
Decreasing Process Memory Requirements
by Overlapping Program Portions

Richard L. Bowman EmilyJ. Ratliff David B. Whalley
Harris, Melbourne IBM, Fort Lauderdale Florida State Univ., CS Dept

bowman@harris.com emilyr@us.ibm.com whalley@cs.fsu.edu

Abstract

Most compiler optimizations focus on saving time and
sometimes occur at the expense of increasing size. Yet
processor speeds continue to increase at a faster rate than
main memory and disk access times.Processors are now
frequently being used in embedded systems that often have
strict limitations on the size of programs it can execute.
Also, reducing the size of a program may result in
improved memory hierarchy performance. This paper
describes general techniques for decreasing the memory
requirements for a process by automatically overlapping
portions of a program. Liverange analysis, similar to the
analysis used for allocating variables to registers, is used
to determine which pro gram portions conflict. Noncon-
flicting portions are assigned overlapping memory loca-
tions. Theresults show an average decrease of over 10%
in process size for a variety of programs with minimal or
no dynamic instruction increases.

1. Intr oduction
When computers were first developed there was a

strong emphasis on minimizing the amount of storage
needed for a program.This emphasis is reflected in the
design of the FORTRAN EQUIVALENCE declaration,
which allows a programmer to specify that two or more
variables be assigned the same address in memory. Subtle
errors could be easily introduced if the programmer did
not realize that the variables specified in an EQUIVA-
LENCE statement could be in use at the same time.Over-
lays were also used as a technique to overcome the limited
size of main memories.Programmers spent much of their
time dividing their program into overlays, which were por-
tions that never needed to be active simultaneously. With
the advent of larger physical memories and virtual mem-
ory, the necessity for economizing the use of data memory
was mollified.

Currently the assignment of variables to memory loca-
tions is of little concern to most compiler writers.After
most optimizations have been performed, a compiler will
update the prologue and epilogue of a function to manage
space on the run-time stack.Static data is also typically
arranged in the order in which the declarations are encoun-
tered. Besidesensuring that alignment requirements for
the machine are met, the actual locations assigned are con-
sidered unimportant.

However, processors are now also being used in an
increasing number of applications that are often embedded
within some other type of system. These systems fre-
quently do not have virtual memory and have to be able to
completely reside within main memory. Thus, embedded
systems often have strict limitations on the size of the pro-
grams that they can execute. Even if significant perfor-
mance gains are not achieved, general techniques for
reducing the size of a program may be quite useful for
embedded system applications.

Reducing the size of a program on a machine with vir-
tual memory can enhance paging performance.A page
fault can easily require 700,000 to 6,000,000 cycles to
resolve [1]. Thus,avoiding a single page fault by overlap-
ping program portions can result in a significant perfor-
mance improvement. Furthermore,decreasing the mem-
ory used by a processor may improve data and instruction
caching performance when the size requirements for data
and code are diminished.Secondary caches are often uni-
fied and their performance may also benefit from overlap-
ping data and instructions.

An astute programmer may realize that certain vari-
ables are never used at the same time. The programmer
may reuse the same variable for multiple purposes requir-
ing the same data type. If different types are required,
then one may use a mechanism supported by the semantics
of the programming language (e.g. a union in C).Declar-
ing one name for a variable that is used for different pur-
poses violates the software engineering principle of using
descriptive variable names. Manually overlapping vari-
ables in memory is error prone and difficult to maintain.

This paper describes a set of techniques for decreasing
process memory requirements by automatically overlap-
ping program portions. Memory on the run-time stack is
compressed by overlapping local data.The static data area
is compacted by overlapping uninitialized global variables
with other static data.The code area is compressed by
overlapping instructions via cross jumping and abstrac-
tions of code portions.Overlapping uninitialized global
variables with relocatable portions of code is also per-
formed. Applyingthese techniques resulted in significant
reductions in process memory requirements.

2. RelatedWork
While some compiler optimizations do save space,

most optimizations are performed with the goal of

reducing time. In fact, several optimizations typically
increase the size of a program, which include function
inlining, loop unrolling, scalar expansion [2], and avoiding
jumps [3] and branches [4].Techniques that compress the
size of a program without causing more instructions to
execute would be appealing since the increase in process
memory requirements from performing these space-
increasing optimizations could be partially offset.

There have been a few optimizations designed to save
space. Codehoisting moves identical instructions from
multiple blocks in different paths to a single dominating
block [5]. Cross jumping moves identical instructions
from multiple blocks in different paths to a single post-
dominating block [6].Fraseret. al. [7] applied a general
text compression algorithm to assembly code.They
reported an average 7% decrease in the number of static
instructions. Theirtechnique did not use any data flow
information and hence required that each common
sequence of instructions be contiguous.They also
abstracted segments of code using call and return instruc-
tions. While this abstraction resulted in code size
decreases, the number of instructions executed was typi-
cally increased. In contrast, the techniques we apply in
this paper for overlapping program portions rarely results
in a dynamic instruction increase. Some compilers with
limited code motion transformations overlap variables
declared in nonconflicting blocks [8].Ramsey [9] reduced
the size of object-code files by abstracting common reloca-
tion information to support more efficient and machine-
independent linking. The process memory requirements
of the compiled programs were not affected.

3. Overview
Figure 1 gives an overview of the environment that was

used to compress the memory requirements of a process.
The C front end, calledvpcc [10], expands intermediate
code operations into unoptimized RTLs (register transfer
lists) that represent machine instructions.The code
expander portion of the front end was modified to produce
static data directives instead of assembly code for the
static data declarations.These directives include the size,
alignment requirements, storage class, and initial values
for each declaration.The unoptimized RTLs and direc-
tives are input to a compiler back end, calledvpo [11], that
performs conventional compiler optimizations. This back
end was modified to overlap run-time stack data at the
point that the entry and exits of the function are updated to
manage the run-time stack, which occurs after most opti-
mizations have been performed. The back end was also
modified to produce encoded optimized RTLs and static
data directives as output to a file. All of the information
from these files for a compiled program was read into
memory by a modified version of the back end and a call
graph was constructed.Labels were adjusted from each of
the files to ensure their uniqueness. Intraprocedural analy-
sis was then performed to overlap uninitialized static data
with static data, instructions with instructions, and

uninitialized static data with instructions. The static data
overlapper was not invoked when indirect calls are
encountered since an explicit call graph was needed for
accurate interprocedural analysis.Finally, assembly was
generated into one file from the RTLs and data directives,
which can then be linked and executed.

