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ABSTRACT

Instruction fetch is an important pipeline stage for embedded processors, as it can

consume a significant fraction of the total processor energy. This dissertation describes

the design and implementation of two new fetch enhancements that seek to improve overall

energy efficiency without any performance tradeoff. Instruction packing is a combination

architectural/compiler technique that leverages code redundancy to reduce energy consump-

tion, code size, and execution time. Frequently occurring instructions are placed into a small

instruction register file (IRF), which requires less energy to access than an L1 instruction

cache. Multiple instruction register references are placed in a single packed instruction,

leading to reduced cache accesses and static code size. Hardware register windows and

compiler optimizations tailored for instruction packing yield greater reductions in fetch

energy consumption and static code size. The Lookahead Instruction Fetch Engine (LIFE) is

a microarchitectural technique designed to exploit the regularity present in instruction fetch.

The nucleus of LIFE is the Tagless Hit Instruction Cache (TH-IC), a small cache that assists

the instruction fetch pipeline stage as it efficiently captures information about both sequential

and non-sequential transitions between instructions. TH-IC provides a considerable savings

in fetch energy without incurring the performance penalty normally associated with small

filter instruction caches. Furthermore, TH-IC makes the common case (cache hit) more

energy efficient by making the tag check unnecessary. LIFE extends TH-IC by making use of

advanced control flow metadata to further improve utilization of fetch-associated structures

such as the branch predictor, branch target buffer, and return address stack. LIFE enables

significant reductions in total processor energy consumption with no impact on application

execution times even for the most aggressive power-saving configuration. Both IRF and LIFE

(including TH-IC) improve overall processor efficiency by actively recognizing and exploiting

the common properties of instruction fetch.
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CHAPTER 1

Introduction

1.1 Instruction Fetch

Modern microprocessor design and development requires careful consideration of execution,

power/energy, and other characteristics. Embedded systems are often further constrained

due to production costs and reliance on batteries. Unfortunately, it is often difficult

to improve one parameter without negatively affecting others; increasing clock frequency

to enhance performance also increases power consumption; code compression techniques

improve code density and voltage scaling reduces power requirements, but these may

increase execution time. While this has been the prevailing environment for embedded

processors, these same design constraints now challenge general-purpose processor design

as well. Instruction fetch is a critical pipeline stage in modern embedded processors that

can consume approximately one-third of the total processor energy on a StrongARM SA-

110 [56]. The work presented in this dissertation focuses on improving overall processor

efficiency through two distinct fetch enhancements that do not require any tradeoffs. The

first enhancement exploits static and dynamic instruction redundancy to provide compact

instruction representations that can be accessed in a more energy-efficient manner. The

second enhancement uses guarantees about future fetch behavior due to inherent instruction

fetch regularity to selectively enable or disable various portions of the fetch pipeline.

1.2 Instruction Register File

Figure 1.1 shows an example of a modern processor memory hierarchy including its data

register file. Caches are faster than main memory, however they are necessarily smaller

for cost, energy and performance reasons. Microprocessors often utilize a data register

file to provide quick, energy-efficient access to frequently used data values. Optimizing

1



Figure 1.1: Memory Hierarchy and Register Files

compilers promote these frequently used data memory locations to registers in a process

known as register allocation. However, there is no such analogue for frequently encountered

instructions. Based on our analysis of both static and dynamic instruction redundancy,

we developed the Instruction Register File (IRF) to provide a space-efficient and energy-

efficient method for accessing these important instructions. Instruction Packing is our joint

compiler/architectural technique for placing the most frequently accessed instructions into

an IRF. Since the IRF size is small (typically 32 instructions), multiple register references

can be packed together in a single instruction, leading to code size reductions. Instruction

packing also allows energy to be saved, since some instruction cache accesses can now be

replaced by cheaper register file accesses. Execution time is also slightly improved due to a

reduction in size of the cache working set.

Our research has focused on a prototype implementation of the IRF on top of the

MIPS architecture [28]. The initial IRF supported parameterization to help capture greater

redundancy in applications. We extended this work to include register windows, which

allowed for increased IRF utilization without complicating instruction encoding [31]. The

IRF has also been evaluated with other energy saving features such as an L0 instruction

cache [30, 32] and a loop cache [31]. We have explored adapting traditional compiler

optimizations such as register re-assignment, instruction scheduling, and instruction selection

to improve Instruction Packing [33]. The IRF has also been used to decouple instruction

fetch from the rest of the pipeline, leading to new energy/performance design points due

to the asymmetry of pipeline bandwidth. The combination of these techniques results in

an instruction set architecture (ISA) enhancement that reduces fetch energy, code size and

execution time without any negative tradeoffs.

2



1.3 Exploiting Guarantees of Fetch Behavior

Filter or L0 instruction caches (L0-IC) are small, and typically direct-mapped caches placed

before the L1 instruction cache (L1-IC) [40, 41]. Due to their small size, these caches reduce

the average energy required for fetching an individual instruction. Unfortunately, the small

size of the L0-IC can cause additional cache capacity and conflict misses. Any such miss

in the L0-IC incurs an additional 1-cycle miss penalty prior to fetching the appropriate line

from the L1-IC. The Tagless Hit Instruction Cache (TH-IC) is an alternative configuration

for a small cache that allows it to be bypassed on potential misses [34]. Using just a few

specialized metadata bits, instruction fetch behavior can be accurately tracked, and TH-IC

can supply the fetched instruction when it is “guaranteed” to reside in it. In addition to

capturing the majority of small cache hits, these guaranteed hits no longer require a tag

comparison, thus further reducing fetch energy consumption.

Although caches account for the bulk of energy consumption in the fetch stage, there are,

however, other components of instruction fetch that can also have a sizable impact on the

processor energy characteristics. In particular, speculation logic can account for a significant

percentage of fetch energy consumption even for the limited speculation performed in scalar

embedded processors. In fact, with advances in low-power instruction cache design, these

other fetch components can dominate instruction fetch energy requirements. To complement

TH-IC, we designed the Lookahead Instruction Fetch Engine (LIFE), which is a new approach

for instruction fetch that attempts to reduce access to these power-critical structures when it

can be determined that such an access is unnecessary [29]. LIFE uses the metadata-tracking

capabilities of TH-IC to selectively disable these components when the fetched instruction

is guaranteed to be non-speculative. This approach contributes further energy savings and

does not negatively impact performance. LIFE can also be used as a filter for later pipeline

decisions. We present a case study using next sequential line prefetch to show that LIFE

can eliminate a significant fraction of useless prefetches, thereby saving more energy.

1.4 Contributions and Impact

The major contributions of this dissertation can be summarized as follows:

1. We designed, implemented and thoroughly evaluated a new ISA enhancement known

as Instruction Packing [28]. This technique utilizes an Instruction Register File

3



(IRF) to provide energy-efficient and space-efficient access to the frequently occurring

instructions in an application. Unlike other code compression and fetch energy

reduction techniques, Instruction Packing simultaneously reduces energy consumption,

code size and execution time with no negative tradeoffs.

2. We further enhanced the efficacy of Instruction Packing with an IRF through hardware

extensions and compiler optimizations [31, 33]. We have shown that the IRF is

complementary with other fetch energy reduction techniques [30, 31, 32]. The IRF has

also been explored as a technique for providing greater design flexibility for high-end

processors through the decoupling of instruction fetch from the rest of the pipeline [32].

3. We designed, implemented and thoroughly evaluated a small cache design known as

the Tagless Hit Instruction Cache (TH-IC) [34]. TH-IC completely eliminates the

performance penalty associated with other filter cache designs by making guarantees

about future fetch behavior. Furthermore, TH-IC makes the common case (cache hit)

more energy efficient by making the tag check unnecessary.

4. We designed, implemented and thoroughly evaluated a novel fetch microarchitecture

known as the Lookahead Instruction Fetch Engine (LIFE) [29]. LIFE uses additional

metadata within a TH-IC to selectively disable the speculative components in instruc-

tion fetch. In doing so, LIFE is able to provide even greater fetch energy savings than

previously achievable with no degradation in performance.

This research has the potential to have a significant impact on forthcoming embedded

architectures. Both the Lookahead Instruction Fetch Engine and the Instruction Register

File provide a significant savings in overall fetch energy. While the Instruction Register File

requires some small changes to the existing ISA, the Lookahead Instruction Fetch Engine is

purely microarchitectural, and can thus be integrated with almost any existing ISA. Research

on the IRF has been generously supported by NSF grant CNS-0615085. Patents have been

filed for both IRF and LIFE. We believe that these enhancements will likely be employed in

future generations of embedded processors.
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1.5 Dissertation Outline

The remainder of this dissertation is organized as follows. Chapter 2 discusses the design,

implementation and evaluation of Instruction Packing with an Instruction Register File.

Chapter 3 describes the design, implementation and evaluation of the Lookahead Instruction

Fetch Engine and the Tagless Hit Instruction Cache. Chapter 4 provides an overview of

related work in the area of instruction fetch enhancement. Chapter 5 outlines potential areas

for further exploration. Finally, Chapter 6 presents our conclusions regarding Instruction

Packing and the Lookahead Instruction Fetch Engine.
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CHAPTER 2

Instruction Packing with an IRF

This chapter presents Instruction Packing, which is a joint compiler/architectural technique

that we have developed for improving the overall efficiency of instruction fetch [28]. We

also discuss several enhancements that we have made including the addition of hardware

register windowing [31], and the adaptation of compiler optimizations [33]. Instruction

packing has also been shown to be complementary to several other fetch energy reduction

techniques [30, 32].

2.1 Motivation – Instruction Fetch Redundancy

Instruction fetch is an important pipeline stage for embedded systems, in that it can consume

up to one-third of the total processor energy on a StrongARM SA-110 [56]. There are

two primary areas for improvement in instruction fetch: enhancements to the instruction

fetch mechanism and storage (caching), and enhancements to the instructions being fetched

(ISA encoding). Improvements to the fetch mechanism often target energy efficiency and

performance, while modifications to the instruction set encoding primarily focus on reducing

static code size. These areas are partially related, in that instruction set encoding can

often impact the strategies employed for instruction fetch and storage. For example, the

complexity of x86 instructions necessitates the use of micro-op encoding and storage in trace

caches for the Pentium-4 to maintain an adequate stream of instructions for execution [35].

Caching techniques have greatly improved the fetch of instructions from memory,

however, instruction caches still require a significant amount of energy to operate since

they are a relatively flat storage method. Caches need to be large enough to hold a

significant portion of the working set of an application, and flexible enough to handle

divergent control flow. In order to meet these performance goals, designers employ larger

6
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Figure 2.1: Static and Dynamic Instruction Redundancy

caches with increasing levels of associativity, which significantly increases overall energy

utilization. Many RISC-style embedded architectures employ fixed-length encoding of

instructions, which maximizes functionality and programmability, while simplifying decode.

The drawback to this style of encoding is that frequently used simple instructions occupy

the same space as infrequent complex instructions, leading to poor code density.

Figure 2.1 illustrates the motivation for targeting instruction storage and encoding in

embedded systems. We select the largest application from each of the six categories of the

MiBench suite [27], profiling each with its small input set, while gathering both static and

dynamic instruction counts for each distinct instruction executed. The left graph shows static

instruction redundancy, while the right graph shows dynamic instruction redundancy. Both

graphs are plotted cumulatively after sorting the instructions from most frequent to least

frequent. The x-axis shows sorted distinct instructions, and the y-axis shows the percentage

of static occurrences or dynamic instruction fetches to the most common instructions. The

graph shows that 30.95% of the static and 66.51% of the dynamic instruction stream can

be represented using just 32 distinct instructions (including operands). Although code

compression techniques focus on eliminating this type of application redundancy, this result

invites further exploration of how an energy efficient embedded processor should handle the

most frequently occurring instructions in an application.

2.2 Packing Instructions Into Registers

We developed an approach for improving embedded system fetch efficiency that places

the most frequently occurring instructions into registers in a small register file [28]. This

7



approach allows multiple instructions to be packed together and specified (by register index)

in a single instruction fetched from the instruction cache (IC). The process of coalescing

multiple instruction register references together is known as Instruction Packing. Using a

register file not only saves energy by reducing the number of instructions referenced from

the IC, but also saves space by reducing the number of instructions stored in memory, and

can improve execution time by streamlining instruction fetch and improving the IC hit rate.

Instruction packing allows a designer to tighten the encoding of an application’s frequent

instructions in an application-independent manner.

Two new SRAM structures are required to support this instruction fetch optimization.

The first is an Instruction Register File (IRF) to hold common instructions as specified

by the compiler. The second is an Immediate Table (IMM) containing the most common

immediate values used by instructions in the IRF. The ISA is modified to support fetching

multiple instructions from the IRF. By specifying multiple IRF instructions within a single

32-bit instruction fetched from the IC, we can reduce the number of instructions in the

program (saving space), reduce references to the IC (saving power), and effectively fetch

more instructions per cycle (improving execution time).

The IRF can be integrated into the pipeline architecture at the start of instruction decode,

since the decode stage is not typically part of the critical path. If this is not the case for a

particular pipeline implementation, then the IRF can be modified to hold partially decoded

instructions, and IRF access can be overlapped from the end of instruction fetch to the start

of instruction decode, reducing cycle time impact. Figure 2.2 shows the integration of the

IRF at the beginning of instruction decode. If the instruction fetched from the IC is a packed

instruction, instruction index fields select which of the IRF instructions to fetch and pass

along to the next pipeline stage. Note that although the diagram only shows a single port,

the IRF can be constructed with enough read ports to accommodate the bandwidth of the

processor pipeline.

2.3 ISA Modifications

This section describes the changes necessary for an ISA to support references to a 32-

instruction register file. We chose the MIPS ISA, since it is commonly known and has a

simple encoding [61]. Instructions stored in memory will be referred to as the Memory ISA

or MISA. Instructions placed in registers will be referred to as the Register ISA or RISA.
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Figure 2.3: Tightly Packed Format

Note that the MISA and RISA need not use exactly the same instruction formats, however

this dissertation presents only minor modifications to the RISA to keep the processor design

from becoming too complex. MISA instructions that reference the RISA are designated as

being packed.

2.3.1 Tightly Packed Instructions and Parameterization

Figure 2.3 shows the newly added T-type format for tightly packed instructions. This format

allows several RISA instructions to be accessed from a single MISA instruction. Since the

IRF contains 32 entries, a tightly packed instruction can consist of up to five instructions from

the IRF. One IRF entry is always reserved for nop. Tightly packed instructions can support

fewer than five RISA instructions by padding with the appropriate number of nop references.

Hardware support halts execution of the packed instruction when a nop is encountered so

there is no performance degradation.

Preliminary studies showed that I-type instructions account for 51.91% of static instruc-

tions and 43.45% of dynamic instructions executed. Further examination of immediate

values present in these instructions revealed that many common values are used in a variety
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of instructions. By parameterizing the IRF entries that refer to immediate values, more

instructions can be matched for potential packing. Parameterization however requires

additional bits to encode the necessary value to fetch. The T-type instruction format, shown

in Figure 2.3, provides encoding space for up to two immediate parameter values per tightly

packed MISA instruction.

We found that using a small range of values was much less effective than referencing the

most frequently used immediates. For example, when five bits are used, the static percentage

of immediates represented increases from 32.68% to 74.09%, and the dynamic percentage

increases from 74.04% to 94.23%. Thus, we keep the immediate values in the IMM (see

Figure 2.2), so that a packed instruction can refer to any parameter value. Each IRF entry

also contains a default immediate value, so that these instructions can be referenced without

using the additional parameter field in a tightly packed instruction. Since the IMM contains

32 entries, five bits are used to access a parameter.

There are two major options available for parameterized instruction packs. One option

consists of up to four IRF entries along with a single parameter. The other option allows

for up to three IRF entries with two parameters. The opcode used with the encoding of the

S bit dictates which IRF instruction uses each available parameter, while any other I-type

instructions in the pack can use their default immediate values.

The T-type instruction format requires additional opcodes to support tightly packed

instructions. There are four different instructions that can use the single parameter when

referencing an instruction containing up to four IRF entries. Similarly, there are three

possibilities for using two parameters when referencing an instruction containing up to three

IRF entries. Including the tightly packed instruction with no parameterization, there are

eight new operations to support. Fortunately the S bit allows these eight operations to be

represented compactly with only four actual machine opcodes.

Similar to conventional dictionary compression techniques, branch instructions are trou-

blesome to pack directly since the packing process will undoubtedly change many branch

offset distances. The addition of parameterized instruction packs greatly simplifies packing

of branches. Preliminary testing shows that approximately 63.15% of static branches and

39.75% of dynamic branches can be represented with a 5-bit displacement. Thus, a parameter

linked to a RISA branch instruction would refer to the actual branch displacement and not

to the corresponding entry in the IMM. Once packing is completed, branch displacements
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Figure 2.4: MIPS Instruction Format Modifications

are recalculated and adjusted within the corresponding packed instructions.

MIPS jump instructions use the J-type format, and are not easily packed due to the use

of a target address. To remedy this, we can encode an unconditional jump as a conditional

branch that compares a register to itself for equality when the jump offset distance can

be represented in five bits or less. This type of instruction selection optimization allows

Instruction Packing to support parameterizable jump entries.

2.3.2 Loosely Packed Instructions

Another way to make IRF fetching more attractive is to be able to reclaim unused space

in the traditional instruction set as well. This type of instruction is called loosely packed.

A MISA instruction using this format allows two instructions to be fetched for the price

of one by improving use of encoding space in the traditional MIPS instruction formats.

In a loosely packed instruction, a traditional MIPS instruction is modified to contain an

additional reference to an instruction from the IRF. The traditional instruction is executed

followed by the packed IRF instruction.

Figure 2.4(a) shows traditional MIPS instruction formats, and Figure 2.4(b) shows the

proposed modifications to allow loose packing. The IRF inst field replaces the infrequently

used shamt field of an R-type instruction. Similarly, for the I-type instruction format, we

reduce the size of the imm field to include an IRF instruction reference. J-type instructions

are left unchanged, since they will not be used for loosely packing additional instructions.

Several restrictions must be placed on the MIPS ISA to support these adaptations.

Immediate values are reduced from 16 bits to 11 bits. We must therefore change the lui

instruction, which loads a 16-bit value into the upper half of a register and is used to
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construct large constants or addresses. The modified lui loads upper immediate values of

21 bits by using the 16 immediate bits of a traditional I-type instruction along with the

previously unused 5-bit rs field. The new lui instruction cannot be loosely packed with

an additional instruction since all 32 bits are used. Removing the shamt field from R-type

instructions forces shift instructions to slightly change format as well. Shifts are now encoded

with the shamt value replacing the rs register value, which is unused in the original format

when shifting by a constant value. Additional opcodes or function codes to support the

loosely packed format are unnecessary.

Although the IRF focuses on packing common instructions together into large packs, the

loosely packed instruction serves an important role. Often an individual IRF instruction can

be detected, yet its neighboring instructions are not available via the IRF. Without loosely

packing instructions, we could not capture this type of redundancy, and thus we could not

achieve the same levels of improvement.

2.4 Compiler Modifications

This section provides an overview of the compilation framework and necessary modifications

to carry out an evaluation of Instruction Packing. The compiler is a port of VPO (Very

Portable Optimizer) for the MIPS architecture [7]. Additional modifications allow it to be

used with the PISA target of the SimpleScalar toolset for gathering performance statistics [3].

Simulators are then instrumented to collect relevant data regarding instruction cache and

IRF access during program execution.

The hardware modifications listed in Section 2.3 have a definitive impact on the code

generated by the compiler. Immediate values are constrained to fit within 11 bits, or are

constructed in similar fashion as traditional immediates with sizes greater than 16 bits. We

find that this can slightly lengthen code for an application, but the initial size increase is far

overshadowed by the code size reduction provided by instruction packing.

The GNU assembler MIPS/PISA target provided for the SimpleScalar toolset allows

the use of a variety of pseudoinstructions to ease the job of the compiler writer. These

pseudoinstructions are later expanded by the assembler into sequences of actual hardware

instructions. Detection of RISA instructions at compile time is unnecessarily complicated

by the presence of such pseudoinstructions. To reduce this complexity, we expand most of

these pseudoinstructions at compile time, prior to packing instructions. The load address
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Figure 2.5: Compiling for IRF

pseudoinstruction is not expanded until assemble/link-time since we currently do not pack

instructions that refer to global memory addresses. A preliminary study for the MIPS/PISA

target shows that even packing all load address instructions yields very little improvement

due to their relative infrequency.

Figure 2.5 shows the flow of information at compile-time. VPO and the PISA toolchain

are used to create the executable, which can then be executed and/or profiled using

SimpleScalar. Dynamic profile information is then extracted and passed to irfprof, an

analysis tool for selecting which instructions will reside in the IRF. This tool then supplies the

compiler with the new IRF and IMM entries to use when recompiling the application. Note

that it is possible to remove the need for profiling by allowing the compiler to approximate

dynamic frequencies by looking at loop nesting depths and the entire program control flow

graph. The IRF and IMM are filled with the appropriate instructions or immediate values

at load time, as specified by a new section in their executable file.

2.4.1 Simple IRF Instruction Promotion

The IRF is clearly a limited storage space, so instructions selected to populate it must provide

the greatest benefit to program performance. Calculating the optimal set of instructions

would be too time-consuming during compilation, so a heuristic is used. The current method

uses a greedy algorithm based on profiling the application and selecting the most frequently
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Read in instruction profile (static or dynamic);
Calculate the top 32 immediate values for I-type instructions;
Coalesce all I-type instructions that match based on parameterized immediates;
IRF[0] ← nop;
foreach i ∈ [1..31] do

IRF[i] ← highest frequency instruction still in list;

Figure 2.6: Selecting IRF Instructions

occurring instructions as well as default immediate values.

Figure 2.6 shows the process of selecting the IRF-resident (RISA) instructions. The

algorithm begins by reading the instruction profile generated by either static and/or dynamic

analysis. Next, the top 32 immediate values are calculated and inserted as part of the IRF for

parameterized immediate values. Each I-type instruction that uses one of the 32 immediate

values is now a candidate for parameterization, and it is combined with I-type instructions

that are identical except for referring to different parameterizable immediate values. The

most frequent immediate value from each I-type group is retained as the default value. After

building the list of instructions and calculating the top immediate values, the first IRF entry

is reserved for nop. This guarantees that one instruction followed by another that is not

in the IRF can be handled without wasting processor cycles. At this point, the algorithm

selects the highest 31 instructions from the list which is sorted by combined frequency.

2.4.2 Packing Instructions

Since packing is currently done by the compiler, the source program must be recompiled

after IRF selection. After profiling the original optimized application, VPO is supplied with

both an IRF as well as the top immediate values available for parameterization via the

IMM. Each optimized instruction is examined first for direct matches, and then tested for

matching the IRF with a parameterized immediate value. The instruction is marked as

either present in the IRF and/or present in the IRF with parameterization, or not present.

Once each instruction is categorized, the compiler proceeds with packing the appropriately

marked instructions.

Instruction packing is performed per basic block, and packed instructions are not allowed

to span basic block boundaries. Targets of control transfers must be the address of an

instruction in memory (not in the middle of a tightly packed instruction). Table 2.1
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Table 2.1: Packed Instruction Types

Name Description
tight5 5 IRF instructions (no parameters)
tight4 4 IRF instructions (no parameters)
param4 4 IRF instructions (1 parameter)
tight3 3 IRF instructions (no parameters)
param3 3 IRF instructions (1 or 2 parameters)
tight2 2 IRF instructions (no parameters)
param2 2 IRF instructions (1 or 2 parameters)
loose Loosely packed format
none Not packed (or loose with nop)

summarizes the different packed instruction types that are currently available in decreasing

order of preference. The packing algorithm operates by examining a sliding window of

instructions in each basic block in a forward order. The algorithm attempts each of the pack

types in turn, until it finds a match. Packs made up of instructions only are preferred over

parameterized packs referencing the same number of instructions. The tightly packed format

supports up to five IRF entries, with any unused slots occupied by the nop located at IRF[0].

When a pack is formed, the instructions are merged into the appropriate instruction format.

The sliding window is then advanced so that the next set of instructions in the block can be

packed.

After Instruction Packing is performed on all basic blocks, packing is re-attempted for

each block containing a branch or jump that does not reside in a tightly packed instruction.

