
Impr oving Memory Hierarchy Performance for Irregular Applications*

John Mellor-Crummey†, David Whalley‡, Ken Kennedy†

† Department of Computer Science, MS 132 ‡ Computer Science Department
Rice University FloridaState University

6100 Main Tallahassee, FL 32306-4530
Houston, TX 77005 whalley@cs.fsu.edu

{johnmc,ken}@cs.rice.edu phone:(850) 644-3506

Abstract
The gap between CPU speed and memory speed in modern com-
puter systems is widening as new generations of hardware are
introduced. Loopblocking and prefetching transformations help
bridge this gap for regular applications; however, these techniques
aren’t as effective for irregular applications.This paper investi-
gates using data and computation reordering to improve memory
hierarchy utilization for irregular applications on systems with
multi-level memory hierarchies. We evaluate the impact of data
and computation reordering using space-filling curves and intro-
duce multi-level blocking as a new computation reordering strat-
egy for irregular applications. In experiments that applied specific
combinations of data and computation reorderings to two irregular
programs, overall execution time dropped by a factor of two for
one program and a factor of four for the second.

1. Intr oduction
The gap between CPU speed and memory speed is increas-

ing rapidly as new generations of computer systems are intro-
duced. Multi-level memory hierarchies are the standard architec-
tural design used to bridge this memory access bottleneck. As the
gap between CPU speed and memory speed widens, systems are
being constructed with deeper hierarchies.Achieving high perfor-
mance on such systems requires tailoring the reference behavior
of applications to better match the characteristics of a machine’s
memory hierarchy. Techniques such as loop blocking [CCK90,
GJG88, LRW91, Por89, WoL91, FST91] and data prefetching
[Por89, TuE95, MLG92] have significantly improved memory
hierarchy utilization for regular applications.A l imitation of these
techniques is that they aren’t as effective for irregular applications.
Improving performance for irregular applications is extremely
important since large-scale scientific and engineering simulations
are increasing using adaptive irregular methods.

* This research was supported in part the National Science Founda-
tion under cooperative agreement CCR-9120008, the Department of Ener-
gy’s Accelerated Strategic Computing Initiative under research subcon-
tract B347884, and by DARPA and Rome Laboratory, Air Force Materiel
Command, USAF, under agreement number F30602-96-1-0159. The U.S.
Government is authorized to reproduce and distribute reprints for Govern-
mental purposes notwithstanding any copyright annotation thereon. The
views and conclusions contained herein are those of the authors and
should not be interpreted as representing the official policies or endorse-
ments, either expressed or implied, of DARPA and Rome Laboratory or
the U.S. Government.

Irregular applications are characterized by patterns of data
and computation that are unknown until run time. In such appli-
cations, accesses to data often have poor spatial and temporal
locality, which leads to ineffective use of a memory hierarchy.
Improving memory system performance for irregular applications
requires addressing problems of both latency and bandwidth.
Latency is a problem because poor temporal and spatial reuse
result in elevated cache and translation lookaside buffer (TLB)
miss rates.Bandwidth is a problem because indirect references
found in irregular applications tend to have poor spatial locality.
Thus, when accesses cause blocks of data to be fetched into vari-
ous levels of the memory hierarchy, items within a block are either
referenced only a few times or not at all before the block is
evicted due to conflict and/or capacity misses, even though these
items will be referenced later in the execution.

One strategy for improving memory hierarchy utilization
for such applications is to reorder data dynamically at the begin-
ning of a major computation phase. This approach assumes that
the benefits of increased locality through reordering will outweigh
the cost of the data movement. Datareordering can be particu-
larly effective when used in conjunction with a compatible com-
putation reordering. The aim of data and computation reordering
is to decrease latency and more effectively utilize bandwidth at
different levels of the memory hierarchy by (1) increasing the
probability that items in the same block will be referenced close
together in time and (2) increasing the probability that items in a
block will be reused more extensively before the block is
replaced. Thispaper explores strategies for data reordering and
computation reordering along with integrated approaches to evalu-
ate how effectively they improve memory hierarchy utilization on
machines with multi-level memory hierarchies.We also introduce
multi-level blocking as a new computation reordering strategy for
irregular applications.

A common class of irregular applications considers parti-
cles or mesh elements in spatial neighborhoods.Figure 1 shows a
simple n-body simulation that we use as an example throughout
the paper. Although we explain our techniques in terms of this
example, they apply more broadly to any irregular application
simulating physical systems in two or more dimensions. Our sam-
ple n-body simulation considers particles within a defined volume,
represented here as a two dimensional area for simplicity. Each
particle interacts with other particles within a specified cutoff
radius. ParticlesPj andPk are shown in the physical space along
with a cutoff radius surrounding each particle.Interactions are
between a particle and other particles within its cutoff radius. The
particles can change positions over time in the physical space of
the problem.To adapt to these changes, the application requires
periodic recalculation of which particles can interact.

Figure 1 also shows the problem data space for this sample
application. Theinformation for each particle includes its coordi-
nates in the physical space and other attributes, such as velocity
and the force exerted upon it. The interaction list indicates the

-1-



Pj

P

P

P

P

P

Physical Space

P

P P

P

P

P

P

P PP

P P

P

P

P

P

P

P

P

P P Pk

P

P

P

P

P

P

PP PP
Elem 1 in Pair

Elem 2 in Pair

Interaction List

Particle Information

P1

•••

•••

••• Pj ••• Pk ••• Pn

Data Space

Figure 1: A Classical Irregularly Structured Application

pairs of particles that can interact.The data for the particles is
irregularly accessed since the order of access is determined by the
interaction list. The number of interactions is typically much
greater than the number of particles.Note that there are many
possible variations on how the data space can be organized.

