
Tuning High Performance Kernels through Empirical Compilation �
R. Clint Whaley

Dept. of Computer Science
Florida State University

whaley@cs.fsu.edu

David B. Whalley
Dept. of Computer Science

Florida State University
whalley@cs.fsu.edu

Abstract

There are a few application areas which remain almost
untouched by the historical and continuing advancement of
compilation research. For the extremes of optimization re-
quired for high performance computing on one end, and em-
bedded systems at the opposite end of the spectrum, many
critical routines are still hand-tuned, often directly in as-
sembly. At the same time, architecture implementations are
performing an increasing number of compiler-like transfor-
mations in hardware, making it harder to predict the per-
formance impact of a given series of optimizations applied
at the ISA level. These issues, together with the rate of
hardware evolution dictated by Moore’s Law, make it al-
most impossible to keep key kernels running at peak effi-
ciency. Automated empirical systems, where direct timings
are used to guide optimization, have provided the most suc-
cessful response to these challenges. This paper describes
our approach to performing empirical optimization, which
utilizes a low-level iterative compilation framework special-
ized for optimizing high performance computing kernels.
We present results showing that this approach can not only
provide speedups over traditional optimizing compilers, but
can improve overall performance when compared to the
best hand-tuned kernels selected by the empirical search of
our well-known ATLAS package.

1 Introduction and Related Work

For high performance computing on one end, and em-
bedded computing at the opposite extreme, many critical
routines are still hand-tuned (often directly in assembly)in
order to achieve the required efficiency. It is very rare in-
deed that the hand-tuner in question applies a technique that
is unknown to the compilation community. In almost every
case, this hypothetical hand-tuner is applying transforma-
tions that are well understood, but is either optimizing for�This research was supported in part by National Science Foundation
grants CIA-0072043, CCR-0208892, and CCR-0812493.

an architecture upon which compilers are not yet well-tuned
(and may never be well-tuned), or is applying the techniques
in ways that compilers either cannot (due to imperfect anal-
ysis) or purposely avoid (for instance, because the technique
causes a slowdown in many cases).

This problem is exacerbated in high performance com-
puting, where compute needs mandate usage of parallel ma-
chines. If the serial kernels upon which the computation is
based fail to achieve adequate efficiency, this inefficiency
results in the need to utilize more processors to solve the
problem, which in turn leads to greater bottlenecks due to
increased parallelization costs (eg., greater communication
and implementation time). Therefore, any serial weakness
is greatly magnified when parallelization is considered, and
thus it becomes even more critical that the computational
kernels used by the HPC application achieve the greatest
percentage of peak possible.

At the same time, Moore’s law has ensured that not only
does new hardware come out in release cycles too short for
compiler writers to keep pace, it has also resulted in archi-
tectures that implement many compiler-like transformations
in hardware (eg., dynamic scheduling, out-of-order execu-
tion, register renaming, etc.). Due to this trend, the ISA
available to the compiler writer becomes more and more
like a high-level language, and thus the close connection
between the instructions issued by the compiler, and the ac-
tions performed by the machine, is lost. This phenomenon
makes it increasingly difficult to know a priori if a given
transformation will be helpful, and almost impossible to be
sure when it is worth applying a transformation that yields
benefits only in certain situations. The most extreme exam-
ple of this is embodied in the x86 architecture, whose non-
orthogonal CISC instruction set has, to the frustration of
many compiler writers, become the most widely-used ISA
in general-purpose computing.

Even when the ISA is kept relatively close to the actual
hardware, building models for each machine that instanti-
ate all of the characteristics that affect optimization at this
level is almost intractable. Even if a model could be cre-
ated that was sophisticated enough to account for the in-



teractions between all levels of cache, the pipelines of all
relevant functional units, and all shared hardware resources
required by a given operation, it is often the case that much
of the required data is proprietary, or due to unforeseen re-
source interactions, unknown even to the hardware vendor.

These problems, taken together, have led to the im-
plementation of empirically tuned packages, such as AT-
LAS [17, 16] and FFTW [5, 10]. The central idea behind
these packages is that since it is difficult to predict a pri-
ori whether or by how much a given technique will im-
prove performance, one should try a battery of known tech-
niques on each performance-critical kernel, obtain accurate
timings to assess the effect of each transformation of in-
terest, and retain only those that result in measurable im-
provements for thisexactsystem and kernel. This approach
allows for a much greater degree of specialization than can
be realistically achieved in any other fashion. For instance,
it is not uncommon for empirical tuning of a given kernel on
two basically identical systems, varying only in the type or
size of cache supported, to produce tuned implementations
with significantly different optimizational parameters, and
it is almost always the case that varying the kernel results in
widespread optimization differences.

These empirically tuned packages have succeeded in
achieving high levels of performance on widely varying
hardware, but in a sense they are still very limited com-
pared to compilation technology. In particular, they are tied
to particular operations within given libraries, and are there-
fore not of great assistance in optimizing other operations
that nonetheless require similar levels of performance. Itis
therefore no surprise that the compiler community has be-
gun to evaluate the scope for using empirical techniques in
compilation. Empirical techniques have greater overhead
than more conventional feedback-generating schemes such
as profiling, and thus are poorly suited for general compi-
lation (unless a more targeted and less empirical approach
is used, as in [12]). Therefore, most research in empir-
ical compilation concentrates on one of these narrow ar-
eas to which we previously alluded. Sometimes this leads
to library-oriented compiler research, as in the well-known
SPIRAL work [9, 11], and sometimes it is more compiler-
centric, but strongly oriented to an area such as embed-
ded systems [7, 13] or high performance computing [4, 2].
These efforts, which should help automate building the li-
braries that drive high performance computing, are thus
tools that can be leveraged in even higher-level compilation
efforts, such as [6].