One insight that makes iterative packing attractive is the realization that branch distances

can decrease due to Instruction Packing. This decrease can cause branches or jumps that

were previously not parameterizable via the IRF to slip into the 5-bit target distance (-16

to +15). After detecting this, packing is then re-applied to the basic block. If the end result

is fewer instructions, then the new packing is kept; otherwise the branch is ignored, and the

block is restored to its prior instruction layout. Any changes that cause instructions to be

packed more densely triggers re-analysis of IRF instructions, and the process continues until

no further improvements are possible.

Figure 2.7 shows the process of packing a simple sequence of instruction. The IRF shows

five entries including nop, and the IMM includes 32 and 63 as possible values. The original

code is mapped to corresponding IRF entries, both with and without parameterization. The
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Figure 2.7: Packing Instructions with an IRF

branch can be parameterized since -8 (instructions) can be encoded as a branch offset within

the 5-bit parameter field. Preliminary examination of the basic block reveals a non-IRF

instruction followed by a default packable IRF instruction. These two are combined into a

single loosely packed instruction. Advancing our sliding window, we see 3 IRF instructions

with two requiring parameterization. This code sequence is packed by grouping the three

instructions together as a param3 AC tightly packed instruction. The AC denotes the

instructions receiving the parameters, in this case the first and third. Note that when

packing, the branch offset is adjusted to -5, since three of the preceding instructions have

been compressed via the IRF. The breakdown of the various fields in each of the packed

instructions is also shown in the figure.
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Table 2.2: MiBench Benchmarks
Category Applications

Automotive Basicmath, Bitcount, Qsort, Susan
Consumer Jpeg, Lame, Tiff
Network Dijkstra, Patricia
Office [Ghostscript], Ispell, Rsynth, Stringsearch
Security Blowfish, Pgp, Rijndael, Sha
Telecomm Adpcm, CRC32, FFT, Gsm

2.5 Evaluation of Basic Instruction Packing

To measure the efficacy of packing instructions into registers, we selected several benchmarks

from the MiBench suite. MiBench consists of six categories of embedded software applica-

tions, each containing multiple entries. Table 2.2 shows the benchmarks used to determine

the potential benefits of using an IRF with respect to code size, energy consumption, and

execution time. The Ghostscript benchmark was used in all IRF studies except for the

compiler optimization study shown later in this chapter. These benchmarks will also be

used for evaluating our Lookahead Instruction Fetch Engine in Chapter 3. Experiments

were performed using the small input data sets, although similar results for all benchmarks

have been obtained using the large input data sets as well.

For the static code size results, an instrumented version of SimpleScalar version 3.0 is used

to collect relevant data for each benchmark [3]. Both static and dynamic profile data were

obtained from SimpleScalar. In this study, only the source code provided for each benchmark

was subjected to profiling and Instruction Packing. Library code, although linked statically

for SimpleScalar, is left unmodified.

Table 2.3 compares the instruction mix by IRF type when profiling for static code

compression versus dynamic execution. The percentages are calculated using fetches from

the IC. Thus fetching an unpacked instruction and a packed instruction are equivalent, but

the packed instruction represents more executed instructions. With dynamic profiling, we see

larger pack sizes, since we can pack many instructions from the same frequently-executed

loop bodies. Static packing can pack more instructions overall, but relies heavily on the

loosely packed format.

Figure 2.8 shows the reduction in code size for Instruction Packing with an IRF, as

well as the enhancements made. Note that these results correspond to using a static
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Table 2.3: Instruction Mix with 32-entry IRF

Pack Type Static % Dynamic %

Not packed 84.94 65.24
Loosely packed 3.91 3.40
Tight2 3.22 3.19
Tight3 0.90 2.60
Tight4 0.98 3.14
Tight5 1.49 13.35
Param2 2.07 2.85
Param3 1.38 1.61
Param4 1.09 4.60

Figure 2.8: Reducing Static Code Size

profile for instruction packing. 100% corresponds to the initial size of the compiled code

without packing. Packing instructions alone reduces code to 83.23% of its original size.

Parameterizing immediate values with the help of the IMM further reduces code size to

81.70%. There is a slight degradation in code density for the security benchmarks when

performing parameterization due to a reduction in the availability of certain loosely packable

instructions that now require parameterization. Further in this dissertation, we improve this

particular scenario by employing better metrics for instruction promotion.

Clearly, parameterizing immediates increases our ability to pack instructions. For

instance, we find that function prologue and epilogue code on the MIPS is easily param-

eterized. This leads to an increased ability to pack local variable loads and stores, since
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the corresponding instructions are already available in the IRF and the IMM can supply

necessary parameters. Additionally, the IMM allows us exploit simple transformations for

increasing the redundancy of semantically equivalent operations.

A modified version of the sim-panalyzer simulator is used to gather the energy consump-

tion data for the benchmarks in this study [69]. Sim-panalyzer calculates approximations

of area size and number of gates for each component and ties these numbers to the cycle-

accurate simulation provided via SimpleScalar. We modified the original Alpha port of

sim-panalyzer to match the MIPS. The resulting energy estimates are not exact, but are

accurate enough to support our claims.

The energy savings come from two sources. First, applications can complete in fewer

cycles due to the increased fetch rate that the IRF provides. Second, there are fewer accesses

to the IC and memory as approximately 55% of instructions are fetched from the IRF. An

access to the IC has an approximately two orders of magnitude higher energy cost than an

access to a register file. A memory access is approximately another two orders of magnitude

more costly than an IC hit. Additionally, subsequent fetches from the IRF need not access the

ITLB, branch predictor, branch target buffer, or return address stack, since these components

still operate at the MISA level only.

Figure 2.9 shows the energy consumed during instruction fetch compared to the unpacked

versions of the programs. On average, we obtain a 37% reduction in energy consumed by

instruction fetch. Much of this savings comes from a reduction in number of IC references,

with additional savings from a reduction in IC misses for some of the network and automotive

applications and a reduction in execution time for the security applications. For these

applications, instruction fetch energy comprises 30% to 45% of the total power requirements.

In most benchmarks, the improvements in execution time are minimal, with most

programs executing in 98% to 100% of the original number of cycles. Average execution

time savings was 5.04%, due primarily to three of the security benchmarks: blowfish, pgp

and rijndael executed in 59%, 61% and 67%, respectively, of their original cycles. After

Instruction Packing, the working set of these applications fits better into cache, and they

have far fewer IC misses. The performance gains, though small for many of the benchmarks,

also allow the programs to finish in fewer cycles, and this contributes to the overall energy

reduction. Although the collected measurements are for fetch energy, the fetch power

consumption results are similar for 5 of the 6 categories, since the execution times are
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Figure 2.9: Reducing Fetch Energy/Exec. Time

approximately the same. Due to the improved execution time of many security benchmarks,

their fetch power savings would be proportionally lower than their overall fetch energy

savings.

2.6 Improving IRF Utilization via Register
Windowing

The IRF has also been extended to support additional availability of instructions, both

through software and hardware [31]. As with other techniques, increasing the size of the IRF

yields diminishing returns. The IRF is energy efficient because it is smaller and less complex

than an instruction cache. Code size is reduced because the IRF specifiers can be packed

together effectively. If we increase the addressable area in the IRF, it will require greater

energy to operate, and may possibly need to use less efficient RISA encodings. Software

windowing seeks to change the IRF contents dynamically on function calls and returns,

while hardware windowing attempts to cut back on some of the overhead due to software

windowing.
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2.6.1 Software Windowing

The baseline IRF architecture assigns the IRF-resident instructions at load-time for the

duration of the application’s execution. Since the instructions in the IRF were unchanged by

the application during execution, the benefits of the IRF could be reduced if the application

has phases of execution with radically different instruction composition [68]. No individual

phase will be able to achieve optimal packing with a single statically loaded IRF, since only

the most frequently executed instructions from each phase will exist in the IRF. A natural

extension to improve IRF utilization is to enable the modification of instructions in the IRF

during program execution. This will facilitate a better selection of instructions for each phase

of the program execution. One approach for handling varied phase behavior is to extend the

architecture with load irf instructions and have the compiler promote instructions to the

IRF at run-time. This approach is similar to data register promotion via register allocation.

IRF contents at a particular execution point can be viewed as an IRF window, and each

function could logically place some set of instructions into the window. These windows could

even be shared amongst several functions to reduce the switching costs necessitated by call

and return instructions.

Functions are natural entities to allocate to windows since they are compiled and analyzed

separately. Earlier work on exploiting instruction registers used the entire execution profile

to decide which instructions would be allocated to the IRF for the entire execution. In

effect, one can view the prior work as allocating all of the functions to a single window.

When multiple windows are available, we must decide how to partition the set of functions

in a program among these windows. The goal is to allocate functions whose set of executed

instructions are similar to the same window so that the windows can be best exploited.

Instructions can be inserted that load an individual IRF entry from memory. Thus,

there will be a cost associated with switching IRF windows. To assess how effective this

approach can be, we devised an algorithm that takes into account the cost of switching the

instructions available via the IRF. This algorithm is shown in Figure 2.10. We first profiled

each application to build a call graph with edges weighted by the total number of calls

between each pair of functions. Initially all functions start as part of a single IRF window.

We apply a greedy approach to adding partitions, selecting the most beneficial function to

be either placed in a new partition of its own or merged with another existing partition.
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Read in instruction profile for each function;
Read in callgraph along with estimated edge weights;
Merge all functions into a single IRF window;
changes = TRUE;
while changes do

changes = FALSE;
best savings = 0;
split type = NONE;
foreach function i that has not been placed do

new savings = benefit of placing i in a new window; // 1) Find maximum benefit split,
if new savings > best savings then

best savings = new savings;
split function = i;
split type = NEW WINDOW;

foreach function i that has not been placed do
foreach window k from 1 to n-1 do

new savings = benefit of placing i in window k; // 2) Find maximum benefit merge
if new savings > best savings then

best savings = new savings;
split function = i;
split window = k;
split type = ADD TO WINDOW;

if best savings > 0 then
if split type == NEW WINDOW then

create a new window n and move split function into it; // 3a) Perform the split,
n += 1;

else
//split type == ADD TO WINDOW
move split function into split window; // 3b) Or perform the merge

changes = TRUE;
mark split function as placed;

Figure 2.10: Partitioning Functions for Software IRF Windows

The goal of this algorithm is to keep functions in the same window unless the benefit for

switching windows outweighs the cost of additional instructions to load and restore IRF

windows. Each time we calculate the cost of allocating a function to a specific window, we

also include the switching cost if the function being allocated either invokes or is invoked by

a function in a different window. We determine the difference in IRF entries between the two

windows and assess the cost of loading the instructions for the new window at the point of

the call and loading the instructions for the old window at the point of the return. One can

view this cost as a lower bound since it may be difficult to keep the common instructions in

the same IRF entry locations since a function may be invoked by many other functions using
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different windows. Additionally, we only place each function in a partition at most one time

in order to reduce the partitioning overhead. Once the partitions have been constructed, the

compiler determines which instructions can be packed and at what call sites IRF loads must

occur to maintain the correct contents of the IRF.

Using a modified SimpleScalar simulator, we evaluated the effectiveness of applying

a software partitioning against the single statically allocated IRF. Figure 2.11 shows the

results for performing software partitioning on each benchmark. Each benchmark is shown

individually along with the averages for each category and the entire suite. The software

window approach obtains an average fetch cost of 54.40% compared to not using an IRF,

while the original single IRF only obtains 58.08%. Several of the benchmarks perform worse

after packing instructions with software windows. This is due to the heuristic used for

choosing which instructions to pack. In the single IRF case, only the extremely frequent

instructions from tight loops become packed, leading to a great initial savings. This is

particularly true for the applications with a few dominant loops. The greedy heuristic used

to partition the functions can underestimate the overhead of a function removed from the

primary partition early in the processing because it assumes that unprocessed functions will

not increase the overhead. Of course some of these later functions will be placed in different

partitions increasing the overhead. The smaller the benefit of partitioning, as seen in some

of the smaller applications, the more likely inefficiencies in the heuristic will negate the

advantage of performing IRF partitioning. The larger benchmarks see marked improvement

(up to 31% savings with Lame), as they are more likely to exhibit different phases of execution

and can better partition their phase behavior using multiple IRF windows.

The number of software partitions allocated for each benchmark ranges from 1 through

32 (Pgp) with a median of only 4 and a mean of 8.33. The relatively small number of

partitions reduces the overhead of loading instructions into the IRF by reducing the number

of function calls that require a new set of instructions placed into the IRF. Each call site may

also only change a subset of the IRF entries since the IRF windows may contain some of the

same instructions. In fact, the average number of IRF entries that differ between partitions

is 24.54, so the overhead for each function call between different IRF partitions averages 49

new instructions — half each for allocating the new instruction and restoring at the function

return. The small number of partitions also allows us to consider a hardware solution that

can eliminate most of the overhead of loading a single IRF in favor of providing multiple
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Figure 2.11: Reducing Fetch Energy by Software Partitioning IRF Windows

IRF windows in the microarchitecture.

2.6.2 Hardware Windows

We found that applying software windowing techniques to the IRF can lead to reductions

in fetch cost, particularly for large programs with varying phase behaviors [31]. One of the

problems for smaller programs however is the added overhead of switching IRF windows

in software. In addition, the software partitioning approach requires an explicit call graph.

This approach does not enable functions called through pointers to be effectively partitioned

since this would make it difficult, if not impossible, to determine which IRF entries must be

loaded. We also evaluated an IRF design supporting several IRF windows that are filled at

load time thus eliminating the switching overhead. Since we know that most programs use

only a small number of partitions anyway, it is feasible to add a limited number of windows

into the microarchitecture and still see the power savings — without the overhead.
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...

IRF windows

functions

Figure 2.12: Example of Each Function Being Allocated an IRF Window

Register windows have been used to avoid saving and restoring data registers. On the

SPARC architecture, the windows are arranged in a circular buffer [77]. A register window

pointer (RWP) is used to indicate the current window that is to be accessed on each register

reference. The RWP is advanced one window when entering a function and is backed up

one window when leaving a function. When the RWP is advanced onto an active window

(an overflow), then an exception occurs and the window’s contents are spilled to memory.

When the RWP is backed up onto a window that does not contain the correct contents (an

underflow), then an exception occurs and the window’s contents are loaded from memory. A

circular buffer is an appropriate model for holding these data values since the data registers

are used to contain values associated with function activation records, which are allocated

in a LIFO manner.

Unlike data values associated with function activation records, the instructions associated

with each function are fixed at compile time. Thus, we modified our compiler to statically

allocate each function to a specific window. Figure 2.12 depicts both functions and the IRF

windows associated with them. While the functions can vary in the type of instructions

and their frequency of execution, the IRF windows all have the same size. The drawback of

raising exceptions due to overflowing and underflowing data windows on the SPARC does

not occur in our design due to each function being statically allocated to an instruction

window.

In order to reduce the overhead of switching from one window to another, we encode the

window to be used by the called function as part of the call instruction’s target address. The

MIPS call instruction uses the J format shown at the top of Figure 2.13. The modified call

instruction uses the same format, but the high order bits are now used to set the instruction
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opcode

6 bits

target address

26 bits

opcode actual target addresswindow

Figure 2.13: Encoding the IRF Window Number As Part of the Call Target Address

RWP (IRWP) and only the low order bits are used to update the program counter. While

this change does decrease the maximum size of programs from 226 instructions, even retaining

only 20 bits for the actual target address would allow over two million (now more compressed)

instructions, which should be more than enough for almost all embedded applications.

Rather than just saving the return address in a data register ($31 on the MIPS), the call

instruction also saves the value of the current IRWP. Thus, the semantics of the return

instruction, jr $31 on the MIPS, is also changed to reset the IRWP. The processor has

an entire cycle during each call and return instruction to set the IRWP. Note that calls

through pointers can also be handled since the linker can modify the address associated with

a function so that the high order (or low order) bits indicate which window is associated

with the function.

Figure 2.14 shows the IRF system diagram completed with hardware support for register

windows. It is important to note that only the IRF is windowed. The IMM remains a

single 32-entry table for commonly used immediate values across the entire application.

Rather than having to go through an IRWP for every access to an entry in the IRF, the

hardware could alternatively copy the registers each time the window is changed during the

execution of a call or return instruction. Parallel register moves can be performed between

the IRF and the appropriate window, which is similar to the boosting approach used to

support speculation by copying a number of shadow registers to general-purpose registers in

parallel [71].

Register windows are a more attractive approach than just increasing the number of total

available registers for hardware such as the IRF. First, increasing the number of registers

in the IRF without windowing would force the RISA instruction specifiers to grow beyond

the 5 bits they currently occupy. Moving to 64 entries would require 6 bits, from which it

would not be possible to pack 5 entries together (6 + 5 × 6 = 36 bits > 32 bits). Thus, at

most 4 RISA instructions could exist in a tightly packed instruction, limiting the number
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Figure 2.14: Instruction Register File with Hardware Windowing

of pure IRF fetches that can possibly be attained. Prior research shows that 13.35% of the

dynamic instructions fetched from the IC are these very tightly packed instructions [28], so

cutting them down to four entries might drastically affect the fetch performance. Second,

the larger IRF would also consume more power as the entirety would need to be active on

each instruction decode. With windowing, some portions can be placed in a low-power state

when they are not being actively used.

Figure 2.15 depicts the algorithm that we used to perform this partitioning. The primary

difference between this heuristic and the previous software partitioning heuristic is that this

version does not need to estimate overhead costs. The algorithm begins by reading in the

instruction profile that indicates how often each type of instruction is executed for each

function. We are concerned with the type of instruction since we are able to parameterize

immediate values so that several distinct instructions can refer to the same RISA instruction.

The algorithm then estimates a cost for each function, where the 31 most frequently executed

types of instructions have a fetch cost of 1 and the remaining instructions have a fetch cost

100 times greater, which serves as a simple estimate for the relative difference in energy

consumption from fetching an instruction from the IRF versus the IC. The 31 most frequently

executed types of instructions are selected since one of the 32 entries in the IRF has to be

reserved to represent a nop (no operation) when not all of the RISA instruction fields in a

packed instruction can be filled, allowing a portion of the fields to be used without wasting

processor cycles. For each of the remaining windows the algorithm determines for each

function the minimum increase in cost that would be required to assign that function to one

of the currently allocated windows. The algorithm allocates the next window to the function
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Read in instruction profile for each function;
Select the function with the highest estimated cost and assign it to window 0;
m = 1;
while m < number of IRF windows do

max func increase = 0;
// Initially allocate most beneficial
// function for each partition

foreach function i not yet assigned do
if max func increase < worst-case cost of function i then

min increase = worst-case cost of function i;
foreach window of the m current windows do

old cost = current cost associated with window;
new cost = cost associated with current window

along with merging function i into this window;
if new cost - old cost < min increase then

min increase = new cost - old cost;

if max func increase < min increase then
max func increase = min increase;
k = i;

Assign the function k to the new window m;
m += 1;

Sort the functions according to their worst-case cost; // Allocate remaining functions
foreach function not yet assigned do

Assign the function to the window that results in the lowest
increase in cost;

Figure 2.15: Partitioning Functions for Hardware IRF Windows

that would cause the greatest minimum increase in cost. In other words, we initially allocate

a single function to each window taking into account both the estimated cost of the function

and overlap in cost with the functions allocated to the other windows. The worst-case cost is

used to improve the efficiency of the algorithm. For the worst-case cost we assume that none

of the instructions in the functions are allocated to the IRF. The final pass is used to assign

each of the remaining functions to the window that results in the lowest increase in cost. We

sort the functions so that the functions with the greatest number of executed instructions

are assigned first. The rationale for processing the functions in this order is to prioritize the

allocation of functions that will have the greatest potential impact on fetch cost.

For the hardware partitioning scheme, we vary the number of available hardware windows

from 1 through 16. Each time the number of windows is increased, we recalculate the power

statistics for the IRF based on the number of new instruction registers. We also evaluate

an ideal scheme (all) that produces a window for each individual function while using the

power statistics for a single window. Due to the large number of program runs, the results
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Figure 2.16: Reducing Fetch Energy by Varying the Number of Hardware Windows

are presented by benchmark category in Figure 2.16. The original IRF scheme (one window)

achieves an average 58.08% fetch cost, while moving to two windows shrinks the average

fetch cost to 54.69%. The ideal case only provides an additional 5% savings in fetch cost

on average over four windows, which provides a fetch cost of 53.28%. After four windows,

however the average results show slight increases in instruction fetch energy, since the larger

IRFs require an increase in the energy required to access and store the frequent instructions.

Since we can pack no more than 5 RISA instructions in each 32-bit MISA instruction the

theoretical limit to fetch cost is approximately 21.5% based on using the power statistics for

a 32-entry IRF. However, some restrictions are placed on where instructions can be located

in a packed instruction (e.g. branches and branch targets cannot be placed in the middle

of a pack), so the best results fall short of the theoretical limits even for very large IRF

window sizes. However, the average improvements exceed those for the compiler managed

IRF because the overhead has been almost entirely eliminated.

Figure 2.17 depicts a slice of the results from Figure 2.16, detailing the per benchmark

results for partitioning with four hardware windows. The graph shows an IRF with only a

single window, as well as the four window IRF compared to a baseline fetch unit with no IRF.
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Figure 2.17: Reducing Fetch Energy with a 4 Partition IRF

Although a few of the benchmarks see a small increase in fetch energy when moving to four

windows, there is still a substantial overall fetch energy savings, and the additional partitions

can be used to improve more phase-diverse benchmarks like Jpeg and Blowfish. Many of the

benchmarks are able to obtain a large benefit from the hardware IRF windows since they

have a diverse instruction composition among several frequently accessed functions. The

hardware partitioning allows function call and return switching costs to be eliminated in

these cases, leading to improved packing density and reduced fetch cost. However, a few of

the applications (Lame) do not achieve the same savings as the compiler managed IRF when

the number of IRF windows is smaller than the partitions used in the results for software

partitioning.

30



2.7 Increasing Packing Levels with Compiler
Optimizations

Prior research used dynamic profile data to determine the most frequently accessed instruc-

tions and made minor changes to the instruction selection heuristics in the compiler. This

approach enabled the IRF to significantly improve code size as well as energy consumption,

but since the instruction selection, register allocation, and code scheduling transformations

used in the compiler were not tuned to the requirements of an IRF architecture, there was

still room for improvement.

Prior enhancements to the IRF have been primarily architectural in nature, and would

be more difficult to address from the compiler perspective. Yet there still exist several

limitations that can potentially be addressed by compiler optimizations. Our initial packing

algorithms focused primarily on the dynamic behavior of an application in an effort to

minimize fetch energy [31, 30]. The static composition of an application should also be

accounted for when promoting instructions to the IRF, as code size can have a significant

impact on the memory architecture of an embedded system. For an instruction to be

promoted to the IRF, the opcode and all operands must match exactly. Parameterization

provides a partial solution for capturing additional instructions, but the compiler can

intelligently seek out even more cases where register operands can be modified to allow

an instruction to be packed. Additionally, the order of instructions in a basic block can

artificially limit the packing density, since packable instructions work best when they are

adjacent. Non-packable instructions impose similar limitations, effectively dividing our

ability to pack instructions in a basic block. Finally, there are several artificial limitations

on forming packs of instructions. For example, in previous implementations, any packed

branch instruction had to occupy the final slot of the packed instruction, as packs were not

allowed to span basic block boundaries. Each of these limitations can be effectively attacked

with detailed compiler analyses and transformations [33]. In fact, effective use of the IRF is

more dependent on well-tuned compiler optimizations than a more conventional architecture.

Also, the IRF approach provides some unique opportunities for code optimization that are

counter-intuitive to those familiar with more conventional processor designs.

This section will describe several modifications that we have made to the Instruction

Packing process. These enhancements include more accurately modeling the benefit of
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promoting an instruction, allowing additional I-type instructions to be promoted with

different default immediate parameters, and integrating static and dynamic measures for

selecting the instructions to promote. Mixed profiling allows a developer to fine-tune the

characteristics of an application across several design constraints including static code size

and overall processor energy consumption. We have also adapted existing optimizations

for instruction selection, register re-assignment, and instruction scheduling to enhance the

compiler’s ability to pack instructions together. Each of these enhancements is evaluated

with a 4 hardware window IRF with parameterization support. The results show that these

optimizations can significantly reduce both the static code size and energy consumption of

an application, while providing a slight performance improvement.