The remainder of this paper has the following organization.
First, we introduce related work that uses blocking, data reorder-
ing, and space-filling curves to improve the memory hierarchy
performance of applications.Second, we outline the general data
and computation reordering techniques that we consider in this
paper. Third, we describe two irregular programs, explain how we
apply specific combinations of data and computation reordering
techniques, and present the results of applying these techniques on
these programs.Fourth, we discuss future work for applying data
and computation reorderings to irregular applications.Finally, we
present a summary and conclusions of the paper.

2. RelatedWork
Blocking for improving the performance of memory hierar-

chies has been a subject of research for the last few decades.
Early papers focused on blocking to improve paging performance
[McC69, AKL79], but recent work has focused more narrowly on
improving cache performance [GJG88, WoL91, Por89, FST91].
Techniques similar to blocking have also been effectively applied
to improvement of reuse in registers [CCK90]. Most of these
methods deal with one level of the memory hierarchy only,
although the cache and register techniques can be effectively com-
posed. A recent paper by Navarro et al. examines the effectiveness
of multi-level blocking techniques on dense linear algebra
[NGH96] and a paper by Kodukulaet al. presents a data-centric
blocking algorithm that can be effectively applied to multi-level
hierarchies [KAP97].

The principal strategy for improving bandwidth utilization
for regular problems, aside from blocking for reuse, has been to
transform the program to increase spatial locality. Loop inter-
change is a standard approach to achieving stride-1 access in regu-
lar computations.This transformation has been specifically stud-
ied in the context of memory hierarchy improvement by a number
of researchers [AlK84, MCT96].

As described earlier, data reordering can be used to reduce
bandwidth requirements of irregular applications. Ding and
Kennedy [DiK99] explored compiler and run-time support for a
class of run-time data reordering techniques. They examine an
access sequence and use it to reorder data to increase spatial local-
ity as the access sequence is traversed. They consider only a very
limited form of computation reordering in their work. Namely, for
computations expressed in terms of an access sequence composed
of tuples of particles or objects, they apply a grouping transforma-
tion to order tuples in the sequence to consider all interactions

involving one object before moving to the next. This work did not
specifically consider multi-level memory hierarchies although it
did propose a strategy for grouping information about data ele-
ments to increase spatial locality, which has the side effect of
improving TLB performance. In our work, we applied this group-
ing strategy before taking baseline performance measurements.
Also, we evaluate Ding and Kennedy’s best strategy, first-touch
reordering, along with other strategies.

In recent years, space-filling curves have been used for
managing locality for both regular and irregular applications.A
space-filling curve for some finite space ofd dimensions (d ≥ 2) is
a continuous, non-smooth curve that passes arbitrarily close to
ev ery point. Each point in ad-dimensional space can be mapped
to the nearest position along a 1-dimensional space-filling curve
by applying a sequence of bit-level logical operations to itsd-
dimensional coordinates.A Hilbert space-filling curve is one such
mapping. Figure2 shows a fifth-order Hilbert curve in two
dimensions. Animportant property of this curve, is that its recur-
sive structure preserves locality: points close in the original multi-
dimensional space are typically close along the curve. Inparticu-
lar, the successor of any point along the curve is one of its adja-
cent neighbors along one of the coordinate dimensions.1

Figure 2: Fifth-order Hilbert curve through 2 dimensions.

Space-filling curves or related ordering techniques
[SHT95] have been used to partition data and computation among
processors in parallel computer systems. They hav ebeen applied
in problems domains that include n-body problems [WaS93,
SHT95], graph partitioning [OGR95], and adaptive mesh refine-
ment [PaB96]. Orderingdata elements by their position along a
space-filling curve and assigning each processor a contiguous
range of elements of equal (possibly weighted) size is a fast parti-
tioning technique that tends to preserve physical locality in the
problem domain. Namely, data elements close together in physical
space tend to be in the same partition. Ouet al. [OGR95] present
results that show that other methods such as recursive spectral
bisection and reordering based on eigenvectors can produce parti-
tionings with better locality according to some metrics; however,
the differences among the methods (in terms of the locality of par-
titionings produced) diminished when these methods were applied
to larger problem sizes. Also, they found that using space-filling
curves was orders of magnitude faster than the other methods they
studied.

Thottethodi et al. [TCL98] explored using space-filling
curves to improve memory hierarchy performance for dense
matrix multiplication. They ordered matrix elements according to
a 2D space-filling curve rather than the usual row-major or col-
umn-major order to improve the cache performance of Strassen’s
matrix multiplication algorithm. They found the hierarchical
locality resulting from the space-filling curve order to be a good

1 For more details about the history of space-filling curves, the
types of curves, their construction, and their properties, see Sagan [Sag94]
and Samet [Sam89].

-2-



match for the recursive structure of Strassen’s algorithm.
Al-Furaih and Ranka [AlR98] explored several strategies

for data reordering to improve the memory hierarchy performance
of iterative algorithms on graphs. They evaluated several data
reordering methods including graph partitioning, space-filling
curves, and breadth-first traversal orders. They measured
improvements in execution time of 20-50% for several computa-
tional kernels using their data reordering strategies. Ourwork dif-
fers from theirs principally in that we consider approaches that
combine data and computation reordering, whereas they consider
data reordering exclusively.

3. DataReordering Approaches
A data reordering involves changing the location of the ele-

ments of the data, but not the order in which these elements are
referenced. Consideragain the data space shown in Figure 1. A
data reordering would changes the order of elements within the
particle information vector and updates the interaction list to point
to the new particle locations. By placing data elements near one
another if they are referenced together, data reordering approaches
can improve spatial locality. Temporal locality would not be
affected since the order in which data elements are accessed
remains unchanged.The following subsections describe the data
reordering approaches investigated.

