Automated Empirical Optimization of High Performance
Floating Point Kernels

R. Clint Whaley
University of Texas, San Antonio

and

David B. Whalley
Florida State University

Outline of talk

I. Introduction: ITI. Results
a. Problem definition & tradi- a. Studied kernels
tional (partial) solutions b. Comparison of automated
b. Problems with Traditional tuning strategies
Solutions IVV. Future work

C. Addressing these issues V. Summary and conclusions

through empirical techniques VI. Related work
II. Our iterative and empirical com-

pilation framework (iFKO)

a. What is an empirical com-
piler?

b. Repeatable transformations

c. Fundamental transforms

I(a). Problem Definition

Ultimate goal of research is to make extensive hand-tuning unnecessary
for HPC kernel production:

e For many operations, no such thing as “enough’” compute power

e [herefore, need to extract near peak performance even as hardware
advances according to Moore's Law

e Achieving near-optimal performance is tedious, time consuming, and
requires expertise in many fields

e Such optimization is neither portable or persistent

Traditional (partial) Solutions:
e Kernel library API definition 4+ hand tuning
e Compilation research 4+ hand tuning

I(b). Problems with Traditional solutions

Hand-tuning libraries

e Demand for hand tuners out-

strips supply
— if kernel not widely used, will
not be tuned

e Hand-tuning tedious, time con-

suming, and error prone

— By time lib fully optimized,
hardware on way towards ob-
solescence

Traditional Compilation
This level of opt counterproduc-
tive
Compilation models are too sim-
plified
— Must account for all Ivls of

cache, all PE interact, be
spec to the kernel

— Model goes out of date with

hardware
Resource allocation intractable
a priori
Many modern ISAs do not allow
compiler to control machine in
detail

I(c). Empirical Techniques Can Address These Problems

e AEOS: Automated Empirical
Optimization of Software
e Key idea: make optimization
decisions using automated tim-
ings:
— Can adapt to both kernel and
architecture
— Can solve resource allocation
prob backwards
e Goal : Optimized, portable li-
brary available for new arch in
minutes or hours rather than
months or years

AEOS Requires:

Define simplist and most
reusuable kernels

Sophisticated timers

Robust search

Method of code transformation:

1.
. Multiple implementation

2
3.
4. Iterative empirical com-

Parameterization

Source generation

piler

II(a). Overview of iIFKO Framework

analysis results

| |
| |
| problem |
| params Specialized |
Input HIL + flags | Search Compiler | Timers/
Routine | Drivers | pyq_ (FKO) dptimized | Testers
| i dssembly
: performance/test :results
IFKO composed of: Drawbacks:
1. A collection of search drivers, e External timers add significant
2. the compiler specialized for em- overhead.
pirical floating point kernel op- e Compile time expanded enor-
timization (FKO) mously.
e Specialized in analysis, HIL, = Only use for extreme perfor-
type and flexibility of sup- mance

ported transforms

II(b). Repeatable Optimizations

Applied in any order,

to a relatively arbitrary scope,

in optimization blocks,

while successfully transforming the code.
Presently, not empirically tuned.
Supported repeatable transformations are:

O ~NOOO S WDN K

. ra: Register allocation (Xblock, wt. hoisting/pushing)
. Cp: Forward copy propagation (Xblock)

. rc: Reverse copy propagation

. ul: Remove one-use loads

. lu: Last use load removal

. uj: Useless jump elimination (Xblock)

. ul: Useless label elimination (Xblock)

. bc: Branch chaining (Xblock)

II(c). Fundamental Optimizations

Applied only to optloop,

Applied in known order (to ease analysis),
Applied before repeatable opt (mostly high-level)
Empirically tuned by search.

