4 4.9

Strategies for Irregular Applications

• Static transformations
—data regrouping: arrays of attributes structures

• Dynamic transformations
—reorder at the beginning of major computational phases

– dynamic data reordering

– computation reordering

– integrated approaches

—amortize the cost of reordering over a phase’s computation

Blocking Illustration

Dynamic Data Reordering

DO I = 1, Npairs
 F(P(1,I)) = F(P(1,I)) + ƒ(A(P(1,I)), A(P(2,I))
 F(P(1,I)) = F(P(2,I)) + ƒ(A(P(2,I)), A(P(1,I))
ENDDO
DO I = 1, Nparticles
 A(I) = g(A(I), F(I))
ENDDO

Calculate forces

Update particle positions

Original program

Dynamic Data Reordering
DO I = 1, Npairs
 F(P(1,I)) = F(P(1,I)) + ƒ(A(P(1,I)), A(P(2,I))
 F(P(1,I)) = F(P(2,I)) + ƒ(A(P(2,I)), A(P(1,I))
ENDDO
DO I = 1, Nparticles
 A(I) = g(A(I), F(I))
ENDDO

After data reordering:

DO I = 1, Npairs
 F(L(P(1,I)))= F(L(P(1,I))) + ƒ(A(L(P(1,I))), A(L(P(2,I))))
 F(L(P(2,I)))= F(L(P(2,I))) + ƒ(A(L(P(2,I))), A(L(P(1,I))))
ENDDO
DO I = 1, Nparticles

A(L(I)) = g(A(L(I)), F(L(I)))
ENDDO

Extra level of indirection …

… but L and P can be composed!

Dynamic Data Reordering

DO I = 1, Npairs
F(P(1,I)) = F(P(1,I)) + ƒ(A(P(1,I)), A(P(2,I))
F(P(2,I)) = F(P(2,I)) + ƒ(A(P(2,I)), A(P(1,I))

ENDDO
DO I = 1, Nparticles

A(I) = g(A(I), F(I))
ENDDO

DO I = 1, Npairs
P(1,I) = L(P(1,I))
P(2,I) = L(P(2,I))

ENDDO

And reorder position updates

Redefine P

Space-Filling Curve Computation Order

FOR each interaction pair (p1,p2)
 F(p1) = F(p1) + ƒ(A(p1), A(p2))
 F(p2) = F(p2) + ƒ(A(p2), A(p1))

Original Force Calculation

Moldyn molecular dynamics example

Computation ordered by sorting the pairs in SFC order

FOR each particle p1 (in SFC order)
FOR p2 in interacts_with(p1) (in SFC order)

F(p1) = F(p1) + ƒ(A(p1), A(p2))
F(p2) = F(p2) + ƒ(A(p2), A(p1))

Abstract
view

First-Touch Data Reordering

P1 P2P3P4P5

Original Particle Order

P1 P1

P2

P1

P3 P4

P2 P2

P3 P5

Interaction
Pairs

P1 P2 P3 P4 P5

First-Touch Particle Order

Assign elements to cache lines in order of “first
touch” by interaction pairs

Computation Order

First Touch Data Reordering

• Advantages
—greedily increases spatial locality of data accesses

—simple, efficient, linear time

• Disadvantages
—computation order (e.g. interaction list) must be known before data

reordering can be performed

— its greedy locality improvements may have diminishing benefits for
latter part of the interaction list

Ding and Kennedy. PLDI ‘99.

Data Regrouping

Assume no sequence and storage association

DO I = 1, N, 4
A(I) = B(I) + C(I) * D(I)

ENDDO

A(I) B(I) C(I) D(I)

Cache line after
transformation:

Advantages: items used together are on same line,
fewer conflict misses