3.1. First Touch Data Reordering
First-touch data reordering is a greedy approach for

improving spatial locality of irregular references [DiK99].Con-
sider Figure 3, which represents the data space in Figure 1 before
and after data reordering using the first-touch approach.A l inear
scan of the interaction list is performed to determine the order in
which the particles are first touched. The particle information is
reordered and the indices in the interaction list now point to the
new positions of the particles.However, the order in which the
particles are referenced is unchanged. The idea is that if two par-
ticles are referenced near each other in time in the interaction list,
then they should be placed near each other in the particle list.An
advantage of first-touch data reordering is that the approach is
simple and can be accomplished in linear time.A disadvantage is
that the computation order (interaction list in Figure 3) must be
known before reordering can be performed.

Elem 1 in Pair

Elem 2 in Pair

Interaction List

Particle Information

••• Pz ••• Px ••• Py •••

Elem 1 in Pair

Elem 2 in Pair

Interaction List

Particle Information

Px Py Pz

First Touch Data Reordering
Data Space before

•••

•••

•••

•••

•••

Data Space after
First Touch Data Reordering

Figure 3: Data Reordering Using a First Touch Approach

3.2. SpaceFilling Cur ve Data Reordering
Figure 4 shows an example data space before and after data

reordering using a space-filling curve. Assumethat the first three
particles on the curve are Px, Py, and Pz. To use ak-level space-
filling curve to reorder data for particles whose coordinates are
represented with real numbers, several steps are necessary. First,
each particle coordinate must be normalized into ak-bit integer.
The integer coordinates of each particle’s position are converted
into a position on the space-filling curve by a sequence of bit-level
logical operations. The particles are then sorted into ascending

order by their position on the curve. Sortingparticles into space-
filling curve order tends to increase spatial locality. Namely, if
two particles are close together in physical space, then they tend
to be nearby on the curve. Oneadvantage of using a space-filling
curve for data reordering is that data can be reordered prior to
knowing the order of the computation. This allows some compu-
tation reorderings to be accomplished with no overhead. For
instance, if the data is reordered prior to establishing the access
order (e.g. an interaction list), then the access order will be
affected if it is established as a function of the order of the data.
A potential disadvantage of using space-filling curves is that it is
possible that the reordering may require more overhead than a
first-touch reordering due the sort of the particle information.Of
course, the relative overheads of the two approaches would
depend on the number of data elements versus the number of ref-
erences to the data.

Particle Information

••• Pz ••• Px ••• Py •••

Space Filling Curve Data Reordering
Data Space before

Interaction List

•••

•••

•••

•••

•••

•••Elem 2

Elem 1

Particle Information

Px Py Pz •••

Space Filling Curve Data Reordering
Data Space after

Interaction List

•••

••• •••

••• •••

•••

Elem 1

Elem 2

Figure 4: Data Reordering Using a Space Filling Curve

4. ComputationReordering Approaches
A computation reordering involves changing the order in

which data elements are referenced, but not the locations in which
these data elements are stored. Consider again the data space
shown in Figure 1. A computation reordering would reorder the
pairs of elements within the interaction list. The vector of particle
information accessed by the computation would remain
unchanged. Computationreordering approaches can improve
both temporal and spatial locality by reordering the accesses so
that the same or neighboring data elements are referenced close
together in time. The following subsections describe the compu-
tation reordering approaches considered in this work.

4.1. Space-FillingCurve Computation Reordering
Reordering a computation in space-filling curve order

requires determining the position along the curve for each data
element and using these positions as the basis for reordering
accesses to these data elements. Figure 5 shows an example data
space before and after computation reordering.Assume that the
first three particles in space-filling curve order arePx, Py, and Pz.
To reorder the computation, entries in the interaction list, as
shown in Figure 5, are sorted according to the space-filling curve
position of the particles they reference. Theorder of the particle

•••

Particle Information

Interaction List

Pz ••• Px ••• Py

•••

•••

Data Space after
Hilbert Computation Reordering

•••

Elem 1

Elem 2

Pz ••• Px ••• Py

Interaction List

•••

•••

Hilbert Computation Reordering
Data Space before

•••

Particle Information

•••

•••

•••

•••

•••

Elem 1

Elem 2

Figure 5: Computation Reordering Using a Space-Filling Curve

-3-



information itself remains unchanged.A space-filling curve based
computation reordering can improve temporal locality. For
instance, if particle X interacts with a nearby particle Y, then it is
likely that particle Y will be referenced again soon since Y in turn
will interact with other particles.

4.2. ComputationReordering by Blocking
As described earlier in the paper, blocking computation via

loop nest restructuring has been used successfully to improve
memory hierarchy utilization in regular applications for multi-
level memory hierarchies. Here we describe how blocking can be
used as a computation reordering technique for some irregular
applications as well.

In terms of our n-body example, the following loop nest is
an abstract representation of the natural computation ordering for
the given data order:

FOR i = 1 to number of particlesDO
FOR j in the set particles_that_interact_with[i]DO

process interaction between particles i and j

Blocking first assigns a block number to each particle based on its
memory location in the vector of particles. Then, rather than con-
sidering all interactions for each particle at once, we consider all
interactions between particles in each pair of blocks, as block
pairs are traversed in natural order. This is depicted in the follow-
ing code fragment.

FOR i = 1 to number of blocks of particlesDO
FOR j = i to number of blocks of particlesDO

process interactions between all interacting
particle pairs with the first particle in block i
and the second in block j

To extend this strategy to multiple levels of the memory hierarchy,
we choose a blocking factor for each level. Justas in blocking
approaches for regular applications, the size of an appropriate
blocking factor depends on the size of the respective cache at that
level of the memory hierarchy, its associativity, and the amount of
other data that is being referenced in the computation.For
instance, the interaction list will be accessed in the n-body compu-
tation outlined in Figure 1 while the particle information is being
referenced, which would affect the blocking factors.