Back End and

Run-Time

Stack Data

Overlapper
Files

Source

C

End

Front

C
Unoptimized

RTLs and

Static Data

Directives

File

Assembly

Overlapper

Instruction

and

Static Data

Directives

Static Data

RTLs and

Optimized

Figure 1. Environment for Overlapping Program Por tions

4. Overlapping Data
Overlapping data was implemented in two steps. Run-

time stack data is overlapped while optimizing each func-
tion. Staticdata is overlapped after all functions have been
compiled since interprocedural analysis is required.

4.1. Overlapping Run-Time Stack Data

Local variables and temporaries not allocated to regis-
ters are assigned offsets after most compiler optimizations
have been performed invpo. The analysis required for
overlapping run-time stack data is very similar to that
required for allocating variables to registers, but the goal is
to minimize space instead of the number of registers used.
Live ranges of directly accessed (e.g. scalar) data are
detected in a similar manner that is performed for register
allocation invpo. Unfortunately, significant size decreases
will only occur from overlapping nonscalar variables, such
as arrays, which are typically indirectly referenced (i.e.
address is taken, but not immediately used). Detection of
accurate live ranges of nonscalar variables is much more
difficult since the range of array elements accessed and the
loops driving the induction variable(s) associated with the
memory reference must be known. For instance, assume a
use of the rangea[1..n-1] is followed by a set of the
rangea[0..n-2]. T he set cannot start a new liv e range
when a[n-1] is used at a later point in the program.
Also, the range of array elements accessed cannot always
be statically determined.

At this time we have implemented a simpler approach
for dealing with indirect references.We find all references
to indirectly used variables in the control flow of the func-
tion and create one live range for each of these variables.
This one live range is simply the extent from its first refer-
ence(s) to its last reference(s), which was calculated by
intersecting the basic blocks that can precede the refer-
ences to the variable and the blocks that can follow the ref-
erences. Notethat the blocks containing the references are
included in this one live range.

An example of live ranges of indirectly referenced vari-
ables is given in Figure 2. There are four arrays refer-
enced in the control flow. The indirect reference to each
array is indicated beside the basic blocks.Consider the
variable a that is referenced in blocks 2 and 5. The live
range ofa, which is [2,3,4,5], is calculated from the inter-
section of its possible successor blocks [2,3,4,5,6,7,8,9]
and possible predecessor blocks [1,2,3,4,5]. The live
ranges of the variablesb, c, andd are calculated in a simi-
lar manner.

1

2

3

4

5

a[i]

b[i]

a[i]d[i]

6

7

8

c[i]

d[i]

9

control flow graph

a: [2,3,4,5]

b: [2,3,4]

c: [6,7,8]

d: [5,6,7,8]

live ranges

interference graph

a b

c d

Figure 2. Indirectly Referenced Live Ranges Example

Before calculating the extent of an indirectly referenced
variable, the compiler first has to determine where the
variable’s address is actually referenced.We accom-
plished this by using a demand-driven approach rather
than an exhaustive solution. At each point the address of
run-time stack data is taken indirectly, the compiler recur-
sively searches forward marking all memory references
that use the address.We found this approach appealing
since the distance between taking the address of a local
variable and the points where the address is dereferenced
was typically close. Note that a single memory reference
may possibly be marked as being associated with multiple
local variables, which addresses many types of aliasing.

The example source code and corresponding represen-
tation in RTLs in Figure 3 illustrate the simple approach
used to detect where a taken variable’s address is actually

main()

{

int a[100][100];

int i, j;

L16

L19

r[5]=0;

1.

2.

r[6]=HI[40000];

r[6]=r[6]+LO[40000];

IC=r[1]?r[2];

PC=IC<0->L19;

r[5]=r[5]+400;

IC=r[5]?r[6];

PC=IC<0->L16;

PC=RT;

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

1

2

3

4

5

r[12]=r[14]+a;

r[1]=r[5]+r[12];

r[2]=r[1]+400;

M[r[1]]=0;

r[1]=r[1]+4;

}

for (i=0; i<100; i++)

for (j=0; j<100; j++)

a[i][j]=0;

Figure 3. Determining Where Indirectly Taken

Addresses Are Dereferenced

dereferenced. Delayslots have not been filled to simplify
the example. Theaddress of the local arraya is stored in
registerr[12] at RTL 1. All of the RTLs that access reg-
isters containing the address ofa or a relative distance
from it are shown in boldface. Thecompiler recursively
searches forward and finds that the registersr[1] and
r[2] are assigned addresses relative to a (i.e.,r[12]) at
RTLs 5 and 6. The registerr[1] is found to be derefer-
enced at RTL 7. This memory reference is marked as ref-
erencinga. r[1] andr[2] are not live entering block 4
andr[12] is not live entering block 5. No more registers
containing an address relative to variablea are left at this
point and the recursive search terminates.

If the compiler detects that the address itself is stored
into memory, then the point of the store and the return
points in the function are marked as references since
pointer analysis is not performed.Likewise, the same
action occurs if the address is passed to a function since
interprocedural analysis has not yet been performed.In
both cases this action causes the compiler to conserva-
tively consider the variable live from the point of the store
or call to the end of the function.

