Impr oving Memory Hierarchy Performance for Irregular Applications*

John Mellor-Crummeyt, David Whalley}, Ken Kennedyt

T Department of Computer Science, MS 132 ¥ Computer Science Department
Rice Uniersity FloridaState Unversity
6100 Main Tallahassee, FL 32306-4530
Houston, TX 77005 whalley@cs.fsu.edu
{johnmc,ken}@cs.rice.edu phoné350) 644-3506
Abstract Irregular applications are characterized by patterns of data

The gap between CPU speed and memory speed in modern cond computation that are unkmo until run time. In such appli-
puter systems is widening asvn@enerations of hardware are Cations, accesses to data oftervehgoor spatial and temporal
introduced. Loopblocking and prefetching transformations help locality, which leads to inééctive se of a memory hierargh
bridge this gap for regular applicationsyever, these techniques ~ Improving memory system performance for irregular applications
arent as dfective for irregular applicationsThis paper iuesti- requires addressing problems of both lajerand bandwidth.
gaes using data and computation reordering to iv@nmemory Lateny is a poblem because poor temporal and spatial reuse
hierarcly utilization for irregular applications on systems with result in eleated cache and translation lookasideffér (TLB)
multi-level memory hierarchies. Wevaluate the impact of data ~ Miss rates.Bandwidth is a problem because indirect references
and computation reordering using space-filling curves and intro- found in irregular applications tend toveapoor spatial locality
duce multi-leel blocking as a ne computation reordering strat- Thus, when accesses cause blocks of data to be fetcheaiinto v

eqy for irregular applications. In experiments that applied specific 0US l&vels of the memory hierarghitems within a block are either

combinations of data and computation reorderings toitvegular referenced only a ¥ times or not at all before the block is
programs, werall execution time dropped by a factor of awfor evicted due to conflict and/or capacity missegnethough these
one program and a factor of four for the second. items will be referenced later in theeeution.

One strategy for improng memory hierarcp utilization
1. Introduction for such applications is to reorder data dynamically at tlggnbe

ning of a major computation phase. This approach assumes that

. . . - Sthe benefits of increased locality through reordering will outweigh
ing rapidly as ne generations of computer systems are intro- the cost of the data mement. Datareordering can be particu-

duccle(;. Multl-lw%l megngry hlﬁrarchles are the stgndlard aliCh'teCh larly effective when used in conjunction with a compatible com-
;u; beﬁlxslggnucslliutc;p;egiua dlsmrgfnrg?;yszzzzssvi doet;gnzsst'egitaf%utation reordering. The aim of data and computation reordering
- ' . U A~ to decrease latepand more diectively utilize bandwidth at
e e e e o gt Gerent s of the memory Herargnby () nreasing i
of applications to }E)etter ma?ch the charagteristics of a mashine’ probablllt_y that ittems in t_he same block will b(_a_referen_ced cI_ose
hierarc Techniques such as loop blocking [CCK90 together in time and (2) increasing the probability that items in a
g\?ggéy LRW91 Porg9 ?ﬂLgl FSTO1] anz data pgr]efetching, block will be_ reused more x&ensvel_y before the blocl_< is
Por891 TUuE95 ’MLGQZ’] hae § nificantly imorazed memor replaced._ Thlspaper_ explores strategies for data reordering and
[f : 9 y 1mp y computation reordering along with integrated approachegato-e

Pé(e:ﬁ]r.cweu“!Z?ﬁ'gtnt;:rreengtu;asrggglt'.cst;gpﬁel'n]g?tgon ng;?§§§ ate hav effectively they improve memory hierarci utilization on
lques 1 v Irregu pplications. machines with multi-leel memory hierarchiesWe dso introduce

I e e oo 1, el bocing 25 i compation rerdering S o
P ae- 9 9 irregular applications.

are increasing using adamiirregular methods.) o) .
A common class of irregular applications considers parti-

cles or mesh elements in spatial neighborhoddgure 1 shows a

* This research was supported in part the National Sciemaeda- simple n-body simulation that we use as an example throughout

tion under cooperaté ayreement CCR-9120008, the Department of Ener the paperAlthough we explain our techniques in terms of this
gy's Accelerated Stratgc Computing Initiatie under research subcon- €xample, thg apply more broadly to anirregular application

The gap between CPU speed and memory speed is increa

tract B347884, and by ARPA and Rome LaboratoryAir Force Materiel simulating physical systems indvor nore dimensions. Our sam-
Command, USAFunder agreement number F30602-96-1-0159. The U.S. ple n-body simulation considers particles within a defingdmae,
Government is authorized to reproduce and distribute reprints foe@eo represented here as adctwimensional area for simplicityEach

mental purposes notwithstandingyacopyright annotation thereon. The particle interacts with other particles within a specified dutof

views and conclusions contained herein are those of the authors andadius. RrticlesP; andP, are shan in the physical space along

should not be interpreted as representing thieialf policies or endorse- with a cutof radius surrounding each particlénteractions are

ments, either expressed or implied, oARPA and Rome Laboratory or petween a particle and other particles within its dutadius. The

the U.S. Guernment. particles can change positiongeptime in the physical space of
the problem.To adapt to these changes, the application requires
periodic recalculation of which particles can interact.

Figure 1 also shows the problem data space for this sample
application. Thanformation for each particle includes its coordi-
nates in the pfsical space and other attributes, such elscity
and the force xerted upon it. The interaction list indicates the

Physical Space Data Space
& P P Paticle Information
P P P [P] wee [Pj[e [PK[« Pn]
Pj P P ‘A
P P PP | pad
P P ElemlinPair| ' | 7| ee
P PPP P P Pl Elem2in Pair| - ooe
P P P Interaction List
PP P Pl PPk P
PP P P
P P

Figure 1: A Classical Irregularly Structured Application

pairs of particles that can interacthe data for the particles is
irregularly accessed since the order of access is determined by th
interaction list. The number of interactions is typically much
greater than the number of particleNote that there are mgn
possible variations on lothe data space can be@anized.

