
ON THE USE OF COMPILERS IN DSP LABORATORY INSTRUCTION

Matthew D. Kleffner1, Douglas L. Jones1, Jason D. Hiser2, Prasad Kulkarni3,

Julie Parent2, Stephen Hines3, David Whalley3, Jack W. Davidson2, Kyle Gallivan3

ABSTRACT

A modern DSP laboratory course should teach students
how to quickly develop efficient applications using a mix-
ture of C and assembly instructions. Since typical irregular
DSP microprocessor architectures present some challenges
to traditional optimizing compilers, we introduced a novel
new interactive optimizing compiler, VISTA, in a DSP lab-
oratory course to teach students about optimizing compilers
and the trade-offs between code development in C and as-
sembly. Students generally found VISTA educational and
gained improved insight into effective DSP software devel-
opment.

1. INTRODUCTION

A DSP laboratory course should be structured around
broadening and deepening students’ understanding of DSP
theory and its application in the real world. The course lec-
tures and labs should also give students in-depth knowledge
of and experience in how real-time, real-world DSP sys-
tems are implemented in industrial practice. A lab course
followed by an extensive project of the student’s choice is
an effective way to accomplish these goals [1].

Traditionally, DSP microprocessors have been pro-
grammed almost exclusively in assembly language, due to
the stringent performance demands and power constraints
of most DSP applications. Any course that aspires to teach
real-time DSP system engineering should thus include sub-
stantial assembly-language programming. However, recent
industrial trends (including the introduction of C compil-
ers with reasonable performance for some DSP micropro-
cessors, increased application size and complexity, and
increases in the complexity and performance of DSP micro-
processors), makes a mixture of assembly and C attractive
in an increasing number of situations. The fastest, smallest,

1University of Illinois at Urbana-Champaign, Electrical and Computer
Engineering, Urbana, Illinois, USA

2University of Virginia, Department of Computer Science, Char-
lottesville, Virginia, USA

3Florida State University, Department of Computer Science, Tallahas-
see, Florida, USA

This work was supported in part by the National Science Foundation,
Grant no. EIA-0072043.

and lowest-power system implementations are still gen-
erated in hand-coded assembly, but the resulting code is
typically difficult to port to other architectures. Further-
more, real-world, hand-coded assembly applications are
time-consuming to develop and maintain. While these costs
are often more than offset by the resulting savings from
lower-cost DSPs in mass production, this is not always the
case.

Programming a real-world DSP system in C is less time-
consuming, but the resulting code is usually much slower
than hand-coded assembly. For these reasons, such sys-
tems are now often developed in C, then resource-critical
routines are rewritten in hand-coded assembly. We expect
that this trend will continue and even intensify. Therefore, a
DSP laboratory course should introduce both C and assem-
bly language programming in an integrated manner.

A DSP laboratory course must balance many educa-
tional objectives, so each element must be carefully de-
signed so that all objectives are met effectively while mak-
ing efficient use of students’ limited time. We hypothesized
that a novel new interactive optimizing compiler with an in-
tuitive graphical interface, called VISTA, would be an effec-
tive tool for teaching students both the trade-offs between
assembly- and C-based DSP software implementation and
the use of optimizing compilers.

2. COMPILERS FOR DSP

DSP microprocessors and applications present some unique
difficulties for traditional C compilers, and compiling entire
DSP applications in C generally results in very inefficient
code relative to the best hand-coded assembly. The C spec-
ification conflicts with typical, irregular DSP architectures;
therefore some key DSP operations, such as fractional mul-
tiplication and saturation on overflow, are not efficiently
achievable in C. Also, the C specification interferes with
common architectures that have accumulators larger than
the memory word width. A compiler may add extra in-
structions to ensure accumulator results are bit exact to the
C specification, but these extra instructions are usually not
necessary to achieve the results the developer desires. In
some cases it may be impossible to utilize the extra bits
available in the accumulator via standard C code. Finally,



modern DSP microprocessors support an ever-increasing
number of special instructions tailored to specific DSP ap-
plications, such as bit-reversing operations for fast Fourier
transforms. Some DSP compilers introduce work-arounds
to the limits of the C specification through compiler in-
trinsics (non-standard functions that result in architecture-
specific assembly code) for selected operations and inlining
assembly directly in C code [5]. Either one of these work-
arounds, however, limits the portability of the code and
increases the difficulty of software development.

