
Tools for Application-Oriented Performance Tuning

John Mellor-Crummey, Robert Fowler
Dept. of Computer Science

Rice University, MS 132
6100 Main Street

Houston, TX 77005-1892

johnmc,rjf@cs.rice.edu

David Whalley
Dept. of Computer Science

Florida State University
Tallahassee, FL 32306-4530

whalley@cs.fsu.edu

ABSTRACT
Application performance tuning is a complex process that
requires assembling various types of information and cor-
relating it with source code to pinpoint the causes of per-
formance bottlenecks. Existing performance tools don’t ad-
equately support this process in one or more dimensions.
We discuss some of the critical utility and usability issues
for application-level performance analysis tools in the con-
text of two performance tools, MHSim and HPCView, that
we built to support our own work on data layout and opti-
mizing compilers. MHsim is a memory hierarchy simulator
that produces source-level information not otherwise avail-
able about memory hierarchy utilization and the causes of
cache conflicts. HPCView is a tool that combines data from
arbitrary sets of instrumentation sources and correlates it
with program source code. Both tools report their results
in scope-hierarchy views of the corresponding source code
and produce their output as HTML databases that can be
analyzed portably and collaboratively using a commodity
browser. In addition to daily use within our group, the
tools are being used successfully by several code develop-
ment teams in DoD and DoE laboratories.

1. INTRODUCTION
The peak performance of microprocessor CPUs has grown
at a dramatic rate due to architectural innovations and im-
provements in semiconductor technology. Unfortunately,
other performance measures, such as memory latency, have
not kept pace, so it has become increasingly difficult for
applications to achieve substantial fractions of peak perfor-
mance.

Despite the increasing recognition of this problem, the use
of performance instrumentation and analysis tools to ana-
lyze and tune real applications is not as widespread as one
might expect. In our own research on program and data
transformations by optimizing compilers we are highly mo-
tivated to analyze, explain, and tune many codes, but it

was too cumbersome to use existing tool interfaces in this
work. We therefore wrote our own tools to address these
issues.1 In this paper we use our experiences with the de-
sign and use of these tools to motivate a discussion of how
to make performance tools more useful for application code
developers.

1.1 Impediments to Use
The principal impediment to wider use of performance tools
is the amount of time and effort that an application de-
veloper needs to expend using these tools in repeated an-
alyze/measure/tune cycle to solve performance problems.
Manual tasks perceived as annoying inconveniences when
the tool is applied once become unbearable costs when done
repetitively. The main causes of excess user effort are short-
comings in the tool’s explanatory power, e.g. they either
do not present the information needed to solve a problem,
or they fail to present the information in an easily under-
stood form. In either case, the developer/analyst must make
up the difference through manual analysis. Aspects of this
problem include:

Performance measures must be related to relevant units in
the code, preferably in the original source program. Pro-
filing tools provide information for a small set of program
units, typically procedures or source lines (statements). For
most performance problems, these are not the right levels of
granularity. When programs are compiled at high levels of
optimization, the operations of individual statements are in-
terleaved. In this case, the most useful unit for analysis is a
loop or some other code block. In other cases, understand-
ing interactions among individual memory references may
be necessary. If performance metrics are reported at the
wrong granularity, either the analyst has to interpolate or
aggregate information by hand to draw the right conclusions.
Data must be presented at a fine enough level, but aggres-
sive compiler optimization combined with instruction level
parallelism and out-of-order execution put a lower bound on
the size of program units to which a particular unit of cost
can be uniquely charged. Tools must aggregate data at any
level that makes sense for a particular context.

Any one performance measure produces a myopic view. The
measurement of one kind of system event seldom identifies or
diagnoses a correctable performance problem. Some events

1As of this writing, these tools are also being used to improve
production applications by several groups at DoD and DoE
laboratories.

measure potential causes of performance problems and other
events measure the effects on execution time. The analyst
needs to understand the relationships among these differ-
ent kinds of measurement. For example, large amounts of
time spent in a particular program unit are a performance
problem only if the time is spent inefficiently. If there is
a problem, other measures are necessary to diagnose its
causes. Conversely, measures such as cache miss count in-
dicate problems only if both the miss rate is high and the
latency of the misses isn’t hidden.

Event counts are seldom the measures of interest. Derived
measures such as cache miss ratios, cycles per floating point
operation, or differences between actual and predicted costs
are far more useful and interesting for performance analysis.

Data needs to come from diverse sources. Hardware per-
formance counters are valuable, but so are “ideal cycles”
produced by combining output from a code analysis tool
that uses a model of the processor with an execution time
profiling tool [5]. Other code analysis and simulation tools
provide forms of information that are not otherwise avail-
able. If a code must run on several architectures, it should
be easy to use data collected on those systems. Cross-system
comparisons are valuable. Either tools need to support data
combination and comparison or the analyst has to do it man-
ually.

Tools need to present compelling cases. Performance tools
should either identify problems explicitly, or prioritize what
look like important problems rather than requiring users to
hunt through mountains of printouts or many screens full of
data in multiple windows to identify important problems.

Generality and portability are important. Tools should not
be restricted to a narrow set of systems and applications.

Manual recompilation and instrumentation are costly. Re-
compiling an application to insert instrumentation adds to
the human cost. Worse, inserting instrumentation manually
requires performing consistent modifications to source code.
While tolerable for small examples, it is prohibitive for large
applications.

Architecture and location independent analysis are impor-
tant. Vendor supplied tools often work only on the target
architecture. This may require that the analysis be done
on a machine in the same architecture family as the target
machine. This can be problematic when analysts are using
a heterogeneous collection of desktop machines and servers.