2.7.1 Improving Instruction Promotion

Instruction promotion is the process of selecting which instructions should reside in each

IRF window, as well as which immediate values should reside in the IMM. This process of

promotion has been performed offline by supplying static or dynamic profile data to irfprof,

an IRF selection and layout tool [31]. Functions are partitioned and placed into static IRF

windows by irfprof according to a greedy algorithm that has been previously explored. This

algorithm operates by estimating the potential cost/benefit of packing the instructions of a

function into each particular IRF window, and then greedily selecting the most beneficial

function to assign to a window until each function has been allocated.

In the original irfprof, IRF-resident instructions were evaluated as having a cost of 1, while

non-resident instructions had a cost of 100. These costs were chosen based on the relative

energy benefit of placing an instruction into the IRF versus keeping it in the instruction cache.

However, not all instructions will obtain equal benefits from being promoted to the IRF.

Parameterizable I-type instructions were originally coalesced together with the most frequent

immediate value becoming the default immediate, while each individual parameterizable form

of the instruction contributed to the overall benefit for promoting this instruction. However,

the benefit of immediate instructions that require a parameter should be lower, since they

will occupy two slots of a MISA instruction, thus making them impossible to loosely pack.

To remedy the over-promotion of I-type parameterizable instructions, we can more

accurately reflect the benefit of promoting an instruction by examining what has already

occurred during the selection. The benefit of promoting to the IRF can be modeled more
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accurately by quantifying the possible potential improvement. For instance, a tightly

packed instruction cannot achieve any further benefit, so its potential improvement is 0.

A parameterized packable instruction (one which has to use the IMM) has a potential

improvement of 1, since it could be promoted with its immediate value as the default.

A loosely packable instruction has a potential improvement of 3, since it normally would

occupy approximately 4 of the slots in a MISA instruction, with the remaining slot available

for a single RISA reference. Finally, an instruction that is not loosely packable like lui has a

potential improvement of 4, since packing it into a single RISA entry will free up 4 additional

slots in the MISA instruction. By calculating the potential improvements in this manner,

we provide a means for multiple I-type instructions that differ only in default immediate

value to reside in the IRF simultaneously. This allows each entry to remain loosely packable,

which can be beneficial if each operation occurs very frequently.

In all prior IRF work, instructions have been promoted to the IRF based purely on static

or dynamic profile data. Although the IRF is designed to improve the overall efficiency

of instruction fetch, this division may not produce an adequate balance between code

size savings and energy reduction, particularly when dealing with the highly constrained

embedded design space. Dynamic profiling exposes the kernel loops of the application, and

correspondingly the most frequently executed instructions from these loops. The static profile

will likewise reveal those instructions that comprise the greatest portion of the application’s

code. Using only a dynamic profile could suppress the promotion of common function

prologue and epilogue code, since many functions may never be executed during the training

run. Similarly, static profiling will not be able to obtain the fetch energy benefits of packing

instructions together from the application’s most frequently executed tight loops. A unified

approach encompassing static and dynamic measures may yield a majority of the benefits of

each, resulting in a more suitable packing strategy for the embedded domain. The promotion

algorithm can be modified to incorporate the scaling of both the static and dynamic profile

data to provide such flexibility.

2.7.2 Instruction Selection

Instruction selection is the process by which a compiler chooses which instruction or

instruction sequence to use for a particular semantic operation. The VPO compiler operates

on register transfer lists (RTLs) that have a one-to-one correspondence with machine
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instructions. We can modify instruction selection to increase the amount of redundancy

in the code without negatively impacting code size or performance. There are several

methods for using instruction selection in this manner. First, we can choose equivalent

parameterizable operations to replace simple operations, such as encoding move operations

as additions with 0. Second, commutativity rules can be applied to make sure that all

semantically equivalent instruction instances use the same order for operands. Third, we

can apply parameterization to the destination registers of R-type instructions, which were

previously unable to be parameterized.

Choosing equivalent parameterizable instructions over simple instructions is a technique

that has previously been applied to instruction packing [28]. In this dissertation, we

quantify the exact benefits of these transformations in increasing the instruction redundancy

within an application. Most of these equivalence transformations occur for the mov and li

pseudo-instructions. Register moves are normally performed using the addu instruction

with the hard-wired register zero as the second source argument. Instruction selection

instead generates this operation as an addiu instruction with zero as the immediate operand.

Load immediate instructions with small constants can interchangeably be generated as addiu

instructions or ori instructions that use register zero as their first source operand. To increase

code redundancy, the profiling pass always converts these instructions to an addiu format.

Each of these transformations increase the number of opportunities that parameterization

will have for packing various sequences of instructions.

Simple transformations can also be used to increase redundancy by reducing or completely

eliminating instruction diversity. The native MIPS ISA uses PC-relative addressing for

branches and absolute addressing for jumps. Absolute addressing poses problems with

Instruction Packing, since there can be quite a diverse set of jump target addresses. To

increase the ability for frequent jumps to be placed in the IRF, short distance jumps (-16

to +15 instructions) are converted into branches that compare register zero to itself. These

instructions can then be parameterized in the same manner as conditional branches. If short

distance jumps occur frequently in the application, then only a single RISA entry is necessary

to parameterize each of them.

The prior ISCA work also applied transformations to place operands for commutative

operations in the same order for each instruction. If the destination register is also a source

register, then that register is placed first in the operand list. If all registers are different,
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then the operands are ordered from lowest to highest number. This transformation unifies

equivalent commutative operations in an attempt to further increase the level of instruction

redundancy.

Similar to our enhancement for frequently occurring immediate values, simple parame-

terization can be extended for R-type destination registers as well. This works similarly to

traditional IRF parameterization, consuming an additional RISA slot in the tightly packed

instruction format to specify the replacement value (5 bits) for rd. It is important to note

that the requirements for supporting this feature are minimal, as the existing parameterized

instructions will not require any modifications. Only a small amount of additional hardware

is necessary, primarily in the form of multiplexers going to the instruction decoder.

2.7.3 Register Re-assignment

Compilers often attempt to minimize register usage in order to keep additional registers

available for further optimizations. Since the VPO compiler applies optimization phases

repeatedly, it also rigorously attempts to minimize the number of distinct registers used in

each particular function. This strategy can clearly lead to different register usage patterns

in the generated code for similar but slightly different functions due to the varying register

pressure. A small difference in register numbering can eliminate the possibility of Instruction

Packing for a sequence of instructions. Although the IRF supports a limited ability to

parameterize registers, register re-assignment can be beneficial by replacing entire register

live ranges. With re-assignment, these registers can be adjusted to match existing IRF

instructions, leading to increased pack density.

Optimizing compilers have employed register renaming to eliminate anti-dependences in

generated code [58, 76]. Anti-dependences restrict the scheduling of instructions for an in-

order pipeline, and can also negatively affect the issue of instructions in out-of-order pipelined

architectures. It is for this reason that many modern out-of-order architectures employ

additional hardware register renaming techniques to eliminate anti-dependences. Rather

than renaming for avoidance of anti-dependences, we will focus on re-assigning registers to

make instructions match existing IRF entries when possible.

Although compiler register renaming algorithms often operate within basic blocks to

keep compile time fast, IRF register re-assignment will use a register interference graph

to calculate the entire inter-block live range span for each register. When constructing

35



the register interference graph, registers that are used and set within a single RTL will be

split into two distinct live ranges. This splitting allows us to re-assign registers in a more

fine-grained manner than the merging of these live ranges would have allowed. Shorter

live ranges have reduced potential for conflicts, which can limit the effectiveness of such a

transformation.

We use a greedy algorithm for selecting the candidates for register re-assignment. Basic

blocks are ordered from most frequently executed to least frequently executed based on

dynamic profiling data. With this information, we go through each potential re-assignment

individually. Live ranges of registers that cannot be altered (e.g. calling conventions) are

marked so they are not re-assigned in any manner. Since we are not going to perform multiple

renames simultaneously, we must verify that the target register to which we are attempting

to re-assign is not live at any adjacent node in the graph. Using the register interference

graph, we can now perform the register substitution on the appropriate portion of each given

RTL. Note that we cannot change all references, since we are splitting uses and sets within

a single RTL into multiple live ranges of the same register number.

Figure 2.18 shows an example of register re-assignment. The code is a single loop with an

if statement guarding two store instructions. Column A shows the component instructions in

the code sequence along with relevant data regarding the IRF entry numbers of the packable

instructions. The overall packing of the entire loop, assuming that no other transformations

are applied, is shown in column B. If register re-assignment is performed on the code, then

we obtain the code shown in column C. The last column (D) shows the re-assigned code

after packing the instructions. The result is that the first two blocks of the original loop

that required five MISA instructions can now be accomplished in two MISA instructions.

2.7.4 Instruction Scheduling

Instruction scheduling is a traditional compiler optimization that reorders the instructions

in a basic block in an attempt to eliminate pipeline stalls due to long operation dependences.

The actual scheduling often employs a directed acyclic graph (DAG) to maintain instruction

dependence relationships. Instructions that read a particular register/memory must wait for

all preceding writes to that register/memory. Instructions that write to a register/memory

must wait until all prior reads and writes to that register/memory have occurred. Once

the DAG is constructed, instructions are issued based on priorities relating to future
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A) Instructions B) Packed Instructions C) Re-assigned Instructions D) Packed Instructions
.L164: .L164: .L164: .L164:
lw $8,0($14) # lw $8,0($14) {2} lw $2,0($14) # IRF (1) param4d{1,2,3,4,.L165}
lw $3,0($12) # IRF (2) lw $3,0($12) # IRF (2)
slt $1,$3,$8 # slt $1,$3,$8 slt $1,$3,$2 # IRF (3)
beq $1,$0,.L165 # IRF (4) + beq $1,$0,.L165 beq $1,$0,.L165 # IRF (4) +

# IMM (.L165) # IMM (.L165)
sw $3,0($14) # sw $3,0($14) sw $3,0($14) # sw $3,0($14) {7}
sw $8,0($12) # sw $8,0($12) sw $2,0($12) # IRF (7)
.L165: .L165: .L165: .L165:
... ... ... ...
bne $1,$0,.L164 # bne $1,$0,.L164 bne $1,$0,.L164 # bne $1,$0,.L164

Figure 2.18: Register Re-assignment

dependences. Instructions that have no incoming arrows in the DAG are considered to

be in the ready set, as they have no dependences on which to wait.

Packing multiple RISA instructions into a single MISA instruction is somewhat similar to

very-long instruction word (VLIW) scheduling. VLIW machines issue groups of instructions

that must satisfy many other dependencies as well. These VLIW instructions are often

constrained by the number and type of different operations allowed in a single word. For

instance, a single VLIW instruction might be limited to only one memory store operation

if there is only a single memory functional unit available during each cycle. In addition to

physical hardware constraints, the instructions in the word are executed simultaneously,

so dependences have to be placed in different VLIW words, leading to a great deal of

fragmentation. Scheduling for IRF is similar to VLIW instruction scheduling, but the

primary difference is that dependent instructions can be packed together in a single pack,

since the individual RISA references will still be sequentially issued.

Figure 2.19 shows the algorithm for scheduling IRF instructions within a basic block.

This greedy algorithm is based on several heuristics for producing dense sequences of packed

instructions. It is invoked iteratively using the ready set until all instructions have been

scheduled for the current block. It is important to note that the ready set from which

selection occurs is sorted with respect to minimizing stalls due to instruction dependences.

Thus, the dependence between instructions often acts as the tie-breaker for selecting which

IRF or non-IRF instruction should be scheduled next. Priority is primarily given to loose

packs between instructions that do not exist in the IRF and tightly packable RISA references.

If three or more RISA reference slots (both IRF instructions and parameters) are available,
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if blk→slots == 0 then
if blk→prev packable and an IRF insn is in ready set then

issue the IRF insn next

else if 3 or more IRF slots are in ready set then
issue an IRF param or IRF insn next

else if IRF insn and packable insn are in ready set then
issue a loose pack with the packable insn and the IRF insn

if no instructions have been chosen for issue yet then
if (blk→prev packable or blk→slots == 4) and an IRF insn exists in ready set then

issue the IRF insn next

else if 1 ≤ blk→slots ≤ 3 and any IRF insns in ready set then
issue an IRF param or IRF insn next

else if A non-IRF insn exists in ready set then
issue the non-IRF insn

else
issue the first IRF param or IRF insn next

Update blk→prev packable and blk→slots based on the issued instruction(s)

Figure 2.19: Scheduling Instructions for a Basic Block

then a tightly packed instruction will be started instead. When issuing into a started tightly

packed instruction, we always attempt to issue the parameterized references first, since they

require two slots and are unable to be loosely packed. If we cannot issue into a loose pack or a

tight pack, then we attempt to issue non-IRF instructions next. This allows us to potentially

free up dependent IRF instructions for packing on future iterations. Finally, we issue IRF

instructions if there are no ready non-IRF instructions. After choosing an instruction or

instruction sequence for issue, the prev packable and slots fields in the basic block structure

must be updated appropriately.

Figure 2.20 shows the breakdown of instruction types used in the diagrams for the

remainder of this section. Colored boxes refer to used portions of the instruction format.

Empty boxes denote unused RISA slots. Non-packable refers to instructions that cannot

support a loosely packed RISA reference and are not available via the IRF themselves (e.g.

jal). A non-packable instruction occupies the space for all 5 RISA slots, and so there are

none available for packing. Loosely packable refers to an instruction that is not available

via the IRF, but has additional room for a RISA reference. These instructions occupy 4

of the 5 RISA slots, and so can accept a single non-parameterized IRF instruction. The

parameterized tightly packable instruction is one that is available via a combination of the

IRF and parameterization. The parameter can refer to an entry in the IMM table, a short
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Figure 2.20: Instruction Scheduling Legend
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Figure 2.21: Intra-block Instruction Scheduling

branch/jump offset, or register parameterization. Due to referencing both the IRF entry and

one IMM entry, two slots are occupied, and thus there is space for up to 3 additional RISA

references. Tightly packable refers to an instruction that is available in the IRF, and does

not require any parameterization. These instructions will occupy only a single slot, and thus

have room for up to 4 more RISA references.

Figure 2.21 shows an example of intra-block instruction scheduling for improved packing

efficiency. The original code consists of five instructions, of which three are in the IRF (1, 2,

5), one is in the IRF with a parameter (4), and one is loosely packable, but not available in
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the IRF (3). Based on the initial packing algorithm and no scheduling, we can only pack this

sequence down to three total instructions, since instruction 3 cannot be combined effectively

with any of its neighboring instructions. Since our algorithm favors loose instruction packs,

instructions 1 and 3, which are both ready at the start of the block, can be combined into a

single loosely packed MISA instruction. Instructions 2, 4, and 5 can then be combined into

a param3b instruction. With the intra-block scheduling, we can shorten this sequence down

to two total instructions, leaving only a single IRF slot empty.

Although conventional instruction scheduling may not include transformations that

move instructions across basic blocks, IRF packing can benefit from inter-block scheduling.

Instructions are packed using a forward sliding window and thus the final instructions in

a block can be left with unused IRF slots. Although intra-block scheduling is an attempt

to reclaim unused RISA reference slots, there are two cases where inter-block movement of

instructions can lead to improved pack density. The first case is duplicating code for an

unconditional successor block in each predecessor. Typically code duplication only serves

to increase code size, but packed instructions that lead off a basic block can potentially be

moved into unused slots in each predecessor. The second improvement is the addition of

instructions after a packed branch, which will be described later. Each of these inter-block

techniques attempts to more densely pack blocks that have already been scheduled. Although

the code size may remain the same, by moving these operations earlier in the control flow

graph (CFG), we are attempting to improve our ability to pack instructions in the current

block. The proposed inter-block scheduling technique is quite similar to filling delay slots in

a RISC architecture, particularly the annulled branch feature of the SPARC [77].

One interesting phenomenon that can occur with inter-block Instruction Packing is the

duplication of code leading to an overall code size reduction. Figure 2.22 shows an example of

such a transformation on an if-then-else code segment. Basic blocks W, X, and Y have been

scheduled, and block Z is about to be scheduled. Due to the number of tightly packable and

parameterized packable instructions in Z, we know that the minimum code size (disregarding

any dependencies) for this block must be three MISA instructions (d(4+2+5 slots)/5e). We

also notice that the two predecessors of Z (X and Y) have Z as their unconditional successor

(fall-through or jump target). There are available RISA slots at the end of both basic

blocks (slots a, b, c). Instruction 5, which occurs in block X is an example of a short jump

instruction that has been converted to an unconditional branch with a parameter. Notice
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Figure 2.22: Duplicating Code to Reduce Code Size

that for block X, the available slots are calculated without regard for the jump instruction, as

the duplicated instruction will have to be placed before the jump in any case. Figure 2.22B

shows instruction 1 after it has been duplicated in both predecessors of Z. It is able to

be combined in two separate tight packs. Block X shows that the moved instruction is

actually placed before the jump in order to maintain correctness. After performing intra-

block scheduling on block Z, the parameterized instruction 4 is packed with instructions 2

and 3. This ultimately results in a net code size reduction of one instruction. If more than

one slot was initially available in block X, we would also be able to move instruction 2 up,

but this would not yield any additional code size reduction.

The baseline MIPS ISA that underlies our IRF architecture does not have support for

predicated execution of instructions. With compiler transformations, however, we can mimic

predication by packing instructions after conditional branches. If a forward conditional

branch is taken, then the following instructions within the pack will be skipped. If it is

not taken, then they will be executed normally, just as the fall-through block normally
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is. Backward branches are assumed to execute the additional RISA slots only when they

are taken. The baseline IRF implementation reserves 5 bits for loosely packing each I-type

instruction (except lui), and the original compiler did not support cross-block packing. Thus,

branches could never loosely pack an additional instruction, and branches within tight packs

always forced termination of the pack execution. This only serves to decrease the overall

packing density. Note that we will not pack multiple branches or jumps together, since we

still want the branch predictor and branch target buffer to be associated with the overall

MISA instruction address. One benefit of this style of predicated execution, is that we do not

require any additional bits in the traditional instruction formats for predicates. Furthermore,

these predicated instructions need not be fetched, decoded or even executed if the predicate

is false, which is not the case for other predicated ISAs like the ARM [67].

Figure 2.23 shows the potential benefits of predication using a simple if-then control

flow built out of packed instructions. In Figure 2.23A, which does not have inter-block

instruction scheduling, block Y consists of three MISA instructions, two of which are packed

instructions, while its only predecessor (block X) contains a conditional branch with a target

of block Z. The conditional branch in block X has one available RISA slot (a) for packing.

Note that the RISA slot b is unusable since the parameterized instruction 4 requires two

slots. In Figure 2.23B, which does perform inter-block instruction scheduling, instruction 1

is moved from block Y into the empty slot (a) of the conditional branch. This results in the

ability for instructions 2, 3 and 4 in block Y to be packed efficiently into a single tightly

packed instruction. This results in a net code size savings of one instruction.

Figure 2.24 shows an example of how instruction scheduling is used to improve pack

density in the case of a backward branch. In Figure 2.24A, block Y consists of 3 MISA

instructions including a backward branch back to the top of the block, while the preceding

block X has a parameterized packable final instruction. The pack containing the backward

branch in block Y has 3 available slots (d, e, f), and block X has 3 extra slots as well (a,

b, c). Since the branch in Y is backwards, any following RISA entries will be executed only

when the branch is taken. Thus, we can move instructions 1 and 2 (along with its parameter

2’) into both the loop preheader (a, b, c) and the tail of the loop (d, e, f), as shown in

Figure 2.24B. This movement of instructions is reminiscent of software pipelining, although

additional registers are unnecessary for carrying the loop dependencies. After performing

this optimization, we can see that the code size has been reduced by one MISA instruction.
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Figure 2.24: Scheduling with Backward Branches

The complete instruction scheduling algorithm for improving pack density is shown in

Figure 2.25. It starts by performing intra-block scheduling on the function entry block

and all loop headers. We then proceed by choosing the next block that has each of its

predecessors already scheduled. If such a block is not found, then we select the next un-

scheduled block and perform just the intra-block scheduling pass. If all predecessors of a

block have been scheduled, however, then we have an opportunity to perform inter-block

instruction scheduling to move instructions from the current block up into each predecessor.

We first check if this block has a single predecessor that ends with a conditional branch. If the

last MISA instruction in the predecessor has available RISA slots, then we attempt to choose

43



irf intra sched(entry blk)
foreach blk that is a loop header do

irf intra sched(blk)

while all blocks have not been scheduled do
blk = next block with all preds scheduled
//Predication
if blk is fall through from branch and has no other preds then

if predecessor has empty slots after branch then
attempt to move IRF insns from blk into the slots

//Duplication
ok = TRUE
foreach pblk ∈ blk→preds do

if pblk is unscheduled or pblk→left 6= blk
or pblk has no slots then

ok = FALSE

if ok then
slots = minimum of available slots from all predecessors
foreach pblk ∈ blk→preds do

attempt to move IRF insns from blk into the slots
irf intra sched(pblk)

irf intra sched(blk)
//Backward Branch Packing
if blk branches back to loop header toblk then

slots = minimum of slots from toblk preds including blk
foreach pblk ∈ toblk→preds do

attempt to move IRF insns from toblk into the slots
irf intra sched(pblk)

mark blk as scheduled

Figure 2.25: Instruction Scheduling for IRF

IRF instructions for movement into the available slots. If the block has multiple predecessors,

we can attempt to do duplication. Each predecessor block needs to have already been

scheduled, have additional slots, and have the current block as their unconditional successor

or branch fall-through. At this point, IRF instructions can be moved from the current block

back into each individual predecessor block. Any predecessor that is terminated by a jump

will have the moved IRF instruction placed in front of the jump, since jumps automatically

terminate basic blocks and packs. Each predecessor that has instructions moved into it is

then re-scheduled locally in order to see if a better packing solution exists and more slots

can be freed. After all inter-block scheduling has been done, the current block is locally

scheduled. By performing the inter-block scheduling early, we are filling up slots in blocks

that have already been scheduled. This has two benefits: reducing the number of instructions
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Figure 2.26: Total Processor Energy with Optimized Packing

to schedule in the current block, and moving deeper, dependent instructions closer to being

ready in the current block. These benefits will then allow the intra-block scheduler to do a

better job of forming dense instruction packs. If this block contains a backward branch for

a loop, then we attempt to move instructions into any additional slots after the backward

branch. To do this, we have to examine all predecessors of the loop header to calculate the

minimum number of available slots. At this point, we can move instructions from the loop

into each predecessor block and reschedule.

2.7.5 Evaluating Compiler Optimizations with IRF

Figure 2.26 shows the results of applying these enhanced optimizations in terms of total

processor energy. This is different from past work on the IRF which presents results for

reducing only the fetch energy consumed by the processor. Power estimation is performed

using version 1.02 of the Wattch extensions [9] for SimpleScalar. Wattch uses Cacti [79]

to model the energy and timing requirements of various pipeline components. Energy

estimates are based on Wattch’s aggressive clock-gating model (cc3 ). Under this scheme,

power consumption scales linearly for active units, while inactive portions of the pipeline

dissipate only 10% of their maximum power. The baseline IRF architecture with no

optimizations and dynamic profiling reduces total energy to 87.8% on average. Incorporating
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Figure 2.27: Static Code Size with Optimized Packing

the enhanced mixed instruction promotion increases the total energy consumption to 87.99%,

since we have traded some of our less important dynamic IRF entries for the ability to

capture highly redundant static code. Instruction selection boosts the total energy efficiency,

dropping the overall average to 84.35%. The re-assignment of registers increases the total

energy to 84.71%, since it is focused primarily on improving static code size. Intra-block

instruction scheduling is able to reduce the total energy to an average of 84.55%. Allowing for

inter-block instruction scheduling further reduces the fetch energy consumption to 84.18%.

Overall, instruction selection is the optimization that has the greatest impact on total energy

reduction.

Figure 2.27 shows the resulting relative static code size of an application based on the

application of these modified optimizations. The code generated for a non-IRF implemen-

tation of the ISA corresponds to 100%. The first bar shows the static code size for applying

our IRF selection process to each application using only the 4-window IRF with immediate

parameterization capabilities. The IRF with no optimizations is only able to reduce the

code size to 83.20% on average, while supporting the enhanced mixed promotion drops the

code size to 77.95%. After applying our instruction selection and register parameterization

optimizations, the average code size is reduced to 72.76%. Applying register re-assignment

reduces the code size to 72.39% of the original code size. Intra-block scheduling further
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Figure 2.28: Execution Time with Optimized Packing

reduces code size to 71.33%, while the addition of inter-block scheduling drops it to an average

of 71.17%. These results are consistent with our intuition that the largest optimization

benefits for code size would occur due to instruction selection and intra-block scheduling,

however using a mixed dynamic and static profile also has a significant impact on code size.