Given the limitations of compiled code for DSP micro-
processors, it is becoming common practice to develop the
full algorithm in C and then rewrite the most performance-
critical routines in assembly; the resulting tight coupling
between the C and assembly portions makes a mixed pro-
gramming environment attractive. Since C and assembly
are mixed in real-world DSP applications, a visual, inter-
active optimizing compiler that further unifies the two lan-
guages might allow a DSP software developer to produce
better code. An added bonus of such a tool is that DSP en-
gineers and particularly students, who may not know much
about compilers, can learn interactively about how optimiz-
ing compilers obtain their results.

A recent research project has produced an experimental
optimizing compiler, VPO Interactive System for Tuning
Applications (VISTA), with these characteristics. VISTA
has an optimization engine that is based on VPO, the Very
Portable Optimizer developed at the University of Virginia
[3] [4]. A key advantage of using VPO is it is easily re-
targeted to new architectures, therefore enabling VISTA to
be easily retargeted. VISTA is designed to enable a de-
veloper to obtain efficient assembly code from C that is
efficiency-competitive with hand-coded assembly. This is
possible in part because the developer tunes the application
at a low level, in either assembly or VPO’s register trans-
fer lists (RTLs). Using VISTA to tune the low-level output
of the compiler instead of hand-coding assembly, the devel-
oper may get code that is more portable, more robust, and
cheaper to develop and maintain than hand-coded assem-
bly. Tuning in VISTA is primarily done through ordering
canned optimization phases and manually specifying code
transformations. Porting to another architecture merely in-
volves recompiling and retuning in VISTA.

A key advantage VISTA possesses over traditional opti-
mizing compilers is that optimization phases can be speci-
fied in different orders, whereas traditional compilers apply
optimization in a fixed order. Furthermore, traditional com-
pilers group many optimization phases together into opti-
mization levels, so if one optimization phase causes buggy
code, the other phases in that level cannot be used. With
VISTA, the performance in cycles and instruction count of
an optimization phase is fed back to the developer, which
allows the developer to remove buggy or low-performing

phases and try others.
VISTA also allows the developer to manually specify

code transformations, which enables the developer to more
accurately tell the compiler what is desired. These transfor-
mations include changing and adding instructions, as well
as removing instructions that the compiler sees as necessary
for accurate code but the developer’s higher-level knowl-
edge indicates is not necessary for the application to prop-
erly function. These manual optimizations can lead to better
results from subsequent VISTA optimization phases.

VISTA’s graphical interface also allows the developer
to visualize the control flow of the code and immediately
inspect the results of applied optimizations. See [8] for
VISTA screenshots. The main VISTA GUI is split into two
halves. The left side, when in display mode, displays op-
timization phases and the resulting reduction in code size
and execution time. When in phase entry mode, the left side
contains buttons to select optimization phases. Towards the
bottom of the left side are navigational buttons that allow the
developer to step through each transformation that has been
applied. The right side displays the low-level code listing
within blocks, with arrows indicating the overall flow and
loop structure. This code listing is altered by the naviga-
tional buttons and it indicates the current state of the code.

Once the developer has entered some optimization
phases, the transformations are listed in the left side along
with performance results. The developer can then step
through each applied transformation in two steps. Before
the transformation is applied the relevant instructions are
highlighted in yellow. When the developer steps again, the
end of the transformation is reached; the modified, added
and/or deleted instructions are highlighted in red.

VISTA’s optimization feedback and its low-level indica-
tion of the implications of C statements gives the developer
or student valuable information on how to rewrite C code
and tune it. With VISTA’s feedback a student can also gain
in-depth knowledge of what optimizing compilers do and
how they do it. Also, through entering phase sequences and
hand transformations the developer can give the optimizer
higher-level knowledge of the application that would other-
wise be unavailable.