The focus of our effort has been to develop tools that are
easy to use and that provide useful information rather than
inventing new performance measures or new ways to collect
measurements.

1.2 Our Approach
The observations in the previous section should not be con-
strued to be a set of a priori design principles, rather they
are the product of our experiences with the tools described
here. Our first tool, MHSim, is a multi-level memory hierar-
chy simulator that we built to help analyze the effects of code
and data transformations. Analyzing printed output from

MHSim by hand was too tedious, so we modified the sim-
ulator to correlate its results with source code and produce
hyper-linked HTML documents that can be explored inter-
actively using Netscape Navigator. While MHSim proved
to be extremely useful, it had three shortcomings: (1) mem-
ory hierarchy event counts alone offer a myopic viewpoint—
what is important is whether these misses cause stalls or
not, (2) in many cases the simulator was overkill because the
similar, though less detailed, information could be obtained
at far less expense using hardware performance counters,
and (3) many performance problems are not simple mat-
ters of memory hierarchy issues. We therefore built a sec-
ond tool, HPCView that correlates source code with data
from multiple, diverse instrumentation sources. Like MH-
Sim, HPCView generates a database of hyper-linked HTML
documents that can be explored interactively using Netscape
Navigator.

Our use of a standard browser interface has three key advan-
tages. First, it provides users with a familiar interface that
gets them started quickly. Second, using Navigator elimi-
nated the need to develop a custom user interface. Third,
Navigator provides a rich interface that includes the ability
to search, scroll, navigate hyper-links, and update several
panes of a browser window in a coordinated fashion. Each
of these capabilities facilitates exploration of the web of in-
formation about program performance.

2. MHSIM
For an application code to achieve high performance, it must
exploit caches effectively. Many scientific codes in produc-
tion use were developed for vector processors that had no
caches. When porting such applications to machines with
multiple layers of caches, it is difficult to understand the
reasons for poor memory hierarchy utilization. Even when
a program has been specifically designed to use tiling and
other locality enhancing techniques to get good cache per-
formance, performance on systems with complex memory
hierarchies is often surprisingly disappointing.

To address these problems we have developed MHSim, an in-
tegrated simulator and instrumentation tool for Fortran pro-
grams. MHSim was designed to identify source program ref-
erences causing poor cache utilization, quantify cache con-
flicts, temporal reuse and spatial reuse, and correlate simu-
lation results to references and loops in an application pro-
gram.

Using the MHSim simulator to understand the memory hi-
erarchy utilization of a Fortran program involves a sequence
of five steps, which are shown in Figure 1. First, a cus-
tom configuration of the libmhsim simulator is generated
based on a specification of the memory hierarchy charac-
teristics of the desired target system. Second, a Fortran
source code under study is instrumented using MHInst, a
source-to-source instrumentation tool. MHInst augments
the Fortran programs with calls to the libmhsim library rou-
tines to monitor data accesses and relate simulator results
back to the source code. Third, the instrumented Fortran
code is then compiled with any Fortran compiler and linked
with the libmhsim library. Fourth, the compiled version
of the instrumented program is executed normally on any
platform. During execution, the calls added by the instru-

FORTRAN

Source

Code

FORTRAN

Source

Code

Instrumented
HTML

Database

Library

Simulation

libmhsim

Unconfigured

MHInst
FORTRAN

Compiler

Instrumented

Executable

Data

Input

Runtime
Memory

Hierarchy

Configuration
MakeConfig

Data Library

Simulation

libmhsim

Configured

Figure 1: Overview of Using the MHSim Simulator

menter will pass information about the program’s data ac-
cesses to the simulator, which will track information about
the program’s memory hierarchy utilization separately for
each source-program reference. When the program termi-
nates, the simulator correlates the simulation results with
the source program and writes them out as a hyper-linked
HTML database that forms the basis of a multi-pane user
interface. Finally, a user loads the root page of the simula-
tion results and interactively inspects them with Netscape
Navigator.

2.1 Using the Simulator
A user specifies a number of parameters about the memory
hierarchy of the target system being simulated in an MH-
Sim configuration file. These parameters include the num-
ber of levels of memory hierarchy, the number of cache lines,
the line size, the associativity, write-through or write back,
and translation-lookaside-buffer configuration information.
A simulator configuration tool uses the data in the configu-
ration file to produce header files for a custom configuration
of the simulator. A custom instantiation of the libmhsim
library is produced by compiling the library with the gen-
erated header files. This approach was taken to enhance
the speed of the simulation. The code to simulate an ac-
cess to a particular cache is coded as a C++ template. The
configuration tool specializes the cache access template for
each level of the memory hierarchy and passes the configu-
ration constants for that level of the memory hierarchy as
parameters to the template. The C++ template instantia-
tor uses these constants to instantiate a customized version
of the cache simulation routine for each level of the memory
hierarchy. The resulting code has all of the cache configu-
ration parameters as compile-time constants, which enables
the compiler to optimize the simulator’s bit manipulation
operations more effectively to improve simulation speed.

