
THE FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

PREDICTING PIPELINE AND
INSTRUCTION CACHE PERFORMANCE

By

Christopher A. Healy

A Thesis submitted to the
Department of Computer Science

in partial fulfillment of the
requirements for the degree of

Master of Science

Degree Awarded:
Fall Semester, 1995

The members of the Committee approve the thesis of Christopher A. Healy defended on
October 17, 1995.

David B. Whalley
Professor Directing Thesis

Theodore P. Baker
Committee Member

Charles J. Kacmar
Committee Member

Gregory A. Riccardi
Committee Member

Approved:

R. C. Lacher, Chair, Department of Computer Science

CHAPTER 1

INTRODUCTION

Users of real-time systems are not only interested in obtaining correct computations

from their programs, but timely responses as well.A program which gives a useful

result past a deadline is not acceptable.Therefore, it is necessary to determine a

program’s execution time statically. It is unrealistic to attempt to predict a precise

execution time for every real-time program since the execution time often depends upon

input values whose influence on the program’s control flow is unknown until the

program executes. Inaddition, floating-point instructions usually vary in execution time

based on the values of their operands.Consequently, instead of trying to derive a single

execution time, a more pragmatic approach is to calculate upper (worst-case) and lower

(best-case) bounds on the execution time. Real-time programmers tend to be more

interested in the worst-case execution time (WCET) because of the notion of real-time

deadlines. Inother words, a task that completes too early is not as much of a concern as

a task that finishes too late.

Many architectural features, such as pipelines and caches, in recent processors present

a dilemma for architects of real-time systems. Use of these architectural features can

result in significant performance improvements. Yet, these same features introduce a

potentially high level of unpredictability when it comes to establishing bounds on a

program’s execution time. Dependencies between instructions can cause pipeline

1

hazards that may delay the completion of instructions.While there has been much work

analyzing the execution of a sequence of instructions within a basic block, the analysis

of pipeline performance across basic blocks is more problematic.Instruction or data

cache misses can also require several cycles to resolve. Predictingcaching behavior of

an instruction is even more difficult since it may be affected by memory references that

occurred long before the instruction was executed. Inaddition, caching and pipeline

behavior are not independent, exacerbating the problem of timing analysis.Without the

ability to predict instruction cache and pipeline performance simultaneously when

calculating a WCET, it has been customary to be pessimistic, assuming that all

instruction cache accesses would be misses and that pipeline data hazards would always

give rise to additional execution delay. As an illustration, consider the following code

segment and pipeline diagram in Fig. 1 consisting of three SPARC instructions.The

pipeline cycles and stages represent the execution on a MicroSPARC I processor [1].

Each number within the pipeline diagram represents an instruction that is currently in the

pipeline stage shown above it and occupies that stage during the cycle indicated to the

left. Instruction 0 performs a floating-point addition that requires a total of twenty

cycles. Fetchinginstruction 1 results in a cache miss, which is assumed to have a miss

penalty of nine additional cycles.1 Instruction 2 has a data dependency with instruction 0

and the execution of its CA stage is delayed until the floating-point addition is

calculated.2 The miss penalty associated with the access to main memory to fetch

instruction 1 completely overlaps with the execution of the floating-point addition in
1 The MicroSPARC I employs wrap-around filling upon a cache miss, so that the miss penalty actually depends on which word

within the cache line the instruction belongs. See Chapter 7 for a discussion of this feature.
2 Note that astd instruction has no write back stage since a store instruction only updates memory and not a register. The

std instruction also requires three cycles to complete the CA stage on the MicroSPARC I.

2

SPARC Instructions Pipeline Diagram

1

2

4

5

...

11

12

13

14

EXIF ID FEX CA WB FWB

cycle

stage

15

16

17

18

19

20

21

22

3

Instruction Fetch
Instruction Decode

Floating-point Write Back

IF

ID

EX

FEX

CA

WB

FWB

Pipeline Stage Abbreviations

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

2

2

2

2

2

2

2

2

2

2

2

inst 0: faddd %f2,%f0,%f2

inst 1: sub %o4,%g1,%i2

inst 2: std %f2,[%o0+8]

data Cache Access
integer Write Back

... ...

integer EXecute
Floating-point EXecute

Figure 1: Example of Overlapping Pipeline Stages with a Cache Miss

instruction 0. If the pipeline analysis and cache miss penalty were treated independently,

then the number of estimated cycles associated with these instructions would be

increased from 22 to 31 (i.e. by the cache miss penalty).