3. OPTIMIZING COMPILERS IN A DSP
LABORATORY

In order to teach the modern DSP development process to
students at the University of Illinois, a few years ago we in-
troduced a traditional optimizing compiler in the ECE 420:
DSP Laboratory course [6]. The students learn the trade-
offs, especially development and execution time, between
code developed in C and assembly. Another educational ob-
jective is to teach students a bit about how compilers work
so that they can use them more effectively. Students also



learn that the following development process is useful in
minimizing development time and maximizing application
performance [7]:

1. Develop algorithm on paper

2. Simulate in MATLAB

3. Develop and simulate more efficient implementations

4. Implement algorithm in C

5. Use library routines when available

6. Use optimizing compiler

7. Manually write assembly routines for key routines

Since we utilize TI’s TMS320C54X series DSPs, we in-
troduce TI’s optimizing C compiler in the course. The first
four labs are devoted to familiarizing the students with the
hardware, assembly language, and real-time implementa-
tion of basic DSP concepts such as FIR and IIR filtering and
multirate signal processing [6]. Assembly language is intro-
duced first because it better enables the students to focus on
real-time issues and intimately learning DSP architectures.
Therefore, we introduce the compiler in the fifth of six labs.
In this lab the students learn and experience the trade-offs of
C versus assembly by implementing key components of an
FFT-based spectrum analyzer in both C and assembly. They
also compile and compare efficiencies of two versions of the
FFT, one a library routine in hand-coded assembly and the
other an FFT routine written in C.

In the sixth lab the students are introduced to the DSP
optimization process, which they apply to optimizing a DSP
application [7] [8]. This application calculates power spec-
tral density estimates, via calculating some autocorrelation
points and computing the FFT, of a pseudo-noise (PN) se-
quence that has been colored by a feedback-only IIR fil-
ter. They are given a reference implementation of the appli-
cation in C, except for a hand-coded assembly FFT, and a
MATLAB implementation. They are asked to optimize, for
speed only, the PN-sequence generator, IIR filter, and au-
tocorrelation function. This application illustrates the use-
fulness of writing the start-up and “housekeeping” code in
C while optimizing critical routines by writing assembly by
hand. The students are allowed to optimize their code in
either C or assembly, and they are strongly encouraged to
follow the proper development process.

Students who achieve fast execution times discover that
they must rewrite these routines in assembly, but this is not
enough to get the fastest code. Although the students have
been given a MATLAB and C implementation, the algo-
rithms used in some of the routines are not the most effi-
cient. These algorithms therefore require some thought at
the theory and implementation level before the fastest ex-
ecution times can be obtained. Experience has shown that

introducing both C and assembly to DSP students in this
manner is effective in conveying the trade-offs of each de-
velopment method.

In order to introduce the students to interactive meth-
ods of optimizing C code, as well as giving the students a
more in-depth understanding of what optimizing compilers
do and how they do it, the optimization lab was recently
modified and VISTA was introduced. Data was also gath-
ered on the perceived educational and efficiency (both code
and developer time) value of interactive optimizing compil-
ers in general, and perceptions of the VISTA implementa-
tion of an interactive optimizing compiler. Therefore, the
students are asked to optimize each routine twice: once us-
ing VISTA only and once using any technique desired, such
as hand-coding in assembly or modifying the assembly out-
put of a compiler. The students are given a brief overview
of optimization techniques in the lecture; in the lab writeup
they are given one-sentence descriptions of VISTA’s opti-
mizations, and they are shown how to apply an example
optimization sequence in VISTA. The students are allowed
to modify the reference C implementation when optimizing
with VISTA.

Due to time limitations and current limitations in the TI
port of VISTA, the students couldn’t use hand transforma-
tions and were therefore limited to using VISTA’s optimiza-
tion phases in various combinations. Therefore, the primary
value of this first VISTA introduction in a DSP laboratory
course is in evaluating VISTA’s usefulness as a teaching
tool.

4. RESULTS

Upon completion of the optimization exercise, the students
were “interviewed” regarding their experiences with and
perceptions of VISTA and interactive optimizers in general.
In these interviews we attempt to ascertain what the stu-
dents learned. Do the students understand what optimizing
compilers do and how they do it? Were they introduced to
new instructions or efficient coding techniques that enabled
them to more quickly write assembly code by hand? Did
interacting with VISTA lead to discovering ways of more
efficiently writing C code? Do the students know the proper
optimization process? During the interview the students
were asked:

1. Was the VISTA optimization exercise attempted first?

2. Did you modify the C code?

3. Did interactive optimization help you identify/modify
inefficiencies in the C code?

4. Did interactive optimization help you write efficient
hand-coded assembly?



5. How are interactive optimizing compilers able or un-
able to assist you in obtaining efficient code?

6. What are the limitations of VISTA, and how can it be
improved?

7. Did you find any code in VISTA that you wanted to
change by hand?

8. What are some sequences that you have found useful?

While reactions to VISTA were mixed, more than half of
the students found inherent value in using optimizing com-
pilers as a teaching tool, and many believed that interactive
optimizing compilers could be valuable in real-world devel-
opment.