Presently supported fundamental optimization (in application order,
with search default shown in parentheses):

SV: SIMD vectorization (if legal)

. UR: Loop unrolling (line size)

. LC: Optimize loop control (always)

. AE: Accumulator Expansion (None)

PF: Prefetch (inst="nta’, dist=2*LS)

. WNT: Non-temporal writes (NoO)

oA WNHR

e Start with Level 1 BLAS to concentrate on inner loop
— ATLAS work shows main compilation problems in inner loop

III(a). Studied kernels

e Speedups possible even on such simple (and bus-bound) operations
e Can already beat icc/gcc for Level 3, but not yet competitive with

hand-tuned
e Results for two archs (p4e/opt) and two contexts (in/out cache)

Name | Operation Summary flops
swap for (i=0; i < N; i++) {tmp=ylil; yl[il] = x[i]; x[i] N
scal for (i=0; i < N; i++) y[i] *= alpha; N
copy for (i=0; i < N; i++) yl[i] = x[i]; N
axpy for (i=0; i < N; i++) y[i] += alpha * x[i]; 2N
dot for (dot=0.0,i=0; i < N; i++) dot += y[i] * x[i]; 2N
asum for (sum=0.0,i=0; i < N; i++) sum += fabs(x[i]) 2N
for (imax=0, maxval=fabs(x[0]), i=1; i < N; i++) {
iamax if (fabs(x[i]) > maxval) 2N

{ imax = i; maxval

= fabs(x[il); }

Percent of best tuning method

(@) | O
[(] (e
o o o

o~
[
o\

DO
[
o

H
(] (e
o\ o

III(b)1. Relative speedups of various tuning methods

geetref [icctref |\ icctprof | ATLAS B FxO B irxo L mk1721

sswap dswap scopy dcopy sasum dasum saxpy daxpy sdot ddot sscal dscal isamaxiamax* AVG VAVG

2.8Ghz Pentium4E, N=80000, out-of-cache

Percent of best tuning method

III(b)2. Relative speedups of various tuning methods

= geceref icceref Niccprof [MATLAS [lFko [iFko
N

100% -

sswap dswap scopy dcopy* sasum*dasum* saxpy daxpy sdot ddot sscal dscal isamaxfdamax* AVG VAVG

1.6Ghz Opteron, N=80000, out-of-cache

Percent of best tuning method

III(b)3. Relative speedups of various tuning methods

= gectref [icctref icctprof [J ATLAS B FxO B irxo L mk1721

sswap dswap scopy deopy*sasumtlasum*saxpy daxpy sdot ddot sscal dscalisamaxitlamax* AVG VAVG

2.8Ghz Pentium4E, N=1024, in-L2-cache

III(b)4. Relative speedups of various tuning methods

icctprof g ATLAS

80%

= gcctref icctref

B NN NN NN

2l

DN NN NN

L

0% —

sswap dswap scopy dcopy*sasum*dasum*saxpy daxpy sdot ddot sscal dscal isamax#damax* AVG VAVG

N 1
"* 7N ' M
f N B
W

13 N 1

' N&
AR R

|
A
|

a8

N

" A
om
{ E

cl

N EE
N b

i
A

1.6Ghz Opteron, N=1024, in-L2-cache

I iFKO

III(c)5. Key points on results

e iIFKO best tuning mechanism on avg V architectures/contexts

— IAMAX and COPY present only real losses

— Lack of vectorization and block fetch

— icc+prof slower than icc+ref for swap/axpy OC Opt
e All tuned paras provide speedup

— Vary strongly by kernel, arch, & context

— Vary weakly by precision

— PF helps IC overcome conflicts

— for OC, PF dist critical

— for IC, AE and PF inst critical
e More bus-bound a kernel is, less PF helps

— OC, iIFKO gives more benefit for less bus-bound ops

o~ WNH

~N O

V. Future work

Near-term:

. Improve PF search

. Software pipelining

. Specialized array indexing

. Outer loop UR (unroll & jam)
. Scalar replacement for register

blocking

. PF of non-loop data
. Multiple accumulator reduction

optimization

. Loop peeling for SV alignment

OO ~NOOOT A~ WNH

Long-term:

. Block fetch

. Loop invariant code motion

. PPC/Altivec support

. General SV alignment

. Complex data type

. Tiling/blocking

. Search refinements

. Timer resolution improvement
. Timer generation

PN

VI. Summary and conclusions

. Have shown empirical optimization can auto-adapt to varying arch,

operation, and context

. Addressed kernel-specific adaptation in ATLAS work

Presented kernel-independent iFKO

Demonstrated iFKO can auto-tune simple kernels:

e As Kkernel complexity and optimization set grows, empirical ad-
vantage should increase

— Need increasingly sophisticated search

. As we expand opt. support, need for hand-tuning in HPC should go

down drastically

. Will open up new areas of research (as ATLAS did):

o IFKO can help build better models of archs
e FKO provides realistic testbed for search optimization

VII. Related Work

1. ATLAS, FFTW, PHIPAC

Kernel-specific
High-level code generation

2. OCEANS

Handles very few trans-
forms/kernels

Code generation at high-level
Degree of automation and
generality unclear

Papers on search very differ-
ent from our approach

“Compiler optimization-space
exploration”, Triantafyllis, et.
al, CGO 2003

e Not empirical, uses iteration

to optimize resource com-
petition by examining gen-
erated code (static analysis
rather than heuristic)

. SPIRAL project (autotuning
DSP libraries)
e Code generation at high level

(F77)

e Search in library tuner, not

compiler

VIII. Further Information

e ATLAS : math-atlas.sourceforge.net

e BLAS : www.netlib.org/blas

o LAPACK : www.netlib.org/lapack

e BLACS : www.netlib.org/blacs

e SCaLAPACK : www.netlib.org/scalapack/scalapack home.html

e Publications : www.cs.utsa.edu/"whaley/papers.html

III(b). Percent Improvement due to iterative search

Compared against default values:

PF(inst,dist) = ('nta’,2*LS), UR=L,,

WNT="No’",

e SV="Yes’,

AE="'None’

III PF DST III PF INST [:] UR IIIZ\E

"I

300%

280%

260%

240%

220%

200%

180%

160%

140%

120%
100%

ddot sscal

sdot

saxpy daxpy

sswap dswap scopy dcopy sasum dasum

Percent speedup by transform due to empirical search

III(b)5. iIFKO speeds in MFLOPS by platform

B sswap [dswap ~ scopy dcopy [Jj sasum [dasum
. saxpy | |daxpy [jsdot |[Jddot [sscal ||dscal
¥ isamax [idamax
6000
5000

4000

2.8Ghz 1.6Ghz
Pentium 4E Opteron

el

II(b) Key Design Decisions

. IFKO both iterative and empirical, as motivated in intro.
. Transforms done at low level in backend, allowing for exploitation

of low-level arch features such as SIMD vect & CISC inst formats.

. Search is built into the compilation framework, to ensure the gen-

eralization of the search.
We provide for extensive user markup, to enable key optimizations,
and maintain backend focus.

. We first concentrate on inner loop, which is the key weakness in

present compilers, and needed for all studied kernels.
To focus work, start with basic inner loop operations, and add sup-
port as required by expanding kernel pool.

II(a). Original AEOS Effort:
Automatically Tuned Linear Algebra Software (ATLAS)

e Level 3 BLAS very well opti- ATLAS is widely used and cited:

mized e Problem Solving Environments
— Pthreads for SMP support — Maple, Matlab, Octave
— Performance from gemm ker- e Operating systems
nel: — Apple's OS 10.2, FreeBSD,
x Source gen + param and various Linux distribu-
x Mul. implem. 4 param tions
e Level 1 and 2 BLAS optimized e Used by large range of individual
— Mul. implem. 4+ param projects
e ATLAS has unambiguously — Usages ranging from scien-
demonstrated that AEOS tific applications to home
techniques represent a suc- digital photograpy
cessful new paradigm for high e Highly cited in literature
performance optimization — 310 citeseer citations

URL: math-atlas.sourceforge.net

II(c). ATLAS Shortcomings

1. Compiler caused problems:
a. Would often transform perfectly optimized code
b. Changing compilers changed arch defaults
c. Could not take advantage of key architectural features such as
SIMD vectorization and prefetch
e Mult. impl. provides kludgy workaround
2. All empirical optimization kernel specific
e ATLAS is helpful for BLAS, but not for even similar ops
= Next step was to perform AEOS-style optimization in a compiler
(iIFKO)

III(f)1. Accumulator Expansion (AE)

Specialized version of scalar expansion employed to avoid unnecessary pipeline

stalls due to true dependency.