The remainder of this paper has the followinganization.
First, we introduce related work that uses blocking, data reorder
ing, and space-filling curves to imme the memory hierargh
performance of applicationsSecond, we outline the general data
and computation reordering techniques that we consider in this
paper Third, we describe twirregular programs, explain howe
apply specific combinations of data and computation reordering

techniques, and present the results of applying these techniques on

these programsFourth, we discuss future work for applying data
and computation reorderings to igridar applications Finally, we
present a summary and conclusions of the paper.

2. RelatedWork

Blocking for improring the performance of memory hierar
chies has been a subject of research for the lastdézades.
Early papers focused on blocking to impegmging performance
[McC69, AKL79], but recent work has focused more narrowly on
improving cache performance [GJG88,01891, Por89, FST91].
Techniques similar to blocking ke dso been déctively applied
to improvement of reuse in registers [CCK90]. Most of these
methods deal with one Ve of the memory hierargh only,
although the cache and register techniques carnféaiedly com-
posed. A recent paper by Waro et al. examines the ééctiveness
of multi-level blocking techniques on dense linear algebra
[NGH96] and a paper by dtlukulaet al. presents a data-centric
blocking algorithm that can befeétively applied to multi-leel
hierarchies [KAP97].

The principal strategy for impwing bandwidth utilization
for regular problems, aside from blocking for reuse, has been to
transform the program to increase spatial localityop inter
change is a standard approach to achieving stride-1 accegsiin re
lar computations.This transformation has been specifically stud-
ied in the context of memory hieraschmprovement by a number
of researchers [AIK84, MCT96].

As described earliedata reordering can be used to reduce
bandwidth requirements of igelar applications. Ding and
Kennedy [DiK99] &plored compiler and run-time support for a
class of run-time data reordering techniques.yTe@amine an

involving one object before moving to the next. Thisrkvdid not
specifically consider multi-lel memory hierarchies although it
did propose a strategy for grouping information about data ele-
ments to increase spatial localitwhich has the side fefct of
improving TLB performance. In our work, we applied this group-
ing strategy before taking baseline performance measurements.
Also, we &auate Ding and Knnedys kest stratgy, first-touch
reordering, along with other strategies.

In recent years, space-filling cew hae been used for
managing locality for both regular and irregular applicatioAs.
space-filling cure for some finite space dfdimensionsd = 2) is
a oontinuous, non-smooth cuevthat passes arbitrarily close to
evay point. Each point in @-dimensional space can be mapped
to the nearest position along a 1-dimensional space-fillingecurv
by applying a sequence of bit#&# logical operations to its-
dimensional coordinatesA Hilbert space-filling cure is cne such

apping. Figure2 shows a fifth-order Hilbert cur in two
imensions. Anmportant property of this curve, is that its recur
sive dructure preserves locality: points close in the original multi-
dimensional space are typically close along theeuiwn particu-
lar, the successor of grpoint along the cum is me of its adja-
cent neighbors along one of the coordinate dimendions.

Figure 2: Fifth-order Hilbert cuesthrough 2 dimensions.

Space-filling curves or related ordering techniques
[SHT95] have keen used to partition data and computation among
processors in parallel computer systems.yThevebeen applied
in problems domains that include n-body problemsa$as,
SHT95], graph partitioning [OGR95], and adaptimesh refine-
ment [RAB96]. Orderingdata elements by their position along a
space-filling cure and assigning each processor a contiguous
range of elements of equal (possibly weighted) size astaparti-
tioning technique that tends to presemhysical locality in the
problem domain. Namelylata elements close together irypical
space tend to be in the same partition.eDal. [OGR95] present
results that she that other methods such as recesipectral
bisection and reordering based on eigetors can produce parti-
tionings with better locality according to some metricayéer,
the diferences among the methods (in terms of the locality of par
titionings produced) diminished when these methods were applied
to larger problem sizes. Also, théound that using space-filling
curves was orders of magnitude faster than the other methods the
studied.

Thottethodi et al. [TCL98] explored using space-filling
cures to impree memory hierarchh performance for dense
matrix multiplication. Thg ordered matrix elements according to
a 2D gpace-filling cure rather than the usual row-major or col-
umn-major order to impre te cache performance of Strassen’
matrix multiplication algorithm. The found the hierarchical

access sequence and use it to reorder data to increase spatial loc4pcality resulting from the space-filling cievader to be a good

ity as the access sequence isdrsed. Thg consider only a &ry
limited form of computation reordering in their work. Nametyr
computations expressed in terms of an access sequence compos
of tuples of particles or objects, thapply a grouping transforma-

1 For more details about the history of space-filling curves, the
gagbes of cures, their construction, and their properties, se@®d&$ag94]
and Samet [Sam89].

tion to order tuples in the sequence to consider all interactions

-2-

match for the recuree gructure of Strasses'dgorithm. order by their position on the cwev Sortingparticles into space-
Al-Furaih and Ranka [AIR98] explored \&eal stratgjies filling curve ader tends to increase spatial localitfamely if

for data reordering to impve tie memory hierarghperformance ~ two particles are close together in physical space, then tére

of iterative dgorithms on graphs. Tlyeevaluated seeral data t0 be nearby on the cuev Oneadvantage of using a space-filling

reordering methods including graph partitioning, space-filling Curve for data reordering is that data can be reordered prior to

curves, and breadth-first wersal orders. The measured knowing the order of the computation. This allows some compu-

improvements in &ecution time of 20-50% for seral computa- tation reorderings to be accomplished with neerbead. fer

tional kernels using their data reordering sgas. Oumwork dif- instance, if the data is reordered prior to establishing the access

fers from theirs principally in that we consider approaches that order (e.g. an interaction list), then the access order will be

data reordering exclusly. A potential disadantage of using space-filling curves is that it is

possible that the reordering may require moverlread than a
. first-touch reordering due the sort of the particle information.
3. DataReordering Approaches course, the relate oveheads of the tw approaches wuld
A data reordering Wolves changing the location of the ele- depend on the number of data elemertsws the number of ref-
ments of the data, but not the order in which these elements arerences to the data.
referenced. Considexgain the data space sho in Figure 1. A b
. L. ata Space before Data Space after
data reordering would changes the order of elements within the sjace Filling Cure Data Reordering ~ Space Filling Cure Data Reordering
particle information vector and updates the interaction list to point