Students felt they didn’t have enough information on
what the optimization phases meant or did before using
VISTA, which is understandable given the limited time to
implement the many course objectives. Many students re-
sorted to randomly ordering optimization phases they found
useful. A few came up with orderings they believed would
improve the code, but other random orderings resulted in
better code. However, upon interactively optimizing the
code some students were able to learn how optimizations
were applied to the code, and these students believe they
achieved a better understanding of what many optimiza-
tions were.

Of those who attempted to complete the VISTA opti-
mization exercise first, some found new hand-coding opti-
mization ideas by looking at the assembly output of VISTA
or the TI compiler. However, a few did find new hand-
assembly optimization ideas through VISTA interaction.

Students enjoyed seeing the block and loop structure of
the code in VISTA. Since the code consisted of just a few
loops, typically the students were able to relate this structure
to the original C. Although students generally found it hard
to understand how VISTA’s assembly corresponded to indi-
vidual statements in the C code, some commented that they
also found the TI compiler’s output hard to understand; in-
teracting with VISTA enabled many of these students to bet-
ter understand how optimizing compilers obtain their final
assembly output. One student even commented that VISTA
seems to be a good tool for designing compilers!

While students generally found some educational value
in using VISTA, most students believed they needed more
experience with the tool to get code that is comparable in
efficiency to hand-coded assembly. However, a few were
able to identify instructions in VISTA that they wanted to
change or delete by hand to improve efficiency.

Finally, a significant number of students believed that
VISTA would be useful in complex real-world applications.
Some of these students thought sufficiently optimal code
could be achieved with VISTA, while others thought VISTA
would be a good start in writing optimal code.

5. CONCLUSION

Optimizing C compilers should be introduced in a modern
DSP laboratory course, and experience has shown that tra-
ditional C compilers can be effectively used in a course
in which assembly language programming is heavily em-
phasized. Interactive optimizing compilers have strong po-
tential in teaching DSP students about optimization tech-
niques and optimizing compilers. VISTA is a promising in-
teractive optimizing compiler, and students tended to learn
more about optimization than they would have with the TI
compiler. Students were unable to generate compiled code
that was more efficient than that produced by the standard
fixed sequence, but the routines assigned to optimize may
have been too small and simple to exploit the performance-
enhancing potential of interactive optimization.

6. REFERENCES

[1] D.L. Jones, “Designing effective DSP laboratory
courses,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, Vol. 5, 7-11 May 2001, pp. 2701–
2704.

[2] M.L. Kramer, M. Haun, S. Appadwedula, D.G. Sachs,
and D.L. Jones, “Effective Use of Projects in DSP Lab-
oratory Instruction” Proceedings of the First IEEE Sig-
nal Processing Education Workshop, Hunt, Texas, Oc-
tober 15–18, 2000.

[3] W. Zhao, B. Cai, D. Whalley, M. Bailey, R. van Enge-
len, X. Yuan, J. Hiser, J. Davidson, K. Gallivan, and D.
Jones “VISTA: A System for Interactive Code Improve-
ment” Proceedings of the ACM SIGPLAN Conference
on Language, Compilers, and Tools for Embedded Sys-
tems, June 2002, pages 155–164.

[4] M.E. Benitez and J. W. Davidson, “A portable global
optimizer and linker” Proceedings of the SIGPLAN’88
conference on Programming Language design and Im-
plementation, ACM Press, 329–338.

[5] Texas Instruments, “Optimizing C/C++ Compiler
User’s Guide” http://www-s.ti.com/
sc/psheets/spru103g/spru103g.pdf

[6] D.L. Jones, “Digital Signal Processing Laboratory
(ECE 420)” http://cnx.rice.edu/
content/col10236/1.13/

[7] M.D. Kleffner and D.L. Jones, “DSP Optimization
Techniques” http://cnx.rice.edu/
content/m12380/1.2/

[8] M.D. Kleffner, “Spectrum Analyzer: VPO/VISTA Op-
timization Exercise” http://cnx.rice.edu/
content/m12393/1.2/