The MHInst tool instruments Fortran programs to monitor
their memory hierarchy utilization by adding calls to the
libmhsim library to record source-code mapping information
for every array reference, loop, and procedure. Figure 2
shows a Fortran code fragment that has been augmented
with calls to the simulator shown in italics. Loop entry and
exits are instrumented with calls to indicate that a scope is
being entered or exited, respectively. These loop entry and

call mhsim enter scope(mhsim scope 15)
do j = 1, jt

call mhsim enter scope(mhsim scope 16)
do i = 1, it

call mhsim(MHSIM RARRAY, 8, phikbc(i, j, m), &
mhsim ref 26, MHSIM WARRAY, 8, &
phikb(i, j, mi), mhsim ref 27, MHSIM NONE)

phikb(i, j, mi) = phikbc(i, j, m)

call mhsim(MHSIM RARRAY, 8, dj(j), mhsim ref 28, &
MHSIM RARRAY, 8, di(i), mhsim ref 29, &
MHSIM RARRAY, 8, phikb(i, j,mi), &
mhsim ref 30, MHSIM RARRAY, 8, wtsi(m), &
mhsim ref 31, MHSIM NONE)

leak = leak + &

wtsi(m) * phikb(i, j, mi) * di(i) * dj(j)

enddo

call mhsim exit scope(mhsim scope 16)
enddo

Figure 2: A sample loop instrumented using

MHInst. Original code is in bold face and the in-

strumentation is in italics.

exits are instrumented with calls to mhsim enter scope and
mhsim exit scope, respectively. Each scope entry/exit op-
eration is passed a handle that identifies the source location
of the scope. These calls perform bookkeeping for construct-
ing loop level summary statistics. The instrumentation tool
adds calls to MHSim before each array access to simulate
the response of the memory hierarchy. Each simulator call
is passed a type code indicating whether the operation is a
READ or WRITE access, the number of bytes accessed, the
address of the access, and the handle for the source reference
corresponding to the access.

Below we show initialization of a handle for a sample scope.

call mhsim_init_scope(mhsim_scope_16, &

’sweep.mhsim.src.f’, 193, ’’, &

MHSIM_LOOP_SCOPE, mhsim_scope_15)

This call creates a scope handle known as mhsim scope 16

that corresponds to the loop on line 193 in the generated file
sweep.mhsim.src.f (a preprocessed version of the source file
sweep.f generated by the instrumentation tool) which is en-
closed in the loop identified by the handle mhsim scope 15.
Initialization of a handle for a reference is similar as shown
below.

call mhsim_init_ref(mhsim_ref_26, MHSIM_RARRAY, &

’phikbc(i,j,m)’, ’sweep:phikbc’, &

mhsim_scope_16, 194, 41, 55, 8)

This call creates a reference handle known as mhsim ref 26

for a WRITE access to the reference phikbc(i,j,m), an
8-byte element of the local variable phikbc declared in rou-
tine sweep. The reference is on line 194 spanning charac-
ter positions 41-55. The reference occurs inside the scope
mhsim scope 16. The simulator uses these handles to relate
accesses to source program references and program refer-
ences to their enclosing scope.

2.2 Limitations of Source-Code-Based Instru-
mentation and Simulation

The MHSim simulator uses the addresses passed to the in-
strumentation routines as the basis for its simulation. The
declarations of handles that are inserted by the instrumen-
tation tool perturb the addresses of the program variables.
This perturbation affects the absolute position of the data
elements which affects the cache conflicts noted by the sim-
ulator. Our experience is that the perturbation does not
substantially affect the qualitative nature of the results, al-
though in the worst case it could.

A second limitation of the source-code instrumentation strat-
egy used by MHInst is that the data accesses specified in the
source program will be simulated in their canonical execu-
tion order. MHInst does not account for any compiler-based
transformations that may change the order in which memory
references are performed.

A final limitation of source-code-based instrumentation is
that many memory accesses are not simulated. These in-
clude accesses to scalars that are not allocated to registers
and accesses associated with procedure calls, such as sav-
ing registers upon procedure entry and restoring registers
upon procedure exit. However, Fortran programs, which
MHInst is designed to instrument, typically have a loop-
centric structure and array accesses dominate these other
types of accesses.

2.3 Exploring MHSim Simulation Results
The MHSim simulator records the results of its simulation
in a collection of HTML and JavaScript files that can be
browsed using Netscape Navigator. The top level display of
the simulator results is shown in Figure 3.

The top left pane of the display lists the instrumented source
files. For this experiment, there was one file: sweep.f that
contains the computational core of the ASCI Sweep3D neu-
tron transport benchmark. We only instrumented this one
file because 98% of the serial execution time is spent in the
function sweep defined in this file.

The upper right pane displays the source code of sweep.f,
annotated with hyperlinks for a reference or loop. Clicking
on a # hyperlink preceding an array reference will autoscroll
each of the panes below to display the simulation results as-
sociated with that reference. Next to each scope are two
hyperlinks. The ’S’ hyperlink will cause loop summary in-
formation to be displayed in the panes below rather than
the reference-level information shown in the figure. The ’A’
hyperlink will display loop-level summary information for
each array referenced in the loop.

The next three panes show simulation results collected for
the target memory hierarchy, which in this case consists of
a TLB, a primary (L1) cache, and a secondary (L2) cache.
Each level of the memory hierarchy shows the name of the
associated source code reference. Clicking on the hyperlink
preceding any reference in these panes will cause the source
pane to navigate to the appropriate line in the appropri-
ate source file and all other panes of simulation results to
auto-scroll to display the information associated with this
reference. For each reference, the panes for each memory
hierarchy level show the following information:

• The total number of hits associated with this reference.

• The total number of misses associated with this refer-
ence.

• The number of misses as a percentage of the total
misses at this level of the memory hierarchy. The
source references are listed in descending order based
on this value. Thus, the references causing the greatest
percentage of misses are presented to the user first.

• The miss ratio for this reference.