To implement this reordering in irregular applications
where the reference order is explicitly specified by an interaction
list, one can simply sort the interactions into the desired order
based on the block numbers of the data elements they reference.
For one level of memory hierarchy, one would sort the interaction
pairs by the block number of the second particle in each pair, then
sort by the block number of the first particle in each pair.

We extend this strategy to multiple levels by constructing a
tuple of block numbers for each interaction pair and then sorting
interactions according to their tuple of block numbers. Figure 6
shows how we construct a tuple of block numbers for an interac-
tion of a pair of particles.We first compute an integer tuple of
block numbers for each particle, one block number for each level
of the memory hierarchy. Next, we interleave the tuples for each
of the particles in an interaction pair. Finally, a lexicographic sort
[Knu73] on the resulting interleaved tuples achieves the multi-
level blocking.2 This has the effect of first sorting by the smallest
block size, corresponding to L1 cache, followed by sorts accord-
ing to the block numbers for each of the levels of the memory

2 Lexicographic sort repeatedly reorders tuples by applying an
order-preserving radix sort for each element in the tuple from right to left.

hierarchy in order of increasing size (e.g. L1, TLB, L2). In Sec-
tion 5.1, we explain how we achieve the effect of this sort rapidly
in practice.

A2

Particle 2 Address

C1B1A1

Particle 1 Address

block offset block offset

L2 Block Number

TLB Block Number

L1 Block Number

L2 Block Number

TLB Block Number

L1 Block Number

C2B2

(A1,A2,B1,B2,C1,C2)

Interleaved Tuple of Block Numbers for Interaction Pair

Figure 6: Interleaved Tuple of Block Numbers

5. Applying the Techniques
This section describe our experiences in applying data and

computation reordering techniques to improve the performance of
themoldyn andmagi programs.Moldyn is a synthetic benchmark
andmagi is a production code. These programs are described in
more detail in the following subsections. Both are irregular pro-
grams that exhibit poor spatial and temporal locality, which are
typical problems exhibited by this class of applications.

We chose to perform our experiments on an SGI O2 work-
station based on the R10000 MIPS processor since it provides
hardware counters that enable collection of detailed performance
measurements and we were able to use the workstation in isola-
tion. Bothprograms were compiled with the highest level of opti-
mization available for the native C and Fortran compilers.3 Table 1
displays the configurations of the different levels of the memory
hierarchy on this machine. Each entry in the TLB contains two
virtual to physical page number translations, where each page
contains 4KB of data.Thus, the 8KB block size for the TLB is
the amount of addressable memory in two pages associated with a
TLB entry.

Cache Configuration

Cache Block
Size Size

Associativity
Cache Type

L1 Data 32KB 2-way 32B
L2 Data 1MB 2-way 128B
TLB 512KB 64-way 8KB

Table 1: SGI O2 Workstation Cache Configurations

5.1. TheMoldyn Benchmark
Moldyn is a synthetic benchmark for molecular dynamics

simulation. Thecomputational structure inmoldyn is similar to
the nonbonded force calculation in CHARMM [BBO83], and
closely resembles the structure represented in Figure 1 of the
paper. An interaction list is constructed for all pairs of interac-
tions that are within a specified cutoff radius. Theseinteractions
are processed every timestep and are periodically updated due to
particles changing their spatial location.

3 Although these compilers can insert data prefetch instructions to
help reduce latency, prefetching is less effective for irregular accesses be-
cause prefetches are issued on every reference rather than every cache line
[MLG92]. Our experience was that data prefetching support in the SGI
Origin C and Fortran compilers did not improve performance for the appli-
cations we studied and we did not use it in our experiments.

-4-



A high-level description of the computation formoldyn is
shown in Figure 7. The time-consuming portion of the algorithm
is the innerFOR loop which corresponds to thecomputeforces
function in the benchmark. This function traverses the interaction
list performing a force calculation for each pair of particles.We
applied different data and computation reordering techniques in an
attempt to make thecomputeforces function more efficient.

Randomly initialize the coordinates of each of the particles.
FORN time stepsDO

Update the coordinates of each particle based on their
force and velocity.

Build an interaction list of particles that are within
a specified radius every 20th time step.

FOR each pair of particles in the interaction listDO
Update the force on each of the particles in the pair.

Update the velocities of each of the particles.
Print the final results.

Figure 7: Structure of the Computation inMoldyn

For our experiments, we set the number of particles to
256,000, which resulted in over 27 million interactions.We chose
this problem size to cause the data structures to be larger than the
secondary cache and the amount of memory that can be contained
in the pages associated with the TLB.Figure 8 depicts the data
structures used in thecomputeforces function. Thecoordinates
and forces have three elements for each particle since the physical
space of the problem is in three dimensions. The length of the
interaction list was long enough to contain all interacting pairs of
particles. Eachof the elements of the coordinates and forces are
double precision values and the interaction list elements are inte-
gers used as indices into the coordinate and force arrays.

forces array

1

2

3

1 2 256,000

•••

•••

•••

interaction list

1

2

1 2 ˜27.4 million

•••

•••

coordinates array

1

2

3

1 2 256,000

•••

•••

•••

Figure 8: Main Data Structures in theMoldyn Benchmark

To make the moldyn benchmark more amenable to per-
forming experiments with a large number of particles, we changed
the approach for building the interaction list.Previously, a
straightforward algorithm withO(n2) complexity was used to find
all the interacting pairs of particles that were within the specified
cutoff radius. We used an approach of dividing the physical space
into cubes, where the length of each cube side was the size of the
cutoff radius. We then assigned each particle to its respective
cube. For a given particle, only the particles in current and imme-
diate surrounding cubes had to be checked as possible interaction
partners. (Thisis a well-known technique that is used by themagi
application as well.) This allowed the interaction list to be built in
a couple of minutes instead of several hours.