The assignment of offsets for each live range is accom-
plished using an interference graph.The live range repre-
senting the extent for each indirectly referenced local vari-
able is added to the interference graph that was con-
structed for the directly referenced local data.Any two
live ranges that conflict are not allowed to be overlapped in
memory. Note that different live ranges of the same
directly referenced variable will never conflict. Figure2
also depicts the corresponding interference graph for the
live ranges shown in the same figure. Each live range is
represented as a node in the graph.An edge exists
between two nodes if the two liv e ranges conflict.Thus,
the live ranges for variablesa and d have two conflicts
each and both of the live ranges for variablesb andc have
only a single conflict.

A heuristic often used to help guide the order in which
the live ranges of a function will be assigned to registers is
to assign the live ranges that have the greatest conflict lev-
els first [12]. A similar heuristic was used to determine
the order in which live ranges not allocated to registers
should be overlapped. Therationale is that if a live range
conflicts with most of the other live ranges in the function,
then assigning its offset within the activation record early
will give it the best chance of being overlapped with the
few liv e ranges with which it does not have any conflicts.
Size of the data was also used as a criteria so padding for
alignment requirements could be minimized.

There are a few complications in assigning live ranges
to offsets in an activation record that are not encountered
when live ranges are assigned to registers. First,align-
ment requirements have to be observed. Second,variables
can be of different size. Figure 4 shows the algorithm
used to assign live ranges of run-time stack data to offsets.
The current live range of a variable is assigned to the first
offset within the activation record that does not overlap
with any previously assigned live ranges conflicting with

the current live range.

WHILE any live ranges left to assignDO
curr_lr := live range not yet assigned with

biggest size and highest conflict level;
curr_lr->offset := first offset in activation record

where locals can be assigned;
FOR lr := each live range in function DO

IF (lr->status = assigned) AND
(curr_lr IN lr->conflicts) AND
does_overlap(lr, curr_lr) THEN
curr_lr->offset := lr->offset + lr->size;
curr_lr->offset := curr_lr->offset +

alignment padding;
curr_lr->status := assigned;

Figure 4. Stack Live Range Offset Assignment Algorithm

Figure 5 shows the results of two different offset
assignments for the live ranges shown in Figure 2.The
figure also shows the declaration of the four different
arrays. Thefirst offset assignment attempts to assign the
live ranges in the order of least conflicts to most conflicts
(b, c, a, d). The variables b and c were overlapped.
However, a andd could not be overlapped since they con-
flicted with each other andb or c. The second offset
assignment attempts to assign the live ranges in the order
of most conflicts to least conflicts (a, d, b, c). Eacharray
required the same number of bytes to simplify the exam-
ple. However, the algorithm shown in Figure 4 can be
used to efficiently overlap live ranges requiring different
amounts of memory as well.

c

b

Assignment 1: 1500 total bytes

a

Assignment 2: 1000 total bytes

a

d

d

char a[500], b[500],

c[500], d[500];

declaration:

c b

Figure 5. Offset Assignment of the Live Ranges in Figure 2

Many compilers generate assembly code that references
local variables using a symbolic offset from a stack
pointer. For instance, on the SPARC a local variable (e.g.
called i) may be symbolically referenced within an
instruction (e.g.ld [%sp+.i],%g2) s ince the symbolic
offset can be defined (e.g..i = 104). Themechanism
for overlapping local variables on the SPARC was accom-
plished by using a different symbolic offset for each live
range. For instance, the first live range ofi and the sec-
ond live range ofj can be overlapped by assigning the
same value to each symbolic offset (.i_1 = 112 and
.j_2 = 112). This mechanism did not require modifi-
cation of the instructions when offsets were assigned and
simplified debugging of analysis errors.

4.2. Overlapping Static Data

It has been observed that a large percentage of static
data are arrays or other aggregate data structures [1].If
most of the composite data structures in a program are
declared as static data, then overlapping data may be of

limited value unless static data can be candidates for being
overlapped as well. There are several types of static data
in a C program. Global and top-level static variables are
placed in the static data area of a process. Local variables
that are declared to be static are placed in the static data
area since their values are retained between calls.Com-
posite constants, such as strings, and floating-point con-
stants are also typically placed in the static data area.

Much of the analysis to determine the extent of use for
each static data was similar to that performed for run-time
stack data.However, complications due to performing this
analysis interprocedurally required some changes to the
analysis algorithm and some concessions to ensure that
static data was safely overlapped. A call graph of the
compiled functions comprising the program was con-
structed, which was useful for obtaining summary analysis
data of called functions.

At this point, all static data was analyzed in a manner
similar to that used for indirectly referenced run-time stack
data. Thestatic data overlapper finds each point in the
control flow where the address of static data is con-
structed. Theoverlapper recursively searches forward
marking all memory references that use the address in a
similar manner for detecting where run-time stack data
was referenced. Whena run-time stack data address was
passed to a function, the run-time stack data overlapper
had to assume that the data could be referenced from that
point to the end of the function since no interprocedural
analysis had yet been performed.The static data overlap-
per does not have this restriction and instead analyzes the
called routine for memory references using the passed
static data address. If a static data address is passed to a
library function, then the point between the call and the
following block is treated as a reference to the static data.
If a static data address was stored in memory (or passed to
a library function, such assetbuf, which is known to store
an address in memory), then that point was marked as a
reference to the static data.In addition, the returns from
themain function and all calls toexit were also marked as
references. Thus,the live range of the static data whose
address is stored in memory will extend from the point of
the store to the end of the program.

Static data can be initialized as part of its declaration
and is translated into assembly data directives. Thestatic
data overlapper marks the entry block of the main function
as having a reference to each initialized static data refer-
enced in the program. Thus, initialized static data will be
viewed as being live from the beginning of the program to
its last reference. If the address of one static data variable
or constant is referenced in the initialization of the decla-
ration of other static data (i.e. its address is initially in
memory), then references for it are marked wherever the
other static data is referenced, at the returns from themain
function, and at all calls toexit. This effectively causes
such static data to be regarded as live from the first refer-
ences to the other static data to the end of the program.