1.1 Our Contribution

The long-range goal of our research is to eliminate the
need for hand-tuning in our area of interest, high perfor-
mance computing. Our approach to this research is to utilize

an empirical and iterative compilation framework to first en-
hance, and then (in some cases) replace, the kernel-specific
techniques presently used in ATLAS. This work addresses
two key weaknesses in the approach we employed in devel-
oping ATLAS: (1) ATLAS’s optimization are kernel spe-
cific, and (2) Oftentimes the native compiler prevents AT-
LAS from achieving full performance in a portable manner.
Many of the aforementioned researchers are performing re-
lated research using other packages (eg., SPIRAL, FFTW,
etc.), but our approach is the first of which we are aware
to perform all transformations at a low level in the back-
end (many researchers instead generate code in high level
languages, just as ATLAS does), and at the same time actu-
ally have the search as part of the compiler (many projects
put the search in the library generator). Working at the
low level allows us to exploit the extremely architecture-
specific features (eg., SIMD vectorization, CISC instruction
formats, pipeline resource limitations, etc.) that are required
to squeeze the last few percent of performance from an ISA,
while in keeping the search in the compiler, we hope to gen-
eralize it enough to tune almost any floating point kernel.

One of the key contributions of this research is in where
we focus the work, which is guided by our experience in
developing ATLAS. So many papers have discussed search
techniques that many researchers have come to believe that
fast searches are the primary barrier to solving the prob-
lems inherent in this level of tuning. Our own ATLAS work
directly contradicts this, in that it still uses the simplest
of search techniques, and yet is one of only a handful of
such efforts that is both freely available as software and also
produces reasonable results on real-world architectures.It
is our experience that a simple but intelligently designed
search (as described in Section 2.3) reduces the problem of
search to a low order term, and thus it does not make sense
to make it the focus of the work.

In this paper we discuss our iterative and empirical com-
pilation framework, iFKO [15] (iterative Floating Point
Kernel Optimizer). We provide an overview of how it op-
erates, and the set of transformations it presently supports.
In order to show that empirical tuning can be effective on
even the most well-understood and easily analyzed oper-
ations, we first concentrate on the simplest kernels ATLAS
provides, the Level 1 BLAS [8] (see Section 3.1 for details).
One of the surprising contributions of this paper is that even
on simple loops such as these, empirical application of even
a modest set of well-known compiler transformations can
lead to performance improvements greater than those sup-
plied by the best native compiler. Due to its ubiquity and the
extreme separation between its ISA and its actual hardware
(which makes empirical techniques uniquely attractive), we
have chosen the x86 as our initial architectural target. We
show that even in this early stage of development, iFKO
produces code on average better than the hand-tuned codes



chosen by ATLAS’s empirical search (we are not aware of
any other group who has shown this to be the case on actual
kernels on real-world machines, using a completely auto-
mated framework) ; in those few cases where iFKO fails to
provide the fastest implementation, we describe the trans-
formation that the hand-tuned code utilized to get the best
kernel, so it is clear whether or not the technique can be
eventually be generalized into our compilation framework.

2 iFKO Implementation Details

If the supported transforms fail to supply performance
equivalent to that gained by hand-tuning, our target com-
munity will probably not employ an automated approach.
Therefore, we must make the effect of each transformation,
and the interaction between transformations, as optimal as
possible, and so it is better to do a limited number of trans-
formations very well than to support many transformations
that do not fully realize their potential. With this narrow
and deep focus in mind, Section 2.1 provides a high-level
overview of the entire framework, Section 2.2 describes the
optimizing compiler component, while Section 2.3 outlines
the current search implementation.

2.1 Anatomy of an Iterative and Empirical Com-
piler

Input

Routine
HIL + flags -- Search

Drivers- -
problem
params -
HIL- Specialized

Compiler

(FKO)

analysis results�
optimized
assembly- Timers/

Testers

performance/test results�
iFKO

Figure 1. Overview of our Empirical and Iter-
ative Compilation System

Figure 1 shows the basic outline of our empirical and it-
erative compilation system. Just as in a traditional compiler,
iFKO is provided with a routine to be compiled, and per-
haps some user-selected compiler flags. iFKO is composed
of two components: (1) a collection of search drivers and
(2) the compiler specialized for iterative empirical floating
point kernel optimization (FKO).

The search first passes the input kernel to be optimized
to FKO for analysis. FKO then provides feedback to the
master search based on this analysis. The analysis phase
together with any user input essentially establishes the op-
timization space to be searched, and the iterative tuning is
then initiated. For each optimization of interest that takes
an empirically tuned parameter (eg., the unrolling factor
in loop unrolling), the search invokes FKO to perform the
transformation, the timer to determine its effect on perfor-

mance, and the tester to ensure that the answer is correct
(unnecessary in theory, but useful in practice).