Before performing experiments with data and computation
reorderings, we applied two transformations to remove orthogonal
memory hierarchy performance problems.

(1) We interchanged the dimensions of the coordinates and
the forces arrays so information for each particle would be
contiguous in memory.

(2) We fused the coordinates and forces together (approximat-
ing an array of structures) to provide better spatial locality.

(3) We adjusted the loop that computes forces so that when a
sequence of interactions references the same first particle,
the data for the first particle is only loaded from memory
once.

The purpose of this static program restructuring was to establish
an aggressive performance baseline for our experiments. Inour
results below, all of our performance comparisons are with respect
to this tuned version of the program that we refer to asBaseline.

Table 2 shows information about misses in the caches and
the TLB for our Baseline version ofmoldyn benchmark. To inv es-
tigate the nature of the poor memory hierarchy performance, we
used a simulator to collect an L1 miss trace for the application.
Figure 9 shows a plot of L1 misses over the first 100,000 interac-
tions within thecomputeforces in the Baseline version ofmoldyn.
While all memory references were simulated, only the misses
associated with the particle information are displayed in the plot.
In the plot the block numbers are the portion of the addresses (tag
and index) used to access the L1 cache and the interaction num-
bers indicate on which interaction each miss occurred. The band
of misses is initially as wide as the array of particles. The lower
border of this band slowly rises as the interaction numbers
increase since a particle only has interactions with higher number
particles. Figure10 shows a plot of L1 misses over 100,000 inter-
actions when a Hilbert curve was used to reorder the particle data
and blocking was used to reorder the interactions.This plot was
drawn at the same scale as the plot in Figure 9 and the total num-
ber of misses for the first 100,000 interactions was reduced by a
factor of 25. The difference between these plots illustrates the
dramatic performance benefits that can be achieved by applying
data and computation reorderings.

Cache Type Baseline Misses BaselineMiss Ratio

L1 1,613,065,560 0.23439
L2 995,152,174 0.61693

TLB 664,457,217 0.09655

Table 2: Miss Information
B

lo
ck

 N
um

be
r

Interaction Number
Figure 9: L1 Baseline Misses over

the First 100,000 Interactions

B
lo

ck
 N

um
be

r

Interaction Number
Figure 10: L1 Misses over the First 100,000

Interactions after Reordering the Data in
Hilbert Order and Blocking the Computation

-5-



Figure 11: Plot of 10K L1 Misses Figure 12: Plot of 100K L1 Misses Figure 13: Plot of 1M L1 Misses

Data Computation L1 Cache L2 Cache TLB
Reordering Reordering Misses Misses Misses

Cycles

First Touch None 0.87487 0.76548 0.31928 0.79069
Hilbert None 0.87978 0.78074 0.26397 0.80731
None Hilbert 0.45053 0.12157 0.74006 0.37778
None Blocking 1.26245 0.45723 0.20846 0.63187
First Touch Hilbert 0.33735 0.14314 0.00806 0.38773
Hilbert Hilbert 0.25816 0.10139 0.00624 0.26550
Hilbert Blocked 0.25016 0.11936 0.00626 0.30260

Table 3: Results of the Different Data and Computation Reorderings forMoldyn
(Ratios as Compared to the Baseline Measurements)

To accomplish multi-level blocking of the moldyn non-
bonded forces computation, the interaction list must be reordered
to match the characteristics of the memory hierarchy of the target
machine. Asdescribed in Section 4.2, we can achieve such a
blocking by lexicographically sorting interaction pairs according
to the interleaved tuples of block numbers we compute for each
pair. To achieve the effect of this sort quickly in practice, we con-
catenate the tuple of block numbers in sequence to form a com-
posite block number, break each composite block number into
sections of K (or fewer) bits to form a refined tuple,4 and then lex-
icographically sort based on the refined tuple.Using K=20 on an
SGI O2 workstation, we were able to efficiently sort the entire 27
million pair interaction list formoldyn using a single radix sort.

We found through experimentation that good blocking fac-
tors for moldyn on an SGI O2 are approximately one half the
cache size for the L1 and L2 caches and one quarter the TLB size
for the TLB. To show how our multi-level blocking algorithm reg-
ularizes memory accesses, we include Figures 11-13 which show
the pattern of L1 misses due to thecomputeforces function for the
first 10,000, 100,000, and 1,000,000 misses, respectively, when no
data reordering is performed andmoldyn is blocked for an SGI O2
workstation. Notethat the scales of these three plots differ on
each axis. These plots show only the misses in the particle infor-
mation. All interactions within an L1 block are processed before
proceeding to the next L1 block, all L1 blocks within a TLB block
are processed before the next TLB block, and all TLB blocks
within an L2 block are processed before the next L2 block.Figure
11 shows misses across eight blocks of particle information.
These eight blocks are repeatedly accessed, which illustrates that a
TLB block is eight times the size of a L1 block. Figures 12 and
13 plot enough L1 misses to distinguish interactions between TLB

4 K should be chosen so that a single radix sort would not be too
space inefficient or thrash the memory hierarchy.

blocks and L2 blocks, respectively. Figure 13 illustrates that four
TLB blocks are accessed repeatedly since there are four TLB
blocks for each L2 block.

Table 3 shows the results for applying the different combi-
nations of data and computation reorderings tomoldyn on an SGI
O2 workstation. Theseresults show ratios of end-to-end perfor-
mance as compared to execution of the Baseline version ofmol-
dyn without any run-time data or computation reordering.The
omission of the combination of using data reordering by first
touch with computation reordering by blocking is intentional.
First-touch data reordering requires knowing the order in which
the data is referenced.Blocking requires knowing the addresses
of each of the data elements.If first touch data reordering was
applied first, then blocking would change the order of the refer-
ences and the benefits from the first-touch ordering would be
diminished. Likewise, if computation reordering by blocking
were applied first, then first-touch reordering would affect the
addresses of the data elements and ruin the effect from blocking.