• The fraction of the data reuse for this reference at-
tributed to temporal locality (i.e., number of temporal
hits / number of total hits). A hit is due to tempo-
ral locality if the bytes referenced in the block were
already previously referenced since the block was last
brought into that level of the memory hierarchy. It is
often useful for the user to know how much of the hit
ratio was due to temporal or spatial locality.

• The spatial use (i.e., used bytes / (block size * number
of evictions)). Each time a block is evicted, we store
the number of bytes used in the block. The spatial
use represents the average fraction of bytes used in
the block associated with a reference at the point the
block is evicted. If a reference has low spatial use,
then this indicates that the machine is wasting cycles
bringing in data that is never referenced.

• The number of distinct blocks associated with the ref-
erence at this level of the memory hierarchy.

The sample display included shows that the source program
reference flux(i,j,k,n) on line 462 accounts for over 18%
of the misses at each of the levels in the memory hierarchy.

The bottom pane in the top-level window shows evictor in-
formation. For a particular source code reference, the evic-
tor pane shows which source-code references caused a cache

Figure 3: The MHSim user interface.

line containing this reference to be evicted from cache. This
information is useful for diagnosing program and data or-
ganization problems. With evictor information, a user can
quickly determine which source references are competing for
the same cache lines. Sometimes a source reference can evict
itself, which can occur when the size of the array is larger
than that level of the memory hierarchy. The percentage of
the evictions caused by each source code reference is shown.
Clicking on the hyperlink for an evicting reference will auto-
navigate the source and memory hierarchy panes to show the
information available for the evicting reference.

Not shown is the array-level summary information associ-
ated with each instrumented scope (loop or procedure) that
can be brought up in a separate window by clicking on the
’A’ next to the line defining that scope. This summary pane
displays the same types of information reported for refer-
ences, but summarizes all references to each array (and its
evictors) within the scope. Examining the summary infor-
mation presented in the array pane for a costly procedure,
or the top-level program scope can identify what array or
arrays result in the most misses in the memory hierarchy.
These arrays are the appropriate focus for improving a pro-
gram’s overall performance.

3. HPCVIEW
The HPCView tool was designed to facilitate performance
analysis and program tuning by displaying and combining
performance measurements from diverse sources and by cor-

relating the results with the program source code. Per-
formance data manipulated by HPCView can come from
any source, as long as a filter program can convert it to
a standard, profile-like input format. To date, the princi-
pal sources of input data for HPCView have been hardware
performance counter profiles. These are generated by set-
ting up the performance counter of interest (e.g., primary
cache misses) to generate a trap when it overflows and then
histogramming the program counter values at which these
traps occur. SGI’s ssrun and Compaq’s uprofile utilities
both collect profiles this way on MIPS and Alpha platforms,
respectively. Currently, we use vendor-supplied versions of
prof to turn the PC histograms into line-level statistics. We
then filter prof output into our vendor-independent form
using a Perl script. Any information source that generates
profile-like output can be used. For example, to analyze ex-
cessive register spills in a loop over 3000 lines long, we wrote
a script that inspects MIPS assembly code to identify reg-
ister spill/reload operations and uses source line mapping
information to correlate these operations with the program
source.

3.1 The HPCView User Interface
A principal design objective of the HPCView interface was
to present multiple performance metrics in an easily under-
stood, browsable form. The generation of an HCPView
dataset is controlled by a configuration file that specifies:
paths to the source code, a set of files containing profile-like
performance data, expressions for generating derived met-

Figure 4: The HPCView user interface.

rics, and some parameters that control the appearance of the
display. Optionally, the configuration file can also specify a
file that describes the structure of the program as a hier-
archical partitioning into syntactically and semantically in-
teresting units. HPCView reads specified performance data
files, generates the derived metrics, correlates all of the in-
formation to the source code at the line level, and aggre-
gates the data into the larger program units. The result is a
hyper-linked database of HTML documents and JavaScript
routines that define a multi-pane user interface. Hyper-links
cross-reference source code lines with corresponding lines
in several performance data tables, and visa versa. This
database is then explored interactively using Netscape Nav-
igator2. A screenshot of the tool displaying the data for the
Sweep3D benchmark program is shown in Figure 4.

The HPCView interface consists of a set of panes in a single
browser window. On the left side a pane contains links to all
of the source files, grouped by directory, for which there is
performance information3. Clicking on a file name in pane

2The restriction to use Navigator is due to the use of layer
constructs to implement highlighting. This will change in
future releases.
3The ”Other Files” section lists files for which source code
was not found using the search paths of the configuration
file.

cause the file to be displayed the source file pane.

The source-file pane displays an HTML version of the cur-
rent source file. The code is augmented with line numbers
and with hyper-links to navigate to the performance data
tables. Clicking on one of these links navigates the perfor-
mance data panes to the correct places and highlights the
data. If no source code is available, HPCView summarizes
performance data at the procedure level.

The three panes at the bottom right of the window dis-
play performance metrics. The uppermost of the panes is
a flat table displaying line-level data across the entire pro-
gram. The table is sorted in decreasing order for the per-
formance metric whose header has been selected and high-
lighted. Clicking on the ‘sort’ link of a metric’s column
header will re-sort the data for both the performance table
and the scope hierarchy display described below. The inter-
face highlights a row if you click on the row’s location field.
It also navigates the source pane to highlight the selected
line.

At the left of each line of the table is a link whose text is
the source file name and line number. Clicking on this link
scolls the corresponding source file to the correct position
and highlights the line. The remaining elements contain

values for each of the metrics. Not all lines incur costs for
all metrics. For instance, floating point operations and cache
misses are often in different lines. In such cases, blanks are
left in the table.