Input can be provided both by mark-up in the routine it-
self, and by flag selection from the user. These inputs can be
used to place limits on the search, as well as to provide in-
formation specialized for an individual usage pattern (such
as whether the operands are pre-loaded in cache, the size of
the problem to time, etc.). Note that iFKO has intelligent
defaults for these values, so such user direction is optional.
The ‘HIL’ in Figure 1 stands for high-level intermediate lan-
guage, and is the language (specialized for floating point
kernel optimization) which FKO accepts as input.

2.2 Floating Point Kernel Optimizer (FKO)

The heart of this project is an optimizing compiler called
FKO, which has been specialized for empirical optimization
of floating point kernels. Our focus on these kernels affects
not only our choice of optimizations, but also our input lan-
guage. Unlike a traditional compiler, FKO must also com-
municate its analysis to the search program, as described in
Section 2.2.2.

In general, one of the main strengths of empirical op-
timization is that all known techniques can by tried, even
ones that may cause significant slowdown in some cases,
since the search can keep only the successful optimizations.
Therefore FKO eventually needs to have an incredibly di-
verse battery of transformations, which will result in an ex-
panding optimization space, which in turn will require so-
phisticated search techniques. Compared with those avail-
able to an experienced hand-tuner (and thus to the set of
techniques we would ultimately like to implement) FKO
presently has a very tractable number of optimizations,
which are split into two types. FKO hasfundamentaltrans-
formations, which are applied only one time and in a known
order (thus easing the extra analysis required for some of
these optimizations), and these techniques are outlined in
Section 2.2.3. The second class consist of therepeatable
transformations, discussed in Section 2.2.4, which may be
applied multiple times and in almost any order. In order to
present an overview of the entire work, we provide only a
brief outline of each transformation here, due to space lim-
itations.

2.2.1 Input Language (HIL)

Our input language is kept close to ANSI C in form, so that
the task of kernel implementation is comparable to writing
a reference implementation in languages such as ANSI C
or Fortran 77 (common kernel languages). However, we
wanted to keep it simple enough so that we can concentrate
on back-end optimization, as well as to specialize it to some
degree for our problem domain. Therefore, we provide an



opportunity for user mark-up that can provide information
that is normally discovered (if it can be determined at all)
by extensive front-end analysis. For the simple operations
surveyed in this paper, the only mark-up used was the iden-
tification of the loop upon which to base the iterative search
(iFKO could optimize all inner loops this way, but this could
potentially cause insupportable slowdown in tuning more
complex kernels, and so we require that a loop be flagged
as important before it is empirically tuned).

Although our input language resembles ANSI C, its
usage rules are closer to Fortran 77, which has a more
performance-centric design. For instance, aliasing of out-
put arrays is disallowed unless annotated by mark-up. A de-
tailed description of the input language is beyond the scope
of this paper, but Section 3.2.1 shows example loops writ-
ten in our HIL (high-level intermediate language) that cor-
respond to the ANSI C loops surveyed in Section 3.1.

2.2.2 Analysis and Communication with the Search

Unlike a normal compiler, a compiler used in an iterative
search needs to be able to communicate key aspects of its
analysis of the code being optimized, as this strongly affects
the optimization space to be searched. Currently, FKO re-
ports architecture information such as the numbers of avail-
able cache levels and their line sizes. More importantly, it
reports kernel-specific information such as the loop (if any)
identified for tuning in the iterative search. For this loop,it
then reports the maximum safe unrolling, and whether it can
be SIMD vectorized. For each scalar and array accessed in
the loop, the analysis further reports its type, sets and uses.
Finally, the analysis returns a list of all scalars that are valid
targets for accumulator expansion (see Section 2.2.3), and
all arrays that are valid targets for prefetch (by default any
array whose references increment with the loop, but the user
can override this behavior, for instance for arrays known to
be already in cache, using mark-up).

2.2.3 Fundamental Transformations

This section outlines the fundamental optimizations
presently supported by FKO, in the order in which they
are applied. For each such transformation, we list an ab-
breviation which is used in the paper to refer to this op-
timization. SIMD Vectorization[3] (SV): transforms the
loop nest (when legal) from scalar instructions to vector
instructions. This typically results in the same number of
instructions in the loop, but its effect on loop control and
computation done per iteration is similar to unrolling by
the vector length (4 for single precision, 2 for double).
Loop Unrolling [1] (UR): duplicates the loop body (avoid-
ing repetitive index and pointer updates)Nu times. Since
it is performed after SIMD vectorization, when vectoriza-
tion is also applied the computational unrolling is actually

Nu � velen. Optimize Loop Control(LC ): rearranges loop
indexing (when possible) to avoid (on some architectures)
unnecessary loop branch comparisons, or to exploit such
features as specialized counter registers.Accumulator Ex-
pansion(AE): In order to avoid unnecessary pipeline stalls,
AE uses a specialized version of scalar expansion [1] to
break dependencies in scalars that are exclusively the tar-
gets of floating point adds within the loop.

The next fundamental transformation isprefetch(PF).
This transformation can prefetch any/all/none of the arrays
that are accessed within the loop, select the type of prefetch
instruction to employ, vary the distance from the current
iteration to fetch ahead, as well as provide various sim-
ple scheduling methodologies. Prefetches are scheduled
within the unrolled loop because many architectures discard
prefetches when they are issued while the bus is busy, and so
they can be an exception to the general rule that modern x86
architectures are relatively insensitive to scheduling (due to
their aggressive use of dynamic scheduling, out-of-orderex-
ecution, register renaming, etc.). Note that prefetching one
array can require multiple prefetch requests in the unrolled
loop body, as each x86 prefetch instruction fetches only one
cache line of data.