There are several aspects of the results that are worth not-
ing. First,data and computation reordering are most effective at
reducing misses for caches with a large block or line size. For this
reason reductions in TLB misses were the greatest, and those for
L2 were greater than those for primary cache.Second, a combi-
nation of data and computation reorderings performed dramati-
cally better than using any specific type of data or computation
reordering in isolation.Hilbert data reordering combined with
either Hilbert computation reordering or computation reordering
based onmulti-level blocking reduced TLB misses by a factor of
160, L2 misses by a factor of 10, and primary cache misses by a
factor of 4. This strategy reduced the miss ratios for L1 cache
from 23.4% to 6.1%, for L2 cache from 61.7% to 6.3%, and for

-6-



TLB from 9.7% to 0.06%.5 In terms of reducing execution cycles,
Hilbert-based data and computation reordering performed the
best, yielding a factor of four overall reduction in cycles. While
the blocking strategy was competitive, the Hilbert-based data and
computation reordering does so well for this interaction density
that the modest additional reduction in misses obtained by multi-
level blocking did not fully amortize the overhead of performing
the blocking, which required 8.5% of the Baseline cycles. If the
overhead of blocking were amortized over a greater number of
time steps, then its superior memory hierarchy utilization would
make blocking the most effective computation reordering.

5.2. TheMagi Application
The magi application is a particle code used by the U.S.

Air Force for performing hydrodynamic computations that focus
on interactions of particles in spatial neighborhoods.The compu-
tational domain consists of objects comprised of particles and void
space. A3D rectangular space containing particles is divided into
boxes, where the neighboring particles within a sphere of influ-
ence of a given particle are guaranteed to be in the same box or an
adjacent box.For our experiments, we used DoD-provided test
data involving 28,000 particles. For this test case, the size of the
data structures is larger than the secondary cache and the amount
of memory that can be contained in the pages associated with the
TLB. A high-level description of the computation formagi is
given in Figure 14.

Read in the data for each of the particles.
FORN time stepsDO

FOR each particle iDO
Create an interaction list for particle i containing

neighbors within the sphere of influence.
FOR each particle j within this interaction listDO

Update information for particle j.
Print the final results.

Figure 14: Structure of the Computation inMagi

Just as in themoldyn benchmark, we tuned themagi appli-
cation to improve memory hierarchy performance to provide a
more aggressive baseline for our experiments.

(1) We transposed several arrays containing particle informa-
tion so this information would be contiguous in memory.

(2) We fused some arrays together (approximating an array of
structures) to provide better spatial locality when different
kinds of particle information are referenced together.

Unlike the moldyn benchmark, a separate interaction list is
created for each particle on each time step and is discarded after
being used once. There is never an explicit representation of all
the interactions.Therefore, computation reordering techniques
that require reordering of the interaction list as presented in the
moldyn benchmark would not be applicable formagi. Likewise,
some types of data reordering cannot be accomplished in the same
manner since there is no persistent representation of an interaction
list that can be updated to point to the new location of the parti-
cles. Therefore,we used the following approaches to accomplish
data and computation reordering formagi.

(1) We used an indirection vector containing the new posi-
tions of the particles when applying data reordering with-
out computation reordering so the order in which the

5 It is worth noting that since we are measuring end-to-end perfor-
mance, the miss rates quoted for executions with reordering include all
misses incurred performing the reordering as well as misses during the rest
of the program execution. Whenwe consider the performance of thecom-
puteforces routine alone, improvements are far greater.

particles were referenced would be unaffected. This
requires an additional level of indirection each time infor-
mation about a particle is referenced, which can poten-
tially have an adverse effect on both the performance of
the memory hierarchy and the execution cycles.

(2) Data reordering using a space-filling curve does not
depend on the order of the interactions and was performed
before the first time step. First-touch data reordering was
accomplished by (a) collecting the order of the references
during the first time step across the different particle inter-
action lists and (b) reordering the particles before they are
referenced on the second time step.

(3) Whenapplying computation reordering, we simply did not
use the indirection vector. Thus, the order of a subse-
quently generated interaction list is affected by the data
reordering of the particle information.

(4) We composed a data reordering using a Hilbert space-fill-
ing curve followed by a data reordering using a first-touch
approach without using an indirection vector to cause
computation reordering. Placing the particles in Hilbert
order results in a space-filling curve based computation
order, which increases the likelihood that consecutive par-
ticles being processed will have many common neighbors
in their interaction lists and improves temporal locality.
Applying a first-touch reordering to the space-filling curve
based computation order after the first time step greedily
increases spatial locality. Note this approach is similar to
applying computation reordering using a Hilbert space-
filling curve approach and data reordering using a first-
touch approach as was accomplished inmoldyn. The only
difference is that interaction lists inmagi are established at
the beginning of each time step, which causes the first-
touch data reordering to affect the computation order.

Table 4 shows the results of applying combinations of data
and computation reorderings that were beneficial for themagi
application. Several of the combinations of data and computation
reorderings applied to themoldyn benchmark are not shown in
this table for a couple of reasons.First, we found that applying
data reordering only formagi did not improve performance. The
cost of accessing data through an indirection vector offset the ben-
efits that were achieved by reordering data. One should note that
data reordering without computation reordering can achieve bene-
fits as shown formoldyn in Table 3. However, achieving such
benefits may require that there is an inexpensive method to access
the reordered data, such as updating an interaction list once to
refer to the new data locations rather than incurring the cost of
dereferencing an element of the indirection vector on each data
reference. Second,the combinations of data and computation
reorderings were also restricted by the fact that the interaction list
for a particle was regenerated on each time step.Regeneration of
the interaction lists prevented direct computation reordering.
Likewise, separate and small interaction lists for each particle
made the use of blocking inappropriate.