Below the flat table is a pair of panes that organize the data
hierarchically, with data aggregated by program, source file,
procedure, loop4, and source line. The three-part display
shows inclusive performance measurements for the current
scope, its parent scope, and its child scopes. Navigation
through the hierarchy is done by clicking on the up- and
down-arrow icons at the left of each line. The selected scope
is moved to the “Current Scope” pane with its parent and
children shown above and below it, respectively.

The combination of sorted performance data tables, and
easy navigation back and forth between source code and the
data tables is the key to the effectiveness of the HPCView
interface.

3.2 Static Program Analysis
A program’s performance is less a function of the proper-
ties of a particular source line, rather than the dependences
between and balance among the statements in larger pro-
gram units such as loops. For example, the balance of float-
ing point operations to memory references within one line
is not particularly relevant to performance as long as the
innermost loop containing that statement has the appro-
priate balance between the two types of operations and a
good instruction schedule. To support loop-level analysis,
HPCView hierarchically aggregates information from lines
and loops to enclosing loops. Thus, the scope hierarchy pane
in Figure 4 shows lines marked “BLK xxx-yyy” which signi-
fies a loop block with minimum line xxx and maximum line
yyy.

<HPCVIEW>

<TITLE name="heat.single" />

<PATH name="." />

<METRIC name="fcy_hwc" displayName="CYCLES">

<FILE name="heat.single.fcy_hwc.mhf" />

</METRIC>

<METRIC name="ideal" displayName="ICYCLES">

<FILE name="heat.single.ideal.mhf" />

</METRIC>

<METRIC name="stall" displayName="STALL">

<COMPUTE> <math><apply><minus/>

<ci>fcy_hwc</ci> <ci>ideal</ci>

</apply></math> </COMPUTE>

</METRIC>

<METRIC name="gfp_hwc" displayName="FLOPS">

<FILE name="heat.single.gfp_hwc.mhf" />

</METRIC>

</HPCVIEW>

Figure 5: The HPCView configuration file showing

the specification of measured and computed metrics

shown in Figure 6.

To perform such aggregation in a compiler and language in-

4Static analysis of the program, either source or executable,
is used to identify the loop nesting structure.

dependent way, we constructed bloop, a prototype tool for
analyzing application binaries to determine its loop nesting
structure using the Executable Editing Library (EEL) [7].
Using the EEL infrastructure, bloop builds a control flow
graph for each procedure, identifies natural loops, uses in-
terval analysis to interpret their nesting structure, examines
the basic blocks within loops to determine the relationship
between source statements and the loop nesting structure,
and outputs a scope tree representation as an XML file.
HPCView uses the scope tree file to guide the data aggre-
gation from the statement level to the loop, procedure and
file levels.

To cope with the control flow found in a program after it
has been radically reorganized by compiler transformations
such as software-pipelining or loop fission, bloop uses infor-
mation about program source lines to disentangle the control
flow and construct scope trees that can be related back to
the original code. Since performance metrics provided to
HPCView by SGI and Compaq’s profiling tools aggregate
information at the line level rather than the line instance
level (loop optimizing transformations may cause a line to
appear in the context of multiple loops), we currently aggre-
gate together information for all instances of a statement by
fusing their enclosing scopes in a scope tree. One possibil-
ity for the future is to write a new data collection tool that
distinguishes among distinct line instances.

4. COMPUTED METRICS
Understanding what opportunities for tuning exist may re-
quire computed performance metrics such as the instruc-
tion mix in a program’s loop nests (loop balance) compared
to the ideal instruction mix supported by the target ar-
chitecture. We have implemented a general mechanism in
HPCView for supporting computation of derived metrics.
Each metric read in from a file has an internal name asso-
ciated with it. A formula for computing a derived metric in
terms of other metrics is a MathML expression [6].

Figure 5 shows the HPCView configuration file used to
produce the display of measured and computed metrics for
the ASCI HEAT benchmark (a 3D diffusion PDE solver)
shown in Figure 6. The metrics shown in Figure 6 were
collected on an SGI Origin 2K with R12K processors. The
first column in the display shows CYCLES gathered by sta-
tistical sampling of the cycle counter. The second column,
ICYCLES, shows ideal cycles reported by SGI’s pixie util-
ity. The third column, STALL, shows a metric computed
by HPCView as the difference between CYCLES and ICY-
CLES. The final column shows FLOPS (floating point op-
erations) counted by sampling the flop counter. From this
display, we see that 42% of the memory hierarchy stall cycles
occur in line 1525 of file heat.F. The source window shows
that this comes from a matrix-vector multiply that uses in-
direct addressing to index the neighbors of each cell. One
potential way to improve performance is to break this loop
into nested loops, with the inner loop working on a vector
of cells along either the X, Y, or Z axis. This would enable
scalar replacement so that successive iterations could reuse
elements of vectorx along that dimension.

MTOOL[5] was a tool built specifically to do exactly this
kind of analysis. Unlike MTOOL, the mechanism for con-

Figure 6: Using HPCView to display both measured and computed metrics.

structing derived metrics makes HPCView easily extensible
to do other kinds of analysis.

Figures 7 and 8 illustrate the use of computed performance
metrics to compare the performance of three different sys-
tems: a Compaq ES40 with 500 MHz EV6 processors, a
Compaq ES40 with 666 MHz EV67 processors, and an SGI
Origin with 300 MHz R12K processors. In this example, we
were interested in identifying where in the benchmark pro-
gram the different systems differed the most in their per-
formance. In Figure 7, the first three metrics defined are
the raw cycle count profiles gathered on each of systems.
Setting display=’’false’’ suppresses the display of these
metrics. The next three computed metrics generate cycle
counter data normalized to microseconds. Then there are
two computed metrics that compare EV6 and EV67 perfor-
mance by taking their ratio and their difference. Two more
computed metrics compare the R12K and EV67. Finally,
the STRUCTURE construct specifies a file containing the loop
structure of the program as extracted using a static analysis
of the R12K executable file.