Unrolled DDOT example before and after AE:

dot = start;

for (i=0; i < N; i += 2) {
dot += X[0] * Y[O];
dot += X[1] * Y[1];
X += 2; Y += 2;

Without AE

dot = start; dotl = 0.0;
for (i=0; i < N; i += 2) {
dot += X[0] * Y[O];
dotl += X[1] * Y[1];

X += 2; Y += 2;
}
dot += dotil;
With AE=2

III(f)2. Prefetch (PF)

For each array that is legal prefetch
target, chooses:
e Prefetch instruction type to em-
ploy:
— prefetchnta
— prefetchtO
— prefetchtl
— prefetcht2
— prefetchw
e Prefetch distance: how many
bytes ahead from present array
access to prefetch
e \Whether or not
prefetch array

it helps to

Since prefetches are discarded if
bus is busy, all PF inst are crudely
scheduled:
e If only one PF inst needed, put
at top of loop
e Otherwise, distribute
throughout loop
e Other crude schedulings sup-
ported, but not presently used

evenly

III(d). Supported Architectures

Focus on x86, but design includes many targets so backend is not overly
specialized:

1. IA-32 — AKA: x86, x86-32. Ex.: P4, P4E, Athlon, etc. Initial focus
of research (along with x86-64):
e Most widely used ISA in general purpose computing.
e ISA has almost no relation to underlying hardware.
= Particularly useful target for empirical compilation.
2. X86-64 — AKA: IA-32e, x86, x86-64. EXx.: Opteron, Athlon-64,
P4E (new). Fully supported (not just as using IA-32 compatibility).
3. PowerPC — Ex.. G4, G5, various IBM. Second target.
4. UltraSPARC — EXx.: UltraSPARC II, UltraSPARC III, etc.

ANSI C and HIL Implement of Simple Dot Product

ANSI C:
double ATL_UDOT
(const int N,

const double *X, const int incX,
const double *Y, const int incY)

register double dot=ATL_rzero;

int i;

for (i=0; i < N; i++)
dot += X[i] * Y[i];

return(dot) ;

HIL:
ROUTINE ATL_UDOT;
PARAMS :: N, X, incX, Y,
INT :: N, incX, incY;
DOUBLE_PTR :: X, Y;
ROUT_LOCALS
INT 11
DOUBLE :: x, y, dot;
CONST_INIT :: dot = 0.0;
ROUT_BEGIN
LOOP 1 = 0, N
LOOP_BODY
x = X[0];
y = Y[O0];
dot += x * y;
X += 1;
Y += 1;
LOOP_END
RETURN dot;
ROUT_END

incY;

Basic Linear Algebra Subprograms (BLAS)

Level 3 — matrix-matrix operations

— gemm, symm, hemm, syrk, herk, syr2k, her2k, trmm, trsm

Level 2 — matrix-vector operations
— gemyv, hemv, symyv, trmyv, trsv

— ger, geru, gerc, her, her2, syr2

Level 1 — vector-vector operations

— swap, scal, copy, axpy, dot, nrm2, asum, iamax

Packed & banded routines

Level 3 Kernel: On-chip Matmul

e On-chip multiply (fixed dimen-
sion, 1 trans case) optimizes en-
tire Level 3 BLAS

e Source generator optimizations

include:

— Loop unrollings (all loops)
— Register blocking

— MAC or sep mul/add
— Software pipelining

N

C32

C

— M

ATLAS uses best of:
e General source generator cases
— Strict ANSI C, general tech-
niques, no system-specific
kludges
e Multiple implementation
— Can be ANSI C or assem-
bler, general or very system-
specific

Bip

A3z

X
B> B

B35

One step of matrix-matrix multiply

III(c)1. Parameters found for out-of-cache tuning (N=80000)