The results regarding execution efficiency of the enhanced IRF optimizations are shown

in Figure 2.28. The baseline IRF is able to reduce the execution time to 98.92% on average

with dynamic profiling, and 98.91% for the enhanced mixed promotion. Adding instruction

selection slightly increases the execution time to 99.04% Register re-assignment reduces the

execution time to 98.98%, while intra-block instruction scheduling gets the overall execution

time down to 98.90% on average. Inter-block instruction scheduling decreases the execution

time to 98.7%. Fluctuations in execution time and/or IPC are primarily due to branch

misprediction, which must now account for restarting in the middle of a packed instruction

(e.g. predication). Improved profiling for commonly predicated instructions could help

to make better decisions about which instructions should be moved across basic blocks.

Additionally, instruction scheduling can sometimes move dependent instructions closer to

their original dependence, leading to potential pipeline stalls. Several of the worse performing

benchmarks are dominated by library calls. Packing these library functions specifically for

these applications could lead to significant improvements in execution efficiency.
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Figure 2.29: Evaluating Enhanced Promotion to the IRF

Figure 2.29 is a sensitivity study on the impact of combining static and dynamic

profile information in various ways. Only code size and total energy are shown since the

execution time benefits are similar to the previous experiments. Each combination of static

and dynamic profile data is tested both with and without all of the previously described

optimizations, although promotion enhancements are enabled for all experiments. As was

expected, the static profile data yields the greatest code compression, while dynamic profile

data yields the greatest total energy savings. It is interesting that almost all of the energy

benefits (83.84% for optimized 100/0 and 84.18% for optimized 50/50) of promoting only

the most frequent dynamic instructions can still be obtained while incorporating additional

frequent static instructions in the IRF. In this case, the static code size can also be reduced

from 74.05% for optimized 100/0 to 71.17% for optimized 50/50. This is reasonably close

to the 69.33% relative code size that can be obtained from packing based on a purely static

profile. The significance of the results of this experiment is that an embedded developer

can adjust the balance of static and dynamic measures to meet varying design constraints

regarding code size and energy consumption.
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Table 2.4: Experimental Configurations

Parameter Value

I-Fetch Queue 4 entries
Branch Predictor Bimodal – 128
Branch Penalty 3 cycles
Fetch/Decode/Issue/Commit 1
Issue Style Out-of-order
RUU size 8 entries
LSQ size 8 entries

16 KB
L1 Data Cache 256 lines, 16 B line, 4-way assoc.

1 cycle hit
16 KB

L1 Instruction Cache 256 lines, 16 B line, 4-way assoc.
1 cycle hit

Instruction/Data TLB 32 entries, Fully assoc., 1 cycle hit
Memory Latency 32 cycles
Integer ALUs 1
Integer MUL/DIV 1
Memory Ports 1
FP ALUs 1
FP MUL/DIV 1

4 windows
32-entry IRF (128 total)IRF/IMM
32-entry Immediate Table

1 Branch/pack

2.8 Experimental Evaluation of IRF

This section presents experimental results for each of the enhancement categories that we

have applied to Instruction Packing with an IRF. These results represent our most recent

complete simulations of a 4-window Instruction Register File with parameterization, mixed

profiling and each of the adapted compiler optimizations. The baseline architecture of the

processor is described completely in Table 2.4. It is a single issue, out-of-order execution

engine with separate 8KB, 4-way set-associative L1 instruction and data caches, and a 128-

entry bimodal branch predictor. Results are presented as percentage of the relevant metric

compared to the baseline processor values, whether it is total processor energy, static code

size, or execution cycles. Lower values are better in all cases (reduced energy consumption,

reduced code size, and reduced execution time).

Figure 2.30 shows the savings in energy consumption due to the addition of an Instruction

Register File and its associated enhancements. A simple baseline IRF provides a total savings
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Figure 2.30: Processor Energy Consumption with an IRF

of 9.28% of the total processor energy consumption, while adding parameterization boosts

the savings to 10.42%. Windowing brings the savings up to 12.10%, while mixed profiling

penalizes energy for improved code size reduction, resulting in only a 12.03% improvement.

Finally, compiler optimizations that have been tuned for Instruction Packing result in an

overall 15.82% total processor energy reduction.

Both Qsort and Basicmath experienced slight energy increases for some of the simpler

configurations (1.46% increase maximum) due to their heavy reliance on library code that

is not packed. The best performing benchmark was Susan, which was able to cut the

total processor energy consumption to 71.21% of the baseline energy. Nine of the twenty

benchmarks were able to reduce the total processor energy consumption by 20% or more.

The reduction in static code size for adding an IRF along with all enhancements is shown

in Figure 2.31. The standard 32-entry IRF yields a code size savings of 10.29%, while adding

support for parameterization with a 32-entry IMM increases savings to 11.39%. Hardware
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Figure 2.31: Static Code Size with an IRF

windowing of the IRF provides further improvement, resulting in a 16.15% overall reduction

in code size. Mixing static and dynamic profiles significantly boosts the code size savings to

22.12%. Adding compiler optimizations that target the improvement of Instruction Packing

yields an overall code size savings of 28.83%. Thirteen of the twenty benchmarks obtained

code size savings in excess of 20%.

Although the IRF is primarily focused on improving fetch energy efficiency, we also need

to carefully consider the performance implications. Figure 2.32 shows the execution time

results when using an IRF. The IRF tends to be performance neutral overall, since the

majority of improvements and degradations are within +/-1%. However, there are some

benchmarks that do suffer a slight performance penalties of up to -3.81% (Basicmath with

just IRF). Other benchmarks improve performance by up to 22.41% (Rijndael). Most of

these extreme differences occur due to cache conflict behavior. Since the IRF compresses the

executable, conflict misses can both be eliminated and created between separate segments of
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Figure 2.32: Execution Time with an IRF

the code. The IRF can have a similar effect with regards to branch prediction. It is important

to note that although execution times may increase slightly, overall energy consumption for

those benchmarks is still reduced when considering each of the possible IRF enhancements.

2.9 Integration with Additional Fetch Energy
Enhancements

2.9.1 Combining Instruction Packing with a Loop Cache

We have also found that using an IRF can be complementary, rather than competitive,

with other architectural and/or compiler approaches for reducing energy consumption and

compressing code size. One complementary technique for reducing instruction fetch energy

is a loop cache. In this section we show that the combination of using an IRF and a loop

cache reduces energy consumption much more than using either feature in isolation [31].

A loop cache is a small instruction buffer that is used to reduce instruction fetch energy
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when executing code in small loops [26]. We modified SimpleScalar to simulate the execution

of the loop cache described by Lee, Moyer, and Arends [49]. This loop cache has three

modes: inactive, fill, and active. The hardware detects when a short backward branch (sbb)

instruction is taken whose target is within a distance where the instructions between the

target and the sbb will fit into the loop cache. At that point the loop cache goes into fill

mode, which means that the instructions are fetched from the IC and placed in the loop

cache. After encountering the sbb instruction again, the loop cache is set to active mode,

when instructions are only fetched from the loop cache. Whenever there is a taken transfer

of control that is not the sbb instruction or the sbb instruction is not taken, the loop cache

goes back to inactive mode and instructions are fetched from the IC. Thus, loop caches can

be exploited without requiring the addition of any new instructions to the ISA.

One of the limiting factors for using this style of loop cache is the number of instructions

within the loop. This factor can be mitigated to a large extent by the use of an IRF. For

each tightly packed MISA instruction, there are up to five RISA instructions that are fetched

from the IRF. The loop cache contains only the MISA instructions. Thus, the number of

total instructions executed from the loop cache can potentially increase by a factor of five.

Figure 2.33 shows the instruction fetch cost of using a loop cache, a 4 window IRF, and

a 4 window IRF with a loop cache normalized against using no IRF and no loop cache. We

varied the size of the loop cache to contain 4, 8, 16, 32, and 64 instructions. The energy

requirement of a loop cache access closely compares to that of a single IRF access. Each

of these experiments is performed using a modified SimpleScalar that measures accesses to

various types of instruction memory and the IRF. A MISA instruction fetched from the

loop cache and that contains five RISA references would have an approximate fetch cost of

0.016 since there has to be a fetch from both the loop cache and the IRF before the first

RISA instruction can be executed. We found that the loop cache and IRF can cooperate to

further reduce instruction fetch costs. Whereas an 8-entry loop cache reduces the fetch cost

to 93.26%, and a 4 window IRF can reduce fetch cost to 53.28%, the combination of such

an IRF with a loop cache reduces the instruction fetch cost to 43.84%.

The results show clearly that a loop cache and an IRF can operate in a complementary

fashion, often obtaining better results than either can separately. One limitation of a loop

cache is that the maximum loop size is fixed, and any loop that extends beyond the sbb

distance can never be matched. Packing instructions naturally shortens this distance for
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Figure 2.33: Reducing Fetch Energy with a Loop Cache and/or IRF

frequently executed instructions, thus allowing more loops to fit into the loop cache. The

loop cache is also limited to loops that do not contain call instructions as any taken transfer

of control invalidates the cache contents. Lengthening the actual size of the loop cache

only provides greater access for loops with transfers of control (e.g. outer loop nests and

those with function calls) to start the filling process. Our IRF does not currently support

packing call instructions (since they are rare and usually diverse), and thus these references

remain a single unpacked MISA instruction. Additionally, packed instructions can contain

at most one branch instruction, which terminates the pack execution. Due to these factors,

code packed for IRF tends to be less dense around sections containing potential transfers

of control, leading to longer branch distances for the sbb and serves in essence as a filter

for eliminating these poor loop choices. Instruction packing with an IRF is limited in the

number of RISA instructions available from a single MISA instruction that is fetched from

memory. Thus, there is an unrealistic lower bound of 20% for fetching with an IRF as at

least 1 out of every 5 instructions (assuming all tight packs) must be MISA. The loop cache

can assist by providing low-power access to frequently executed packed MISA instructions,

thus allowing the fetch cost with an IRF to drop even further. In this manner, both schemes
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Figure 2.34: Reducing Fetch Energy Using a Combination of 8-entry Loop Cache and 4
Partition IRF

are able to alleviate some of their inefficiencies by exploiting the features provided by the

other.

Figure 2.34 provides a more detailed look at the interactions between an 8-entry loop

cache and a 4 window IRF. Notice that for Susan, Tiff2bw, Stringsearch, and Sha, the fetch

cost is reduced below 15% (saving more than 85%! of the fetch energy over the baseline

model) for the combined IRF and loop cache scheme. These benchmarks demonstrate the

potential multiplicative collaboration that exists between a loop cache and an IRF performing

at their peak.

2.9.2 Combining Instruction Packing with an L0 Cache

We have also explored the possibility of integrating an instruction register file with an

architecture possessing a small L0 instruction cache [30, 32]. An L0 cache is a small

instruction cache placed before the L1 instruction cache [40]. Since the L0 cache is small

and direct-mapped, it can provide lower-power access to instructions at the expense of a
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higher miss rate. The L0 cache also imposes an extra execution penalty for accessing the

L1 cache, as the L0 cache must be checked first to avoid the higher energy cost of accessing

the L1 cache. Previous studies have shown that the fetch energy savings of a 256-byte L0

cache with an 8-byte line size is approximately 68%, but the execution time is increased by

approximately 46% due to miss overhead [40].

Instruction Packing can be used to diminish these small cache performance penalties.

The nature of the IRF allows for an improved overlap between the execution and fetch

of instructions, since each packed instruction essentially translates into several lower-cost

fetches from the IRF. While the fetch stage of the pipeline is servicing an L0 instruction

cache miss, the processor can continue decoding and executing instructions from the IRF.

In this way, the IRF can potentially mask a portion of the additional latency due to a small

instruction cache. Although an L0 instruction cache and an IRF attempt to reduce overall

fetch energy, we show that both architectural features are orthogonal and are able to be

combined for improved fetch energy consumption as well as reduced performance penalties

due to L0 cache misses. We believe that the IRF can be similarly applied to instruction

encryption and/or code compression techniques that also affect the instruction fetch rate, in

an effort to reduce the associated performance penalties.

There are several intuitive ways in which an IRF and an L0 instruction cache can interact

effectively. First, the overlapped fetch of packed instructions can help in alleviating the

performance penalties of L0 instruction cache misses by giving the later pipeline stages

meaningful work to do while servicing the miss. Second, the very nature of Instruction

Packing focuses on the frequent access of instructions via the IRF, leading to an overall

reduction in the number of instruction cache accesses. Third, the packing of instructions

reduces the static code size of portions of the working set of an application, leading to

potentially fewer overall instruction cache misses.

Figure 2.35 shows the pipeline diagrams for two equivalent instruction streams. Both

diagrams use a traditional five stage pipeline model with the following stages: IF —

instruction fetch, ID — instruction decode, EX — execute, M — memory access, and WB —

writeback. In Figure 2.35(a), an L0 instruction cache is being used with no IRF. The first

two instructions (Insn1 and Insn2) execute normally with no stalls in the pipeline. The third

instruction is a miss in the L0 cache, leading to the bubble at cycle 4. The fourth instruction

is unable to start fetching until cycle 5, when Insn3 has finally finished fetching and made it
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Figure 2.35: Overlapping Fetch with an IRF

to the decode stage of the pipeline. This entire sequence takes 9 cycles to finish executing.

Figure 2.35(b) shows the same L0 instruction cache being used with an IRF. In this

stream, however, the second and third instructions (previously Insn2 and Insn3) are packed

together into a single MISA instruction, and the fourth instruction (third MISA instruction)

is now at the address that will miss in the L0 cache. We see that the packed instruction is

fetched in cycle 2. The packed instruction decodes its first RISA reference (Pack2a) in cycle

3, while simultaneously we are able to start fetching instruction 4. The cache miss bubble

in cycle 4 is overlapped with the decode of the second RISA instruction (Pack2b). After the

cache miss is serviced, Insn4 is now ready to decode in cycle 5. In this way, sequences of

instructions with IRF references can alleviate stalls due to L0 instruction cache misses. This

stream finishes the same amount of work as the first stream in only 8 cycles, 1 less cycle than

the version without IRF. Denser sequences of instructions (with more packed instructions)

allow for even greater cache latency tolerance, and can potentially alleviate a portion of the

latency of accessing an L2 cache or main memory on an L1 instruction cache miss.

In previous studies, it was shown that approximately 55% of the non-library instructions

fetched in an application can be accessed from a single 32-entry IRF [28]. This amounts

to a significant fetch energy savings due to not having to access the L1 instruction cache

as frequently. Although the L0 cache has a much lower energy cost per access than an L1

instruction cache, the IRF will still reduce the overall traffic to the entire memory hierarchy.
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Figure 2.36: Execution Efficiency with an L0 Instruction Cache and an IRF

Fewer accesses that reach into the memory hierarchy can be beneficial as energy can be

conserved by not accessing the ITLB or even the L0 cache tag array.

Instruction packing is inherently a code compression technique, allowing some additional

benefits to be extracted from it as well. As instructions are packed together, the L0

instruction cache can potentially handle larger working sets at no additional cost. Given

that the L0 cache is fairly small and direct-mapped, the compressed instruction stream may

be extremely beneficial in some cases, allowing for fewer L0 cache misses, which translates

into performance improvements and reduced overall fetch energy consumption.

Each of the graphs in this subsection use the following conventions. All results are

normalized to the baseline case for the particular processor model, which uses an L1

instruction cache with no L0 instruction cache or IRF. The label Baseline+IRF corresponds

to adding an IRF but no L0 cache. The label L0 corresponds to adding an L0 instruction

cache, but no IRF. Finally, L0+IRF corresponds to the addition of an L0 instruction cache

along with an IRF. With 2cycle, we are representing a 2-cycle non-pipelinable L1 instruction

cache, while 2cycle+IRF represents this configuration with an IRF. Execution results are

presented as normalized instructions per cycle (IPC) as measured by SimpleScalar. Energy

results are based on the overall total processor energy consumption.
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Figure 2.36 shows the execution efficiency of various combinations of an L0 or 2 cycle

instruction cache and an IRF. Adding an IRF to the baseline processor actually yields a net

IPC improvement of 1.04%, primarily due to the code fitting better into the L1 instruction

cache. An L0 cache degrades the IPC by 12.89% on average, while adding an IRF cuts this

penalty to 6.14%. The 6.75% improvement from adding the IRF to an L0 cache configuration

is greater than the original IPC improvement provided by adding the IRF to the baseline

processor. These benefits are due to the smaller cache footprint provided by instruction

packing, as well as the overlap of fetch stalls with useful RISA instructions. The Rijndael

and Gsm benchmarks are even able to surpass the baseline performance with no L0 cache,

yielding IPCs of 126.11% and 102.13% respectively. The 2 cycle implementation reduces IPC

to 49.73% of its original value, while adding an IRF increases IPC to 78.28%, nearly a 57%

improvement. Several of the automotive category benchmarks still experience diminished

performance when adding an IRF, due to their dependence on library routines which are not

packed. However, it is clear that the IRF can be used to mask some of the performance issues

involved in complex fetch configurations that utilize low-power components, compression or

even encryption.

The energy efficiency of the varied IRF, L0 and 2 cycle instruction cache configurations

are shown in Figure 2.37. Adding an IRF to the baseline processor yields an average energy

reduction of 15.66%. The L0 cache obtains an overall reduction of 18.52%, while adding the

IRF improves the energy reduction to 25.65%. The additional energy savings in the final

case is due to two factors. First, fetching instructions via the IRF requires less energy than

fetching from the L0 instruction cache, and second, the ability of the IRF to tolerate L0

cache misses improves the overall execution time of the application. When dealing with the

2 cycle instruction cache, the overall energy is increased by 17.63%. It is important to note

that the Wattch model places a heavy emphasis on the clock gating of unused pipeline units,

hence the reason for the energy consumption only increasing by 5-25% for the extended

running times. Adding an IRF to this configuration, however, reduces the overall energy

consumption to 88.19% of the baseline, which is only slightly higher than the configuration

of a 1-cycle L1 instruction cache with IRF.

The fetch energy characteristics of the IRF and L0 instruction cache are also very

interesting. The baseline processor fetch energy consumption can be reduced by 33.57%

with the introduction of an IRF. An L0 instruction cache instead reduces the fetch energy
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Figure 2.37: Energy Efficiency with an L0 Instruction Cache and an IRF

consumption by 60.61%, while adding both yields an overall fetch energy reduction of 70.71%.

This savings can be extremely beneficial for embedded systems that have a significant portion

of their total processor energy expended during instruction fetch.

2.10 Asymmetric Pipeline Bandwidth

We have also explored IRF and Instruction Packing as techniques for enhancing the fetch of

instructions in out-of-order execution high-end processors [32]. Modern superscalar processor

designs often provide similar instruction bandwidth throughout the pipeline. In the ideal

case, instructions should flow readily from one stage to the next. Often the number and

types of functional units available in a given processor are designed to handle pipeline

stalls due to long latency operations. Load-store queues and additional ALUs can allow

further instructions to continue flowing through the pipeline without being stalled. Although

computer architects can vary the number and size of these functional units in a given pipeline,

the maximum number of instructions that can be fetched, decoded/dispatched, issued, and

committed are often the same.

This makes sense when considering steady state flow of instructions through the pipeline,

but can become problematic when accounting for the effects of instruction cache misses,
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a) Single Issue Out−of−order Pipeline

b) Multiple Issue Out−of−order Pipeline
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Figure 2.38: Decoupling Instruction Fetch in an Out-of-Order Pipeline

branch misprediction recovery, alignment issues, etc. There are points where instruction

fetch becomes the performance bottleneck for short periods of time, and in aggregate, these

can impact the overall processor performance. Constraining the fetch width to match the

rest of the pipeline imposes an artificial limitation on the design space exploration for a

new architecture, particularly for embedded processors where die area, power consumption,

execution time and packaging costs may be highly restrictive.

Figure 2.38 shows the first few pipeline stages for several out-of-order configurations. Note

that each stage can be further sub-divided as necessary (e.g. different cycle times for different

functional units). The simplest single issue out-of-order pipeline is shown in Figure 2.38a.

Figure 2.38b shows a multiple issue pipeline. As more functional units become available on

chip, heavy demands can be placed issue, dispatch and fetch. Techniques already exist for

appropriately scaling the issue queue [21], however the increasing pressure on instruction

fetch could complicate the design. Multi-ported instruction caches require more energy to

operate and need special techniques to handle the cases where instructions are fetched from
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multiple cache lines. The ability of the IRF to regularly extract multiple instructions from

each instruction cache access makes it feasible to reduce the fetch width of the instruction

cache, instead relying on frequently executed packed instructions to provide the dispatch

stage with a sufficient stream of instructions to avoid starving a wider backend pipeline.

This pipeline configuration is shown in Figure 2.38c.

By packing multiple instruction references into a single MISA instruction, it becomes

feasible to decouple the configuration of the fetch pipeline from the design choices of

the rest of the pipeline. This increase in the configuration space provides the processor

designer greater flexibility in meeting multiple and often divergent, design goals. Use of

an IRF in an out-of-order pipeline can also have other positive benefits. The possibility of

misspeculation due to overaggressive fetching will be reduced. This occurs because the IRF-

resident instructions are those that are most frequently executed, and thus the hot spots of

execution will be full of tightly packed instruction sequences. Conversely, the areas that are

infrequently executed will tend to exhibit fewer packed instructions and naturally limit the

rate of instruction fetch.

The column labeled High-end Embedded in Table 2.5 describes the machine configuration

for our asymmetric pipeline bandwidth study. The IRF and IMM configuration remains the

same as previous experiments, while most other pipeline structures are scaled up for a higher

performance embedded processor. This study features many combinations of fetch, decode,

issue and commit widths. The decode, issue, and commit width are always equal to one

another, and are always greater than or equal to the fetch width. Fetching is always done

using a width that is a power of 2, since we do not want to artificially increase the number

of stalls due to instruction mis-alignment. Caches are only able to access a single block in

a cycle, so instruction sequences that span multiple cache lines will require several cycles to

fetch. Functional units for each of our configurations are added as necessary based on the

decode/issue/commit width. The instruction fetch queue is lengthened to 8 entries when the

processor reaches a fetch width of 4 instructions.

Each of the following graphs in this subsection use the following conventions. All results

are normalized to the baseline processor model, which has a single instruction fetch, decode,

issue and commit bandwidth. This is the leftmost bar presented in each of the graphs.

The graph is plotted linearly by instruction fetch width, followed by the execute width

(decode/issue/functional units/commit width) as a tie-breaker. Black bars are used to
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Table 2.5: High-end Embedded Configurations

Parameter Value

I-Fetch Queue 4/8 entries
Branch Predictor Bimodal – 2048
Branch Penalty 3 cycles
Fetch Width 1/2/4
Decode/Issue/Commit 1/2/3/4
Issue Style Out-of-order
RUU size 16 entries
LSQ size 8 entries

32 KB
L1 Data Cache 512 lines, 16 B line, 4-way assoc.

1 cycle hit
32 KB

L1 Instruction Cache 512 lines, 16 B line, 4-way assoc.
1 cycle hit
256 KB

Unified L2 Cache 1024 lines, 64 B line, 4-way assoc.
6 cycle hit

Instruction/Data TLB 32 entries, Fully assoc., 1 cycle hit
Memory Latency 32 cycles
Integer ALUs 1/2/3/4
Integer MUL/DIV 1
Memory Ports 1/2
FP ALUs 1/2/3/4
FP MUL/DIV 1

4 windows
32-entry IRF (128 total)IRF/IMM
32-entry Immediate Table

1 Branch/pack

denote configurations that do not have an IRF, while gray bars indicate the presence of

an IRF.