The results in Table 4 show that the combination of
reordering particle data and and interaction computations accord-
ing to particle positions along a Hilbert curve (which probabilisti-
cally increase spatial and temporal locality) followed by a first-
touch data reordering (which greedily improve spatial locality)
achieves the lowest L2 and TLB misses and the best overall cycle
time by a very slim margin. The table shows that applying a first-
touch data reordering after the Hilbert-based reordering amortizes
the cost of the first-touch reordering by reducing L2 and TLB
misses, but the barely perceptible improvement in overall

-7-



Data Computation L1 Cache L2 Cache TLB
Reordering Reordering Misses Misses Misses

Cycles

First Touch FirstTouch 0.42959 0.27032 0.49173 0.56321
Hilbert Hilbert 0.28621 0.11916 0.15704 0.43751
Hilbert/First Touch Hilbert/FirstTouch 0.32670 0.11695 0.13513 0.43607

Table 4: Results of the Different Data and Computation Reorderings forMagi
(Ratios as Compared to the Baseline Measurements)

performance does not justify the additional programming effort.

6. Statusand Future Work
We hav e encapsulated our multi-level blocking technique

for reordering computation into a flexible library routine that uses
a variable length vector of blocking factors to block computations
for a multi-level memory hierarchy of arbitrary depth. We hav e
used this library to blockmoldyn for the DEC Alpha 21164A with
results similar to those we presented for the SGI O2.

Thus far, we hav eexperimented with two applications and
developed a number of performance improving strategies. Aswe
gain more experience, we will investigate how compilers and tools
can help automate application of data and computation reordering
strategies. Also, we plan to investigate how hardware perfor-
mance counters can be used to guide application of periodic data
and computation restructuring during long-running computations.

7. Summaryand Conclusions
Typically, irregular applications make poor use of memory

hierarchies and performance suffers as a result. Improving mem-
ory hierarchy utilization involves improving reuse at multiple lev-
els, typically including TLB and one or more levels of cache.In
this paper, we hav edescribed how a combination of data and com-
putation reordering can dramatically reduce cache and TLB miss
rates and improve memory bandwidth utilization. We hav eshown
that neither data reordering nor computation reordering alone is
nearly as effective as the combination.We introduced multi-level
blocking as a new computation reordering strategy for irregular
applications and demonstrated significant benefits by combining
reordering techniques based on space-filling curves with other
data or computation reordering techniques.

Using space-filling curves as the basis for data and compu-
tation reordering offers several benefits. First, reordering data ele-
ments according to their position along a space-filling curve prob-
abilistically increases spatial locality. In space-filling curve order,
neighboring elements in physical space, which tend to be refer-
enced together during computation, are clustered together in
memory. This clustering helps improve utilization of long cache
lines and TLB entries. Second, reordering computation to traverse
data elements in their order along a space-filling curve also
improves temporal locality. By following the space-filling curve,
neighboring elements in physical space are processed close
together in time, and thus computations that operate on a data ele-
ment and its spatial neighbors repeatedly encounter the same ele-
ments as the computation traverses all elements in a neighbor-
hood. Finally, data reordering based on position along a space-
filling curve is fast. Thecost of such a reordering is typically
small relative to the rest of a program’s computation.

With the moldyn application, we demonstrated dramatic
improvements in memory hierarchy utilization by using Hilbert-
based data reordering and either multi-level blocking or a Hilbert-
based strategy for reordering computation. Our experiments

showed that while the multi-level blocking algorithm had lower
miss ratios at all levels of the memory hierarchy for the computa-
tion kernel, its end-to-end performance was slightly worse. The
higher cost in end-to-end cycles is due to the cost of blocking the
computation. The Hilbert-based computation reordering has an
advantage in that it is accomplished at no cost by simply perform-
ing Hilbert-based data reordering before building the interaction
list in the canonical fashion. Thebenefits of blocking would be
larger with a higher density of interactions per particle. For very
high interaction densities, the careful scheduling of interactions by
multi-level blocking could achieve significant temporal reuse even
when the Hilbert-based computation reordering would not (i.e. if
there are more interaction partners per particle than would fit in
L1 cache). The multi-level blocking algorithm’s efficient tempo-
ral reuse of data complements the improved spatial locality result-
ing from the space-filling curve data ordering.

With the magi application, Hilbert curve based strategies
for data and computation reordering improved end-to-end perfor-
mance by over a factor of two. The best memory hierarchy utiliza-
tion came from considering particles in space-filling curve order
to improve temporal locality, and using that as the basis for a first-
touch data and computation reordering that greedily improves spa-
tial locality. It is interesting to note that the improvements we
achieved for magi with our data reorderings are relative to a base-
line computation for which input particle data has already been
carefully ordered using a relabeling algorithm by Scott Sloan of
the University of Newcastle.

As the gap between processor and memory speeds contin-
ues to grow and large-scale scientific computations continue their
shift towards using adaptive and irregular structures, techniques
for improving the memory hierarchy performance of irregular
applications will become increasingly important.Although our
experience leads us to believe that determining the legality of
computation reordering will require user assistance, once that
knowledge is available, future compilers should be able to gener-
ate the run-time code to automatically produce the reorganizations
described here.

8. Acknowledgements
Vikram Adve and Rob Fowler offered their insights in dis-

cussions that helped shape this work. Doug Moore provided us
with a library for mapping between multidimensional coordinate
spaces and positions along a Hilbert space-filling curve. Gina Goff
and Ehtesham Hayder provided us access to an SGI O2 worksta-
tion for our experiments. Initialexperimentation for this work
was performed on an SGI Onyx2 at the Biomedical Computation
and Visualization Laboratory of the Baylor College of Medicine
supported by grant BIR-9512521 from the National Science Foun-
dation.