. . K Paticle Information Paticle Information
to the nev particle locations. By placing data elements near one [, (P2 o [P e [Py o | [PPy[P] oo
another if thg are referenced togetheadata reordering approaches » P\ 4 L{\\
can improe $atial locality Temporal locality would not be N SO R S
affected since the order in which data elements are accessed > : . S :‘\ -
remains unchangedThe following subsections describe the data ~ Eem1| = L 7‘ e | Elem1l e =
reordering approachesviestigated. Elem 2 - e | Elem2| e oo [T] e

Interaction List Interaction List

3.1. FirstTouch Data Reordering Figure 4: Data Reordering Using a Space Filling Curve

First-touch data reordering is a greedy approach for

improving spatial locality of irregular references [DiK99Ton- 4. Computation Reordering Approaches
sider Figure 3, which represents the data space in Figure 1 before A computation reordering Wmlves changing the order in
and after data reordering using the first-touch appro&chinear which data elements are referencaut, fot the locations in which

scan of the interaction list is performed to determine the order inthese data elements are stored. Consider again the data space

reordered and the indices in the interaction list point to the pairs of elements within the interaction list. The vector of particle
new positions of the particlesHowever, the order in which the information accessed by the computationoud remain
particles are referenced is unchanged. The idea is thabipdw ynchanged. Computationeordering approaches can impeo

then thg should be placed near each other in the particle Ast. that the same or neighboring data elements are referenced close

adwntage of first-touch data reordering is that the approach istggether in time. The follsing subsections describe the compu-
simple and can be accomplished in linear tirAedisadwantage is tation reordering approaches considered in this work.

that the computation order (interaction list in Figure 3) must be

known before reordering can be performed. 4.1. Space-FillingCurve Computation Reordering

Data Space before Data Space after Reordering a computation in space-filling arerder
First Touch Data Reorderin First Touch Data Reorderin . bt ",
' - g ' d g requires determining the position along the eufor each data

Paticle Information Paticle Information

element and using these positions as the basis for reordering
e [Pz e [P e [y o] lpx‘lfy[P | accesses to these data elements. Figure 5 shows an example data
N P AN space before and after computation reorderiAgsume that the
N W first three particles in space-filling cererder areP,, P, and P,.
Elem 1in Pair| " | Elem 1in Palr] S~ | see To reorder the computation, entries in the interaction list, as
Elem 2in Pair| 7|\ | ee Elem 2in Pair [|\ | e shavn in Figure 5, are sorted according to the space-fillingecurv
Interaction List Interaction List position of the particles tlgereference. Therder of the particle
Figure 3: Data Reordering Using a First Touch Approach
Data Space before Data Space after
3.2. SpaceFiIIing Cur ve Data Reordering Hilbert Computation Reordering Hilbert Computation Reordering
Figure 4 shows arxample data space before and after data Ptcle Information Paticle Information
reordering using a space-filling cerv Assumdhat the first three wr [Pe] e [P e [Py o wr [Pe] e [P e [Py on
particles on the cusvae P, P, and Pz. To use ak-level space- . AN A < p
filling curve to reorder data for particles whose coordinates are NI RN NV
represented with real numbersyel steps are necessarfirst, Elem 1| oot | '] eoe [N | oo Elem 1| Y [V| o
each particle coordinate must be normalized intebé integer. Elem 2| oo || ons | || eee Elem2| 7 [N | oo
The intger coordinates of each partidgosition are coverted Interaction List Interaction List
into a position on the space-filling cerby a £quence of bit-keel Figure 5: Computation Reordering Using a Space-Filling Curve

logical operations. The particles are then sorted into ascending

-3-

information itself remains unchangeA. space-filling cure based hierarcly in order of increasing size (e.g. L1, TLB, L2). In Sec-
computation reordering can imp® temporal locality For tion 5.1, we explain he we achieve te effect of this sort rapidly
instance, if particle X interacts with a nearby particlghén it is in practice.

likely that particle Y will be referenced again soon since Y in turn

will interact with other particles. Paticle 1 Address Paricle 2 Address
[AL [B1]c1] block offse] | A2 [B2[c2] block offsdt
. . . L2 Block Number L2 Block Number
4.2. ComputationReordering by Blocking B Biock Number B Biock Number
As described earlier in the papblocking computation via L1 Block Number L1 Block Number
loop nest restructuring has been used successfully to wapro - ‘ ‘
memory hierarch utilization in regular applications for multi- Interleaved Tuple of Block Numbers for Interaction Pair
level memory hierarchies. Here we describevtidocking can be (A1,A2,B1,82,C1,C2)
used as a computation reordering technique for somguiee)
applications as well. Figure 6: Interleged Tuple of Block Numbers

In terms of our n-body example, the following loop nest is
an abstract representation of the natural computation ordering fors_ Applying the Techniques

the given data order. This section describe our experiences in applying data and

FORi = 1 to number of particle®O , computation reordering techniques to imgrdhe performance of
FOR] in the set particles_that_interact_withDD the moldyn andmagi programs.Moldyn is a synthetic benchmark
process interaction between particles i and j andmagi is a production code. These programs are described in
Blocking first assigns a block number to each particle based on itsmore detail in the following subsections. Both are irregular pro-
memory location in theactor of particles. Then, rather than con- grams that exhibit poor spatial and temporal localithich are
sidering all interactions for each particle at once, we consider alltypical problems exhibited by this class of applications.