Figure 2.39 shows the normalized IPC over all benchmarks for the various configurations

of the fetch and execution engine. The configurations without an IRF are often able to make

some use of the additional functional unit bandwidth (1/1 to 1/2, 2/2 to 2/3), however

they plateau quickly and are unable to use any additional available bandwidth (1/2 through

1/4, 2/3 to 2/4). The IRF versions, alternately, are able to improve steadily compared to

the previous IRF configuration, except in the 1/4+IRF case. This configuration is overly

aggressive, as the IRF is unable to supply 4 instructions per cycle for execution. Branches and

other parameterized RISA instructions occupy two slots in the packed instruction format,

thus limiting the maximum number of instructions fetchable via a single MISA instruction.
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Figure 2.39: Execution Efficiency for Asymmetric Pipeline Bandwidth

Additionally, the IRF selection heuristic is a greedy one, and we will never be able to

produce all tightly packed instructions with 4–5 slots completely full. This limits even

the IRF’s ability to supply instructions to this overly aggressive backend, but additional

fetch bandwidth more than makes up for this limitation in more complex configurations

(2/3+IRF, 2/4+IRF). Overall however, the IRF configurations have an average IPC that is

15.82% greater than corresponding configurations without an IRF.

The energy efficiency of the various configurations of asymmetric pipeline bandwidth

are shown in Figure 2.40. Results are presented as normalized energy to the 1/1 baseline

processor configuration. Note that the Wattch model places a heavy emphasis on the clock

gating of unused pipeline units. Since the running time of the more complex configurations

is lower, the total energy is correspondingly reduced as compared to the baseline processor.

The results show that increasing the execution width by one additional instruction can yield

more efficient energy usage (1/1 to 1/2, 1/1+IRF to 1/2+IRF, 2/2+IRF to 2/3+IRF), but

greater increases in all other cases are not beneficial. Overall though, the energy results show

that IRF configurations can be as much as 22% more energy efficient (1/3+IRF, 1/4+IRF)

than corresponding configurations without an IRF. On average, the IRF configurations utilize

12.67% less energy than corresponding non-IRF configurations.
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Figure 2.40: Energy Efficiency for Asymmetric Pipeline Bandwidth

Figure 2.41 shows the energy-delay squared (ED2) for the various asymmetric fetch

and execution bandwidth configurations. Energy-delay squared is an important metric for

exploring the processor design space. As expected, this graph is similar to the IPC results

shown in Figure 2.39, as the configurations without an IRF continue to have problems with

keeping the additional functional units of the pipeline busy (1/2 through 1/4, 2/3 to 2/4).

The IRF configurations see a small increase (1.64%) in ED2, when moving from a 1/3+IRF to

1/4+IRF, primarily due to the increased energy requirements of this configuration. Without

this data point, however, the IRF configurations smoothly scale for the varied combinations

of fetch and execute bandwidth available in the processor pipeline. On average, the relative

decrease in ED2 for using the IRF configurations over the non-IRF versions is 25.21%. In

addition, by decoupling instruction fetch and instruction execution, a computer architect

has greater freedom to explore an increased number of processor configurations with a wider

variety of energy/execution characteristics.

2.11 Crosscutting Issues

Using an IRF and IMM that is unique to each process means that more state must be

preserved at context switches. A conventional context switch simply saves state to memory
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Figure 2.41: Energy-Delay2 for Asymmetric Pipeline Bandwidth

at the point the switch occurs, and restores this state when the process resumes. One

approach to reducing this overhead is to save a pointer to a routine associated with each

process, where the routine will reload the IRF when a process resumes. Thus, the IRF would

not need to be saved, only restored.

A related issue is how to address exceptions that occur during execution of a packed

instruction when structural or data hazards prevent all of the instructions from being

simultaneously issued. One or more RISA instructions referenced by the packed instruction

have already completed at the point the exception occurs. One solution is to store in the

context state how many RISA instructions within the packed instruction have completed,

since these instructions are executed in order. A bitmask of retired instructions would allow

for a precise restart after handling the exception in an out-of-order machine. The addition

of a bitmask would not add much overhead to the system.

2.12 Concluding Remarks

We have shown that instruction fetch efficiency can be improved by the addition of a small

Instruction Register File (IRF) that contains the most frequently executed instructions.

Fetch energy is reduced since some instructions can be accessed via low-power instruction
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registers instead of the L1 instruction cache. Code size is reduced due to the ability of

multiple IRF references to be packed together in a single instruction fetched from memory.

Code compression can be very important for embedded architectures, which are often more

tightly constrained than general purpose processors. Even execution time can be slightly

improved through the use of an IRF, since applications may now fit better into cache,

and can recover from branch mispredictions faster. L1 miss penalties may also be slightly

mitigated due to the overlapped execution property that IRF provides.

Instruction packing with an IRF has also been shown to be complementary with a variety

of other fetch energy enhancements including filter caches and loop caches. The use of an

IRF with a high-performance out-of-order embedded processor system gives the architect the

ability to scale back the fetch width in order to meet tighter power constraints, while relying

on frequently packed instructions to feed a more aggressive pipeline backend. This provides

greater flexibility in the overall pipeline design, enabling the architect to meet increasingly

demanding and potentially conflicting design goals.
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CHAPTER 3

Guaranteeing Instruction Fetch Behavior

This chapter presents two enhancements that focus on capturing and exploiting the regularity

inherent in instruction fetch. First, we present the Tagless Hit Instruction Cache (TH-IC),

which is a small cache design that reduces fetch energy by eliminating tag comparisons

on guaranteed hits [34]. The TH-IC is able to be bypassed on potential misses, thus

avoiding the additional miss penalty normally associated with small filter caches. Next,

we discuss the Lookahead Instruction Fetch Engine (LIFE), which extends TH-IC to be able

to selectively disable the speculation components in instruction fetch [29]. We also explore

how the instruction fetch behavior captured by LIFE can be used to improve other pipeline

decisions through a case study involving next sequential line prefetch.

3.1 Motivation – Instruction Fetch Regularity

Although traditional caches are often found on embedded processors, many also include

specialized cache structures to further reduce energy requirements. Such structures include

filter caches [40, 41], loop caches [49], L-caches [5, 6], and zero-overhead loop buffers

(ZOLBs) [20]. Techniques like drowsy caching [39] can also be applied to further reduce

power consumption.

Filter or L0 instruction caches (L0-IC) are small, and typically direct-mapped caches

placed before the L1 instruction cache (L1-IC) for the purpose of providing more energy-

efficient access to frequently fetched instructions [40, 41]. Since the L0-IC is accessed instead

of the L1-IC, any miss in the L0-IC incurs an additional 1-cycle miss penalty prior to

fetching the appropriate line from the L1-IC. Figure 3.1a shows the traditional layout of

a small L0/filter IC. Although an L0-IC reduces the requirements for fetch energy, these

miss penalties can accumulate and result in significant performance degradation for some

68



Figure 3.1: Traditional L0/Filter and Tagless Hit Instruction Cache Layouts

applications. It is important to note that this performance loss will indeed reduce some of

the energy benefit gained by adding the L0-IC due to having to actively run the processor for

a longer period of time. The inclusion of an L0-IC in a memory system design is essentially

a tradeoff providing a savings in fetch energy at the expense of longer execution times.

In this chapter, we propose an alternative configuration for a small instruction cache to be

used in conjunction with an L1-IC. This configuration is shown in Figure 3.1b and is related

to previous research that has sought to bypass the small cache based on predictions [74]. We

have renamed the small IC as a Tagless Hit Instruction Cache or TH-IC. Using just a few

specialized metadata bits, the TH-IC supplies a fetched instruction only when the instruction

is guaranteed to reside in it. As a side effect of the way in which guarantees are implemented,

we no longer require tag comparisons on hits, hence the term “Tagless Hit”. The small size

of the cache and its novel use of metadata is what facilitates the ability to make guarantees

about future cache hits, while still retaining the ability to operate and update in an energy-

and performance-conscious manner. A TH-IC of similar size to an L0-IC has nearly the

same hit rate and does not suffer a miss penalty since the TH-IC is not used to fetch an

instruction when a miss may occur. In essence, the TH-IC acts as a filter cache for those

instructions that can be determined to be hits in the TH-IC, while all instructions that
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cannot be guaranteed to reside in the TH-IC access the L1-IC without delay. Additionally,

the energy savings is greater than using a L0-IC due to the faster execution time (the TH-IC

has no miss penalty), the reduction in ITLB accesses (the TH-IC can be accessed using bits

from the portion of the virtual address that is unaffected by the translation to a physical

address), as well as the elimination of tag comparisons on cache hits (since we do not need

to check a tag to verify a hit). TH-IC exploits the regularity of instruction fetch to provide

energy-efficient access to those instructions encountered most frequently (sequential fetches

of instructions within tight loops).

While TH-IC focuses on reducing the instruction cache power, there are other components

of instruction fetch that can also have a sizable impact on the processor power characteristics.

In particular, speculation logic can account for a significant percentage of fetch power

consumption even for the limited speculation performed in scalar embedded processors.

With advances in low-power instruction cache design, these other fetch components can

even begin to dominate instruction fetch power requirements. The Lookahead Instruction

Fetch Engine (LIFE) is a new approach for instruction fetch that attempts to reduce access to

these power-critical structures when it can be determined that such an access is unnecessary.

LIFE exploits knowledge available in the TH-IC about the next instruction to be fetched

to selectively bypass speculation mechanisms present in the fetch pipeline stage. If the next

sequential instruction can be guaranteed to not be a transfer of control instruction, then the

branch predictor (BP), branch target buffer (BTB), and return address stack (RAS) do not

need to be activated during its fetch. Thus LIFE improves utilization of fetch-associated

structures by selectively disabling access. This results in reductions in both fetch power and

energy consumption, while not increasing execution time. The reduction in power is affected

by the hit rate of the TH-IC and the ratio of branch and non-branch instructions in the TH-

IC. LIFE can further capitalize on common instruction fetch behavior by detecting transfers

of control that will be predicted as not-taken, which allows bypass of the BTB and RAS

on subsequent fetches since they act as non-branch instruction flow. A substantial number

of branches resolve as not-taken and are consistent for the entire execution. Identifying

those branches residing in the TH-IC that are almost always not-taken enables the branch

predictor to also be bypassed.

Figure 3.2 shows the organization of LIFE, which extends the capabilities of TH-IC with

additional metadata for tracking the branching behavior of instructions. Bold dashed lines
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Figure 3.2: LIFE Organization

represent control of fetch components by LIFE. Depending on the available metadata, LIFE

can choose to enable or disable access to appropriate fetch structures during the following

instruction fetch cycle.

In addition to directing access of fetch structures, the behaviors detected by LIFE can

also be used to guide decisions that are made in subsequent pipeline stages. Traditional next

sequential line prefetching schemes often trade off energy efficiency for improved performance

from the data cache [25, 70, 72]. Although the previously published TH-IC approach is not

suitable for data caches due to the lack of identifiable access regularity, the instruction

behavior of an application can yield clues about data access patterns. This behavioral

information can then be used to improve next sequential line prefetching.

3.2 Tagless Hit Instruction Cache (TH-IC)

This section presents an overview of the design of the Tagless Hit instruction cache (TH-

IC). First, we describe the intuition behind removing tag comparisons from our small IC, as

well as the principles involved in guaranteeing when the next instruction fetch will be a hit.

Second, we explore the new IC metadata and the rules required for guaranteeing tagless hits.

Finally, we propose four invalidation policies for efficiently managing the cache metadata.

3.2.1 Guaranteeing Tagless Hits

One of the key principles in the design of the TH-IC is the idea of bypassing the TH-IC

when we are not certain that the requested instruction/line is resident in the TH-IC. This

leaves three possibilities when an instruction is fetched: 1) it is guaranteed to be a hit in the

TH-IC, 2) it resides in the TH-IC, but we were not sure so we directly accessed the L1-IC, or
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Figure 3.3: Terminology Used to Describe Tagless Hit Instruction Cache Accesses

3) it did not reside in the TH-IC, and we avoided the miss penalty by attempting to access

it directly from the L1-IC. None of these cases involve any miss processing by the TH-IC,

so the execution time will be unchanged by the inclusion of a TH-IC. Figure 3.3 illustrates

the terminology we use to describe the types of accesses that can occur when fetching from

a TH-IC. The potential hits and true misses reflect the hits and misses that would occur in

an L0-IC with the same cache organization. A guaranteed hit represents the portion of the

potential hits that the TH-IC can guarantee to reside in cache. A potential miss means that

a hit is not guaranteed, and thus the requested line will instead be fetched from the L1-IC.

We may miss opportunities to retrieve data from the TH-IC when it might reside there but

cannot be guaranteed; however, any reduction in hit rate will be more than offset by the

ability to avoid any TH-IC miss penalty. During potential TH-IC misses, we check whether

the line fetched from the L1-IC is already available in the TH-IC. We use the term false miss

(fm in Figure 3.3) to describe such an event, and true miss to indicate that the line is not in

the TH-IC. The TH-IC approach works well when a significant fraction of the instructions

that reside in the TH-IC can be guaranteed to reside there prior to fetch.

A breakdown of fetch addresses into their separate bitwise components for properly

accessing the various instruction caches present in our memory hierarchy is shown in

Figure 3.4. For this example, we use a 16 KB, 256 line, 16-byte line size, 4-way set associative

L1-IC. We also use a 128 B, 8 line, 16-byte line size, direct-mapped TH-IC. Instructions are

word-aligned, so the low-order two bits of any fetch address can be safely ignored. Two bits

are used to determine the L1-IC line offset, while eight bits are necessary for the set index,

leaving twenty bits for the tag. Two bits are again used to determine the TH-IC line offset,

while three bits are used for the set index. In order to reduce the effective tag size of the

TH-IC, we employ a subtle approach based on Ghose and Kamble’s work with multiple line

buffers [24]. Instead of storing a large tag for the remainder of the address in the TH-IC,

72



Figure 3.4: Fetch Address Breakdown

it is sufficient to identify the corresponding line in the L1-IC by storing the set index and

the location of the line in the set. Not storing the entire tag in the TH-IC is possible since

the L1-IC is being accessed simultaneously and a true miss will occur if the L1-IC misses.

The cache inclusion principle guarantees that any line in the TH-IC must also reside in the

L1-IC. Thus by detecting an L1-IC hit and verifying the precise L1-IC line that corresponds

to our TH-IC line, we can effectively determine whether we have a false miss.

The figure shows that we construct a TH-IC ID field that is made up of the additional

high-order bits from the L1-IC set index along with two bits for specifying which line in the

cache set is actually associated with this particular line address (it’s “way”). When we are

updating the TH-IC (on a potential miss), we are already accessing the L1-IC, so we only

need to compare whether we have the appropriate set/way from the L1-IC already in the

TH-IC. The miss check can be done by concatenating the two-bit way information for the

currently accessed line in the L1-IC and the five high-order bits of the address corresponding
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to the L1-IC set index, and comparing this result to the stored TH-IC ID of the given set.

If these seven bits match, then the TH-IC currently contains the same line from the L1-IC

and we indeed have a false miss. If these bits do not match, or the L1-IC cache access is also

a miss, then we have a TH-IC true miss and must update the line data as well as the TH-IC

ID with the appropriate way and high index information. The ID field can be viewed as a

line pointer into the L1-IC that is made up of way information plus a small slice of what

would have otherwise been the TH-IC tag. If the L1-IC were direct-mapped, the ID field

would only consist of the extra bits that are part of the L1-IC set index but not the TH-IC

set index. The cache inclusion property thus allows us to significantly reduce the cost of a

tag/ID check even when the TH-IC cannot guarantee a “tagless” hit.

Figure 3.5 shows a more detailed view of an instruction fetch datapath that includes

a TH-IC. The TH-IC has been extended to use additional metadata bits (approximately

110 total bits for the simplest configuration we evaluated). The first aspect to notice in

the TH-IC is the presence of a single decision bit for determining where to fetch the next

instruction from (Fetch From TH-IC? ). This decision bit determines when the TH-IC will

be bypassed and is updated based on the metadata bits contained in the TH-IC line for the

current instruction being fetched, as well as the branch prediction status (predict taken or

not taken). We also keep track of the last instruction accessed from the TH-IC (using the

pointer Last Inst). The last line accessed from the TH-IC (Last Line) can easily be extracted

from the high-order bits of the last instruction pointer.

There are really two distinct types of access in the TH-IC or any other instruction cache

for that matter: sequential accesses and transfers of control. If the predictor specifies a direct

transfer of control (taken branch, call or jump), then the TH-IC will make use of the Next

Target bit (NT), one of which is associated with each instruction present in the small cache.

If the current instruction has its NT bit set, then the transfer target’s line is guaranteed to

be available and thus the next instruction should be fetched from the TH-IC. If the NT bit is

not set, then the next instruction should be fetched from the L1-IC instead, and the TH-IC

should be updated so that the previous instruction’s target is now in the TH-IC. We discuss

a variety of update policies and their associated complexity in the next subsection. In this

figure, the last instruction fetched was Insn5, which resides in line 1. The branch predictor

(which finished at the end of the last cycle’s IF) specified that this was to be a taken branch

and thus we will be fetching Insn5 ’s branch target, which is Insn2. The corresponding NT
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Figure 3.5: Tagless Hit Instruction Cache

bit was set, so the TH-IC is going to be used to fetch the target instruction on this cycle. We

thus fetch Insn2 from line 0 of the TH-IC. Since the cache is direct-mapped, there is only

a single line where this instruction can reside. Note that the tag/ID check is unnecessary,

since the NT bit guarantees that this instruction’s branch target is currently available in the

TH-IC.

On a sequential fetch access (branch prediction is not taken), there are two possible

scenarios to consider. If we are accessing any instruction other than the last one in the line,
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Figure 3.6: TH-IC Example

then we will always choose to fetch the next instruction from the TH-IC, since we know

that the next sequential instruction in this same line will still be available on the subsequent

access. This process is similar to the operation of a sophisticated line buffer [23]. If it is the

last instruction in the line that is instead being fetched, then fetching the next instruction

from the TH-IC will occur only if the Next Sequential bit (NS) is set. This bit signifies that

the next line (modulo the number of lines) in the cache actually contains the next sequential

line in memory. This is a behavior that line buffers do not support, since they only hold a

single line at a time, and thus must always return to fetch from the L1-IC when they reach

the end of the line.

Figure 3.6 shows an example that illustrates how instructions can be guaranteed to reside

in the TH-IC. The example in the figure contains eight instructions spanning four basic blocks

and two lines within the TH-IC. Instruction 1 is fetched and is a miss. The previous line’s

NS bit within the TH-IC is set since there was a sequential transition from line 0 to line 1.

Instruction 5 is fetched after the transfer of control and it is also a miss. Instruction 1’s NT

bit is set to reflect that the target of instruction 1 resides in the TH-IC. Instructions 6 and 7

are fetched and are guaranteed to be hits since they are sequential references within the same

line. Instruction 2 is fetched and it resides in the TH-IC, but it is a false miss since it was
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not guaranteed to hit in the TH-IC (instruction 7’s NT bit is initially false). At this point,

the NT bit for instruction 7 is set to indicate its target now is in the TH-IC. Instructions

3 and 4 are fetched and are hits due to the intra-line access. Instruction 5 is fetched and

is a false miss (line 1’s NS bit is false). Line 1’s NS bit is set at this point indicating that

the next sequential line now resides in the TH-IC. The instructions fetched in the remaining

iterations of the loop are guaranteed to be hits since the TH-IC metadata indicates that the

transitions between lines (line 1’s NS bit and instruction 7’s NT bit) will be hits. Finally,

instruction 8 is fetched and will be a hit since it is a sequential reference within the same

line.

The TH-IC exploits several nice properties of small, direct-mapped instruction caches.

First of all, the nature of a direct-mapped cache allows a given fetch address to reside in

only a single location. This facilitates the tracking of cache line contents and their associated

interdependences. In addition to the elimination of tag/ID comparisons, the ITLB access

can also be avoided on TH-IC hits. This is due to the virtual to physical address translation

not affecting the page offset portion (12-bits for 4KB page size) of a fetch address. Since the

indexing of the TH-IC is accomplished using bits from the page offset (and no tag comparison

is required on guaranteed hits), we do not actually need to verify the translation. The update

and invalidation policies of the TH-IC help to maintain these conservative principles by which

hits can be guaranteed.

One special case to consider is the possibility of indirect transfers of control. If the

current instruction to be fetched is a jr or jalr instruction (jump register or jump and link

register in the MIPS ISA), then we cannot guarantee that the branch target is in the TH-IC

since the address in the register may have been updated since the last time the instruction

was executed. We instead choose to fetch from the L1-IC directly. Recognizing an indirect

transfer of control is relatively simple and can be done by checking for only 2 instructions

in the MIPS ISA. Fortunately, indirect transfers of control occur much less frequently than

direct transfers.

3.2.2 Updating Tagless Hit Instruction Cache Metadata

There are really only two important steps in the operation for the TH-IC: fetch and update.

Figure 3.7 shows a flow diagram that graphically depicts the operation of the TH-IC. The

first step is the decision based on whether to fetch from the TH-IC or the L1-IC. Fetch is

77



similar to traditional instruction fetch on a cache hit. Update replaces the concept of the

traditional cache miss. The TH-IC performs an update whenever the instruction/line being

fetched is not guaranteed to be in cache. This does not necessarily mean that the line is not

available in the cache. Availability is checked by performing a tag/ID comparison within the

TH-IC in parallel with the L1-IC fetch. On a false miss, the TH-IC need not write the cache

line from the L1-IC, and does not need to invalidate any additional cache metadata either.

If the fetch is a true miss, however, we need to replace the appropriate line in the cache

and update/invalidate various portions of the TH-IC. First of all, the new line needs to be

written into cache from the L1-IC along with its corresponding TH-IC ID. The NS bit and

the NT bits for each instruction in this line are cleared, as we cannot guarantee that any

branch target or the next sequential line are available in cache. If we are replacing a line

that is a known branch target, we need to invalidate the NT bits on all corresponding lines

that may have transfers of control to this line. This requirement to manipulate metadata for

multiple lines is not particularly onerous since the total number of metadata bits is extremely

small. There are several possible schemes for keeping track of where these transfers originate,

and four approaches are discussed in the next subsection on invalidation policies. We use the

previous branch prediction’s direction bit to determine whether we have fetched sequentially

or taken a transfer of control. If the access was sequential, the previous line’s NS bit is set

since we are simply filling the cache with the next sequential line in memory. Note that

the only time that we can have a sequential fetch causing a cache miss will be when we are

fetching the first instruction in the new line. For transfers of control, we need to keep track

of the last instruction fetched. If we are not replacing the line containing the transfer of

control, we set the last instruction’s NT bit to signify that its branch target is now available

in the small cache.

Once the instruction is fetched, we need to update the last instruction pointer (and hence

last line pointer), as well as determine whether the next fetch will come from the TH-IC or

the L1-IC. It is also at this point that we need to determine whether the current instruction

is an indirect transfer of control. Direct transfers of control do not change targets, and this is

why the NT bit is sufficient for guaranteeing that a target is available in cache. If we detect

an indirect transfer, we need to steer the next fetch to the L1-IC, since we cannot guarantee

that an indirect branch target will be unchanged. We also invalidate the last instruction

pointer so that the next fetch will not incorrectly set the indirect transfer’s NT bit.
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Figure 3.7: Tagless Hit IC Operation
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We rely on the result of the current cycle’s branch prediction to determine whether the

next fetch is sequential or not. If a taken direct branch is predicted, then the corresponding

NT bit for the current instruction fetch is used to decide whether to fetch from the TH-IC

or the L1-IC. If instead it is a sequential access, then we will use the NS bit of the current

fetch line if we are at the end of the line. If we are elsewhere in the line, the next instruction

will be fetched from the TH-IC based on the line buffer principle. When we have a pipeline

flush due to a branch misprediction, we choose to fetch from the L1-IC on the next cycle

since we cannot guarantee that the TH-IC contains this potentially new address.

3.2.3 Tagless Hit Instruction Cache Invalidation Policies

Invalidation policies provide the TH-IC with the ability to efficiently update its metadata so

that it operates correctly. Without a proper invalidation scheme, the TH-IC could possibly

fetch incorrect instructions since we no longer do tag/ID comparisons for verification. In

this section, we present four invalidation policies that vary in complexity from conservative

approximations to more precise tracking of the relations between the transfers of control and

their target instructions.

Figure 3.8 shows four sample line configurations for a TH-IC, where each configuration

implements a particular policy. In each configuration, each line is composed of four

instructions (Insn), a Next Sequential bit (NS), a Next Target bit (NT) for each instruction,

a Valid bit (V), as well as an ID field. The number and size of the Transfer from bits (none,

T, TLs, or TIs) is what distinguishes each configuration.