-8-



9. References

[AKL79] W. Abu-Sufah, D. J. Kuck, and D. H. Lawrie, “Auto-
matic program transformations for virtual memory
computers.,”Proceedings of the 1979 National Com-
puter Conference, pp. 969-974 (Jun 1979).

[AlR98] I. Al-Furaih and S. Ranka, “Memory Hierarchy Man-
agement for Iterative Graph Structures,” Proceedings
of the International Parallel Processing Symposium,
(Mar 1998).

[AlK84] J. R. Allen and K. Kennedy, “Automatic loop inter-
change,”Proceedings of the SIGPLAN ‘84 Sympo-
sium on Compiler Construction SIGPLAN Notices
19(6) pp. 233-246 (Jun 1984).

[BBO83] B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J.
States, S. Swaminathan, and M. Karplus,
“CHARMM: A Program for Macromolecular Energy,
Minimization and Dynamics Calculations,” Journal
of Computational Chemistry 187(4)(1983).

[CCK90] D. Callahan, S. Carr, and K. Kennedy, “Improving
Register Allocation for Subscripted Variables,”Pro-
ceedings of the ACM SIGPLAN ’90 Conference on
Programming Language Design & Implementation,
pp. 53-65 (Jun 1990).

[DiK99] C. Ding and K. Kennedy, “Improving Cache Perfor-
mance of Dynamic Applications with Computation
and Data Layout Transformations,”To appear in Pro-
ceedings of the ACM SIGPLAN ’99 Conference on
Programming Language Design & Implementation,
(May 1999).

[FST91] J.Ferrante, V. Sarkar, and W. Thrash, “On Estimating
and Enhancing Cache Effectiveness,”Proceedings of
Fourth Workshop on Languages and Compilers for
Parallel Computing, (Aug 1991).

[GJG88] D.Gannon, W. Jalby, and K. Gallivan, “Strategies for
Cache and Local Memory Management by Global
Program Transformation,” Journal of Parallel and
Distributed Computing 5 pp. 587-616 (1988).

[Knu73] D.Knuth,The Art of Computer Programming Volume
3: Sorting and Searching, Addison-Wesley, New
York, NY (1973).

[KAP97] I. Kodukula, N. Ahmed, and K. Pingali, “Data-centric
Multi-level Blocking,” Proceedings of the 1997 ACM
SIGPLAN Conference on Programming Language
Design & Implementation, pp. 346-357 (Jun 1997).

[LRW91] M. S. Lam, E. E. Rothberg, and M. E. Wolf, “The
Cache Performance and Optimizations of Blocked
Algorithms,” Proceedings of the Fourth International
Conference on Architectural Support for Program-
ming Languages and Operating Systems, pp. 63-74
(Apr 1991).

[McC69] A.C. McKeller and E.G. Coffman, “The Organization
of Matrices and Matrix Operations in a Paged Multi-
programming Environment,” Communications of the
ACM 12(3) pp. 153-165 (1969).

[MCT96] K. S. McKinley, S. Carr, and C.-W. Tseng, “Improv-
ing Data Locality with Loop Transformations,”ACM

Tr ansactions on Programming Languages and Sys-
tems 18(4) pp. 424-453 (Jul 1996).

[MLG92] T. C. Mowry, M. S. Lam, and A. Gupta, “Design and
Evaluation of a Compiler Algorithm for Prefetching,”
Proceedings of the Fifth International Conference on
Architectural Support for Programming Languages
and Operating Systems, pp. 62-73 (Oct 1992).

[NGH96] J.J. Navarro, E. Garcia, and J. R. Herrero,Proceed-
ings of the 10th ACM International Conference on
Supercomputing (ICS), (1996).

[OGR95] C. Ou, M. Gunwani, and S. Ranka, “Architecture-
Independent Locality-Improving Transformations of
Computational Graphs Embedded in k-Dimensions,”
Proceedings of the International Conference on
Supercomputing, (1995).

[PaB96] M. Parashar and J. C. Browne, “On Partitioning
Dynamic Adaptive Grid Hierarchies,” Proceedings of
the Hawaii Conference on Systems Sciences, (Jan
1996).

[Por89] A. K. Porterfield,Software Methods for Improvement
of Cache Performance on Supercomputer Applica-
tions, PhD Dissertation, Rice University, Houston,
TX (May 1989).

[Sag94] H. Sagan, Space-Filling Curves, Springer-Verlag,
New York, NY (1994).

[Sam89] H.Samet,Applications of Spatial Data Structures:
Computer Graphics, Image Processing and GIS,
Addison-Wesley, New York, NY (1989).

[SHT95] J.P. Singh, C. Holt, T. Totsuka, A. Gupta, and J. Hen-
nessy, “Load Balancing and Data Locality in Adap-
tive Hierarhcical N-body Methods: Barnes-Hut, Fast
Multipole, and Radiosity,” Journal of Parallel and
Distributed Computing, (Jun 1995).

[TCL98] M. Thottethodi, S. Chatterjee, and A. R. Lebeck,
“Tuning Strassen’s Matrix Multiplication Algorithm
for Memory Efficiency,” Proceedings of SC98: High
Performance Computing and Networking, (Nov
1998).

[TuE95] D. M. Tullsen and S. J. Eggers, “Effective cache
prefetching on bus-based multiprocessors,” ACM
Tr ansactions on Computer Systems 13(1) pp. 57-88
(Feb 1995).

[WaS93] M.S. Warren and J. K. Salmon, “A Parallel Hashed
Oct-Tree N-Body Algorithm,” Proceedings of Super-
computing ’93, (Nov 1993).

[WoL91] M. E. Wolf and M. S. Lam, “A Data Locality Opti-
mizing Algorithm,” Proceedings of the SIGPLAN ’91
Conference on Programming Language Design and
Implementation, pp. 30-44 (Jun 1991).

-9-