The remainder of the thesis will proceed as follows. Chapter2 presents the context in

which the timing analyzer operates with respect to its input/output and ancillary

software. Chapter3 explicates the algorithm for obtaining best-case and worst-case

performance. Chapter4 reports how well the timing analyzer predicts the performance

of six benchmark programs. Chapter 5 discusses the role of the graphical user interface

in communicating with the user. Chapter 6 examines related work in the area of

predicting execution time. Chapter 7 describes future improvements planned for the

timing analyzer, and Chapter 8 presents the conclusions.

3

CHAPTER 2

PREVIOUS WORK

The timing analyzer described in this thesis is part of a software package that has been

under development by several researchers over the past few years. Thispackage consists

of an optimizing compiler calledvpo [2], a static instruction cache simulator and a

timing analyzer with a graphical user interface. Fig.2 depicts an overview of the

approach for predicting performance of large code segments on machines with pipelines

and instruction caches.

Control-flow information, which could have also been obtained by analyzing

assembly or object files, is stored as the side effect ofvpo’s compilation of one or more

C source files. This control-flow information is passed to the static cache simulator,

which ultimately categorizes each instruction’s potential caching behavior based on a

Configuration
Cache

Categorizations
Caching

Simulator
Cache
Static

Information
Flow

Control
Compiler

Files
Source

C

Instruction

Interface
User Timing

Predictions
Timing

Analyzer

User Timing RequestsInstruction Set
Information

Figure 2: Overview of Bounding Pipeline and Cache Performance

4

given cache configuration. The caching behavior of an instruction is assigned one of

four categories, described in Tables 1 and 2, for each loop level in which an instruction is

contained. Thetheory and implementation of static cache simulation is described in

more detail elsewhere [3, 4, 5, 6].The timing analyzer uses the instruction caching

Table 1: Definitions of Worst-Case Instruction Categories

Instr uction Categor y Definition According to Behavior in Instruction Cache

always miss The instruction is not guaranteed to be in cache
when it is referenced.

always hit The instruction is guaranteed to always be in cache
when it is referenced.

first miss The instruction is not guaranteed to be in cache on
its first reference each time the loop is executed, but
is guaranteed to be in cache on subsequent refer-
ences.

first hit The instruction is guaranteed to be in cache on its
first reference each time the loop is executed, but is
not guaranteed to be in cache on subsequent refer-
ences.

Table 2: Definitions of Best-Case Instruction Categories

Instr uction Categor y Definition According to Behavior in Instruction Cache

always miss The instruction is guaranteed to not be in cache
when it is referenced.

always hit It is possible that the instruction is in cache every
time it is referenced.

first miss The instruction is guaranteed to not be in cache on
its first reference each time the loop is executed, but
may be in cache on subsequent references.

first hit The instruction may be in cache on its first reference
each time the loop is executed, but is guaranteed to
not be in cache on subsequent references.

5

categorizations to determine whether an instruction fetch should be treated as a hit or a

miss during the pipeline analysis of a path.The timing analyzer also reads a file that

specifies the hardware’s instruction set pipeline constraints in order to detect structural

and data hazards between instructions.Given a program’s control-flow information and

instruction caching categorizations along with the processor’s instruction set

information, the timing analyzer then derives best-case and worst-case estimates for each

loop and function within the program. This version of the timing analyzer is an

extension of an earlier timing tool [5, 7] which bounded instruction cache performance.

Although most machines that have an instruction cache also have a data cache, the

timing analyzer does not as yet predict data cache performance. When the timing

analyzer has completed its analysis, it invokes a graphical user interface [8] allowing the

user to request timing bounds for portions of the program. Excerpts of this thesis,

including a concise description of the algorithm and worst-case results, can be found in

[9].