The Oblivious case is shown in Figure 3.8a. In this configuration, there are no bits

reserved for denoting the lines that transfer control to the chosen line. Under this policy,

whenever any cache line is replaced, all NT bits in the TH-IC will be cleared. This case

clearly maintains correctness, but experiences many unnecessary clears of all the NT bits.

Figure 3.8b shows the addition of a single Transfer (T) bit to each line representing that

this line is a potential transfer of control target. This bit is set when any direct transfer of

control uses this line as a target. Whenever we have a line replacement where the T bit is

set, we need to clear all NT bits similar to the oblivious policy. The savings occur when

replacing a purely non-target line (one that is not a known target of any direct transfers of

control currently in cache), which does not necessitate the clearing of any of the other NT

bits. This allows the existing NT metadata within all the lines not being fetched to continue
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Figure 3.8: Tagless Hit Instruction Cache Line Configurations

to remain unchanged in cache. It is important to note, however, that any replaced line will

always have at least its own NT bits cleared.

The configuration shown in Figure 3.8c adds 1 bit to each line for every line in the cache

(Line-based (TLs)). The bit corresponding to a particular line in the TL field is set when

there is a direct transfer of control to this line. When the line is replaced, all NT bits will

be cleared in lines whose corresponding bit in the TLs is set.

Finally, Figure 3.8d shows the addition of 1 bit to each line for every instruction available

in the cache (Instruction-based (TIs)). A bit corresponding to an individual instruction in

the TI field is set when the instruction transfers control to the line. The only NT bits cleared

when a line is replaced are due to the corresponding instruction-specified TIs. Of all the

schemes proposed, this one is the most aggressive and requires the greatest area overhead

(and hence increased energy consumption to operate). This scheme maintains almost perfect

information about NT transfers of control for invalidation. It is only conservative in that

81



replacing a line (and thus clearing its NT bits) will not clear the corresponding TIs still

contained in any other lines.

Although we have proposed these four schemes, there are other possible variants. For

instance, one could disallow the set of NT for intra-line transfers, thus saving 1 bit per

line when using line-based transfer information, since the line itself would not need a self-

referential bit. A similar approach could save additional bits with the instruction-based

transfer metadata. One can also imagine a completely omniscient policy that clears other

line’s matching TIs when a line is replaced in the instruction-based policy. Each of these

schemes requires greater complexity than the four simpler policies that we have presented.

Further experimentation and analysis could help in developing even more area and energy

efficient invalidation policies.

3.3 Experimental Evaluation of TH-IC

We used the SimpleScalar simulator for evaluating the TH-IC [3]. The Wattch extensions [9]

were used to estimate energy consumption including leakage based on the cc3 clock gating

style. Under this scheme, inactive portions of the processor are estimated to consume 10%

of their active energy. The machine that is modeled uses the MIPS/PISA instruction set,

although the baseline processor is configured with parameters equivalent to the StrongARM.

Table 3.1 shows the exact details of the baseline configuration used in each of the experiments.

We refer to the TH-IC invalidation policies as follows in our graphs: TN - Oblivious, TT -

Transfer bit, TL - Line-based Transfers, and TI - Instruction-based Transfers. Each policy or

L0-IC designation is suffixed with a corresponding cache size configuration. The first value

is the number of lines in the cache. We evaluate configurations consisting of 8, 16, and 32

lines. The second value is the number of instructions (in 4-byte words) present in each cache

line. Since the L1-IC uses a 16-byte line size on the StrongARM, all of our configurations

will also use 16-byte lines (4 instructions). Thus, the three small cache size configurations

are 8x4 (128-bytes), 16x4 (256-bytes), and 32x4 (512-bytes). We also evaluate a tagless hit

line buffer (TH LB), which guarantees hits for sequential instruction fetches within the same

line. This is essentially a degenerate form of the oblivious TH-IC that uses only a single line

(1x4) with no additional metadata bits.

Although the Wattch power model is not perfect, it is capable of providing reasonably

accurate estimates for simple cache structures for which it uses CACTI [79]. The structures
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Table 3.1: Baseline TH-IC Configuration
I-Fetch Queue 4 entries
Branch Predictor Bimodal – 128
Branch Penalty 3 cycles
Fetch/Decode/Issue/Commit 1
Issue Style In-order
RUU size 8 entries
LSQ size 8 entries

16 KB
L1 Data Cache 256 lines, 16 B line, 4-way assoc.

1 cycle hit
16 KB

L1 Instruction Cache 256 lines, 16 B line, 4-way assoc.
1 cycle hit

Instruction/Data TLB 32 entries, Fully assoc., 1 cycle hit
Memory Latency 32 cycles
Integer ALUs 1
Integer MUL/DIV 1
Memory Ports 1
FP ALUs 1
FP MUL/DIV 1

involved in the evaluation of TH-IC are composed primarily of simple regular cache

blocks and associated tags/metadata. Although the L0-IC and TH-IC may have differing

functionality (tag checks vs. metadata updates), they remain very similar in overall latency

and area. Writing of metadata bits can be viewed as a small register update, since the overall

bit length is often short, even for some of the larger configurations.

We again employ the MiBench benchmark suite to evaluate our design. All applications

are run to completion using their small input files (to keep the running times manageable).

Large input experiments were also done, yielding similar results to the small input files, so

any further discussion is omitted. MiBench results are presented by category along with

an average due to space constraints. Results are verified for each run to ensure that the

application carries out the required functionality. Sanity checks are performed to ensure

correct behavior and verify that the TH-IC does not unfairly use information that should

not be available.

Figure 3.9 shows the performance overhead for using a conventional L0-IC. Cycle time

is normalized to the baseline case, which only uses an L1-IC. Results for the various TH-IC

configurations are not shown, since they yield exactly the same performance as the baseline

case (100%). The 128-byte L0-IC increases the average execution time by 8.76%, while
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Figure 3.9: Performance Overhead of L0 Instruction Caches

the 256-byte L0-IC (L0 16x4) increases it by 6.05%, and the 512-byte L0-IC (L0 32x4) still

increases the average execution time by 4.53%. The relative complexity of encryption and

decryption procedures keeps the Security category’s loop kernels from even fitting completely

within the 512-byte L0-IC. The additional 1-cycle performance penalty of a cache miss when

using an L0-IC can clearly accumulate into a sizable difference in application performance.

The energy consumption of the various L0-IC and TH-IC configurations are shown

in Figure 3.10. Each of the TH-IC configurations outperform their corresponding L0-

IC configurations. Similar to the execution cycles results, the Security and Telecomm

benchmark categories gain the most from the addition of the TH-IC. The most efficient

L0 configuration is the 256-byte L0-IC(L0 16x4), which reduces energy consumption to

75.71% of the baseline value. The greatest energy savings is achieved by the 256-byte TH-IC

using a line-based transfer scheme (TL 16x4), which manages to reduce the overall energy

consumption to 68.77% of the baseline energy. The best performing invalidation policy for

the TH-IC is to use TL bits until we reach the 32-line cache configuration. Here, the target
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Figure 3.10: Energy Consumption of L0 and Tagless Hit Instruction Caches

bit transfer scheme (TT 32x4) performs better than the line-based scheme (TL 32x4) due

to the additional energy requirements of maintaining 32 TLs in each TH-IC line. We expect

that larger TH-ICs will be more energy efficient with a TT scheme due to its linear scaling

of cache metadata. We also see that the tagless hit line buffer (TH LB) manages to reduce

overall energy consumption more than any of the tested L0-IC configurations. This is due in

part to the faster application running times, but a significant portion of the savings comes

from the reduced fetch structure size (essentially a single line with little metadata).

Figure 3.11 shows the average hit rate of the L0-IC and TH-IC configurations. The false

miss rate is also shown for the non-line buffer TH-IC configurations. It is important to note

that the sum of these two rates is the same for all policies in each cache organization of

the TH-IC and L0-IC. The TH-IC really applies a different access strategy to the existing

L0-IC. Thus it is not surprising that the TH-IC contents are the same as an equivalently

sized L0-IC on a given instruction fetch. As the invalidation policy becomes more complex,

the number of guaranteed hits increases for a TH-IC, while the number of false misses is
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Figure 3.11: Hit Rate of L0 and Tagless Hit Instruction Caches

correspondingly reduced. This is due to a reduction in the number of invalidations that were

overly conservative. Overall, however, we see that the hit rate for a TH-IC is competitive

with the hit rate of a comparably-sized L0-IC. Considering the relatively small false miss

rate, we see that the sample policies perform quite well, particularly the target-bit and line-

based transfer schemes. For instance, the TL 16x4 configuration has a hit rate of 84.99%,

while the L0 16x4 has a hit rate of 87.63%. More complicated policies could unnecessarily

increase energy utilization and overall circuit complexity. The TH LB has a hit rate of

approximately 67.62%, which shows that the majority of instructions fetched are sequential

and in the same line. False misses are not captured since they cannot be exploited in any

way by a line buffer.

Figure 3.12 compares the average power required of the instruction fetch stage of the

pipeline for the L0-IC and TH-IC configurations. The baseline case again is using only

an L1-IC and has an average power of 100%. These results are not surprising considering

the overall processor energy results already shown. However, this shows that the power
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Figure 3.12: Fetch Power of L0 and Tagless Hit Instruction Caches

requirements for the TH-IC are considerably lower than an equivalently sized L0-IC. For

the best TH-IC configuration (TL 16x4), the fetch power is approximately 35.47% of the

baseline fetch power, while the corresponding 256-byte L0-IC yields only a 43.81% fetch

power. The average fetch power reduction comes from the elimination of cheaper tag/ID

comparisons on cache hits, as well as fewer ITLB accesses. The TH LB is able to reduce the

fetch power to 46.60%. This is a considerable savings for such a small piece of hardware, but

it is obvious that the higher miss rate (and thus increased number of L1 fetches) reduces the

energy efficiency below that achievable with a true TH-IC.

Energy-delay squared or ED2 is a composite metric that attempts to combine perfor-

mance and energy data together in a meaningful way. Energy is directly proportional to the

square of the voltage (E ∝ V 2), so decreasing the voltage reduces the energy of a processor,

but increases the clock period and hence execution time. Dynamic voltage scaling is one such

technique that reduces the clock rate in an effort to save energy [63]. ED2 is then used as

an indicator of a design’s relative performance and energy characteristics. Figure 3.13 shows
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Figure 3.13: Energy-Delay2 of L0 and Tagless Hit Instruction Caches

ED2 computed for each of the L0-IC and TH-IC configurations that we tested. Again, the

TL 16x4 configuration performs best (68.58%), since it had the greatest energy reduction

with no performance penalty. The TH LB also shows greater potential than any of the L0-IC

configurations.

In addition to evaluating the efficacy of TH-IC with traditionally embedded applications

such as those found in MiBench, we also performed similar experiments using the benchmark

176.gcc available in SPECInt2000. We selected this benchmark because it is representative

of a fairly complex general-purpose application. While most of the embedded MiBench

applications will spend their time fetching the same tight loops, the fetch patterns of 176.gcc

should be more diverse due to its longer running time and varied processing phases. This

benchmark is run to completion using the cccp.i test input file with the L0 16x4, TH LB,

and TL 16x4 configurations, which correspond to the most efficient configurations found

during the MiBench experiments. Similar results have been obtained using the reference

input (expr.i).
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Table 3.2: Comparing Fetch Efficiency Across Different Application Domains

MiBench Average 176.gcc from SPECInt2000
L0 16x4 TH LB TL 16x4 L0 16x4 TH LB TL 16x4

Execution Cycles 106.50% 100.00% 100.00% 104.10% 100.00% 100.00%
Total Energy 75.17% 74.13% 68.58% 83.81% 80.41% 79.03%
Small Cache Hit Rate 87.63% 67.62% 84.96% 77.86% 66.61% 73.57%
Fetch Power 43.81% 46.60% 35.47% 63.72% 58.33% 56.07%
Energy-Delay Squared 84.57% 74.13% 68.58% 90.82% 80.41% 79.03%

Table 3.2 compares the average MiBench results with the experimental values we obtained

from running 176.gcc. The execution time penalty for using an L0-IC with 176.gcc (4.1%)

is lower than the MiBench average (6.5%). There is a clear difference in average fetch power

between 176.gcc and MiBench. With MiBench, the fetch power is lower because the hit rate

of the small cache is much higher. For 176.gcc, the guaranteed hit rate for the TH-IC is

73.57%, and adding false misses only brings the rate up to 77.86%, which is still much smaller

than the MiBench results (84.96% → 87.63%). Overall, the TL 16x4 TH-IC configuration

again outperforms both the TH LB and the traditional L0-IC in all aspects. Despite 176.gcc

having completely different data access patterns than our embedded applications, we see that

fetch behavior is still comparable, and thus TH-IC can be beneficial for processors running

general-purpose applications as well.

3.4 Identifying Application Behavior with TH-IC

The success that TH-IC has demonstrated in reducing instruction cache power consumption

has led us to examine how the same approach can be used to identify further opportunities

in pipeline optimization. To do this, it is important to understand how instructions are

flowing through the TH-IC. In order to get a better understanding of the abilities of TH-IC,

we took a closer look at the eviction behavior of the individual lines. The first study was

designed to identify how eviction was handled in a 16x4 TH-IC, which was the most energy

efficient configuration evaluated [34]. We collected statistics for each line evicted, counting

how many of the other 15 lines have been replaced since the last time the current cache line

was replaced. This information can shed some light on how the TH-IC is utilized. Figure 3.14

shows the results using an average of the MiBench benchmarks [27] described later in this

paper. Conflict misses occur when few lines are displaced between consecutive evictions of a
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Figure 3.14: Line Replacements

single line. This is seen (and expected), but does not constitute the common case. Complete

cache replacement shows the highest individual frequency (22.48%), indicating a fairly large

number of capacity misses. This result is not particularly surprising for such a small cache,

but total cache line replacement of a direct mapped cache suggests a large loop structure

equal to or exceeding twice the size of the TH-IC or frequent changes in the working set. In

either case, we would expect that the miss behavior should be bimodal with some consecutive

TH-IC line misses as well as long periods of TH-IC hits. This is a nice feature since it means

that long sequences of instruction fetch should exhibit the same behavior.

Figure 3.15 shows both individual and cumulative results for consecutive hits in a 16x4

TH-IC. The graph shows values between 1 and 255+, with all consecutive streaks over

255 being collected under the 255+ data point. This data reinforces the observed eviction

behavior. We see two distinct spikes in the figure, at 3 instructions (28.28% ind. and 35.56%

cum.) and at 255+ instructions (26.91% ind.). The spike at 3 instructions shows standard

line buffer behavior – a miss on the first instruction in a line followed by 3 consecutive hits for
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Figure 3.15: Consecutive Hits
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Figure 3.16: Consecutive Non-misses

the remainder of the line. This is exactly what would occur with a long sequence of sequential

fetches. This accounts for the majority of TH-IC misses resulting in a very clustered sequence

of misses. The other spike (at 255+) indicates that when a longer sequence of hits occurs,

it tends to be much longer. Thus, the TH-IC is very efficient for capturing simple loop

behavior.

Figure 3.16 similarly shows individual and cumulative results for consecutive non-misses

(guaranteed hits and false misses) with a 16x4 TH-IC. False misses can be caused by complex

control flow in small loops. When we plot non-misses, we see an even greater number of very

long instruction sequences residing in the TH-IC (40.71% 255+ ind.). This shows the TH-IC

also does a respectable job in capturing more complex loop behavior. These results indicate

that filtering instruction references through TH-IC provides an efficient means of partitioning

the instruction stream, identifying sequences that have very well-structured behavior.

We also experimented with incorporating set associativity into TH-IC and LIFE. How-

ever, as other studies have shown, increased associativity does not always improve hit rate.

One of the potential benefits of set associativity with TH-IC would be that the next-way

information can be kept using additional metadata bits (for next sequential or next target)

similar to way memoization [54]. By using a number of ways that is one less than a power

of two, the metadata can be encoded very efficiently as only a single combination of bits

needs to point towards the L1-IC and all other combinations (2n− 1) refer to the individual

TH-IC ways. During the course of these experiments, we found that although we could

virtually eliminate the penalties of set associativity, the set associative TH-IC performed

worse than the direct mapped version. Although some conflict misses may be avoided, the

overall problem stems from overwriting useful lines twice as frequently as normal. These

very small caches often encounter loops that are just slightly larger than the cache, leading
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to worst case behavior for both LRU and FIFO replacement policies. Even though other

studies of very small caches have used direct mapped purely as a simpler mechanism, our

analysis shows that direct mapped also provides better hit rates. The reduced number of

sets and the presence of loops that are larger than the small cache can result in worst-case

behavior for both LRU and FIFO replacement policies. It appears that set associativity is

not useful for very small instruction caches.

3.5 Eliminating Unnecessary BTB, BP, and RAS
Accesses

Although L1-IC energy tends to dominate the total energy required for the instruction fetch

pipeline stage, a TH-IC reduces this impact. We will show a TH-IC actually reduces the cache

power requirements so that it is less than the power consumed by the rest of instruction fetch.

LIFE is focused on making fetch more energy-conscious, and thus it becomes increasingly

important to reduce energy consumption in the remaining speculation components (BP,

BTB, RAS) present in instruction fetch. Based on our analysis of TH-IC residency in the

previous section, it is apparent that other microarchitectural state involved in fetch can

be managed more efficiently. Preliminary studies with LIFE revealed that 86.75% of the

executed instructions in our benchmarks are non-branch instructions, which means that

access to the BTB, BP, or RAS is unnecessary at least 86.75% of the time. Figures 3.15

and 3.16 make it clear that additional information can be kept regarding branch/non-branch

status of instructions, thus making a fetch engine more efficient.

LIFE employs both a conservative strategy and a more aggressive strategy for handling

access to speculative components of instruction fetch. The conservative strategy disables

speculation whenever the next fetched instruction can be guaranteed to not be a transfer of

control. Of the branches that are executed in an instruction stream, we found that 23.73%

are predicted strongly not-taken (state 00) by our bimodal branch predictor. The more

aggressive strategy will further disable speculation when the next fetched instruction is a

transfer of control, but has been previously predicted as strongly not-taken (00). Combined

together, the BTB, BP, and RAS structures need not be accessed for 89.89% of fetched

instructions.

LIFE depends on TH-IC to both supply and manage fetched instruction metadata.

Figure 3.17(a) shows the baseline TH-IC metadata configuration used in this paper. Each
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Figure 3.17: LIFE Metadata Configurations

line is composed of four instructions and their associated NT bits. A single NS and valid

bit are associated with each line and 16 TL bits are used to facilitate line-based invalidation

of NTs. ID is 6 bits long to uniquely identify the corresponding L1-IC line (replacing the

longer tag of conventional caches), and only needs to be checked on a potential miss.

In Figure 3.17(b), a single Next Sequential Non-Branch bit (NSNB) has been added to

each instruction in the line. On sequential transitions both within and across lines, this

bit will be set when the next fetched instruction is not a transfer of control instruction.

Whenever this bit is set and we fetch sequentially, the BP, BTB, and RAS need not be

activated on the following cycle.

We can also extend the utilization of the NSNB bit to accept transfer of control

instructions that are strongly not-taken (approximately 23.73% of branches). This usage

will be referred to as NS00 due to 00 being the strongly not-taken bimodal BP state. In this

configuration, whenever a branch is encountered and a prediction is made that it is strongly

not-taken (state 00), the previous (sequential) instruction can set its NSNB bit. When this

instruction is later fetched, the NSNB bit will indicate that no prediction should be made.

While most branches that reach the strongly not-taken state remain not-taken, some of the

branches would suffer if their prediction remained not-taken while the instruction is in the
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TH-IC. Since additional speculative misses would cause an increase in cycle count, selective

update of NS00 is necessary. On a branch misprediction, the TH-IC must be accessed to

unset the NS00 bit of the previous sequential instruction since we can no longer guarantee

that the branch will be predicted as not-taken.

Figure 3.17(c) is a further enhancement for LIFE that adds a single Next Target Non-

Branch bit (NTNB) for each instruction in the line. This bit serves a similar role as NSNB,

but it is set for branch instructions whenever the corresponding target instruction is not

a transfer of control or is strongly not-taken. Most branches do not target unconditional

jumps since compiler optimizations such as branch chaining can replace such a chain with a

single branch. Conditional branch instructions are also rarely targets, since they are typically

preceded by comparison instructions. Calls are rarely targets since they are usually preceded

by additional instructions to produce arguments. Finally, returns are rarely targets since

registers are often restored before the return. Thus, NTNB bits are generally quickly set for

each direct transfer of control. Again, this speculatively reduces the need to access the BP,

BTB, and RAS structures.

Adding these metadata bits to the TH-IC requires only a minor change in the steps to

take for line invalidation. When a line is evicted, all of its NSNB and NTNB bits must be

cleared. One interesting difference with the invalidation of NSNB versus the NS is that the

previous line’s last NSNB bit need not be cleared. This is due to the fact that any subsequent

fetch after crossing that line boundary will still not need a BP/BTB/RAS access, as that

instruction will not change branch status whether it was fetched from L1-IC or TH-IC. This

same principle holds for NTNB bits when NT bits are cleared due to target line evictions.

Figure 3.18 shows an example of using LIFE to fetch a loop. This example includes both

the NSNB and NTNB extensions. We track the number of BTB/BP/RAS accesses required

in addition to the L1-IC and ITLB accesses. The baseline loop sets the appropriate NS and

NT bits as the instructions are initially fetched from the L1-IC. Each of the instructions in the

main loop (2–7) can be guaranteed to hit in the TH-IC once the NS and NT links have been

set, thus leading to extremely efficient cache behavior during the steady state operation.

NSNB and NTNB bits are correspondingly set as LIFE gathers information about the

instructions fetched in the loop. During subsequent loop executions, the BTB/BP/RAS need

only be accessed when instruction 7 is fetched, thus leading to only one single speculation

access per loop iteration. Without NTNB bits, the fetch of instruction 2 would also require a
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Figure 3.18: Reducing BTB/BP/RAS Accesses Example

BTB/BP/RAS access, since the branch transition from instruction 7 could not be guaranteed

to target a non-branch.

Modifying the use of speculative components requires an understanding of the regularity

in which these components are used and their results relative to the TH-IC. Figure 3.19

shows the taxonomy of branches as they are fetched using LIFE with NSNB, NS00, and

NTNB extensions. This figure clearly demonstrates the correlation of speculative hardware

with the fetch of instructions. We find that 56.48% (45.92% taken + 10.56% not-taken) of

all branches will have their predicted next instruction as a guaranteed hit in the TH-IC.

Further, 58.61% of all branches will have metadata available at fetch1. Combined, we find

that almost all branches with metadata result in a guaranteed hit in the TH-IC. This fact

could potentially lead to the discovery of new relevant metadata that could further influence

speculative execution. A somewhat intuitive step was to enhance LIFE with speculative

information. Unfortunately, as can be seen in Figure 3.19, 41.39% (11.94% from L1 +

29.45% first access) of branches either are not fetched from the TH-IC or do not contain

metadata. This means that the smaller structure of an embedded BTB and branch predictor

would be applicable to only 58.61% of branches. The level of accuracy obtained did not offset

1For a branch to be considered as having metadata it must not be the first fetch of the given branch. If
a TH-IC line eviction occurs and the branch leaves the TH-IC, then the next fetch of that branch will be
considered its first fetch since the metadata was cleared.
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Figure 3.19: Branch Taxonomy in TH-IC

the cost of additional metadata in LIFE and updates to the original hardware structures.

While this result does mean that we cannot eliminate accesses to the 512-entry bimodal

predictor and BTB, it does not mean that new metadata cannot be used to influence the

use of these structures to allow for a reduced speculative miss rate.