interactions between particles in each pair of blocks, as block We chose to perform oun@eriments on an SGI O2onk-
pairs are treersed in natural ordefThis is depicted in the folle- station based on the R10000 MIPS processor since Vides
ing code fragment. hardware counters that enable collection of detailed performance
FORI = 1 to number of blocks of particleRO measurements and we were able to use thdstation in isola-
FORj =i to number of blocks of particldsO tion. Bothprograms were compiled with the highestdeof opti-
process interactions between all interacting mization aailable for the natie C and Fortran compilerd Table 1
particle pairs with the first particle in block i displays the configurations of the differentdis of the memory
and the second in block j hierarcly on this machine. Each entry in the TLB containtw
To extend this stratgy to multiple l&els of the memory hierargh virtual to plysical page number translations, where each page

we choose a blocking factor for eaclvde Justas in blocking contains 4KB of dataThus, the 8KB block size for the TLB is
approaches for regular applications, the size of an appropriatethe amount of addressable memory i fages associated with a
blocking factor depends on the size of the respeatiche at that TLB entry.

level of the memory hierargh its associatity, and the amount of
other data that is being referenced in the computatibar. Cache Configuration
instance, the interaction list will be accessed in the n-body compu-

. . A . AN S . Cache Type
tation outlined in Figure 1 while the particle information is being yp Cgche Associativity Bl_OCk
referenced, which would affect the blocking factors. Size Size
To implement this reordering in irregular applications L1 Data 32KB 2-vay 32B
where the reference order is explicitly specified by an interaction L2 Data 1MB 2-way 128B
list, one can simply sort the interactions into the desired order TLB 512KB 64-way 8KB

based on the block numbers of the data elemenysréference.
For one level of memory hierarcl, one would sort the interaction
pairs by the block number of the second particle in eachtpair
sort by the block number of the first particle in each pair. 5.1. TheMoldyn Benchmark

We extend this strategy to multiplevels by constructing a Moldyn is a synthetic benchmark for molecular dynamics
tuple of block numbers for each interaction pair and then sorting gjmulation. Thecomputational structure imoldyn is similar to
interactions according to their tuple of block numbers. Figure 6 he nonbonded force calculation in CHARMM [BBO83], and
shavs hov we aonstruct a tuple of block numbers for an interac- cjosely resembles the structure represented in Figure 1 of the
tion of a pair of particlesWe first compute an integer tuple of haner” An interaction list is constructed for all pairs of interac-
block numbers for each particle, one block number for eah le tions that are within a specified citoadius. Thesénteractions

of the memory hierargh Next, we interleae te tuples for each 51 processedvery timestep and are periodically updated due to
of the particles in an interaction paffinally, a lexicographic sort particles changing their spatial location.

[Knu73] on the resulting interleed tuples achiees the multi-
level blocking.2 This has the &éct of first sorting by the smallest
block size, corresponding to L1 cache, followed by sorts accord- 3 Although these compilers can insert data prefetch instructions to
ing to the block numbers for each of theds of the memory help reduce latenyg prefetching is less &fctive for irregular accesses be-
cause prefetches are issued verereference rather thavery cache line

2 Lexicographic sort repeatedly reorders tuples by applying an [MLG92]. Our experience was that data prefetching support in the SGI

orderpreserving radix sort for each element in the tuple from right to left. Origin C and Fortran compilers did not impeoperformance for the appli-
cations we studied and we did not use it in our experiments.

Table 1: SGI O2 Workstation Cache Configurations

A high-level description of the computation fonoldyn is The purpose of this static program restructuring was to establish
shawvn in Figure 7. The time-consuming portion of the algorithm an aggresse performance baseline for ouxgeriments. Inour

is the innerFOR loop which corresponds to theomputeforces results belw, dl of our performance comparisons are with respect
function in the benchmark. This functionyeeses the interaction to this tuned version of the program that we refer tBagsline.
list performing a force calculation for each pair of particlege Table 2 shows information about misses in the caches and
applied diferent data and computation reordering techniques in anthe TLB for our Baselinearsion ofmoldyn benchmark. @ inves-
attempt to mak the computeforces function more efficient. tigate the nature of the poor memory hiergrgerformance, we
Randomly initialize the coordinates of each of the particles. used a simulator to collect an L1 miss trace for the application.
FORN time step$O Figure 9 shows a plot of L1 missegeothe first 100,000 interac-
Update the coordinates of each particle based on their tions within thecomputeforces in the Baseline version aholdyn.
force and velocity. While all memory references were simulated, only the misses

Build an interaction list of particles that are within . . S . h !
a pecified radius eery 20th time step. associated with the particle information are displayed in the plot.

FOReach pair of particles in the interaction [In the plot the block numbers are the portion of the addresses (tag
Update the force on each of the particles in the pair. ~ and index) used to access the L1 cache and the interaction num-
Update the velocities of each of the particles. bers indicate on which interaction each miss occurred. The band
Print the final results. of misses is initially as wide as the array of particles. Theito
Figure 7: Structure of the Computation\foldyn _border of_this band_ slowly rises_ as th_e inte_racti_on numbers
increase since a particle only has interactions with higher number
For our experiments, we set the number of particles to particles. FigurelO shows a plot of L1 missesep 100,000 inter
256,000, which resulted inver 27 million interactions. We chose actions when a Hilbert cuewvas used to reorder the particle data
this problem size to cause the data structures to be larger than thend blocking was used to reorder the interactioFisis plot was
secondary cache and the amount of memory that can be containedravn at the same scale as the plot in Figure 9 and the total num-
in the pages associated with the TLBigure 8 depicts the data ber of misses for the first 100,000 interactions was reduced by a
structures used in theomputeforces function. Thecoordinates factor of 25. The difference between these plots illustrates the
and forces hee three elements for each particle since thesptal dramatic performance benefits that can be aetidy gplying
space of the problem is in three dimensions. The length of thedata and computation reorderings.
interaction list vas long enough to contain all interacting pairs of

particles. Eaclof the elements of the coordinates and forces are Cache Vpe | Baseline Misses BaseliMiss Ratio
double precision values and the interaction list elements are inte-
gers used as indices into the coordinate and force arrays. L1 1,613,065,560 0.23439
L2 995,152,174 0.61693
coordinates array forces array interaction list TLB 664,457,217 0.09655
1 oo 1 oee 1 oo
2 2 2 Table 2: Miss Information
3 3 1 2 ~27.4milion