Our final fundamental transformation isnon-temporal
writes (WNT ), which employs non-temporal writes on the
specified output array. These are writes that contain a hint
to the caching system that they should not be retained in
the cache, though how this hint is used varies strongly by
architecture.

2.2.4 Repeatable Transformations

Repeatable transformations can not only be applied multi-
ple times, but are typically applied in a series (or optimiza-
tion block) which is repeated while they are still success-
fully transforming the code. This is useful for synergis-
tic optimizations (eg., register allocation and copy propa-
gation). All of these operations may be applied to a scope
(a set of basic blocks, typically a given loop nest or the en-
tire function). When applied to each loop nest level in turn,
scoping ensures that inner-loop resource needs are fully sat-
isfied before outer loops are considered, which is critical in
floating point code, where long-running loops are the typ-
ical case. Most of FKO’s repeatable transformations are
fairly standard (though in some we have added a few refine-
ments to specialize them for floating point optimization),
and are discussed in [1].

We support repeatable transformations for improving
register usage and control flow. In register usage optimiza-
tion, we support two types of register allocation and several
forms of copy propagation. We also perform several peep-
hole optimizations that exploit the fact that the x86 is not
a true load/store architecture (relatively important whenthe



ISA has only eight registers, but the underlying hardware
may have more than a hundred). Finally, we perform branch
chaining, useless jump elimination, and useless label elim-
ination, which, when applied together, merges basic blocks
(critical after extensive loop unrolling).

2.3 Iterative Search

Finding the best values forNT empirically tuned trans-
formations consists of finding the points in anNT dimen-
sional space that maximize performance (thus the phrase
“searching the optimization space”). There are several ways
of performing this search, including simulated annealing
and genetic algorithms. We currently use a much simpler
technique, a modified line search. In a pure line search,
theNT -D problem is split intoNT separate 1-D searches,
where the starting points in the space correspond to the ini-
tial search parameter selection (in our case, FKO defaults).
Obviously, this approach results in a very poor search of the
space by volume. However, since we understand the prop-
erties of these transformations, we are able to select rea-
sonable start values for the search, and because we under-
stand many of the interactions between optimizations, we
are able to relax the strict 1-D searches to account for in-
terdependencies (eg., when two transformations are known
to strongly interact, do a restricted 2-D search). Applica-
tion of this knowledge to the line search algorithm provides
what is in essence a de facto expert system / search hybrid.
In this sense, much of the high-level knowledge that in-
fluences model-driven compilation may be moved into the
search (where heuristics and architectural assumptions are
replaced with empirical probes, of course), rather than being
lost as when the search is based purely on geometry. With
these straightforward modifications, line searches are quite
effective in practice (ATLAS, one of the most successful
empirical projects, still uses a modified line search), even
though they are completely inadequate in theory.

The present iterative search varies only the fundamen-
tal optimizations. Our search takes FKO’s optimization de-
faults for its initial values. If we defineL as the line size
of the first prefetchable cache, andLe as the number of ele-
ments of a given type in such a line (for example, ifL = 32
bytes,Le would be 4 for a double precision scalar, 8 for
a single precision scalar, or 2 for a SIMD vector of either
type), then the initial values for the search (and thus the de-
faults for FKO) are:SV=’Yes’, WNT=’No’, PF(type,dist)
= (’prefetchnta’,2� L), UR=Le, AE=’No’.

3 Experimental Results

This section presents and analyzes results on two of to-
day’s premier x86 implementations, and is organized in the

following way: Section 3.1 outlines the floating point ker-
nels that are being optimized, Section 3.2 discusses version
and timing methodology information, and Section 3.3 dis-
cusses some key points about the presented results. When
we have had to concentrate on one machine due to space
limitations, we have retained the the timings for the Intel
machine, as it supplies the fairest comparison against In-
tel’s compiler, even though it is not our best platform. For
instance, for the omitted in-L2 Opteron timings, the two
best tuning mechanisms are iFKO followed by FKO, and
icc-tuned kernels run on average at 68% of the speed of
iFKO-tuned code.

3.1 Surveyed Routines

The general domain of this research is floating point
kernels, but this paper focuses on the Level 1 BLAS. The
Level 1 BLAS are vector-vector operations, most of which
can be expressed in a single for-loop. These operations are
so simple that it would seem unlikely that empirical opti-
mization could offer much benefit over model-based com-
pilation. One of the key contributions of this initial work is
that we show that even on such well-understood and often-
studied operations as these, empirical optimization can im-
prove performance over standard optimizing compilers.

Most Level 1 BLAS have four different variants depend-
ing on type and precision of operands. There are two main
types of interest, real and complex numbers, each of which
has double and single precision. In this work, we concen-
trate on single and double precision real numbers. The
Level 1 BLAS all operate on vectors, which can be con-
tiguous or strided. Again, we focus on the most commonly
used (and optimizable) case first, the contiguous vectors.
For each routine, the BLAS API prefixes the routine name
with a type/precision character, ‘s’ meaning single preci-
sion real, and ‘d’ for double precision real. Sinceiamax
involves returning the index of the absolute value maximum
in the vector, the API puts the precision prefix in this routine
as the second character rather than the first (i.e.,isamax or
idamax rather thanddot orsdot). There are quite a few
Level 1 BLAS, and so we study only the most commonly
used of these routines, which are summarized in Table 1.