If a top-level variable does not contain an explicit ini-
tializer as part of its declaration, then the static data over-
lapper assumes that the variable is uninitialized. The defi-
nition of C states that uninitialized top-level variables will
have a default initializations of zero (i.e. its bits cleared).
This is not true in many other languages, such as Ada.In
fact, relying upon default initialization is typically consid-
ered a bad programming practice since this does not
explicitly show that an initial value will be used.The
static data overlapper performs analysis in an attempt to
detect if an uninitialized top-level variable is ever used
before it is set. When this occurs a warning message is
issued that instructs the user to explicitly initialize the
variable rather than relying on the default initialization.

After marking the blocks where static data is refer-
enced, live range analysis is performed in a similar manner
as the analysis for live ranges of local variables that were
indirectly referenced. Some enhancements were required
to address the problem of dataflow merges at the entry and
exits of functions being invoked from more than one site.
Figure 6 shows the control flow of an example program
that is used to illustrate the analysis.A variablex is refer-
enced in blocks 5 and 6 only. Calls and returns are
depicted using dashed directed edges.Naive analysis
treating the calls and returns as regular transitions would
result in conservatively calculated live ranges. For
instance,x would be denoted as live in functionb.

a:main:

call a

b:

1

2

3

4

5

6

7

8

9

10

call b

c:

11

12

13
ref x
call b

ref x
call c

Figure 6. Example Control Flow for Live Variable Analysis

The calculation of live range information for static data
was accomplished in three steps. (1) An iterative algo-
rithm was used to calculate the blocks that can precede
and follow references to each static data variable and con-
stant. Thisiterative algorithm allowed information to flow
from a called function, but not into it.The blocks in Fig-
ure 6 that are denoted as possibly executed preceding the
reference to the variablex are blocks 1, 2, 4, 5, and 6.
Likewise, the blocks that are found to possibly execute fol-
lowing the reference tox are blocks 3, 5, 6, and 7.Blocks
8 through 13, which are in the functionsb andc, are not
included since this information is not yet propagated into
called functions.(2) The information about the preceding
and succeeding blocks are intersected to determine the live
range representing the extent from the first reference(s) to
the last reference(s) of each static data variable or con-
stant. Thus,blocks 5 and 6 are initially denoted as the live
range of the variable x. (3) The static data live range

information is propagated to the called functions.The
static data denoted as live in a block that is terminated by a
call to a compiled function is intersected with the static
data denoted as live in the block after the call. The inter-
section contains the static data that is live across the call.
This static data is denoted as live in the called function and
any functions it in turn calls.Thus, blocks 11, 12, and 13
in function c are marked as part of the live range ofx
sincex was liv e in blocks 5 and 6 (i.e. across the call to
c). The live range ofx does not include the blocks in
functionb sincex was nev er liv e across a call tob.

The conflicts between static data are calculated after the
live range of each static variable and constant is deter-
mined. Sometimesthe live ranges of two static data may
have blocks in common and still not conflict. Figure 7 has
two calls to the utilityf. One call passes the address ofx
and the other passes the address ofy. The address in the
parameter is dereferenced in block 5.So bothx andy are
live in that block. Yet, the live ranges do not conflict since
the calls occurred from different sites.For each static data
that is live in a block, there will be a conflict denoted with
any other static data that is also live in the same block
when either static data did not have its address passed to
the function containing the block.If both addresses were
passed in, then the overlapper checks the blocks contain-
ing calls to compiled functions that can reach the current
function. If both static data addresses are live and one or
both had its address taken in the function containing the
call, then the live ranges are marked as conflicting.

1

2

3

4

5

main: f:

call f(&x)

ref x

call f(&y)

ref y

ref x,y

Figure 7. Example Control Flow for Conflict Analysis

The static data within a program were assigned offsets
from the beginning of the data segment in a manner simi-
lar to assigning offsets for run-time stack data.The mech-
anism for overlapping static data is quite simple in most
assembly languages. Consider the C code segment in Fig-
ure 8(a). Assume thaty, g, s, and the string passed to
printf can be overlapped withx as depicted in Figure
8(b). TheSPARC assembly directives in Figure 8(c) were
generated to overlapx with the other static data. Note that
the directives for the static data are generated in the order
in which they are assigned offsets instead of the order in
which they are declared.A discussion of how static data is
overlapped with instructions is given in a later section.

Uninitialized static data is typically placed in a separate
segment from initialized static data.For instance, Figure 9
shows that the static data area is split into two segments in

SunOS. Oftenoperating systems provide special support
for uninitialized static data by zero-filling, which avoids an
initial disk access and reduces the size of the executable
files [13]. Any uninitialized static data that could not be
overlapped with other initialized static data (or instruc-
tions) is placed at the end of the static data area in the
uninitialized data segment. Notethat two or more unini-
tialized static data variables can still be overlapped in the
uninitialized data segment by the static data overlapper.

int x[10];
int y[] = { 0, 1 };
int g = -1;
short s;
...
printf("Data: ");

(a) C Code Segment

x

L19

0 4 8 12 16 20 24 28 32 36 40

s g mainy

(b) Offset Assignment

.seg "data" ! switch to the data segment

.global _x ! make _x known to the linker
_x: ! assoc _x address at offset 0
L19: ! label of string at offset 0

.ascii "Data: \0" ! string value

.skip 1 ! skip forward to offset 8 to align _s

.global _s ! make _s known to the linker
_s: ! assoc _s address at offset 8

.skip 2 ! skip forward to offset 12

.global _y ! make _y known to the linker
_y: ! assoc _y address at offset 12

.word 0 ! _y[0] set to 0

.word 1 ! _y[1] set to 1

.global _g ! make _g known to the linker
_g: ! assoc _g address at offset 20

.word -1 ! _g set to -1

.global _main ! make _main known to the linker
_main: ! assoc _main address at offset 24

save %sp,-96,%sp ! first inst within _main
... ! rest of insts in relocatable portion
.seg "text" ! switch to the code segment
... ! all insts not overlapped with data

(c) SPARC Assembly Directives and Code

Figure 8. Static Data Declarations and Assembly

startup code

segment

program code

initialized data

uninitialized data

heap

program stack

run-time

initial stack

information

process state
0xffffffff

0x0

Figure 9. SunOS Virtual
Address Space Organization

5. Overlapping Instructions
Overlapping instructions was accomplished by two dif-

ferent types of transformations deemed likely to be benefi-
cial. First,a general cross-jumping transformation is per-
formed. Next, separate relocatable portions of code are
abstracted into one portion when possible. These tech-
niques for overlapping instructions have similar goals as
the approach used by Fraseret. al. [7], with the additional
goal that the number of executed instructions not increase.