In addition to dealing with strongly not-taken branches, one might also consider having

LIFE handle strongly taken conditional branches (encoded as 11 in the bimodal BP), since

they will frequently occur due to loops. For instance, the BTB/BP/RAS structures are

accessed each time instruction 7 in Figure 3.18 is fetched. LIFE could enable just the BTB

and RAS, while always automatically predicting such branches as taken. To recognize the

11 state, an additional metadata bit (or a special encoding of the existing bits: NSNB,

NTNB, and NT) would have to be introduced to the TH-IC, thus increasing the average

energy for processing any instruction. This approach proved unfruitful since branches which

are strongly taken and remain strongly taken account for a small percentage of the overall

instructions executed. Thus, any benefit is outweighed by the overhead of the additional

metadata handling.
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Table 3.3: Baseline LIFE Configuration
I-Fetch Queue 4 entries
Branch Predictor Bimodal – 512
Branch Target Buffer 512 entries
Branch Penalty 3 cycles
Return Address Stack 8 entries
Fetch/Decode/Issue/Commit 1
Issue Style In order
RUU size 8 entries
LSQ size 8 entries

16 KB
L1 Data Cache 256 lines, 16 B line,

4-way assoc., 1 cycle hit
16 KB

L1 Instruction Cache 256 lines, 16 B line,
4-way assoc., 1 cycle hit

Instruction/Data TLB 32 entries, Fully assoc.,
1 cycle hit

Memory Latency 32 cycles
Integer ALUs 1
Integer MUL/DIV 1
Memory Ports 1
FP ALUs 1
FP MUL/DIV 1

256B
L0 Instruction Cache 16 lines, 16B line,
(when configured) direct mapped, 1 cycle hit

256B
Tagless Hit I-Cache 16 lines, 16B line,
(when configured) direct mapped, 1 cycle hit

Line-based invalidation

3.6 Experimental Evaluation of LIFE

Table 3.3 shows the exact configuration parameters that were used in each of the experiments.

The L0-IC and TH-IC are only configured when specified in the evaluation. We evaluate

using just TH-IC and then extend it with the LIFE techniques for eliminating BP, BTB, and

RAS accesses. In subsequent graphs, NSNB indicates using the NSNB bits only to handle

instructions that are not transfers of control, while NS00 corresponds to a configuration that

uses the NSNB bits to handle strongly not-taken branches as well. Finally, NTNB includes

NSNB, NS00, and adds NTNB bits to handle targets that are not transfers of control.

While the Wattch power model is only an approximation, it is sufficient for providing

reasonably accurate estimates for simple cache structures using CACTI [79]. The structures

being evaluated in this work (TH-IC, BP, BTB, RAS, L0-IC, L1-IC, ITLB) are composed

primarily of simple regular cache blocks and associated tags/metadata. Although L0-IC and

TH-IC may differ in functionality (tag checks vs. metadata updates), they should remain

very similar in overall latency and area. Writing of metadata bits can be viewed as a small

register update, since the overall bit length is often short.

We again employ the MiBench benchmark suite to evaluate our design. We also present

results for the 176.gcc benchmark available in SPECInt2000 in order to evaluate the impact of

LIFE on a more complex general purpose application. This benchmark is run to completion

using its test input file (cccp.i). We have obtained similar results using the reference input

(expr.i). MiBench results are presented by category along with an average due to space

constraints. All results for 176.gcc are displayed after the MiBench average. Results are
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Figure 3.20: Impact of LIFE on Fetch Power

verified for each benchmark and sanity checks are performed to ensure correct behavior and

verify that LIFE does not unfairly use information that should not be available to it.

Figure 3.20 shows the fetch power distribution for each of the various L0-IC and LIFE

configurations. The fetch power bars are split into I-cache and speculation components, and

results are normalized to the overall L1-IC values. The MiBench average results show that

while the L0-IC and TH-IC alone can reduce cache power, they have a negligible impact

on speculation power. The baseline speculation power is 27.97% of the total fetch power,

while caches account for 72.03%. Adding an L0-IC cuts the cache power to 28.30% and

the speculation power to 27.73%. The reduction in speculation power is explained by power

estimates which are averaged across all execution cycles. The extra cycles due to L0-IC misses

do not require access to the speculative resources, thus reducing the average but keeping the

same total. Total energy (discussed later) will show an increase in energy consumed during

execution. TH-IC reduces cache power to just 21.82% of the original fetch power with no

change in speculation power since branch prediction is unmodified and total execution time is

unchanged. Once TH-IC is employed, speculation power exceeds the average I-cache access

power, thus providing the motivation for our exploration. LIFE, using just NSNB bits for

non-transfers of control, results in cache power of 21.87% and a reduction in speculation
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power to 13.55%. The cache power is slightly increased from the baseline LIFE with TH-IC

due to additional NSNB bits and associated upkeep. Allowing strongly not-taken branches

(NS00) results in a 13.06% speculation power and 21.91% cache power. Finally, adding the

NTNB bits reduces the speculation power to 12.34% and the cache power to 21.95%, for an

overall fetch power savings of 65.70% over the baseline L1-IC. LIFE eliminates an average

of 61.17% of speculative hardware accesses due to being able to exploit the NSNB/NTNB

metadata. Results for 176.gcc show slightly reduced but still significant savings in fetch

power for LIFE.

While an L0-IC degrades performance by about 6.44% (with a 17.67% maximum increase

on rijndael), TH-IC and LIFE have no associated performance penalty. The baseline TH-IC

as well as LIFE with any of the configured NSNB, NS00, or NTNB extensions do not exhibit

any associated performance difference from the baseline configuration.

Figure 3.21 shows the benefit of LIFE on total processor energy. Adding an L0-IC reduces

total energy to 79.00%. This is less than the power savings because total energy accounts for

the increase in execution time caused by the increased L1-IC latency when servicing L0-IC

misses. TH-IC cuts total energy to 72.23%, in line with power analysis since execution time

is unaffected. Similarly, LIFE with NSNB reduces total energy to 65.44%, in line with power

estimates. Adding NS00 reduces the total energy to 65.27% and NTNB yields a final total

processor energy of 64.98%. With 176.gcc, applying all the LIFE extensions reduces the total

energy to 72.88%. In all cases, LIFE extensions are able to achieve equivalent power reduction

in speculation components that TH-IC achieved with the I-cache/ITLB. The combination of

these enhancements yields a much greater energy savings than any other existing instruction

fetch energy reduction technique evaluated.

3.7 Improving Next Sequential Line Prefetch with
LIFE

LIFE is designed to exploit program fetch behavior in an effort to better utilize pipeline re-

sources. In examining the functionality of the TH-IC, we found that presence of instructions

in the TH-IC can be used as a simple execution phase predictor. When instructions are

fetched from the TH-IC, they are identified as being part of very regular instruction fetch.

This regularity of fetch behavior can identify potential optimizations in later pipeline stages

either to improve execution performance or to reduce power consumption. There have been
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Figure 3.21: Impact of LIFE on Processor Energy

numerous proposed microarchitectural enhancements which seek to identify regular resource

usage patterns and scale the pipeline resources to best match the expected requirements.

LIFE can perform as an efficient early predictor to trigger these optimizations. Cyclone is

a dynamic scheduler that attempts to reduce the scheduling complexity by implementing

a form of selective instruction replay [19]. LIFE can provide additional information about

program behavior to such a scheduler while improving overall processor energy efficiency.

Throttling of processor resources is also becoming increasingly important, as portions of

the processor are over-designed and cannot be fully exploited throughout a program’s entire

execution [1, 4, 55]. LIFE provides a simple mechanism for subsequently fetched instructions

to take advantage of improved resource assignment or scheduling based on previous execution

characteristics.

One area of the pipeline that would seem to benefit the least from knowledge of instruction

fetch behavior is the data cache. While previous TH-IC results could not extend benefits

to the data cache, LIFE can use the fetch metadata to intelligently select when to apply

aggressive optimization techniques for the data cache. Such optimizations may not be able

to be normally applied for highly constrained processor designs due to their associated
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tradeoffs. Prefetching is an example of such an aggressive optimization that attempts to

reduce cache miss penalties by using idle cache cycles to fetch data speculatively from

predicted addresses. When a triggering condition is met, the cache will prefetch an additional

line of data. Although prefetching can improve performance through reducing cache misses,

it significantly increases memory traffic and may force the early eviction of other cache lines

that are still useful, thus polluting the cache. With next sequential line prefetching (NSLP),

the first non-prefetch access of a line triggers the next sequential line to be fetched from

memory once the current cache access operation has finished [25, 70, 72]. By associating a

first access bit with each cache line, a subsequent true use of a prefetched line triggers the

next sequential line to be prefetched. This technique potentially allows the prefetching to

stay one line ahead of the current accesses. If a line is already available in the cache, then

the data is not fetched from memory unnecessarily.

Although LIFE only keeps track of instruction fetch behavior, we can exploit this

information to have NSLP selectively enabled or disabled. NSLP works best on sequentially

accessed arrays that exhibit a good deal of spatial locality. Small loops are often used to

iterate through arrays of data, and LIFE can provide a simple mechanism for detecting

such loops. We can use a single bit to denote whether the initial line access was a hit or

a miss, which we will refer to as the TH-IC line-hit bit. It is possible for a TH-IC line-hit

access to not be in a small loop, but the majority of cases will show that this fetch behavior

corresponds to the execution of a small loop. Thus we can enable NSLP when we have a TH-

IC line-hit and disable it on any miss. The TH-IC line-hit information will be propagated

through the various pipeline stages with the fetched instruction and will only be checked if

the instruction is a memory access.

Throttling the NSLP mechanism will help to reduce the frequency of useless prefetches.

This approach conserves energy and can also help to reduce cache pollution for benchmarks

that typically do not exhibit good prefetch behaviors. Table 3.4 presents a simplified

view of the combinations of instruction and data flow behavior in a pipelined processor.

Both instruction and data flow can be simply characterized as stable or unstable. Stable

instruction flow corresponds to loop behavior where the instruction sequences are able to be

fetched from a small cache. Stable data flow indicates a data access pattern that exhibits

good spatial locality, possibly improving with prefetching. LIFE and TH-IC can provide their

greatest benefits during periods of stable instruction flow as they rely on past instruction
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Table 3.4: Correlating Instruction and Data Flow Behavior

Inst. Flow Data Flow Comments

Stable Stable Typical loop (strided array data accesses)
Stable Unstable Typical loop (pointer-chasing data accesses)
Unstable Stable Does not occur often in practice
Unstable Unstable Transitional code (non-loop)

Table 3.5: Impact of LIFE with Next Sequential Line Prefetch

Useless Prefetches Execution Time
NSLP LIFE+NSLP NSLP LIFE+NSLP

Automotive 34.52% 31.85% 93.61% 94.39%
Consumer 25.15% 16.27% 97.00% 97.60%
Network 38.02% 25.23% 95.95% 96.14%
Office 49.43% 29.01% 98.05% 98.53%
Security 52.26% 36.99% 99.96% 99.96%
Telecomm 22.36% 27.17% 99.86% 99.88%
MiBench Avg. 36.82% 28.52% 97.54% 97.88%
176.gcc 51.31% 38.17% 97.61% 98.79%

behavior to make guarantees. NSLP only provides benefits during periods of stable data

flow. When data flow is unstable, NSLP performs useless prefetches that waste energy and

can evict useful cache lines. The majority of program execution time in most applications

will consist of stable instruction flow (or typical loop behavior).

Table 3.5 summarizes the results of our experiments with LIFE and next sequential line

prefetch. Useless prefetches denotes the fraction of prefetches that are never accessed by

the actual application before being evicted. NSLP reduces the overall application execution

times, while LIFE+NSLP can attain most of the benefits by just selectively prefetching.

For MiBench, the number of useless prefetches is reduced by 22.54% when applying NSLP

selectively based on LIFE metadata. With 176.gcc, the use of LIFE reduces the useless

prefetches by an additional 25.6%. This translates into a significant reduction in memory

traffic due to data access. Wattch does not model the off-chip energy consumption of main

memory, so energy results are not included. Simplified energy analysis based on memory

access counts shows that LIFE+NSLP results in an overall greater system energy savings

than NSLP alone.
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3.8 Concluding Remarks

L0/filter instruction caches can greatly reduce the energy consumption of a processor by

allowing the most frequent instructions to be accessed in a more efficient manner. However,

L0-IC misses can accumulate and lead to significant application slowdown. In this chapter,

we described the Tagless Hit instruction cache, a small IC that does not require a tag/ID

comparison or ITLB access to be performed on cache hits. The TH-IC is designed to

take advantage of the properties of a small direct-mapped instruction cache and common

instruction fetch behaviors. The reason that a TH-IC works is that it can identify nearly all

of the accesses that will be hits in the cache before the instructions are fetched. The L0-IC

impacts performance because trying to capture the few remaining accesses (false misses as

hits) comes at the cost of a cycle of latency for all L0-IC misses. The TH-IC features a hit

rate that is competitive with that of a similarly sized L0-IC (because there are not many

false misses). Furthermore, the TH-IC can be bypassed during fetch when an instruction

is not guaranteed to reside in one of the cache lines, eliminating the performance penalty

normally associated with small instruction caches that can’t be bypassed, like L0. Some TH-

IC configurations require fewer metadata bits than a corresponding L0-IC, and even the larger

TH-IC configurations require only a few extra bits per line. We also designed a compact

line buffer based on the same principles as the TH-IC that provides better performance

and energy efficiency than any L0-IC at a fraction of the area requirement. By exploiting

fetch behavior, the TH-IC provides an attractive solution for improving processor energy

efficiency without any negative performance impact or additional programmer effort. The

TH-IC is even desirable for general-purpose processors as power and heat issues have become

more of a concern. Even though execution characteristics of general-purpose applications

tend to be more diverse, fetch behavior remains similar and can thus be exploited by the

TH-IC. The lack of any additional miss penalty makes the TH-IC a viable alternative for

high-performance processors, something which could not be said of the L0-IC.

We have also demonstrated how instruction fetch power utilization can be improved

by exploiting those portions of the program execution that exhibit significant regularity.

The goal of the LIFE extensions to the processor fetch logic is to identify repetitive code

sequences and cache enough information about their prior behavior to control access to the

BP, BTB, and RAS structures. LIFE eliminates access to these structures an average of
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61.17% of the time, resulting in a total savings of 63.33% on instruction fetch power and

an additional savings of 9.42% on total processor energy beyond what is achievable with

TH-IC alone. All of these improvements are made with no increase in execution time and

require only 128 additional metadata bits (2 bits per TH-IC instruction). Furthermore,

we showed that this enhanced knowledge of instruction fetch behavior can guide other

pipeline decisions, particularly for handling aggressive optimizations like next sequential

line prefetch. By focusing on the loops detected by LIFE, we were able to reduce the

number of useless data prefetches while still maintaining the majority of the performance

benefit afforded by prefetching. Other throttling techniques may benefit similarly from the

phase behaviors detected by LIFE. The design complexity of TH-IC and LIFE is minimal,

with an area cost comparable to similar conventional filter caches using a few simple index

structures to maintain the metadata required to control resource allocation. LIFE can

easily be incorporated into any processor pipeline, requiring only minor additions to the

fetch stage and the routing of branch outcomes to update the LIFE metadata. We believe

that these techniques can become a common design choice for both low-power embedded

processors as well as high-performance general purpose processors. This will become even

more important as multicore architects focus their efforts towards further reducing per core

power consumption.
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CHAPTER 4

Related Work

There are three primary design constraints that embedded processor developers must face:

energy consumption, code size and execution time. Design enhancements are often focused

on these particular areas of development. It is often that a single technique will benefit

one or more of these areas at the expense of some other design constraint. Techniques that

target code size reduction typically increase the execution time of an application. Similarly,

techniques that focus on reducing energy consumption often increase execution time and/or

code size, since they often work with reduced hardware resources. Finally, techniques for

improving execution time often sacrifice code size as well as energy efficiency, in order to

obtain peak performance.

4.1 Reducing Energy Consumption

Energy consumption is a prime concern for embedded processor designers, as these devices

must often operate on battery power. Instruction fetch has been shown to account for up to

one-third of the total processor power expenditure per cycle on a StrongARM SA-110 [56].

In order to reduce fetch energy consumption, processor designers have developed techniques

to improve the fetch of instructions in loops, enhance existing cache mechanisms, as well as

dynamically adjust the voltage of a processor at run-time.

It is apparent that the majority of instructions executed for a general purpose application

come from the application’s inner loops. Specialized hardware can be developed to improve

the fetch of instructions from these inner loops. The zero-overhead loop buffer (ZOLB) is a

small compiler-managed instruction cache, where an innermost loop can be explicitly loaded

and executed [20]. Special instructions are used to specify the loading of the loop, and the

number of iterations to execute. After performing the sequence the requested number of
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times, the program returns to its standard method for fetching and executing instructions.

A ZOLB can reduce fetch energy (since the IC can be bypassed), as well as result in reduced

execution time due to not having to execute loop test and branch instructions.

Loop caches are small dynamically-managed instruction buffers that can also reduce fetch

energy requirements for innermost loops [49]. These caches operate by detecting an initial

short backward branch (sbb) in the code. When this happens, the loop cache begins filling

with instructions until the same sbb is encountered and taken again. If this sbb is not taken

or another transfer of control is taken, then filling is terminated and the loop cache goes

back to its idle state. If however, the same sbb is taken, instructions can now be fetched

and executed directly from the loop cache, until the sbb is no longer taken, or a different

transfer of control is taken. Normally the loop must fit in the buffer provided by the loop

cache, although techniques have been developed to allow for partial fetches of larger loops

to occur [50]. It is also possible to pre-load a loop cache with several frequently executed

small loops for execution at run-time [26].

Data and instruction caches are often separated for performance reasons, particularly

with respect to handling the diverse behavior and request patterns for each. The L-

cache seeks to further subdivide the instruction cache into categories based on execution

frequency [5, 6]. The frequently executed loops in code are placed into the low-power L-cache,

which can be distinguished by address space location, while the infrequent code is placed

in a standard instruction cache. Despite the additional instruction costs for restructuring

control flow to use an L-cache, this approach reduces both fetch energy and execution time.

Region-based caching subdivides the first-level data cache into separate partitions for the

stack, heap, and global variable storage [48]. Individual partitions can then be specialized

to best handle their particular category of memory accesses. This results in reduced energy

consumption and improved performance. The Stack Value File is one particular example of

a partition that is tuned for stack memory accesses [47]. The SVF routes accesses to the

topmost portion of the stack through a special circular register file, thus reducing memory

contention for the traditional data cache and improving overall system performance.

Another simple technique for reducing fetch energy is the use of a small direct-mapped L0

or filter instruction cache [40, 41]. The small size of the L0 cache results in a net reduction

in fetch energy for the most frequently executed loop instructions. The drawback for L0

caches, however is the high miss rate, which leads to performance penalties, even if the L1
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cache access is a hit on the following cycle.

There has also been some previous work to decide whether the filter cache or the L1-IC

should be accessed on a particular fetch. A predictive filter cache has been developed to allow

direct access to the L1-IC without accessing a filter cache first for accesses that are likely to

be filter cache misses [75, 74]. A dynamic prediction is made regarding whether or not the

subsequent fetch address is in the filter cache. This prediction is accomplished by storing

for each line the four least significant tag bits for the next line that is accessed after current

line. When an instruction is being fetched, these four bits are compared to the corresponding

bits for the current instruction’s tag. These bits will often be identical when consecutive

lines are accessed in a small loop. Significant energy savings were obtained with a slight

performance degradation by accessing the L1-IC directly when these bits differ. Conventional

tag comparisons and the additional 4-bit comparison are both required for the predictive filter

cache. The HotSpot cache uses dynamic profiling to determine when blocks of instructions

should be loaded into the filter cache based on the frequency of executed branches [81].

Instructions are fetched from the L0-IC as long as hot branches are encountered and there

are no L0-IC misses. Like the predictive filter cache, the HotSpot cache also requires a tag

comparison to be made for each L0 access. In contrast, the TH-IC requires no tag comparison

for guaranteed hits and only a small ID comparison for potential misses. This should result

in reduced energy consumption compared to both of these approaches.

There has also been previous research on guaranteeing hits in an L1-IC. The goal for these

caches is to reduce energy consumption by avoiding unnecessary tag checks in the L1-IC.

Way memoization was used to guarantee that the next predicted way within a 64-way L1-IC

is in cache [54]. Valid bits are used to guarantee that the next sequential line accessed or line

associated with the target of a direct transfer of control are in cache. Different invalidation

policies were also investigated. When the next instruction is guaranteed to be in cache, 64

simultaneous tag comparisons are avoided. The history-based tag-comparison (HBTC) cache

uses a related approach. It stores in the BTB an execution footprint, which indicates if the

next instruction to be fetched resides in the L1-IC [38, 37]. These footprints are invalidated

whenever an L1-IC miss occurs. Rather than guaranteeing hits in a conventional L1-IC, we

believe that the most beneficial level to guarantee hits is within a small instruction cache.

First, most of the instructions fetched can be guaranteed to be resident in the small IC,

which will result in a smaller percentage of guaranteed hits in an L1-IC. Since the L1-IC will
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be accessed fewer times in the presence of a small instruction cache, the additional metadata

bits in the L1-IC will be costly due to the increased static versus dynamic energy expended.

Second, the invalidation of metadata when a line is replaced is much cheaper in a small IC

since there are fewer bits of metadata to invalidate.

Reinman et al. propose a serial prefetch architecture that splits tag and data accesses

into separate pipeline stages for instruction fetch [65]. By performing tag accesses first,

only the relevant data line from the proper cache way needs to be fetched, saving processor

energy. By fetching ahead with the tags, instruction lines can be prefetched into a special

buffer from which they can later be promoted to the actual instruction cache on a direct fetch

request, thus improving performance. In contrast, LIFE completely eliminates tag accesses

for guaranteed hits, and also reduces the number of accesses to other fetch structures relating

to speculation, which serial prefetching cannot do.

There has also been some previous work on reducing the energy consumption of the BTB.

Utilizing banked branch prediction organization along with a prediction probe detection to

identify cache lines containing no conditional branches was evaluated by Parikh et al. [60].

This study showed that careful layout of branch predictor resources and a course granularity

bypass capability can make much larger branch predictors feasible from a total energy

perspective. Just as there are fewer bits of metadata to manage in a TH-IC versus an

L1-IC to guarantee hits, it is also more efficient to avoid accesses to the BP/BTB/RAS by

tracking this information in a small TH-IC versus a larger structure for the entire BTB. A

leakage power reduction technique has also been used to turn off entries in the BP and BTB

if they are not accessed for a specified number of cycles [36]. The counters used will limit

the amount of energy savings. Yang et al. reduce BTB energy consumption by altering the

instruction set and producing setup code to store the distance to the next branch instruction

from the beginning of each basic block in a small branch identification unit [80]. The BTB

is not accessed until the next branch is encountered. While reducing energy consumption,

this approach requires alteration of the executable to store the branch distance information

and a counter to detect when the next branch will be encountered.

There are a variety of power-saving techniques that can be applied to traditional

instruction cache designs. Block buffering [73] allows large cache lines to be accessed in a

manner similar to the L0 cache previously described. Cache sub-banking [73] and Multiple-

Divided Modules [43] focus on separating the address space using several individual caches.
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Gray code addressing [73] seeks to minimize the bit-switching activity found on address lines

in an instruction cache.

Dynamic voltage scaling (DVS) is a technique that seeks to reduce energy consumption of

a device by reducing the voltage of the device during periods of idle usage [63]. Since energy

is directly proportional to the square of the voltage, this technique can yield significant

energy savings. Although the benefits of this technique are quite high, the penalty is in

increased execution time, as well as the requirement for a compliant operating system that

can adequately predict run-time needs of its various applications.

4.2 Reducing Code Size

Static code size is another important metric for embedded processor design, since code

size reductions can decrease memory requirements and thus ROM/memory component

costs. Code size reducing techniques can be grouped as abstraction techniques, dictionary

compression techniques, or ISA-modifying enhancements. Abstraction techniques, such as

procedural abstraction [22, 13, 17] and echo factoring [46], focus on replacing repeated

sequences of code with special call instructions to new subroutines. These new subroutines

contain the abstracted redundant code. Such techniques lead to reduced code size at the

expense of reduced spatial locality (due to the increased number of calls/returns).

Dictionary compression techniques [52, 2, 14, 15] focus on replacing sequences of repeated

instructions with shorter keywords. These keywords can be looked up during execution and

the appropriately mapped instruction sequence can be executed in its place. These techniques

reduce code size significantly, but can negatively impact execution time due to the dictionary

lookups, as well as requiring additional die area, resulting in increased energy requirements.

ISA-modifying enhancements can also be used to reduce the code size of an application.

Many modern embedded processors now offer dual-width instruction sets such as the

ARM/Thumb [67] and MIPS16 [42]. These instruction sets support an additional 16-bit

ISA which is used to compress infrequently executed instruction sequences. These secondary

ISAs can only access a small subset of opcodes, registers and immediate values, so they will

yield reduced performance if executed frequently. Instead, profiling is often used to keep the

frequent code using 32-bit instructions and infrequent code using 16-bit instructions [44].