Note that the performance of the BLAS are usually re-
ported in MFLOPS (millions of floating point operations
per second), but that some of these routines actually do
no floating point computation (eg.,copy). Therefore, the
FLOPs column gives the value we use in computing each
routine’s MFLOP rate.

3.2 Methodology and Version Information

All timings were done with ATLAS version 3.7.8, which
we modified to enable vectorization by Intel’s C com-



piler, icc. Most of the loops in ATLAS are written as
‘for(i=N; i; i--)’ or ‘ for(i=0; i!=N; i++)’
and icc will not vectorize either form, regardless of what is
in the loop. Once we experimentally determined that this
loop formulation was preventing icc from vectorizing any
of the target loops, we simply modified the source of the
relevant routines to ‘for(i=0; i<N; i++)’, which icc
successfully vectorizes.

We report numbers for two very different high-end x86
architectures, the Intel Pentium4E and AMD Opteron. Fur-
ther platform, compiler and flag information is summarized
in Table 2 (for the profile build and use phases, the appro-
priate flags were suffixed to those shown Table 2.) The AT-
LAS Level 1 BLAS kernel timers were utilized to gener-
ate all performance results. However, we enabled ATLAS’s
assembly-coded walltimer that accesses hardware perfor-
mance counters in order to get cycle-accurate results. Since
walltime is prone to outside interference, each timing was
repeated six times (on an unloaded machine), and the min-
imum was taken. Because these are actual timings (as op-
posed to simulations), there is still some fluctuation in per-
formance numbers despite these precautions, and so we ad-
ditionally ran each install three times and chose the best.

3.2.1 Input Routines

With the exception ofiamax, the computational loops of
the ANSI C reference implementations are precisely those
given in Table 1. The input routines given to FKO were
the direct translations of these routines from ANSI C to
our HIL (i.e., high level optimizations were not applied to
the source). For instance, Figure 6(a) shows the transla-
tion of thedot routine into our HIL. The exception to this
strictly corresponding mapping is theiamax routine. Our
HIL does not yet support scoped ifs, and so it was origi-
nally coded for all compilers (in the appropriate language)
as shown in 6(b), which, absent code positioning transfor-
mations, is the most efficient way to implement the oper-
ation. However, this formulation ofiamax depressed per-
formance significantly for icc, while not noticeably improv-
ing gcc’s performance, and so we utilized the more straight-
forward implementation for these compilers.

3.3 Analysis

Figures (2,3,4) report the percentage of the best observed
performance provided by the following six methodologies:
gcc+ref: Performance of ANSI C reference implementa-
tion compiled by gcc. icc+ref: Performance of ANSI C
reference implementation compiled by icc.icc+prof: Per-
formance of ANSI C reference implementation, using icc
and profiling. Profiling was performed with tuning data
identical to the data used in timing.ATLAS : The best ker-
nel found by ATLAS’s empirical search, installed with both

icc and gcc. ATLAS empirically searches a series of im-
plementations, which were laboriously written and hand-
tuned using mixtures of assembly and ANSI C, and contain
a multitude of both high and low-level optimizations (eg.,
software pipelining, prefetch, unrolling, scheduling, etc.).
When ATLAS has selected a hand-tuned all-assembly ker-
nel (as opposed to the more common ANSI C routine with
some inline assembly for performing prefetch), the routine
name is suffixed by a * (eg.,dcopy becomesdcopy*).
This is mainly of interest in that hand-tuning in assem-
bly allows for more complete and lower-level optimization
(eg. SIMD vectorization, exploitation of CISC ISA fea-
tures, etc.). FKO : The performance of the kernel when
compiled with FKO using default transformation parame-
ters (i.e., no empirical search).iFKO : The performance of
the kernel when iterative compilation is used to tune FKO’s
transformation parameters.

For each kernel, we find the mechanism that gave the
best kernel performance, and all other results are divided
by that number (eg. the method that resulted in the fastest
kernel will be at 100%). This allows for the relative bene-
fit of the various tuning mechanisms to be evaluated. This
comparison is done for each studied kernel, and we add two
summary columns. The second-to-last column (AVG) gives
the average over all studied routines, and the last column
(VAVG) gives the average for the operations where SIMD
vectorization was successfully supplied; in practice, this
means the average of all routines excludingiamax, which
neither icc nor iFKO automatically vectorize.