5.1. Cross Jumping

Our algorithm for performing cross jumping has many
similarities to other implementations of this space-saving
transformation. For each basic block in the program we
examine its immediate predecessors. When identical
RTLs are found in multiple predecessors, the common
RTLs can be overlapped without additional instructions
executed when one of two conditions occur. (1) When no
block falls into the current block, fall-through blocks can
be created to contain the common RTLs. (2)When a fall-
through block already exists, the RTLs to be overlapped
must already be in this block. Each predecessor need not
have the same number of common RTLs. Transfers from
other blocks with common RTLs can be adjusted to jump
to its first common RTL within the appropriate fall-
through block. A predecessor having no common RTLs
would simply transfer control to its original target.

Unlike most implementations of cross jumping, our
improving transformation allows other RTLs to follow
common RTLs in the predecessor blocks.We perform
analysis that determines if the RTLs in the predecessor
blocks can be reordered so the common RTLs appear last.
This analysis first detects the registers that are set and used
in each RTL within the program and efficiently represents
these sets and uses as bit vectors. Asearch within one pre-
decessor block for an RTL that appears in a different pre-
decessor block is terminated when a register the RTL uses
or sets is found to be set by a different RTL.

To facilitate fast comparisons of instructions, we calcu-
late a checksum for each RTL as their sets and uses are
determined. Whencomparing two RTLs for equivalence,
the checksums for each RTL are first compared.A full
comparison of the two RTLs is only required when the
checksums are identical.

Traditionally, cross jumping occurs only on the instruc-
tions within a single function [6].We also apply cross-
jumping on calls to the same function from different sites.
Often similar arguments are passed to the same function
from different calls. Figure 10 shows an example of five
calls to the functionpfnote in the programctags. Three
RTLs were found to be the same preceding four of the
calls. Thesethree RTLs are overlapped before the original
entry of the function. The call RTLs are updated to trans-
fer control to a new label preceding the overlapped RTLs.
Other calls to the function can still transfer control to the
original label. Without inspecting the sets and uses of the
RTLs to allow reordering of instructions, the first common
RTL would not be detected and only six RTLs would be
compressed instead of nine.

5.2. AbstractingRelocatable Code Portions

The instructions within a program may be divided into
relocatable portions of code.Each portion starts with a
basic block that is not fallen into from another block and
ends with a block containing an unconditional transfer of
control, which cannot be a call instruction.Each

...

r[9]=HI[L166];

Call 1

r[8]=r[9]+LO[L166];

CALL _pfnote();

...

r[9]=HI[L318];

r[8]=r[9]+LO[L318];

CALL _pfnote();

Call 3

CALL _pfnote();

...
Call 2

r[10]=HI[_lineno];

r[10]=1;

r[10]=HI[_lineno];

r[9]=M[r[10]+LO[_lineno]];

r[10]=1;

r[9]=M[r[10]+LO[_lineno]];

...

...

...

function entry

r[8]=r[14]+.16_nambuf;

_pfnote:

r[14]=SV[r[14]-1120];

CALL _pfnote();

CALL _pfnote();

Call 4

Call 5

r[10]=HI[_lineno];

r[10]=1;

r[10]=HI[_lineno];

r[8]=r[14]+.20_nambuf;

r[10]=1;

r[9]=M[r[10]+LO[_lineno]];

r[9]=M[r[10]+LO[_lineno]];

Before Cross Jumping After Cross Jumping

...
r[9]=HI[L166];

r[8]=r[9]+LO[L166];

CALL _newlabel();

Call 1

...

r[9]=HI[L318];

r[8]=r[9]+LO[L318];

CALL _newlabel();

Call 3

CALL _pfnote();

...
Call 2

...

r[8]=r[14]+.16_nambuf;

CALL _newlabel();

Call 4

...

r[8]=r[14]+.20_nambuf;

CALL _newlabel();

Call 5

...

function entry
_newlabel:

_pfnote:

r[14]=SV[r[14]-1120];

r[10]=HI[_lineno];

r[10]=1;

r[9]=M[r[10]+LO[_lineno]];

Figure 10. Example of Interprocedural Cross Jumping

relocatable code portion is compared against other relocat-
able portions in the program. If one code portion is
entirely equivalent to another code portion or a subset of
it, then the two code portions are overlapped. Branches
and jumps that transfer control to the same relative loca-
tion within the code portions are considered equivalent
ev en though they reference different labels.

Figure 11 shows an example of one relocatable segment
being overlapping with a portion of another in the function
yyparsewithin the lex program. Blocks928, 929, and 930
comprise one relocatable segment. Blocks969 and 970
comprise another. Blocks 969 and 970 are identical to
blocks 929 and 930, respectively. The code segment at
blocks 969 and 970 is deleted. Block 929 is updated to
have the label that was formally at block 969 to allow
transfers of control to that label, such as the reference
from the indirect jump table, to still be valid.

The target distance associated with branches or jumps
to blocks within or from a relocated code portion may be
significantly increased since the code portions being over-
lapped may be in different functions. Figure 12 shows the
format of a SPARC branch or jump instruction.The offset

...

...