12 256,000 1 2 256,000
Figure 8: Main Data Structures in tholdyn Benchmark

To make the moldyn benchmark more amenable to per
forming experiments with a large number of particles, we changed
the approach for building the interaction lisPreviously a
straightforvard algorithm withO(n?) complexity was used to find
all the interacting pairs of particles that were within the specified
cutoff radius. V¢ used an approach of dividing the physical space
into cubes, where the length of each cube side was the size of the

Block Number

cutoff radius. V¢ then assigned each particle to its respecti Interaction Number
cube. ©r a gven particle, only the particles in current and imme- Figure 9: L1 Baseline Missever
diate surrounding cubes had to be checked as possible interaction the First 100,000 Interactions

partners. (Thiss a well-knavn technique that is used by thnagi
application as well.) This allowed the interaction list to be built in
a ouple of minutes instead ofvaeal hours.

Before performing xperiments with data and computation
reorderings, we applied twransformations to renve athogonal
memory hierarch performance problems.

(1) We interchanged the dimensions of the coordinates and
the forces arrays so information for each particle would be
contiguous in memory.

(2) We fused the coordinates and forces together (approximat-
ing an array of structures) to provide better spatial locality

Block Number

) Interaction Number
(3) We ajusted the loop that computes forces so that when a Figure 10: L1 Misseswer the First 100,000

sequence of interactions references the same first particle,
the data for the first particle is only loaded from memory
once.

Interactions after Reordering the Data in
Hilbert Order and Blocking the Computation

2 2 2 l,-'l.f

= £ g

s = s

2 2 2 /

A e

E L LR/l

& 'y - & T

917
5, W . .
Interaction Number Interaction Number Interaction Number
Figure 11: Plot of 10K L1 Misses Figure 12: Plot of 100K L1 Misses Figure 13: Plot of 1M L1 Misses
Data Computation| L1 Cache| L2 Cache TLB Cvcles
Reordering Reordering|| Misses Misses | Misses y
First Touch | None 0.87487 0.76548| 0.31928 | 0.79069
Hilbert None 0.87978 0.78074| 0.26397 | 0.80731
None Hilbert 0.45053 0.12157| 0.74006 | 0.37778
None Blocking 1.26245 0.45723| 0.20846 | 0.63187
First Touch | Hilbert 0.33735 0.14314| 0.00806 | 0.38773
Hilbert Hilbert 0.25816 0.10139| 0.00624 | 0.26550
Hilbert Blocked 0.25016 | 0.11936 | 0.00626 0.30260
Table 3: Results of the Different Data and Computation Reorderindddiaiyn
(Ratios as Compared to the Baseline Measurements)

To accomplish multi-leel blocking of the moldyn non- blocks and L2 blocks, respeally. Figure 13 illustrates that four
bonded forces computation, the interaction list must be reorderedTLB blocks are accessed repeatedly since there are four TLB
to match the characteristics of the memory hienaafthe taget blocks for each L2 block.
machine. Asdescribed in Section 4.2, we can aghieich a Table 3 shows the results for applying the different combi-

blocking by |eXicographica|ly sorting interaction pairs according nations of data and Computation reorderingBMyn on an SGI
to the interlemed tuples of block numbers we compute for each o2 workstation. Theseesults shw ratios of end-to-end perfor
pair. To achieve the effect of this sort quickly in practice, we con- mance as compared taeeution of the Baselineersion ofmol-
catenate the tuple of block numbers in seguence to form a comgyn without ary run-time data or computation reorderinghe
posite block numberbreak each composite block number into gmission of the combination of using data reordering by first
sections of K (or fewer) bits to form a refined t!ﬁ"md then |g- touch with computation reordering by blocking is intentional.
icographically sort based on the refined tuplising K=20 on an Fjrst-touch data reordering requires kiing the order in which
SGI 02 workstation, we were able tdieibntly sort the entire 27 ne data is referencedlocking requires knowing the addresses
million pair interaction list formoldyn using a single radix sort. of each of the data elementt. first touch data reordering ag

We found through experimentation that good blockiag-f applied first, then blocking would change the order of the refer
tors for moldyn on an SGI O2 are approximately one half the ences and the benefits from the first-touch ordering would be
cache size for the L1 and L2 caches and one quarter the TLB siz&iminished. Lilewise, if computation reordering by blocking

for the TLB. To show how our multi-level blocking algorithm rg- were applied first, then first-touch reordering would affect the
ularizes memory accesses, we include Figures 11-13 whieh sho addresses of the data elements and ruin the effect from blocking.
the pattern of L1 misses due to tnputeforces function for the There are seeral aspects of the results that arerth not-

first 10,000, 100,000, and 1,000,000 misses, resgctvhen no ing. First,data and computation reordering are mostative &

data reordering is performed amldyn is blocked for an SGI 02 reducing misses for caches with agiablock or line size. For this
workstation. Notethat the scales of these three plotdedifon reason reductions in TLB misses were the greatest, and those for
each axis. These plots shonly the misses in the particle infor | 2 \ere greater than those for primary caclecond, a combi-
mation. A” interactions within an L1 block ar.e processed before nation of data and Computation reorderings performed dramati-
proceeding to the meL1 block, all L1 blocks within a TLB block ¢a)ly petter than using gnspecific type of data or computation
are processed before the next TLB block, and all TLB blocks reordering in isolation.Hilbert data reordering combined with
within an L2 block are processed before the next L2 blétgure ejther Hilbert computation reordering or computation reordering
11 shows misses across eight blocks of particle information. hased onmulti-level blocking reduced TLB misses by actor of
These eight blocks are repeatedly accessed, which illustrates that 850, |2 misses by a factor of 10, and primary cache misses by a
TLB block is eight times the size of a L1 block. Figures 12 and factor of 4. This stragy reduced the miss ratios for L1 cache
13 plot enough L1 misses to distinguish interactions between TLB from 23.4% to 6.1%, for L2 cache from 61.7% to 6.3%, and for