On all studied architectures and contexts, iFKO pro-
vides the best performance on average, better even than
the hand-tuned kernels found by ATLAS’s own empirical
search. However, in several individual hand-tuned cases,
iFKO loses decidedly. Primarily, this occurs iniamax,
where the hand-tuned assembly vectorizes the loop, but nei-
ther iFKO nor icc can do so automatically. It is a topic
for further research to see if we can find a way to vector-
ize such loops generally and safely in the compiler. The
only other routine where iFKO is significantly slower is in
P4E/dcopy, where the hand-tuned assembly uses a tech-
nique called block fetch [14]. This technique can be per-
formed generally and safely in a compiler, and we are plan-
ning to add it to FKO.

iFKO is slightly slower (just barely above clock resolu-
tion) on out-of-cache Opteronscopy, and this is due to
FKO generating an extra integer operation per loop itera-
tion. FKO presently does not exploit the opportunity to use
x86 CISC indexing to index both arrays using a register,
which avoids an additional pointer increment at the end of
the loop. The summary here is that, given a few optimiza-
tions that we understand and plan to add, we would lose
only oniamax, and further research is required to deter-
mine if we can find a general way to vectorize this opera-



tion as well (it seems almost certain that we can overcome
this problem in a narrow way, for instance by having the
user supply us with markup indicating how to address the
dependency).

Table 3 shows the best parameters that were found by our
empirical search for each platform/context. Section 2.2.3
defines the abbreviations used in the headings, and Sec-
tion 2.3 provides the default values used by FKO. The
prefetch parameters have both instruction type (INS) and
distance in bytes (DST). For each type of prefetch instruc-
tion, the search chooses between those available on the ma-
chine, and they are reported using the following abbrevia-
tions: tX: SSE temporal prefetch to cache of levelX + 1
(eg.,prefetcht0, prefetcht1, etc.);nta: SSE non-
temporal prefetch to the level of supported cache nearest the
CPU (prefetchnta), or w: 3DNow! prefetch for write
(prefetchw). Figure 7 shows, as a percentage of FKO’s
speed, the results of empirically tuning these parameters
(i.e. the speedup of iFKO over FKO,not over code in which
a given transformation has not been applied). For each
BLAS kernel, we show a bar for each architecture (p4e/opt)
and context (ic: in-L2 cache, oc: out of cache). Each bar
shows the total speedup over FKO, and how much tuning
each transformation parameter contributed to that speedup.
For instance, on average over all operations, architectures
and contexts, empirically tuning [WNT, PF DST, PF INS,
UR, AE], provided speedups of [2, 26, 3, 2, 5]%, respec-
tively, resulting in the empirically-tuned kernels on average
running 1.38 times faster than our statically-tuned kernels.
The prefetch results are of particular interest, in that they
are relatively difficult to to model accurately, and provide
the greatest speedup on average.

One of the most important observations from these tables
is how variable these parameters are: they vary depending
on operation, precision, architecture,andcontext. This sug-
gests that any model that captures this complexity is going
to have to be very sensitive indeed. Note that while empir-
ical results such as these can be used to refine our under-
standing of relatively opaque interactions (eg., competing
compiler and hardware transformations), which in turn al-
lows for building better theoretical models, one of the great
strengths of empirical tuning is that full understanding of
why a given series of transformations yielded good speedup
is not required in order to achieve that speedup.

In addition to the general variability, we can examine
how parameters can change based on either the architecture
or context of the operation. When we vary the architecture,
of course, empirical methods shine, particularly when the
compiler has not yet been (or will never be) fully tuned to
the new platform (eg. Intel compiler on AMD platform).
Here we see the strength of empirical tuning over even ag-
gressive profiling: notice that for bothswap andaxpy,
icc+prof is many times slower than thanicc+ref in Fig-

ure 3. This is because non-temporal writes (WNT ) can im-
prove performance anytime the operand doesn’t need to be
retained in the cache on the P4E. On the AMD Opteron,
however, non-temporal writes result in significant overhead
unless the operand is write only (as in the Y vector of
copy). Icc’s profiling detects that the loop is long enough
for cache retention not to be an issue, and blindly applies
WNT , whereas the empirical tuning tries it, sees the slow-
down, and therefore does not use it.

In addition to adapting to the architecture, empirical
methods can be utilized to tune a kernel to the particular
context in which it is being used. Figure 4 and Table 3
show such an example, where the adaptation is to having
the operands in-L2-cache. This changes the optimization
set fairly widely, including making prefetch much less im-
portant, andWNT a bad idea. Prefetch is still useful in
keeping data in-cache in the face of conflicts, and so we see
it provides greater benefit for the “noisier” (bus-wise) rou-
tines such asswap. In-cache, computational optimizations
become much more important. One such is transformation
is accumulator expansion (AE), which on the P4E accounts
for an impressive 41% ofsasum speedup in-cache, while
only improving performance by 2% for out-of-cache.

Since all results discussed so far are relative to the best
tuning method, it is easy to lose track of the relative perfor-
mance of the individual operations. Therefore, Figure 5(a)
shows the the speed of these operations in MFLOPS, com-
puted as discussed in Section 3.1. Note MFLOPS is a
measure of speed, so larger numbers indicate better per-
formance. All timings in this figure deal only with iFKO
(on average, the best optimizing technique). Basically, the
more bus-bound an operation is, the worse the performance.
For example, ASUM, which has only one input vector, and
no output vectors, is always the fastest routine, with single
precision (half the data load for same amount of FLOPs) al-
ways faster than double precision. Similarly, Figure 5(b)
shows the speedup of the in-L2 cache P4E timings over
the out-of-cache performance. One of the most interesting
things about this graph is that it provides a very good mea-
sure of how bus-bound an operation is, even after prefetch
is applied: If the kernel tuned for in-cache usage is only
moderately faster than the kernel when tuned in out-of-
cache timing, the main performance bottleneck is clearly
not memory.