The display in Figure 8 is sorted by the EV6-EV67 column
to highlight the widest differences between the systems. In
this area of the program, performance is bounded by mem-

ory accesses to the flux and phi arrays. Focusing only on
costs attributed to line 520, the display indicates that the
EV67 is faster than the EV6 by a factor of 1.88 and faster
than the R12K by a factor of 1.27. The ratios of perfor-
mance differences for the enclosing loop, however, are 1.7
and 1.57, respectively. While some part of these differences
between line and loop level measurements is due to hard-
ware properties, a substantial contribution to the difference
comes from the variation in how the different vendor compil-
ers optimized this loop nest and how they attributed costs
to individual source lines. In the absence of accurate attri-
bution of costs (on the R12K, costs may be attributed in-
correctly due to out-of-order execution), loop level statistics
tend to be more accurate than those at the statement-level.
This example illustrates the importance of being able to ex-
amine and compare performance measurements aggregated
at different granularities.

4.1 Approaches to Performance Analysis with
HPCView

The ability to bring and analyze data from multiple sources
has proven to be useful for a wide variety of tasks. By
computing derived performance metrics that highlight dif-
ferences among performance metrics and then sorting on

Figure 8: Comparison of cycle counts normalized to microseconds on three architectures.

those differences, we can quickly zero in on phenomena of
interest. This capability has been used, as in the example
above, to diagnose the cause of performance problems. It
has also been used to compare executions of multiple nodes
in a parallel computation, to identify input-dependent per-
formance variations, and to perform scalability studies. We
have also used it to perform side-by-side comparisons of per-
formance between different architectures and between differ-
ent implementations of the same architecture.

5. RELATED WORK
A number of memory hierarchy simulators have both counted
and categorized events. These systems have typically been
implemented by computer architects with a bias towards
supporting architectural evaluation. MemSpy [13] instru-
ments source programs with Tango [3], an execution-driven
simulator, with calls to the memory simulator for each mem-
ory reference associated with heap-allocated (shared) mem-
ory or explicitly-identified address ranges in other parts of
the code. The granularity of data accumulation is by bins in-
dexed in a 2-D space by code object (procedures) and data-
object (data allocated by an instance of a call to malloc).
Cache misses are classified into compulsory, interference (re-
placed by data on this processor), and sharing (invalidated
by cache coherence operations). The main data display
shows the 2-D matrix of bins sorted by code and data units
so the most expensive cell appears in the top left corner.
Each bin can be examined in more detail. Data at a finer
granularity on a per source reference basis is not available.

CPROF [10] is a similar simulator, but is based on instru-

mentation of binary code. In addition, it refines the “in-
terference” miss category into conflict and capacity misses,
thus helping to distinguish cases where data re-alignment
can help from those where there is just too much data for
the cache. The CPROF user interface has one pane that
displays a source file and another pane which shows lines or
data structures sorted in descending order of the number of
misses.

Performance monitoring can be made more efficient by mak-
ing use of special hardware features. For instance, the exper-
imental FLASH multiprocessor had a programmable cache
controller. FlashPoint [12], a performance-monitoring tool,
was implemented by extending the cache controller code
with simulator-like instrumentation code at a cost of about
a 10% slowdown. It gathers data similar to that collected
by MemSpy, but with the advantage of having direct access
to the hardware.

SimOS [14] uses both emulation and simulation techniques.
Emulation techniques are based on binary translation to ex-
ecute applications on a host processor with less than a factor
of 10 slower than normal execution time. Simulation tech-
niques can be used when needed to provide more detailed
statistics. SimOS can dynamically switch between emula-
tion and simulation techniques to allow a user to study por-
tions of long running applications in detail. The data re-
ported is similar to that from MemSpy and FlashPoint. In
particular, none of these tools attempt to measure the reuse
of data in caches, nor do they attempt to generate informa-
tion on the program-level causes of interference such as the
identity of evicting instructions.

<HPCVIEW>
<TITLE name="Normalized cycles R12K vs EV6 vs EV67 " />

<PATH name="." />

<METRIC name="a" displayName="Ev6Cycles" display="false">
<FILE name="sweepsing.ev6cy.mhf" /> </METRIC>

<METRIC name="b" displayName="Ev67Cycles" display="false">
<FILE name="sweep.ev67cy.mhf" /> </METRIC>

<METRIC name="c" displayName="R12KCycles" display="false">
<FILE name="../sgiv1/mapy.fcy_hwc.mhf" /> </METRIC>