...

r[8]=M[r[19]-4];
r[9]=HI[_yyval];

M[r[9]+LO[_yyval]]=r[8];

r[8]=224;

CALL _mn0();

M[r[9]+LO[_yyval]]=r[8];

r[8]=224;

CALL _mn0();

M[r[9]+LO[_yyval]]=r[8];

PC=IC!=0->L651;

PC=L527;

PC=L527;

PC=L527;

r[9]=HI[_yyval];

r[9]=HI[_yyval];

...

...

...
.word L677

L648

L676

L677

M[r[9]+LO[_yyval]]=r[8];

PC=L527;

...

...

...

...

r[8]=M[r[19]-4];
r[9]=HI[_yyval];

CALL _mn0();

M[r[9]+LO[_yyval]]=r[8];

r[8]=224;

PC=IC!=0->L651;

PC=L527;

r[9]=HI[_yyval];

...

...
.word L677

L648

L677

L676

jump table

928

929

930

968

969

970

968

930

929

928

jump table

After OverlappingBefore Overlapping

Figure 11. Example of Overlapping Instructions

by Relocating Code Segments

from the instruction following the branch is a sign-
extended 22 bit value representing a displacement in
words (i.e. SPARC instructions), not bytes.Thus, the dis-
tance between a branch or jump and its target can be over
2 million instructions. Abstracting relocatable code por-
tions is not performed when the distance between code
portions is too great, which rarely occurs for a SPARC.

opcode displacement in instructions

0212231

Figure 12. SPARC Branch and Jump Instruction Format

6. Overlapping Static Data and Instructions
Uninitialized static data and instructions may be over-

lapped in memory on a SPARC running SunOS without
increasing the dynamic number of instructions executed.
There are two reasons that this overlapping may occur.
First, the code is next to the static data in memory, which
is shown in Figure 9. Second, the displacement for
branches and unconditional jumps on the SPARC as
shown in Figure 12 is typically large enough to transfer
between the code segment and static data area without
requiring an additional instruction. Note that consistency
between separate instruction and data caches need not be
maintained since the overlapped area will never be

referenced for instructions after being referenced for data.
Relocatable code portions are identified in the same

manner as was accomplished for overlapping instructions.
A relocatable code portion can be viewed as data with an
initial value. Thus,a liv e range for a code portion would
include the code portion itself and all of the blocks in the
program that can be executed preceding the portion.A
code portion cannot overlap in memory with any static
data with which it has conflicts.All initialized static data
will conflict with code portions. The uninitialized static
data that conflicts with a code portion is any static data
that is live in any of the possible predecessors of the last
block in the code portion.

Each relocatable code portion is assigned the address of
the first offset within the data segment that does not over-
lap with any static data conflicting with the code portion or
overlap with any previously assigned code portions. If a
code portion partially conflicts with an uninitialized static
variable, then only the basic blocks that conflict are moved
past the variable. Any code portions that cannot be par-
tially or completely overlapped are kept in the code seg-
ment. Thesame assembly skip directives used to position
static data were used to position code portions within the
static data area as shown in Figures 8(b) and 8(c).The
assembler converts the instructions in these code portions
to machine code, but leaves them in the data segment.

Figure 13 depicts how static data and instructions were
overlapped in the programcal, which is one of the test
programs used in the Results section.Figure 13 (a) shows
a portion of the code incal. Thestring variable is the
only uninitialized static data in the program.Figure 13 (b)
shows a mapping (automatically produced by the static
data and instruction overlapper) that depicts how this vari-
able was overlapped with initialized static data and relo-
catable code segments. Thelabels refer to string constants

...
char string[432];

main(argc, argv)
char *argv[];
{

int y, i, j;
int m;

if(argc < 2) {
printf(...);
exit(0);

}
...

m = number(argv[1]);
...

cal(m,y,string,24);
...
}

number(str)
char *str;
{
...
}
...

(a) Portion ofcal Program

address num bytes
range bytes saved

name

string 000-431 432 0
L31 000-024 25 25
L74 025-038 14 14
L43 039-048 10 10
L55 049-056 8 8
L54 057-060 4 4
L44 061-064 4 4
L56 065-066 2 2

block address num bytes
range range bytes saved

1-3 068-103 36 36
42-44 104-123 20 20
45-45 124-135 12 12
46-50 136-199 64 64
51-51 200-207 8 8
4-18 268-483 216 164

(b) Mappingstringwith Static Data
and Relocatable Code Segments

Figure 13. Overlapping Static Data and Instructions in cal

that are only referenced prior to the first timestring is
referenced. Theranges of blocks represent relocatable
code segments. Blocks1 to 3 is the first code segment in
main. This segment can only be accessed before the
string variable. Blocks 4 to 18 conflicts with the
string variable starting at block 15.This block imme-
diately follows the call to the functioncal, which accesses
the string variable. Thus,only the portion of the sec-
ond code segment that does not conflict with thestring
variable, blocks 4 to 14, is overlapped with the end of the
variable. Blocks42 to 44 is the code segment at the end of
the main function, which is only accessed when the com-
mand line arguments are invalid. Thenext three code seg-
ments listed are within the functionnumber, which is also
never inv oked after string is accessed.

Overlapping static data and instructions requires know-
ing the exact number of machine instructions associated
with each basic block in the program. Each RTL in the
vpo compiler is associated with a single assembly instruc-
tion, which is quite useful when performing any span-
dependent transformation.Some assemblers, such as the
MIPS, may translate an assembly instruction into multiple
machine instructions.Fortunately, assemblers for most
machines translate each assembly instruction into a single
machine instruction.1

7. Results
Table 1 shows the amount of overlapping that occurred

in the different areas of memory. A variety of bench-
marks, Unix utilities, and application programs were used
to test the extent that overlapping could be applied.The
number of bytes for the run-time stack was obtained by
simply calculating the sum of the sizes of the different
activation records as opposed to measuring the space used
for the run-time stack at execution time. The number of
bytes required for library functions was not included since
library functions are dynamically linked. Little overlap-
ping could occur on run-time stack data. Most directly
referenced data (i.e. local scalar variables) were allocated
to registers byvpo. This resulted in 90.99% of the func-
tions having no local variables in the activation record and
hence no possibility for overlapping run-time stack data.
The remaining functions with indirectly referenced data
provided few overlapping opportunities. There were sev-
eral opportunities for overlapping static data. Often string
constants and scalar global variables could be overlapped
with uninitialized global variables. Typically, the larger
data structures were live over most of the program and
could not be overlapped with each other. Overlapping
instructions with instructions could have occurred much
more frequently if procedural abstraction had been used.