4 K should be chosen so that a single radix savtl not be too
space inefficient or thrash the memory hiergirch

TLB from 9.7% to 0.069.In terms of reducingx&cution g/cles,
Hilbert-based data and computation reordering performed the
best, yielding adctor of four werall reduction in cycles. While
the blocking strategy was compaetéj the Hilbert-based data and
computation reordering does so well for this interaction density
that the modest additional reduction in misses obtained by multi- ?)
level blocking did not fully amortize theverhead of performing

the blocking, which required 8.5% of the Baselipeles. Ifthe
overhead of blocking were amortizedraw a geater number of
time steps, then its superior memory hiergratilization would
make Hocking the most effecte computation reordering.

5.2. TheMagi Application

The magi application is a particle code used by the U.S.
Air Force for performing hydrodynamic computations that focus
on interactions of particles in spatial neighborhootise compu-
tational domain consists of objects comprised of particles aiod v
space. A3D rectangular space containing particles is divided into (4)
boxes, where the neighboring particles within a sphere of influ-
ence of a gien particle are guaranteed to be in the same box or an
adjacent box.For our experiments, we used DoD-pided test
data ivolving 28,000 particles. ¢t this test case, the size of the
data structures is Iger than the secondary cache and the amount
of memory that can be contained in the pages associated with the
TLB. A high-level description of the computation fanagi is
given in FHgure 14.

©)

Read in the data for each of the particles.
FORN time stepO
FOReach particle DO
Create an interaction list for particle i containing
neighbors within the sphere of influence.
FOReach patrticle j within this interaction liBO
Update information for particle j.
Print the final results.

Figure 14: Structure of the ComputationNiagi

particles were referenced owld be undécted. This
requires an additional Vel of indirection each time infer
mation about a particle is referenced, which can poten-
tially have an adverse effect on both the performance of
the memory hierarghand the &ecution cycles.

Data reordering using a space-filling cervdbes not
depend on the order of the interactions and was performed
before the first time step. First-touch data reorderiag w
accomplished by (a) collecting the order of the references
during the first time step across the different particle inter
action lists and (b) reordering the particles befory tne
referenced on the second time step.

Whenapplying computation reordering, we simply did not
use the indirection ector Thus, the order of a subse-
guently generated interaction list is affected by the data
reordering of the particle information.

We composed a data reordering using a Hilbert space-fill-
ing cune followed by a data reordering using a first-touch
approach without using an indirectiorector to cause
computation reordering. Placing the particles in Hilbert
order results in a space-filling cernvased computation
order, which increases the itihood that consecw# par-
ticles being processed will Y. mary common neighbors

in their interaction lists and impves temporal locality
Applying a first-touch reordering to the space-filling @irv
based computation order after the first time step greedily
increases spatial localityNote this approach is similar to
applying computation reordering using a Hilbert space-
filling curve gproach and data reordering using a first-
touch approach asas accomplished imoldyn. The only
difference is that interaction lists inagi are established at
the beginning of each time step, which causes the first-
touch data reordering to affect the computation order.

Table 4 shows the results of applying combinations of data

and computation reorderings that were beneficial for rtiagi

Just as in thenoldyn benchmark, we tuned theagi appli-
cation to impree nmemory hierarcii performance to provide a
more aggresge kaseline for our experiments.

(1) We transposed seral arrays containing particle informa-
tion so this information would be contiguous in memory.

application. Seeral of the combinations of data and computation
reorderings applied to theoldyn benchmark are not shown in
this table for a couple of reasonBirst, we found that applying
data reordering only fomagi did not imprae performance. The
cost of accessing data through an indirectiecter offset the ben-

efits that were achied by reordering data. One should note that

(2) We fused some arrays together (approximating an array of
structures) to pnide better spatial locality when tifent
kinds of particle information are referenced together.

data reordering without computation reordering can aehiiene-
fits as shown fomoldyn in Table 3. However, achieving such
benefits may require that there is arxjpensve method to access

Unlike the moldyn benchmark, a separate interaction list is the reordered data, such as updating an interaction list once to
created for each particle on each time step and is discarded aftefefer to the ne data locations rather than incurring the cost of
being used once. There isveean eplicit representation of all dereferencing an element of the indirection vector on each data
the interactions. Therefore, computation reordering techniques reference. Secondhe combinations of data and computation
that require reordering of the interaction list as presented in thereorderings were also restricted by the fact that the interaction list
moldyn benchmark would not be applicable foagi. Likewise, for a particle was regenerated on each time sRageneration of
some types of data reordering cannot be accomplished in the samghe interaction lists puwented direct computation reordering.
manner since there is no persistent representation of an interactionikewise, separate and small interaction lists for each particle
list that can be updated to point to thevriecation of the parti- made the use of blocking inappropriate.
cles. Thereforewe used the follwing approaches to accomplish The results in Table 4 shothat the combination of
data and computation reordering foagi. reordering particle data and and interaction computations accord-

(1) We wed an indirection vector containing theanposi- ing to particle positions along a Hilbert cer@which probabilisti-
tions of the particles when applying data reordering with- cally increase spatial and temporal locality) followed by a first-
out computation reordering so the order in which the touch data reordering (which greedily impeoatial locality)

achieves the lowest L2 and TLB misses and the bestall cycle

5 It is worth noting that since we are measuring end-to-end perfor time by a very slim margin. The table si®that applying a first-
mance, the miss rates quoted feeaitions with reordering include all touch data reordering after the Hilbert-based reordering amortizes
misses incurred performing the reordering as well as misses during the resthe cost of the first-touch reordering by reducing L2 and TLB
of the program xeecution. Whenwe consider the performance of ttam- misses, but the barely perceptible immment in werall
puteforces routine alone, impneements are far greater.