6

CHAPTER 3

TIMING ANALYSIS

Several steps are necessary to obtain the timing predictions of a program.The

optimizing compilervpo determines control-flow information. Next, the static cache

simulator predicts the caching behavior of each assembly instruction according to the

program’s control-flow. The timing analyzer also uses the control-flow information to

determine the set of paths through each loop and function [5].Once this information has

been computed, the timing analyzer turns its attention to predicting the BCET and

WCET.

The timing analyzer determines execution time for programs by first analyzing the

innermost loops and functions, and proceeding to higher level loops and functions until it

reachesmain(). For example, consider the skeleton program in Fig. 3. The timing

analyzer will establish best- and worst-case time bounds offun2(), loop_2,

loop_1, fun1(), fun2() and finally main(). Note thatfun2() needs to be

analyzed twice since it is called from two different places.The pipeline and caching

behavior of the two inv ocations offun2() are likely to differ. For example, if an

instruction i in fun2() contains an assembly instruction that maps to the same cache

line as an instruction involving the++j operation inloop_2, instructioni will always

be a miss in cache as long asfun2() is invoked from insideloop_2. On the other

hand, instructioni may still be a hit whenfun2() is called frommain(). The timing

7

void fun1()
{
int i, j;

for (i = 0; i < 100; ++i) /* loop_1 : outer loop */
for (j = 0; j < 100; ++j) { /* loop_2 : inner loop */
fun2();

}
}
void fun2()
{
/* body of function */

}
main()
{
fun1();
fun2();

}

Figure 3: A Skeleton Program

analyzer treats a function as a loop that only executes for a single iteration.Hereafter, a

loopbeing analyzed will refer to either aloop3 or afunctionwithin the program.

3.1 AnalyzingA Single Path of Instructions

Before the timing analyzer examines the program, it reads information from a machine-

dependent file concerning the pipeline requirements of each instruction in the processor’s

instruction set.This information includes how many cycles each instruction spends in

each pipeline stage.For floating-point instructions, the number of cycles spent in the

FEX can vary significantly depending upon the values of the register operands.For

instance, the double-precision divide instructionfdivd (which is distinct from the

single precision divide instructionfdivs) can take as few as six cycles in the FEX or as
3 In this thesis,loopswill be restricted to natural loops.A natural loop is a loop with a single entry block. While the static

simulator can process unnatural loops, the timing analyzer is restricted to only analyzing natural loops since it would be difficult for
both the timing analyzer and user to determine the set of possible blocks associated with a single iteration in an unnatural loop.It
should be noted that unnatural loops occur quite infrequently.

8

many as 56 cycles. Thus,a floating-point intensive program tends to have a wider

difference between best-case and worst-case execution times than a program with only

integer instructions. The timing analyzer also obtains from this file the latest pipeline

stage in which the values of its register operands are required via forwarding for each

instruction to proceed, and in which stage the value of the destination register is

available via forwarding.

The control-flow information thatvpoprovides also identifies the register operands of

each instruction in the program.As mentioned before, the static cache simulator

categorizes each instruction’s expected caching behavior. Based on an instruction’s

categorization, the timing analyzer can decide whether the instruction will be treated as a

hit or miss in the pipeline. When an instruction is a hit in the pipeline, it will spend one

cycle in the IF stage, possibly more if it cannot immediately proceed to the ID due to a

stall. Whenan instruction is treated as a miss in the pipeline, it will spend the duration

of the miss penalty in the IF stage in addition to the single cycle it would have occupied

the IF had the instruction been a hit.Even if it is a miss in cache, the instruction may

spend more than ten cycles in the IF stage if there is a stall.For example, a double-

precision floating-point divide instructionfdivd may spend up to 56 cycles in the FEX

stage. Ifthe fdivd is followed by two instructions, the first of which being another

floating-point instruction that is a cache hit and the second of which that is cache miss,

then there will be a structural hazard between thefdivd instruction and the floating-

point instruction following it. As a result, while thefdivd instruction is occupying the

FEX for 56 cycles, the second instruction after it will spend the same 56 cycles in the IF

stage. Inthis case, the cache miss is overlapped in time with the structural hazard.