An interesting trend to notice in surveying these results
in their entirety is that the more bus-bound an operation is,
the less prefetch improves performance. The reason for this
seeming paradox is in how prefetch works: prefetch is a
latency-hiding technique that allows data to be fetched for
later use while doing unrelated computation. If the bus is
always busy serving computation requests, there is no time
when the prefetch can be scheduled that doesn’t interfere
with an active read or write, and most architectures simply



ignore prefetch instructions in this case. This is why oper-
ations such asswap or axpy get relatively modest bene-
fit. Since prefetch optimization is one of our key strengths
for out-of-cache usage on these routines, this is also why
iFKO does much better on the Opteron than on the P4E
(when compared against all tuning mechanisms, including
icc): the Opteron, having a slower chip and faster memory
access, is less bus bound, and so there is more room for
empirical improvement using this key optimization.

4 Summary and Conclusions

We have shown how empirical optimization can help
adapt to changes in operation, architecture, and context.
We have discussed our approach to empirical compilation,
and presented the framework we have developed. We have
shown that even on simple, easily analyzed loops that many
would expect to be fully optimized by existing compil-
ers, empirical application of well-understood transforma-
tions provides clear performance improvements. Further,
even though our current palette of optimizations is limited
compared to that available to the hand-tuner, we have pre-
sented results showing that this more fully automated ap-
proach results in greater average performance improvement
than that provided by ATLAS’s hand-tuned (and empirically
selected) Level 1 BLAS support. Note that our initial tim-
ings show iFKO already capable of improving even Level 3
BLAS performance more than icc or gcc, but due to the lack
of outer-loop specialized transformations (which we plan to
add) we are presently not competitive with the best Level 3
hand-tuned kernels. Therefore, as this framework matures,
we strongly believe that it will serve to generalize empir-
ical optimization of floating point kernels, and that it will
vastly reduce the amount of hand-tuning that is required
for high performance computing. Finally, it appears certain
that an open source version of such a framework will be a
key enabler of further research as well. For example, just
as ATLAS was used to provide feedback into model-based
approaches [18], iFKO will provide an ideal platform for
tuning and further understanding the models used in tradi-
tional compilation, while a fully-featured FKO will provide
a rich test bed for research on fast searches of optimization
spaces.

References

[1] D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler trans-
formations for high-performance computing.ACM Comput.
Surv., 26(4):345–420, 1994.

[2] P. Diniz, Y.-J. Lee, M. Hall, and R. Lucas. A case study
using empirical optimization for a large, engineering appli-
cation. InInternational Parallel and Distributed Processing
Symposium, 2004. CD-ROM Proceedings.

[3] F. Franchetti, S. Kral, J. Lorenz, and C. Ueberhuber. Ef-
ficient utilization of simd extensions. Accepted for putbli-
cation inIEEE special issue on Program Generation, Opti-
mization, and Adaptation, 2005.

[4] M. Frigo. A Fast Fourier Transform Compiler. InProceed-
ings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’99), Atlanta,
GA, 1999.

[5] M. Frigo and S. Johnson. FFTW: An Adaptive Software
Architecture for the FFT. InProceedings of the Interna-
tional Conference on Acoustics, Speech, and Signal Process-
ing (ICASSP), volume 3, page 1381, 1998.

[6] K. Kennedy, B. Broom, A. Chauhan, R. Fowler, J. Garvin,
C. Koelbel, C. McCosh, and J. Mellor-Crummey. Telescop-
ing languages: A system for automatic generation of do-
main languages. Accepted for publication inIEEE special
issue on Program Generation, Optimization, and Adapta-
tion, 2005.

[7] T. Kisuki, P. Knijnenburg, M. O’Boyle, and H. Wijsho. It-
erative compilation in program optimization. InCPC2000,
pages 35–44, 2000.

[8] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic Lin-
ear Algebra Subprograms for Fortran Usage.ACM Trans.
Math. Softw., 5(3):308–323, 1979.

[9] M. Pushel, J. Moura, J. Johnson, D. Padua, M. Veloso,
B. Singer, J. Xiong, F. Frenchetti, A. Cacic, Y. Voronenko,
K. Chen, R. Johnson, and N. Rizzolo. Spiral: Code gen-
eration for dsp transforms. Accepted for putblication in
IEEE special issue on Program Generation, Optimization,
and Adaptation, 2005.

[10] See page for details. FFTW homepage.
http://www.fftw.org/.

[11] See page for details. SPIRAL homepage.
http://www.spiral.net/.

[12] S. Triantafyllis, M. Vachharajani, N. Vachharajani, and D. I.
August. Compiler optimization-space exploration. InInter-
national Symposium on Code Generation and Optimization,
pages 204–215, 2003.

[13] P. van der Mark. Iterative compilation. Master’s thesis, Lei-
den Institute of Advanced Computer Science, 1999.

[14] M. Wall. Using Block Prefetch for Optimized Memory Per-
formance. Technical report, Advanced Micro Devices, 2002.

[15] R. C. Whaley. Automated Empirical Optimization of High
Performance Floating Point Kernels. PhD thesis, Florida
State University, December 2004.

[16] R. C. Whaley and A. Petitet. Atlas homepage.
http://math-atlas.sourceforge.net/.