Augmenting eXtensions (AX) have been designed to enhance the use of dual-width ISAs like

the ARM/Thumb [45]. AXThumb allows multiple 16-bit instructions to be coalesced into
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more expressive 32-bit instructions for improved execution in 16-bit Thumb mode. Thumb-

2 [64] is similar to AXThumb, as it attempts to reduce the performance penalty associated

with 16-bit code by introducing some 32-bit instructions.

Another ISA-modifying enhancement is support for variable-length instructions, which

can be used to compress simple and frequent operations to a greater extent. The primary

drawback of variable-length instruction sets is the increased pressure on instruction decode,

due to alignment issues. Heads and Tails [59] is an enhancement to traditional variable-length

ISAs, since it focuses on reducing this alignment penalty. In this architecture, instructions are

split into fixed-length opcode heads and variable-length operand tails. Multiple instruction

heads are placed at the start of an instruction bundle, while the corresponding tails are

placed in reverse order at the back of the bundle. This allows the heads to be fetched and

decoded in parallel, while the tails are still unknown. Although the Heads and Tails scheme

does reduce the static code size of an application, there are still some performance and energy

implications involved in decoding the bundles efficiently.

4.3 Reducing Execution Time

Many techniques can also be used to reduce the overall execution time of embedded

applications. These techniques include specialized instruction sets and addressing modes

to increase instruction efficiency and throughput. The ability to coalesce sequential depen-

dent instruction sequences has also become very popular for improving processor resource

utilization and throughput. Additionally, a new architecture has been developed that seeks to

exploit the varying benefits of existing superscalar, VLIW and vector processing approaches.

Instruction set architectures sometimes include special-purpose instructions for use in

particular applications or performance-critical kernels. Recent processor design trends have

increased the popularity of single-instruction multiple data (SIMD) extensions [62, 51, 18].

These extensions improve the throughput of multimedia applications, which often repeat

many simple operations on streams of data. Application-specific instruction-set processors

or ASIPs exemplify the general approach of producing an ISA that is custom-tailored for a

specific task [53, 11]. In such a system, the hardware and software are co-designed in order

to appropriately balance code size, performance, and energy requirements.

Specialized addressing modes can also be used to reduce the execution time of a particular

application. Two of the most popular addressing modes for DSP algorithms are modulo
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addressing [57, 78] and bit-reversed addressing [57, 66]. Without the use of these specialized

addressing modes, additional instructions would be necessary to carry out the address

calculation before performing various load and store operations for applications that make

use of filtering and Fast Fourier Transforms (FFTs).

Similar to ASIP design, another technique for improving performance is the detection of

dependent instruction sequences that can be collapsed into new instructions with reduced

cycle times. This detection and coalescing is often referred to as dataflow sub-graph com-

paction. Specialized hardware is programmed to effectively carry out complex calculations

using these compacted sub-graphs. Dataflow mini-graphs are simple multi-instruction sub-

graphs, with at most two inputs, one output, one memory reference and one transfer of

control [8]. These mini-graphs are extracted from an application and placed into a mini-

graph table, which can then be accessed by a special instruction to carry out the required

dataflow operations. This ability not only reduces the cycle time of complex instruction

sequences, but can also reduce the pipeline resources necessary for carrying out such an

operation.

Clark et al. have developed another architectural feature called CCA (configurable

compute accelerator), that executes dataflow sub-graphs for improved performance in

embedded systems [12]. The difference between CCA and dataflow mini-graphs is that the

code for the sub-graph is actually a procedurally abstracted routine that can be dynamically

compiled for the hardware at run-time. A configuration cache helps in keeping the frequently

accessed sub-graph configurations from needing to be re-configured when they are executed.

One of the primary benefits over dataflow mini-graphs is that the underlying processor

technology can support different degrees of complexity for CCA, since the sub-graphs can

be executed as a standard subroutine in the worst case.
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CHAPTER 5

Future Work

This chapter describes some potential areas for future exploration with regards to improving

the efficiency of instruction fetch. We explore some potential directions for integrating

instruction packing with a few modern embedded processor designs. We also outline some

of the ways in which LIFE can be used to improve other pipeline decisions by guaranteeing

particular fetch properties.

5.1 Improvements for Instruction Packing

5.1.1 Splitting of MISA and RISA

Our work with the IRF and Instruction Packing uses a modified version of the MIPS/Pisa

architecture. This ISA was chosen for its simplicity, as well as the availability of high-

quality code generation and simulation tools. Similar to ARM/Thumb [67], the MISA and

RISA can be divided into two distinct ISAs with differing instruction sizes. A 16-bit 2-

address MISA would allow for significant code size reductions, similar to the Thumb mode

of ARM processors. The RISA would likely be a 32-bit 3-address instruction set focused

on improving performance. Combining the compression-oriented MISA with an expressive

RISA would yield improved energy utilization and code size.

One of the primary limitations of Thumb mode execution is the reduced expressiveness

of the instruction set. This often leads to increased execution time, since multiple simpler

instructions may be required to semantically match a more complex single ARM instruction.

Using IRF, this performance penalty can be minimized, since the RISA instruction set can

be as rich as the traditional ARM instruction set. Critical instructions that are vital to an

application’s performance could be loaded into the IRF for fast and simple execution. It

is even possible to support newer, application-specific instructions in the RISA, since the
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encoding space is not a limiting factor at run-time. Traditional architectures would have

to split the fetch of instructions with longer opcodes across multiple cycles, in addition

to requiring larger instruction sizes that could negatively impact code density. Longer

opcodes and variable length instructions also complicate decode and can thus increase energy

requirements. By placing the larger opcodes into the IRF, energy requirements are reduced

for accessing standard MISA instructions, as well as the subset of available RISA instructions

for the application.

FITS is a new architectural technique for mapping instructions to reduced size opcodes

in an application-specific manner [10]. This is done by replacing the fixed instruction

decoder with a programmable decoder that can generate the appropriate control signals

for potentially thousands of different instructions. Combining the FITS approach with

Instruction Packing could lead to even greater code size savings than either approach applied

separately. Since FITS uses small 4-bit opcodes, up to 3 IRF instruction references could be

supplied using 4-bit RISA identifiers. FITS also allows for the adjustment of field decoding

boundaries, leading to multiple varieties of packed instructions with potentially 3, 4 or even

5-bit RISA identifiers if necessary.

ARM/Thumb2 is an extension to the ARM/Thumb ISA that allows for 32-bit ARM and

16-bit Thumb instructions to be mixed together [64]. Most instructions are of the 16-bit

variety to improve code density, while specialized, complex instructions are relegated to the

less-frequently used 32-bit mode. With this style of instruction encoding, we could place up

to 5 IRF references for a 32-entry IRF if the MISA instruction requires 6-7 bits of opcode

(plus s-bit) space.

Figure 5.1 shows an example of potential MISA encodings with the ARM/Thumb, FITS,

or ARM/Thumb2 instruction sets. Both the ARM/Thumb and FITS instructions are only

16 bits in length, while the ARM/Thumb2 variant requires 32 bits. The ARM/Thumb

and ARM/Thumb2 use 5-bit specifiers for the RISA entries, although the ARM/Thumb

only allows for two packed references, while Thumb2 supports up to five. Due to the small

opcode size of FITS, up to three instruction/immediate references can be placed in a single

MISA instruction.

Extending any of these ISAs to support Instruction Packing with an IRF has potential

benefits and drawbacks. ARM/Thumb is used in many embedded products today, and there

are a number of freely available tools for compile and link-time optimization. However,
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Figure 5.1: Possible Encodings for Split MISA/RISA

the benefits of packing may not be fully realizable, since we can only fit two instructions

per tight pack, and there is no possibility for loose packs. FITS looks to be slightly

better than ARM/Thumb, since we can at least pack three instructions or two with a

parameter. However, this scheme is limited by the RISA specifier size of 4 bits per field.

ARM/Thumb2 is perhaps the most attractive option, since packing will be similar to the

MIPS/Pisa implementation. The drawback to the ARM/Thumb2 solution, however, is the

lack of availability of high-quality compilers and link-time optimizers at this time. One

other possibility is to create our own MISA and RISA implementation that focuses each on

particular goals. The MISA would focus on reducing static code size (possibly two-address)

and providing multiple RISA references in a single packed instruction, while the RISA could

be designed to provide increased expressiveness (three-address instructions with possibility

for parameterization).

5.1.2 Splitting Opcode and Operand RISA Encoding

Code compression techniques have been enhanced by separating opcodes from operands

and encoding each stream separately [2]. This is effective because compiler-generated code

frequently uses registers in the same order, even if the sequence of instructions is slightly

different. Additionally, the number of unique opcodes used is frequently much lower than

the number of unique sets of operands used. This leads to reduced encoding requirements

for the opcode portion of the compressed instruction stream.
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Figure 5.2: Possible Encodings for Split Opcode/Operand RISA

Although our implementation of Instruction Packing supports some degree of parameter-

ization and register re-assignment, separating out operand utilization may prove to be even

more beneficial for capturing similar sequences of instructions. Parameterization can be used

to adjust portions of the operand encoding, increasing redundancy in a manner similar to

that of the current Instruction Packing implementation. In addition to simplifying operand

usage amongst instructions, optimizations such as register renaming can be further adapted

to convert register usage patterns to those seen in the IRF. Since register renaming and re-

assignment do not have to modify the opcode field of the instruction, they will have increased

opportunities under this style of packing.

Figure 5.2 shows potential encodings for a split opcode and operand RISA for the

MIPS/Pisa ISA. Using 2-bit opcode specifiers and 3-bit operand specifiers allows for up

to 5 RISA references to be packed into a single MISA instruction. This includes the ability

to parameterize up to two instructions using two of the RISA reference fields as in the current

implementation of instruction packing. Loosely packed instructions could also use the same

2-bit opcode and 3-bit operand specifiers, or they could employ full 5-bit RISA identifiers.

This would mean that the IRF would still hold 32 instructions with full operand information,

but entries 4 through 31 would only be accessible from a loosely packed MISA instruction.

Variations of the encoding could use 3-bit opcode with 3-bit operand specifiers, reducing the

number of RISA instructions in a tight pack to four. This encoding may be preferable, since

8 opcodes could be reached instead of four.

Experiments will need to be run to determine the best configuration for splitting the
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opcodes and operands. In the most naive implementation, opcodes and operands would be

stored completely independently. More complex variations could use the operand encoding

of 0 to specify the use of default operands for the opcode (e.g. the most frequent instance of

this instruction). Operand encodings 1 through 5 could refer to various other combinations

of registers, while encodings 6 and 7 could specify some of the operands, while leaving one

or more operands to be filled in by a parameter. The availability of additional opcode bits

(from the ex field) may make such a feature less important.

One other interesting feature of the operand parameterization is that not all instructions

use the same operand fields. Thus operand entries in the IRF could contain values for rs, rt,

rd, and the immediate value, letting the corresponding opcode use only the requisite fields

to execute. For example, an add instruction would use rs, rt, and rd, while an ori instruction

would use rs, rt and the immediate value. The IRF operand entry could even support full

32-bit immediate values if experiments show that the extra register width is beneficial.

Opcode and operand splitting is very attractive, since it allows further refinement of the

Instruction Packing formats. The increased ability to parameterize individual components

of a packed MISA instruction is very enticing, considering how other traditional dictionary

compression schemes like DISE have benefited from such flexibility [15].

5.1.3 Packing Instructions with Improved Parameterization

Instruction packing currently allows for the parameterization of immediate values, branch

offsets and register destinations (rd) for R-type instructions. Each of these styles of

parameterization is handled by checking the opcode type of the instruction being accessed.

Non-branch I-type instructions use any corresponding parameter through the IMM to

replace the immediate field of the RISA instruction. Branch instructions automatically

use the associated parameter as a signed 5-bit offset distance for branching. R-type

instructions can only use the matched parameter to replace the 5-bit register destination

field. Although these parameters allow for greater redundancy to be simply captured in an

application, they artificially limit certain similar instruction sequences from being packable.

For instance, incrementing a register by one is a frequently occurring operation, yet the only

parameterizable part of such an instruction is the immediate value. It would be better if we

could actually parameterize the same source and destination register (rt and rs for I-type),

so that they could be replaced when the actual register specified in the IRF is different from
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Figure 5.3: Extending RISA Parameterization

the compiler-generated code sequence. These artificial parameterization limitations can be

alleviated by cleverly encoding the packed RISA instruction appropriately.

The RISA currently uses the same instruction formats as the MISA, with some small

restrictions on not placing packed instructions into the IRF. This means that at least 5 bits

of almost every instruction stored in the IRF are ignored, since they refer to a loosely packed

field. We can reduce the size of the instruction registers, or we can make use of these bits to

support larger immediates or for a clever encoding scheme. There are actually eight useful

parameterization combinations, and thus only three bits will be necessary to encode them.

These variants are shown in Figure 5.3. They are rs, rt, rd, rd/rs, rd/rt, rs/rt, imm and

opcode/function code respectively. In the current implementation, we implicitly support

both rd and imm parameterization. The other encodings merely specify which operand or

opcode is to be replaced with the parameter.
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The specifications for rd/rs, rd/rt, and rs/rt are used when we wish to replace two register

identifiers with the same new register operand. The existing default instruction operands

need not be the same in this case. The most interesting parameterization variant is clearly

the opcode/function code entry. MIPS opcodes are 6 bits in length and R-type function

codes are also 6-bits, so a 5-bit parameter will not be able to completely specify the full

range of available instructions in each type. Instead, one of the two ex bits can be used to

specify the high-order bit of the opcode or function code. This will expose nearly half of all

opcode/function codes for each such parameterizable instruction. This is similar to the split

opcode and operand encoding specified previously in this section. One limitation compared

to the previous split method is that R-type and I-type instructions will not be able to be

parameterized from instructions of a different type (I-type or R-type, respectively).

5.1.4 Packing Instructions at Link-Time

Our current model for Instruction Packing uses profiling and needs to recompile the

application in order to pack instructions effectively. One of the major limitations of compile-

time Instruction Packing is that analysis is limited to the function scope. By moving

to link-time packing, it would be possible to pack instructions based on inter-procedural

analysis information. Similar to the current greedy algorithms for determining instructions

to promote, the application could be scanned for good candidate instructions. These

instructions could then be packed and a measure could be taken of how effective the packing

is. The instruction promotion process would then be guided by attempting to pack the hot

spots in the code. If an instruction in the frequently executed code is not very prominent

statically and does not yield a significant code size savings, then the promotion can be

undone and another candidate instruction can be evaluated. In this way, the promotion and

Instruction Packing operation progresses incrementally towards a compressed executable

with reduced fetch requirements.

Such a system could be implemented on top of existing link-time optimization tools.

Diablo is a retargetable link-time binary rewriting framework that supports ARM, i386,

MIPS, Alpha and IA64 binaries [16]. Diablo can be retargeted to support the ARM/Thumb

or ARM/Thumb2 along with Instruction Packing extensions. This would require a significant

amount of work, considering that the current implementation of Diablo does not even support

ARM/Thumb intermixed code.
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In addition to providing a single common control flow graph representation for operating

on programs, Diablo also provides optimization routines for eliminating dead code and data,

as well as procedural abstraction [22]. This is an important optimization for embedded

systems, as it can yield significant code compression at minimal cost in execution time.

Instruction packing with an IRF focuses on compressing frequently executed sequences of

instructions, while procedural abstraction works with infrequently executed blocks of code.

We believe that the combination of these two techniques will be favorable, resulting in an

even greater reduction in static code size.

One other limitation on current methods is that library routines cannot be packed, since

they are not recompiled for the packed application. This negatively impacts applications

that depend heavily on library code, since they will only be able to execute a few packed

instructions. With link-time inter-procedural analysis, statically-linked library code could

be packed, leading to improved performance for certain applications. Software windowing

of the IRF would also be improved, since unnecessary saves/restores of IRF entries could be

eliminated due to dynamic instruction promotion.

5.1.5 Instruction Promotion as a Side Effect

Instruction packing use a statically allocated IRF that is set up during application load using

a combination of special promotion instructions. We previously found that dynamically

promoting to the IRF leads to significant levels of overhead due to saving and restoring

instruction registers [31]. This was one reason for moving to hardware register windows to

extend our packing capabilities. The loosely packed format can be modified to provide a

simple channel for promoting instructions to the IRF.

One bit can be reserved from the 5-bit field to indicate reading or writing of the IRF, so

we will be moving to only a 16-entry IRF. When this bit is set to write, an instruction will not

only execute, but also place a copy of itself in the IRF entry specified by the remaining 4-bit

field. When the bit is set to read, then the instruction from the 4-bit field will be executed

on the following cycle, similar to the existing behavior of loosely packed instructions. This

method will allow us to retain some executable loose packs of instructions, instead of having

to use only tight packs for reading and executing from the IRF. We could instead specify

that the 5-bit field is purely used to write into the IRF at the corresponding entry (except

for a non-write at entry 0). This style would require all RISA instructions to be executed
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via tightly packed instructions.

In order to exploit this type of promotion, instruction registers will require calling

conventions similar to traditional data registers. A subset of registers could be scratch

registers, meaning that they need not be saved before use. They only need to be saved

and restored if there are intervening function calls in the instruction register live range.

Non-scratch registers, on the other hand, would need saving and restoring on function entry

and exit. However, these registers do not need to be preserved across a called function,

thus providing longer-term instruction storage. Although the methods outlined above are

designed to make promotion to the IRF simple and cost-efficient, it is important to note

that instruction register save and restore operations will require additional MISA instruction

executions (as well as additional stack utilization).

The most effective uses for this style of dynamic allocation will be for frequently executed

tight loops in an application. One iteration of the loop can be peeled, placing appropriate

instructions into the IRF entries, and then the remaining loop can be packed tightly using

these newly promoted instructions. This technique can be combined with loop unrolling to

enhance loop performance without serious code growth, since the majority of instructions

would be tightly packed. This feature may be very attractive for the performance-critical

sections of real-time embedded applications that also have to meet code size requirements.

Careful considerations will have to be given in the presence of call instructions and

conditional control flow inside such a loop. Clearly, a call instruction will require the use

of non-scratch instruction registers (or appropriate saves/restores). Conditional control flow

also presents problems, since the peeled instructions may or may not be executed. To handle

this case, any conditional instructions that could be packed will need to be explicitly loaded

into the IRF during the peeled iteration (similar to the current mechanism used to load the

IRF at program start).

Although this promotion technique may not be able to significantly reduce code size, the

improvement in energy savings could be substantial, thus making this an attractive solution

for portable embedded systems. This technique allows the IRF to operate in a manner

similar to the pre-loaded loop cache [26] or zero-overhead loop buffer [20]. The real benefit

is in capturing additional loops that these techniques normally cannot handle, such as loops

with conditional control flow and function calls. Link-time packing could help to eliminate

unnecessary saves and restores based on inter-procedural analysis information. Similarly, we
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could adapt a rotating register file (like the SPARC) to handle IRF saves and restores on

functions calls and returns.

5.2 Improvements for LIFE

5.2.1 Scaling up Speculation Components

There are a number of different ways that LIFE can be tuned for other fetch stage

configurations. The size of the BP and BTB can be varied. It is likely that LIFE will support

a larger BP and BTB to reduce the number of branch mispredictions while still retaining

energy efficiency since the number of accesses to these larger components are significantly

reduced. It would also be interesting to use a correlating branch predictor with LIFE.

Since the current design of LIFE, when using the NS00 configuration, involves an update to

the metadata in the case of a misprediction, other or even new metadata may be updated

simultaneously without the overhead of the TH-IC access.

5.2.2 Improving Pipeline Decisions

We have limited our changes with LIFE to the fetch stage and data cache portions of

the pipeline. This makes sense for embedded processors since they tend to have simple

pipeline organization after fetch. Since both TH-IC and LIFE have no impact on processor

performance, we predict that their use in high performance, general purpose processors

could yield positive results. Total energy reduction will not be as great as for embedded

architectures since a greater portion of the power budget is used by later (more complex)

pipeline stages, but since any reduction comes without performance penalty, inclusion of

LIFE is still warranted. For these complex pipelines, LIFE can be used to improve resource

scheduling decisions. We already explored a case involving next sequential line prefetch,

showing that LIFE can act as a filter, identifying small loops with repetitive, consistent

execution behavior. The ability to identify repeated instruction sequences very early in

the pipeline can also affect the design of dynamic instruction scheduling, data forwarding,

instruction wakeup logic and other power intensive portions of pipeline execution. New

designs for these structures can exploit the regularity of instruction execution for LIFE-

accessed instructions to reduce power consumption or even to enhance performance since

improved scheduling decisions can be cached in the later pipeline stages for these instructions.
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Basically, LIFE can be used to identify those phases of program execution that exhibit

very structured, consistent execution patterns. These phases can then be exploited in

various other stages of the pipeline architecture to throttle back resources to reduce power

consumption or to iteratively capture best resource allocation to improve performance (or

both). We believe that the ability to partition the instruction execution into (at least)

two very different execution behaviors opens up new research opportunities in all areas of

processor design.
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CHAPTER 6

Conclusions

Instruction fetch is a critically important pipeline stage in modern embedded processor

designs. As power and energy become dominant design criteria, we must look to innovative

designs that attempt to reduce the average energy per instruction while still meeting

reasonable performance goals. This dissertation presents two such designs for instruction

fetch engines. The first design is an ISA enhancement that places frequently occurring

instructions into an Instruction Register File for fast, energy-efficient storage that can

be accessed in compressed form. The second design leverages the regularity inherent to

instruction fetch to make future guarantees about fetch behavior, thus allowing the selective

enabling/disabling of individual components in the pipeline.

We have shown that instruction fetch efficiency can be improved by the addition of a small

Instruction Register File that contains the most frequently executed instructions. Fetch

energy is reduced since many instructions can now be accessed via low-power instruction

registers rather than the L1 instruction cache. Code size is reduced due to the ability of

multiple IRF references to be packed together in a single instruction fetched from memory.

Code compression can be very important for embedded architectures, which are often more

tightly constrained than general purpose processors. Even execution time can be slightly

improved through the use of an IRF, since applications may now fit better into cache, and

can recover from branch mispredictions faster. Hardware register windowing allows the IRF

to better handle diverse functions and phase behaviors. Compiler optimizations such as

register re-assignment, instruction selection and instruction scheduling can be adapted to

improve the packing of instructions into registers.

We have shown that a simple direct-mapped L0/filter instruction cache can be replaced

with a Tagless Hit Instruction Cache (TH-IC) that does not require a tag comparison when an
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instruction can be guaranteed to be in the TH-IC. Additionally, the TH-IC can be bypassed

when a hit is not guaranteed, resulting in the elimination of the L0-IC performance penalty.

We have also shown that the hit rate for a TH-IC is only slightly lower than an L0-IC

of equivalent size due to TH-IC’s ability to capture and exploit the regularity present in

instruction fetch. This results in a technique for instruction cache design that features both

higher performance and greater energy efficiency than the current state of the art in filter

cache design and implementation.

Enhanced analysis of fetch behavior with a TH-IC motivated the need to improve

the efficiency of other fetch components beyond caches as they became the dominant

energy consumers. We then developed the Lookahead Instruction Fetch Engine (LIFE),

a microarchitectural design enhancement that further exploits fetch regularity to better

control access to these power-hungry speculation resources. Using just a few additional bits

per instruction, LIFE eliminates the majority of accesses to the speculative fetch components,

leading to significant reductions in fetch power and total energy consumed. The behaviors

captured by LIFE can also be effectively used to tune other pipeline optimizations as seen

in our case study with next sequential line prefetch. All of this work makes the inclusion

of a small, energy-conscious instruction fetch engine attractive even for high performance

processors.

The fetch energy enhancements that we have developed will clearly impact future pro-

cessor designs. Although the IRF requires additional support through software compilation

tools and ISA changes, designers with the flexibility to construct their ISA from the ground

up will be able to realize significant reductions in energy, code size and even execution time.

The TH-IC and LIFE enhancements are purely microarchitectural in nature, and can thus

be integrated into most existing processor fetch designs. This should increase adoption of

these techniques for existing processor designs that are seeking a boost in energy efficiency,

particularly as designers focus more on energy-efficient and performance-conscious multi-

core architectures. Looking to the future, the presence of hundreds or thousands of cores

on a single die will necessitate the use of enhancements that exploit instruction redundancy

and fetch regularity like IRF, TH-IC and LIFE to minimize the overall energy per executed

instruction without negatively impacting the individual-core performance.
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