<METRIC name="cy6" displayName="Ev6Cycles" >
<COMPUTE> <math><apply>

<divide/><ci>a</ci><cn>500</cn>
</apply></math> </COMPUTE> </METRIC>

<METRIC name="cy67" displayName="Ev67Cycles" >
<COMPUTE> <math><apply>

<divide/><ci>b</ci><cn>666</cn>
</apply></math> </COMPUTE> </METRIC>

<METRIC name="cyR12K" displayName="R12KCycles" >
<COMPUTE> <math><apply>

<divide/><ci>c</ci><cn>300</cn>
</apply></math> </COMPUTE> </METRIC>

<METRIC name="r1" displayName="EV6/EV67" percent="false">
<COMPUTE><math><apply>

<divide/><ci>cy6</ci><ci>cy67</ci>
</apply> </math> </COMPUTE> </METRIC>

<METRIC name="d1" displayName="EV6-EV67" >
<COMPUTE><math><apply>

<minus/><ci>cy6</ci><ci>cy67</ci>
</apply> </math> </COMPUTE> </METRIC>

<METRIC name="r2" displayName="12K/67" percent="false">
<COMPUTE> <math><apply>

<divide/><ci>cyR12K</ci><ci>cy67</ci>
</apply> </math> </COMPUTE> </METRIC>

<METRIC name="d2" displayName="12K-67" percent="false">
<COMPUTE> <math><apply>

<minus/><ci>cyR12K</ci> <ci>cy67</ci>
</apply> </math> </COMPUTE> </METRIC>

<STRUCTURE name= "sweep.banal" />
</HPCVIEW>

Figure 7: A HPCView configuration file used to

compute the derived metrics for the display shown

in Figure 8.

The idea of computing the number of cycles lost due to ar-
chitecture and system overheads has appeared several times
in the literature. MTOOL [5] estimated the number of cy-
cles that a range of code would take with no cache misses
and compared this with the actual execution time. The dif-
ference is assumed to be either stalls or time spent in han-
dlers for TLB misses and page faults. To compute the ideal
execution time, MTOOL instruments executable code by in-
serting counters to track the number of times each block is
executed and it uses a model of the machine to estimate
the number of cycles necessary to execute the block. Mea-
surements are aggregated to present results at the level of
loops and procedures. While this proved useful for identi-
fying the location of problems, diagnosis was still difficult
because the causes of misses and identification of the partic-
ular data objects involved was often difficult to determine
from MTOOL’s output [5].

Going beyond attributing cycles “lost” to the memory hi-
erarchy, lost cycles analysis [11] classified all of the sources
of overhead (waiting time) that might be encountered by a
parallel program. The Carnival tool set [2] extended this
into “waiting time analysis”. It provided a visualization
tool with each unit of source code having an execution time
attributed to it. Colored bars are used to indicate the per-
centage of time spent in each category of overhead.

All recent microprocessors have provided some form of hard-
ware counters that return either cycles, or that count other
performance-related events. Profiling using these counters
is facilitated by architectures on which counter overflows
can raise exceptions. The most basic way of accessing such
profile information is through a text file produced by the
Unix prof command. Some graphical interfaces are emerg-
ing. SGI’s cvperf [15] performance analysis tool provides
a variety of program views. Using cvperf one can display
only one experiment type, e.g. secondary cache misses, at a
time. A pane displaying procedure-level summaries enables
one to bring up a scrollable source pane that shows event
counts next to each source line. Sandia’s vprof [8] is another
interface that displays a single performance metric with the
source code by annotating each line with a count.

SvPablo (source view Pablo) is a graphical environment for
instrumenting application source code and browsing dynamic
performance data from a diverse set of performance instru-
mentation mechanisms, which include hardware performance
counters [9]. Rather than using overflow-driven profiling,
SvPablo library calls are inserted in the program, either by
hand, or by a preprocessor that can instrument procedures
and loops. The library routines query the hardware perfor-
mance counters during program execution. After program
execution is complete, the library records a summary file
of its statistical analysis for each executing process. Like,
HPCView, the SvPablo GUI correlates performance metrics
with the program source and provides access to detailed in-
formation at the routine and source-line level. Next to each
source line in the display is a row of color-coded squares,
where each column is associated with a performance met-
ric and each color indicates the importance that source line
has on the overall performance of that metric. However,
SvPablo’s displays do not provide sorted or hierarchical or-
derings of the program units to facilitate top-down analysis.

6. CONCLUSIONS
In this paper we described some of the design issues and
lessons learned in the construction and use of two perfor-
mance analysis tools intended specifically to aid in the anal-
ysis and tuning of large applications.

MHSim was built to help diagnose hard memory hierarchy
performance problems and relate them to source code. The
evictor and reuse information that we provide is invaluable
for such problems. On the other hand, simulation is expen-
sive and since MHSim counts events, but does not have a
machine specific cost model, it must be used in conjunction
with a profiling tool that can help locate and identify the
importance of such problems first.

When attempting to tune the performance of a floating-
point intensive scientific code, it is less useful to know where

the majority of the floating-point operations are than where
floating-point performance is low. For instance, knowing
where the most cycles are spent doing things other than
floating-point computation would be useful for tuning a sci-
entific code. This can be directly computed by taking the
difference between the cycle count and the FLOP count for
lines, loops or procedures. Our experience analyzing pro-
grams with multiple metrics using HPCView quickly illus-
trates the need for the tool to compute derived metrics such
as cycles per FLOP or miss ratios.

We have found that aggregated information is often much
more useful than the information gathered on a per-line
and/or per-reference basis. Derived metrics in particular are
more useful at the loop level rather than a line level. A key
to performance is matching the number and type of issued
operations in a loop, known as the loop balance [1], with
the hardware capabilities, known as the machine balance.
Balance metrics (how many FLOPS per cycle issued versus
how many possible, how many bytes per instruction loaded
from memory versus peak memory bandwidth per cycle) are
especially useful for suggesting how one might tune a loop.