Data Computation L1 Cache| L2 Cache TLB Cvcles
Reordering Reordering Misses Misses | Misses y
First Touch FirstTouch 0.42959 | 0.27032 0.49173 0.56321
Hilbert Hilbert 0.28621 0.11916| 0.15704| 0.43751
Hilbert/First Touch | Hilbert/FirstTouch || 0.32670 0.11695] 0.135130.43607

Table 4: Results of the Different Data and Computation Reorderindd&gir
(Ratios as Compared to the Baseline Measurements)

performance does not justify the additional programming effort.

6. Statusand Future Work

We have encapsulated our multiatel blocking technique
for reordering computation into a flexible library routine that uses
a variable length vector of blocking factors to block computations
for a multi-level memory hierarci of arbitrary depth. V& have
used this library to blockioldyn for the DEC Alpha 21164A with
results similar to those we presented for the SGI O2.

Thus f&r, we haveexperimented with tw gpplications and
developed a number of performance improving styée. Aswe
gan more experience, we will viestigate hav compilers and tools

shaved that while the multi-lel blocking algorithm had her
miss ratios at all kels of the memory hierarghfor the computa-
tion kernel, its end-to-end performanceswslightly vorse. The
higher cost in end-to-end cycles is due to the cost of blocking the
computation. The Hilbert-based computation reordering has an
adwantage in that it is accomplished at no cost by simply perform-
ing Hilbert-based data reordering before building the interaction
list in the canonicaldshion. Thebenefits of blocking wuld be
larger with a higher density of interactions per particle. Femyv
high interaction densities, the careful scheduling of interactions by
multi-level blocking could achiee sgnificant temporal reuseven
when the Hilbert-based computation reordering would not (i.e. if
there are more interaction partners per particle than would fit in

can help automate application of data and computation reordering_1 cache). The multi-kel blocking algorithms efficient tempo-

stratggies. Also,we plan to inestigate hev hardware perfor

ral reuse of data complements the inyatbspatial locality result-

mance counters can be used to guide application of periodic datang from the space-filling cuesdata ordering.

and computation restructuring during long-running computations.

7. Summaryand Conclusions

Typically, irregular applications makpoor use of memory
hierarchies and performance suffers as a result. Mganem-
ory hierarcly utilization involves improving reuse at multiplevie
els, typically including TLB and one or morevéts of cache.In
this paperwe havedescribed he a cmbination of data and com-

With the magi application, Hilbert curg based stratgies
for data and computation reordering imyed end-to-end perfor
mance by wer a factor of two. The best memory hierayaltiliza-
tion came from considering particles in space-filling euader
to improve temporal localityand using that as the basis for a first-
touch data and computation reordering that greedily ingsrga-
tial locality. It is interesting to note that the impmnents we
achieved for magi with our data reorderings are relagio a kase-

putation reordering can dramatically reduce cache and TLB missline computation for which input particle data has already been

rates and impnge memory bandwidth utilization. &/haveshown

carefully ordered using a relabeling algorithm by Scott Sloan of

that neither data reordering nor computation reordering alone isthe Uniersity of Newcastle.

nearly as déctive & the combination.We introduced multi-leel
blocking as a ng computation reordering strategy for ig@ar

As the @p between processor and memory speeds contin-
ues to grav and large-scale scientific computations continue their

applications and demonstrated significant benefits by combiningshift towards using adapte and irregular structures, techniques

reordering techniques based on space-filling esirwith other
data or computation reordering techniques.

Using space-filling curves as the basis for data and compu-

tation reordering offers geral benefits. First, reordering data ele-
ments according to their position along a space-filling eprab-
abilistically increases spatial localityn space-filling cure ader,
neighboring elements in physical space, which tend to be- refer

enced together during computation, are clustered together in

memory This clustering helps impwe uilization of long cache
lines and TLB entries. Second, reordering computation v@rsa
data elements in their order along a space-filing eusgo

ment and its spatial neighbors repeatedly encounter the same el
ments as the computation vesses all elements in a neighbor

hood. Finally data reordering based on position along a space-

filling curve is fast. Thecost of such a reordering is typically
small relatve 1o the rest of a program’'computation.

With the moldyn application, we demonstrated dramatic
improvements in memory hierarghutilization by using Hilbert-
based data reordering and either mukelédlocking or a Hilbert-
based strayy for reordering computation. Ourxgeriments

for improving the memory hierarghperformance of irrgular
applications will become increasingly importarlthough our
experience leads us to bele that determining the ¢glity of
computation reordering will require user assistance, once that
knowledge is gailable, future compilers should be able to gener
ate the run-time code to automatically produce thegeearations
described here.

8. Acknowledgements

Vikram Adwe and Rob Bwler offered their insights in dis-
cussions that helped shape this work. Doug Moore provided us
with a library for mapping between multidimensional coordinate

together in time, and thus computations that operate on a data elgs_paces and positions along a Hilbert space-filling curve. Ginl Gof

and Ehtesham Hayder provided us access to an SGlotkata-

&ion for our periments. Initialexperimentation for this ark

was performed on an SGI Onyx2 at the Biomedical Computation
and Msualization Laboratory of the Baylor College of Medicine
supported by grant BIR-9512521 from the National Sciemeamf
dation.