1 The authors did discover a few undocumented cases where the
SPARC assembler inserted an additional instruction between floating-
point instructions to resolve data hazards not handled by the hardware.
Thevpocompiler was updated to modify such RTL sequences to have an
accurate correspondence between RTLs and machine instructions.

Table 1: Overlapping Results

Overlapping InstructionsOverlapping Run-Time Overlapping
Stack Data Static Data with Instructions with Static Data

Bytes Bytes Pct Bytes Bytes Pct Bytes Bytes Pct Bytes Pct
Orig Saved Less Orig Saved Less Orig Saved Less Saved Less

Program Overall

cal 312 8 2.56% 725 67 9.24% 1376 20 1.16% 304 22.09% 16.54%
cmp 768 0 0.00% 16677 157 0.94% 1576 -4 -0.25% 792 50.25% 4.97%
csplit 1488 0 0.00% 2688 641 23.85% 7736 132 1.71% 510 6.55% 10.78%
ctags 8144 0 0.00% 6644 185 2.78% 9816 80 0.81% 892 9.09% 4.70%
dhrystone 644 0 0.00% 10816 66 0.61% 1956 32 1.64% 18 0.92% 0.86%
grep 592 0 0.00% 1827 105 5.75% 4048 80 1.98% 1400 34.58% 24.51%
join 480 0 0.00% 2754 127 4.61% 2736 56 2.05% 996 36.40% 19.75%
lex 9472 0 0.00% 11836 353 2.98% 35724 732 2.05% 1076 3.01% 3.79%
linpack 1504 48 3.19% 646502 76 0.01% 10588 268 2.53% 5468 51.64% 0.89%
mincost 1216 0 0.00% 11436 151 1.32% 4428 120 2.71% 768 17.34% 6.08%
sdiff 2536 0 0.00% 5312 2305 43.39% 7476 272 3.64% 1852 24.77% 28.90%
tr 192 0 0.00% 845 36 4.26% 1692 20 1.18% 488 28.84% 19.93%
tsp 3008 8 0.27% 83015 91 0.11% 4788 32 0.67% 248 5.18% 0.42%
whetstone 568 0 0.00% 466 52 11.16% 4812 184 3.82% 76 1.58% 5.34%
yacc 4232 0 0.00% 233818 1117 0.48% 31236 476 1.52% 15432 49.40% 6.32%

av erage 2345 4 0.40% 69024 369 7.43% 8666 167 1.81% 2022 22.78% 10.25%

However, this abstraction would have required the inser-
tion of calls and returns, which would have increased the
execution time. The negative result in the programcmp
occurred due to interference with filling delay slots by
relocating code segments. Overlapping uninitialized static
data and instructions resulted in surprisingly large
decreases in instruction memory requirements.Often relo-
catable code portions of themain function or various ini-
tialization functions could be overlapped with static data
that had not yet been referenced. The overall savings was
determined by calculating the sum of the bytes saved from
the areas of memory and dividing by the sum of the origi-
nal bytes. Often the static data and instructions had a
larger effect since these areas typically were larger than
the area used in the run-time stack.

Table 2 shows the results for overlapping run-time
stack data after inlining and overlapping instructions after
cloning. Inlining provided many opportunities for over-
lapping run-time stack data since more variables were can-
didates for being overlapped in a single function.Inlining
was accomplished by modifying an existing inliner within
vpcc, which only performed inlining within a single file of
a compiled program. The new inliner processes all the
files of intermediate code produced from each source file
in the program, resolves conflicting labels between the
files, and removes functions that are no longer referenced.
Note that the size of the run-time stack data changed after
inlining. Sometimesthe size was decreased due to fewer
activation records required. Sometimes it was increased
due to multiple inlined copies of functions each requiring
a copy of their variables. Thepercentage decreases for
overlapping run-time stack data may be larger for other
architectures since compiled functions for the SPARC typ-
ically required 92 bytes to support register windows and
other state information for its calling sequence.The
cloning measurements were obtained by manually updat-
ing the source code of the test programs to clone the func-
tions. Thecode area of cloned programs increased in size

whenever cloning was possible. Cloning provided more
opportunities for overlapping instructions with instructions
since a cloned relocatible code segment was often identi-
cal to the original segment. While the original size
decreases for overlapping data in the run-time stack and
overlapping instructions with instructions were not large,
more opportunities for overlapping were obtained when
code duplication transformations are applied.

Table 2: Overlapping after Inlining and Cloning

Overlapping Run-Time Overlapping Instructions
Stack Data With Inlining with Cloning