In some cases, we have found that line level (or finer) in-
formation can provide misleading information. For exam-
ple, on a MIPS R10K processor, a counter monitoring L2
cache misses is not incremented until the cycle after the sec-
ond quadword of data has been moved into the cache from
memory. If an instruction using the data occurs immediately
after the load, the system will stall until the data is available
and the delay is likely to be charged to the second instruc-
tion. As long as the two instructions are from the same
statement, there’s little chance for confusion. However, if
the compiler has optimized the code to exploit non-blocking
loads by scheduling load instructions from multiple state-
ments in clusters, misses may end up being attributed to the
wrong statement. This occurs all too often for inner loops
that have been unrolled and software pipelined. The nonsen-
sical fine-grain attribution of costs confuses users. At high
levels of optimization, such performance problems are really
loop-level issues, and the loop-level information is still sen-
sible. For out-of-order machines with non-blocking caches,
per-line and/or per-reference information can only be useful
if some alternative instrumentation technique is used, such
as ProfileMe on the Compaq Alpha EV67 processors and
successors [4].

We have used the MHSim and HPCView tools on entire
applications. For HPCView, this has included a 20,000 line
semi-coarsening multigrid code written in C, an 88,000 line
Fortran 90 code for three-dimensional fluid flows, and a
multi-lingual 200,000 line cosmology application. In each
of these codes the tools allowed us to quickly identify sig-
nificant opportunities for performance improvement. How-
ever, for large codes the HTML database size grows large
when many metrics are measured or computed. Currently
we statically precompute static HTML for the entire set of
potential displays for both HPCView and MHSim. For ex-
ample, instead of dynamically sorting the performance met-
ric panes, we write a separate copy of the data for each sort
order. This includes the data for each of the program scopes.
We have seen HTML databases relating several performance
metrics to a 150,000 line application occupy 30 megabytes

in slightly over 6000 files. To reduce the size of performance
databases, we are planning to develop an intelligent browser
in Java that can dynamically create views on demand in-
stead of precomputing them all beforehand.

Acknowledgments
Monika Mevencamp was the principal programmer for the
HPCView tool. Xuesong Yuan integrated XML support into
HPCView and wrote scripts for translating vendor-specific
performance profile formats into the portable XML repre-
sentation consumed by HPCView. Liwei Peng implemented
the HTML interface for MHSIM reports. Nathan Tallent
and Gabriel Marin have been the principal implementers of
the bloop binary analyzer for identifying loops. We thank
Jim Larus for letting us use the EEL binary editing toolkit
as the basis for constructing bloop. This research was sup-
ported in part by NSF grants EIA-9806525, CCR-9904943,
and EIA-0072043, the DOE ASCI Program under research
subcontract B347884, and the Los Alamos National Labo-
ratory Computer Science Institute (LACSI) through LANL
contract number 03891-99-23 as part of the prime contract
(W-7405-ENG-36) between the DOE and the Regents of the
University of California.

7. REFERENCES
[1] D. Callahan, J. Cocke, and K. Kennedy. Estimating

interlock and improving balance for pipelined machines.
Journal of Parallel and Distributed Computing,
5(4):334–358, August 1988.

[2] Carnival Web Site.
http://www.cs.rochester.edu/u/leblanc/prediction.html.

[3] H. Davis, S. Goldschmidt, and J. Hennessy. Tango: A
Multiprocessor Simulation and Tracing System. In
Proceedings of the International Conference on Parallel
Processing, pages 99–107, August 1991.

[4] Jeffrey Dean, James E. Hicks, Carl A. Waldspurger,
William E. Weihl, and George Chrysos. ProfileMe:
Hardware support for instruction-level profiling on
out-of-order processors. In Proceedings of the 30th Annual
International Symposium on Microarchitecture (Micro
’97), December 1997.

[5] A. J. Goldberg and J. Hennessy. MTOOL: A Method for
Isolating Memory Bottlenecks in Shared Memory
Multiprocessor Programs. In Proceedings of the
International Conference on Parallel Processing, pages
251–257, August 1991.

[6] W3C Math Working Group. Mathematical markup
language (mathml) 1.01 specification, July 1999.
http://www.w3.org/TR/REC-MathML.

[7] E. Schnarr J. Larus. EEL: Machine-Independent
Executable Editing. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation, pages 291–300, June 1995.

[8] C. Janssen. The Visual Profiler.
http://aros.ca.sandia.gov/~cljanss/perf/vprof/doc/README.html.

[9] D. Reed L. DeRose, Y. Zhang. SvPablo: A Multi-Language
Performance Analysis System. In 10th International
Conference on Performance Tools, pages 352–355,
September 1998.

[10] A. Lebeck and D. Wood. Cache profiling and the spec
benchmarks: A case study. IEEE Computer, October 1994.

[11] T. LeBlanc M. Crovella. Parallel Performance Prediction
Using Lost Cycles. In Proceedings Supercomputing ’94,
pages 600–610, November 1994.

[12] D. Ofelt M. Martonosi and M. Heinrich. Integrating
Performance Monitoring and Communication in Parallel
Computers. In ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer
Systems, pages 138–147, May 1996.

[13] M. Martonosi, A. Gupta, and T. Anderson. MemSpy:
Analyzing Memory System Bottlenecks in Programs. In
ACM SIGMETRICS and PERFORMANCE ’92
International Conference on Measurement and Modeling of
Computer Systems, pages 1–12, June 1992.

[14] M. Rosenblum, E. Bugnion, S. Devine, and S. Herrod.
Using the SimOS machine simulator to study complex
systems. ACM Transactions on Modelling and Computer
Simulation, 7:78–103, January 1997.

[15] M. Zagha, B. Larson, S. Turner, and M. Itzkowitz.
Performance Analysis Using the MIPS R10000 Performance
Counters. In Proceedings Supercomputing ’96, November
1996.