9. References

[AKL79]

[AIR98]

[AIK84]

[BBO83]

[CCK90]

[DiK99]

[FSTO1]

[GJIGS8]

[Knu73]

[KAP97]

[LRWO1]

[McC69]

[MCT96]

W. Abu-Sufah, D. J. Kuck, and D. H. LawrieAtito-
matic program transformations for virtual memory
computers.,Proceedings of the 1979 National Com-
puter Conference, pp. 969-974 (Jun 1979).

I. Al-Furaih and S. Ranka, “Memory HierascMan-
agement for Iterate Graph Structure%,Proceedings
of the International Parallel Processing Symposium,
(Mar 1998).

J. R. Allen and K. Kennedy “Automatic loop inter
change,” Proceedings of the SSGPLAN ‘84 Sympo-
sium on Compiler Construction SSGPLAN Notices
19(6) pp. 233-246 (Jun 1984).

B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J.
States, S. Saminathan, and M. Karplus,
“CHARMM: A Program for Macromolecular Engy,
Minimization and Dynamics CalculatiohsJournal
of Computational Chemistry 187(4)(1983).

D. Callahan, S. Carrand K. Kennedy “Improving
Reagister Allocation for Subscriptedaviables,” Pro-
ceedings of the ACM SIGPLAN '90 Conference on
Programming Language Design & Implementation,
pp. 53-65 (Jun 1990).

C. Ding and K. Kennedy “Improving Cache Perfer
mance of Dynamic Applications with Computation
and Data Layout rAnsformations,To appear in Pro-
ceedings of the ACM SIGPLAN ’'99 Conference on
Programming Language Design & Implementation,
(May 1999).

J.Ferrante, VSarkar and W. Thrash, “On Estimating
and Enhancing Cache fE€tiveness,”Proceedings of
Fourth Workshop on Languages and Compilers for
Parallel Computing, (Aug 1991).

D.Gannon, WJalby, and K. Gallvan, “Stratejies for
Cache and Local Memory Management by Global
Program Tansformation,” Journal of Parallel and
Distributed Computing 5 pp. 587-616 (1988).

D. Knuth, The Art of Computer Programming Volume
3. Sorting and Searching, Addison-Weslg, New
York, NY (1973).

I. Kodukula, N. Ahmed, and K. Pia{j, “Data-centric
Multi-level Blocking,” Proceedings of the 1997 ACM
SIGPLAN Conference on Programming Language
Design & Implementation, pp. 346-357 (Jun 1997).

M. S. Lam, E. E. Rothberg, and M. E. Wolf, “The
Cache Performance and Optimizations of Btk
Algorithms,” Proceedings of the Fourth International
Conference on Architectural Support for Program-
ming Languages and Operating Systems, pp. 63-74
(Apr 1991).

A.C.McKeller and E.G. Coffman, “The @anization

of Matrices and Matrix Operations in a Paged Multi-

programming Ewironment,” Communications of the
ACM 12(3) pp. 153-165 (1969).

K. S. McKinley, S. Carr, and C.-W Tseng, “Impre-
ing Data Locality with Loop flansformations,ACM

[MLG92]

INGH96]

[OGRY5]

[PaB96]

[Por89]

[Sag94]

[Sam89]

[SHT95]

[TCLOS]

[TUE95]

[WasS93]

[WoL91]

Transactions on Programming Languages and Sys-
tems 18(4) pp. 424-453 (Jul 1996).

T. C. Mowry, M. S. Lam, and A. Gupta, “Design and
Evaluation of a Compiler Algorithm for Prefetchinhg,
Proceedings of the Fifth International Conference on
Architectural Support for Programming Languages
and Operating Systems, pp. 62-73 (Oct 1992).

J.J. Navarro, E. Garcia, and J. R. Herrereroceed-
ings of the 10th ACM International Conference on
Supercomputing (ICS), (1996).

C.Ou, M. Gunwani, and S. RankaArthitecture-
Independent Locality-Improving Transformations of
Computational Graphs Embedded in k-Dimensions,
Proceedings of the International Conference on
Supercomputing, (1995).

M. Paashar and J. C. Bmne, “On Rrtitioning
Dynamic Adaptie Grid Hierarchies, Proceedings of
the Hawaii Conference on Systems Sciences, (Jan
1996).

A. K. Porterfield,Software Methods for Improvement
of Cache Performance on Supercomputer Applica-
tions, PhD Dissertation, Rice Uwersity, Houston,
TX (May 1989).

H. Sagan, Sace-Filling Curves, Springer-\Verlag,
New York, NY (1994).

H. Samet, Applications of Spatial Data Structures:
Computer Graphics, Image Processing and GIS
Addison-Wesley, N& York, NY (1989).

J.P. Sngh, C. Holt, T Totsuka, A. Gupta, and J. Hen-
nessy “Load Balancing and Data Locality in Adap-
tive Herarhcical N-body Methods: Barnes-Hugagf
Multipole, and Radiosity Journal of Parallel and
Distributed Computing, (Jun 1995).

M. Thottethodi, S. Chatterjee, and A. R. Lebeck,
“Tuning Strasser’ Matrix Multiplication Algorithm
for Memory Eficiengy,” Proceedings of SC98: High
Performance Computing and Networking, (Nov
1998).

D. M. Tullsen and S. J. Eggers, fBftve ache
prefetching on bus-based multiprocessoraCM
Transactions on Computer Systems 13(1) pp. 57-88
(Feb 1995).

M.S. Warren and J. K. Salmor ‘Parallel Hashed
Oct-Tree N-Body Algorithnt, Proceedings of Super-
computing ' 93, (Nov 1993).

M. E. Wolf and M. S. Lam,A Data Locality Opti-
mizing Algorithm’ Proceedings of the SGPLAN '91
Conference on Programming Language Design and
Implementation, pp. 30-44 (Jun 1991).