[17] R. C. Whaley, A. Petitet, and J. J. Dongarra. Au-
tomated empirical optimization of software and the
ATLAS project. Parallel Computing, 27(1–2):3–35,
2001. Also available as University of Tennessee LA-
PACK Working Note #147, UT-CS-00-448, 2000 (cmt-
twww.netlib.org/lapack/lawns/lawn147.ps).

[18] K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali,
and P. Stodghill. A comparison of empirical and model-
driven optimization. Accepted for publication inIEEE spe-
cial issue on Program Generation, Optimization, and Adap-
tation, 2005.



Figure 2. Relative speedups of various tuning methods on 2.8 Ghz P4E, N=80000, out-of-cache

Figure 3. Relative speedups of various tuning methods on 1.6 Ghz Opteron, N=80000, out-of-cache

Figure 4. Relative speedups of various tuning methods on 2.8 Ghz P4E, N=1024, in-L2 cache

(a) Out of cache (b) P4E, in Level 2 cache

Figure 5. Relative BLAS performance results



NAME Operation Summary FLOPs

swap for (i=0; i < N; i++) N
{tmp=y[i]; y[i]=x[i]; x[i]=tmp}

scal for (i=0; i < N; i++) y[i] *= alpha; N
copy for (i=0; i < N; i++) y[i] = x[i]; N
axpy for (i=0; i < N; i++) 2N

y[i] += alpha * x[i];
dot for (dot=0.0,i=0; i < N; i++) 2N

dot += y[i] * x[i];
asum for (sum=0.0,i=0; i < N; i++) sum += fabs(x[i]) 2N

for (imax=0,maxval=fabs(x[0]), i=1; i<N; i++){
if (fabs(x[i]) > maxval)

{ imax = i; maxval = fabs(x[i]); }
iamax }

2N
Table 1. Level 1 BLAS summary

PLATFORM COMP FLAGS

2.8 Ghz P4E icc 8.0 -xP -O3 -mp1 -static
(Pentium 4E)gcc -fomit-frame-pointer -O3

3.3.2 -funroll-all-loops

1.6 Ghz Opt icc 8.0 -xW -O3 -mp1 -static
(Opteron) gcc -fomit-frame-pointer -O3

3.3.2 -O -mfpmath=387 -m64

LOOP i = 0, N
LOOP_BODY

x = X[0];
y = Y[0];
dot += x * y;
X += 1;
Y += 1;

LOOP_END

(a)dot loop

LOOP i = N, 0, -1
LOOP_BODY

x = X[0];
x = ABS x;
IF (x > amax)

GOTO NEWMAX;
ENDOFLOOP:

X += 1;
LOOP_END
RETURN imax

NEWMAX:
amax = x
imax = N-i
GOTO ENDOFLOOP;

(b) amax loop

Table 2: Compiler and flag information by platform Figure 6: Relevant portion of HIL implementation

P4E, out-of-cache Opteron, out-of-cache P4E, in-L2 cache
SV: PF X PF Y UR: SV: PF X PF Y UR: SV: PF X PF Y UR:

BLAS WNT INS:DST INS:DST AE WNT INS:DST INS:DST AE WNT INS:DST INS:DST AE

sswap Y:Y none:0 nta:1920 1:0 Y:N nta:1536 nta:1024 1:0 Y:N t0:512 t0:1152 2:0
dswap Y:Y none:0 nta:1024 4:0 Y:N nta:960 nta:512 1:0 Y:N none:0 nta:1792 4:0
scopy Y:Y none:0 none:0 2:0 Y:Y none:0 none:0 1:0 Y:N nta:1408 nta:1536 2:0
dcopy Y:Y none:0 none:0 2:0 Y:Y none:0 none:0 1:0 Y:N nta:1408 nta:128 2:0
sasum Y:N nta:1024 n/a:0 5:5 Y:N t0:1664 n/a:0 4:4 Y:N nt0:896 n/a:0 16:2
dasum Y:N nta:1024 n/a:0 5:5 Y:N nta:1920 n/a:0 4:4 Y:N nta:1536 n/a:0 16:2
saxpy Y:Y t0:640 t0:1152 1:0 Y:N nta:1984 nta:2048 4:0 Y:N nta:512 nta:512 32:0
daxpy Y:Y nta:1152 nta:256 1:0 Y:N nta:832 nta:448 1:0 Y:N t0:1152 t0:384 32:0
sdot Y:N nta:1536 nta:384 3:3 Y:N nta:1984 nta:1088 2:2 Y:N nta:512 nta:768 64:4
ddot Y:N nta:1152 nta:384 3:3 Y:N t0:1536 t0:576 3:3 Y:N nta:1664 nta:1536 64:4
sscal Y:Y nta:1024 n/a:0 1:0 Y:N nta:640 n/a:0 1:0 Y:N nta:768 n/a:0 8:0
dscal Y:Y nta:1536 n/a:0 1:0 Y:N nta:1536 n/a:0 1:0 Y:N nta:1664 n/a:0 8:0
isamax N:N t0:768 n/a:0 8:0 N:N nta:768 n/a:0 16:0 N:N nta:56 n/a:0 32:0
idamax N:N nta:1280 n/a:0 8:0 N:N nta:1920 n/a:0 32:0 N:N t0:128 n/a:0 32:0

Table 3. Transformation parameters by architecture and con text

Figure 7. Percent of FKO performance by transform due to empi rical search