Bytes Bytes Pct Bytes Bytes Pct
Orig Saved Less Orig Saved Less

Program

cal 232 8 3.45% 1868 344 18.42%
cmp 192 0 0.00% 1576 -4 -0.25%
csplit 728 0 0.00% 7988 148 1.85%
ctags 24544 88 0.36% 10308 53 0.50%
dhrystone 200 8 4.00% 2000 40 2.00%
grep 304 0 0.00% 4604 76 1.65%
join 96 0 0.00% 4280 40 0.93%
lex 7208 8 0.11% 44900 1700 3.79%
linpack 3312 112 3.38% 11464 330 1.92%
mincost 192 8 4.17% 4500 164 3.64%
sdiff 5784 16 0.28% 7972 292 3.66%
tr 96 0 0.00% 1692 20 1.18%
tsp 2216 56 2.53% 4788 28 0.59%
whetstone 488 296 60.66% 4812 184 3.82%
yacc 1360 8 0.59% 32800 628 1.91%

av erage 3130 41 5.30% 9703 270 3.04%

Occasionally, small dynamic instruction increases were
observed due to overlapping program portions.Overlap-
ping run-time stack data after inlining changed the loca-
tion of local variables within activation records. Offsets
larger than 4095 had to be calculated in two instructions.
The dynamic instructions sometimes increased or
decreased. Theestimated frequency that each variable is
referenced should also be a criteria for ordering the over-
lapping of run-time stack data after inlining.Overlapping
instructions also occasionally caused very small dynamic
increases since it could affect the performance of filling

delay slots. A more sophisticated instruction scheduler
could undo the effects of cross jumping when needed.It
also provided more opportunities for branch chaining.
Overall, dynamic instructions decreased slightly.

8. Future Work
There are several areas to investigate that can poten-

tially result in greater reductions in process memory
requirements. Oneobvious area is to use live ranges of
indirectly referenced data instead of simply calculating the
extent throughout the function (run-time stack data) or
program (static data) that the data can be referenced.
While the current data size decreases are beneficial, the
results might be substantially improved after performing
such live range analysis.Another area is to experiment
with heuristics for choosing the order of data to be over-
lapped. We used the number of conflicts and the size of
the data.Many different heuristics have been investigated
for register coloring algorithms.Likewise, different
heuristics need to be investigated to determine the best
order in practice for overlapping run-time stack and static
data portions. Another promising area to investigate is
automatic overlapping of fields within a structure or
record, which would have the effect of unions in C or vari-
ant records in Pascal. Finally, the overlapping techniques
were shown to be more beneficial after inlining and
cloning. Othercode or data size increasing transforma-
tions may provide additional overlapping opportunities.

While the decrease in process memory requirements
has been measured, a more detailed analysis of the effect
that overlapping program portions has on performance is
still needed. Little impact was observed on primary
instruction and data caching.While the caching perfor-
mance of many programs changed, the average perfor-
mance was almost identical. This may indicate that the
positioning of data or instructions has a greater caching
impact than reductions in size.The impact on secondary
caches needs to be measured since overlapping of relocat-
able code portions with uninitialized static data could
result in greater locality. The effect on paging of concur-
rent processes also needs to be observed.

Compile-time overhead for determining static data live
ranges was evident when analyzing larger programs.This
overhead could be significantly reduced if demand-driven
instead of exhaustive solutions were used [14].

9. Conclusions
This paper described techniques for overlapping por-

tions within the run-time stack, static data, and code areas
of a program. Relocatable portions of code were also
overlapped with uninitialized static data.Overlapping run-
time stack data and overlapping instructions were shown
to be quite beneficial for decreasing memory requirements
after inlining or cloning.The techniques will be also use-
ful for embedded systems, which often have strict memory
limitations. Automaticoverlapping of variables supports

the software engineering practice of using appropriately
named variables for different purposes. The results show
significant decrease in process memory requirements for a
variety of programs.

10. References

[1] J. Hennessy and D. Patterson,Computer Architecture: A
Quantitative Approach, Second Edition,Morgan Kauf-
mann, San Francisco, CA (1996).

[2] D. A. Padua, D. J. Kuck, and D. Lawrie, “High-Speed
Multiprocessors and Compilation Techniques,” IEEE
Tr ansactions on Computers 29(9) pp. 763-776 (Septem-
ber 1980).

[3] F. Mueller and D. B. Whalley, “Av oiding Unconditional
Jumps by Code Replication,” Proceedings of the SIG-
PLAN ’92 Conference on Programming Language Design
and Implementation, pp. 322-330 (June 1992).

[4] F. Mueller and D. B. Whalley, “Av oiding Conditional
Branches by Code Replication,” Proceedings of the SIG-
PLAN ’95 Conference on Programming Language Design
and Implementation, pp. 56-66 (June 1995).

[5] A. V. Aho and J. D. Ullman,Principles of Compiler
Design,Addison-Wesley, Reading, MA (1977).

[6] W. Wulf, R. K. Johnsson, C. B. Weinstock, S. O. Hobbs,
and C. M. Geschke, The Design of an Optimizing Com-
piler, American Elsevier, New York, NY (1975).

[7] C. W. Fraser, E. W. Myers, and A. L. Wendt, “Analyzing
and Compressing Assembly Code,” Proceedings of the
SIGPLAN ’84 Symposium on Compiler Construction, pp.
117-121 (June 1984).

[8] S. C. Johnson, “A Tour Through the Portable C Com-
piler,” Unix Programmer’s Manual, 7th Edition2B p.
Section 33 (January 1979).

[9] N. Ramsey, “Relocating Machine Instructions by Curry-
ing,” Proceedings of the SIGPLAN ’96 Conference on
Programming Language Design and Implementation, pp.
226-236 (May 1996).

[10] J. W. Davidson and D. B. Whalley, “Quick Compilers
Using Peephole Optimizations,” Software—Practice &
Experience19(1) pp. 195-203 (January 1989).

[11] M. E. Benitez and J. W. Davidson, “A Portable Global
Optimizer and Linker,” Proceedings of the SIGPLAN ’88
Symposium on Programming Language Design and
Implementation, pp. 329-338 (June 1988).

[12] G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke,
M. E. Hopkins, and P. W. Markstein, “Register Allocation
via Coloring,” Computer Languages 6(1) pp. 47-57
(1981).

[13] S. Leffler, M. McKusick, M. Karels, and J. Quarterman,
The Design and Implementation of the 4.3 BSD UNIX
Operating System,Addison-Wesley (1990).

[14] E. Duesterwald, R. Gupta, and M. L. Soffa, “Demand-
driven Computation of Interprocedural Data Flow,” Sym-
posium on Principles of Programming Languages, (Jan-
uary 1995).