SV: PF X PF Y|UR:
BLAS |WNT|INS:DSTI|INS:DST| AC
sswap Y:Y t0:56 t0:40| 4:0
dswap Y:Y| t0:128 t0:64| 2:0
scopy Y:Y| none:0] none:0] 2:0
dcopy Y:Y| none:0f none:0] 1:0
sasum Y:N|nta:1024 n/a:0| 5:5
dasum Y:N| t0:1024 n/a:0| 5:5
saxpy Y:Y|nta:1408| nta:32| 2:0
daxpy Y:Y| t0:768 t0:40| 2:0
sdot Y:N|nta:1024| nta:384| 3:3
ddot Y:N| nta:7638| nta:384| 5:5
sscal Y:Y|nta:1792 n/a:0| 1:0
dscal Y:Y| none:0 n/a:0| 2:0
isamax| N:N| nta:640 n/a:0| 8:0
idamax| N:N| t0:1664 n/a:0| 8:0

2.8Ghz Pentium 4E
e Vary strongly by kernel,

tecture & context

archi-

SV: PF X PF Y|UR:
BLAS |WNT|INS:DSTI|INS:DST| AC
sswap Y:N| w:il792 w:448| 2:0
dswap Y:N| nta:960| nta:704| 1:0
scopy Y:Y| none:0] none:0| 1:0
dcopy Y:Y| none:0] none:0] 1:0
sasum Y:N| t0:1664 n/a:0| 4:4
dasum Y:N|nta:1920 n/a:0| 4:4
saxpy Y:N| t0:1536| t0:448| 4:0
daxpy Y:N|nta:1472| t0:832| 4:0
sdot Y:N|[nta:1600|nta:1664| 3:3
ddot Y:N| t0:1728] t0:704| 4:4
sscal Y:N| nta:640 n/a:0] 1:0
dscal Y:N|nta:1344 n/a:0| 1:0
isamax| N:N| nta:768 n/a:0(16:0
idamax| N:N|nta:1920 n/a:0|32:0

1.6Ghz Opteron

e Vary only weakly by precision

III(c)2. Parameters found for in-L2-cache tuning (N=1024)

SV: PF X PF Y|UR:
BLAS |WNT|INS:DSTI|INS:DST| AC
sswap Y:N| nta:512| nta:32{16:0
dswap Y:N| t0:384 t0:40(32:0
scopy Y:N| nta:512|nta:1408| 2:0
dcopy Y:N|inta:1152] t0:1152| 2:0
sasum Y:N| t0:1408 n/a:0/16:2
dasum Y:N|nta:1792 n/a:0/16:2
saxpy Y:N| t0:768] t0:1152| 8:0
daxpy Y:N| t0:768] t0:384| 8:0
sdot Y:N| nta:896|nta:1664|64:4
ddot Y:N|nta:1280|nta:1792|32:4
sscal Y:N| nta:256 n/a:0| 2:0
dscal Y:N|nta:1536 n/a:0] 2:0
isamax| N:N| t0:1152 n/a:0|32:0
idamax| N:N| nta:256 n/a:0/32:0

SV: PF X PF Y|UR:
BLAS WNT[INS:DSTINS:DST| AC
sswap Y:N w:256 w:128|32:0
dswap Y:N w:128 w:128|32:0
scopy Y:N t0:64| none:0| 4:0
dcopy Y:N| nta:192] none:0|64:0
sasum Y:N| nta:64 n/a:0|64:3
dasum Y:N| t0:256 n/a:0| 4:4
saxpy Y:N| nta:128 w:128| 4:0
daxpy Y:N| nta:32 w:128| 4:0
sdot Y:N| nta:192| nta:320(16:4
ddot Y:N| nta:256| nta:4438| 6:3
sscal Y:N w.256 n/a:0|32:0
dscal Y:N w:128 n/a:0| 4:0
isamax| N:N t0:32 n/a:0/16:0
idamax| N:N| t0:768 n/a:0/32:0

2.8Ghz Pentium 4E

1.6Ghz Opteron