A path of instructions consists of all the instructions that can be executed during a

9

single iteration of a loop (or in the case of a function, all the instructions that are

executed in one invocation of the function).If the loop has no conditional (e.g.if or

switch) statements, then there will be only one path associated with this loop. As an

example, consider the functionSquare() in Fig. 4. This function contains seven

instructions, numbered from 0 through 6, that comprise one path. Instructions 0 and 1

are classified asalways misses, and for this reason they must each spend ten cycles in the

IF stage before proceeding to the other pipeline stages.Instruction 1 is a store

instructionst, which must spend two cycles in the CA stage. This pipeline requirement

results in a structural hazard since instruction 2 is ready to enter the CA stage in cycle 24

but cannot do so until instruction 1 vacates it.Thus, instruction 1 causes instructions 2,

3 and 4 to stall in the EX, ID and IF stages, respectively, during cycle 24. A similar

structural hazard occurs during cycle 26 when instruction 2, another store instruction,

occupies the CA stage for two cycles. Later, during cycles 27 and 28, a data hazard

takes place between instructions 3 and 4.Instruction 3 loads the value of register%f2

which is instruction 4’s source operand. This means that instruction 4 cannot enter the

FEX stage until instruction 3 leaves the CA stage.Finally, instruction 4 must spend

seven cycles in the FEX stage, not due to any cache miss or pipeline hazard, but because

of the hardware’s pipeline requirement of thefmultd instruction.

The analyzer examines the instructions sequentially. It keeps track of the number of

cycles required to execute the path up to the instruction currently being processed, plus

pipeline information regarding the beginning and ending behavior of the path.Tables 3

and 4 depict how this pipeline information is gradually modified as the analyzer

processes each instruction inSquare(). The first row of each table shows the pipeline

information after only instruction 0 has been processed, the second row shows the

10

double Square(x)

double x;

{

return x * x;

}

C Source Code

Pipeline Diagram

1

EXIF ID FEX CA WB FWB

cycle

stage

...

10

11

12

13

14

15

0

0

1

1

1

1

1

1

...

20

21

22

24

25

26

27

28

1

1

123

36

35

34

33

32

31

30

29 6

6

6

6

6

4

4

4 3

0

0

0

0

2

2

2

2

2

2

1

3

3

3

3

3

3

3

4

4

4

4

4

4

5

5

5

5

5

4

4

4

4

4

SPARC Instructions

inst 6: restore

inst 5: ret

inst 4: fmuld %f2,%f2,%f0

inst 3: ldd [%sp+.4_x],%f2

inst 2: st %i1,[%sp+(.4_x+4)]

inst 1: st %i0,[%sp+.4_x]

inst 0: save %sp,(-72),%sp

...

...

Figure 4: Path through FunctionSquare()

pipeline information taking into account instructions 0 and 1, and so on. The last row

depicts the the pipeline behavior of the entire path.The values in the rows labeled

Cycles from Beg in Table 3 represent how many cycles after cycle 1that particular

stage is first occupied. The values in the rows labeledCycles from End in Table 4

represent how many cyclesbefore the last cycle(which is given in the rightmost column)

that stage is last occupied.To determine during which cycle an instruction completed its

occupation of a particular stage, one subtracts theCycles from End value from thetotal

11

Table 3: Creating Beginning Pipeline Information forSquare()

Inst Stage IF ID EX FEX CA WB FWB

Cycles from Beg 0 10 11 N/A 12 13 N/A
Beg Occupant 0 0 0 N/A 0 0 N/A

0

Cycles from Beg 0 10 11 N/A 12 13 N/A
Beg Occupant 0 0 0 N/A 0 0 N/A

1

Cycles from Beg 0 10 11 N/A 12 13 N/A
Beg Occupant 0 0 0 N/A 0 0 N/A

2

Cycles from Beg 0 10 11 N/A 12 13 28
Beg Occupant 0 0 0 N/A 0 0 3

3

Cycles from Beg 0 10 11 28 12 13 28
Beg Occupant 0 0 0 4 0 0 3

4

Cycles from Beg 0 10 11 28 12 13 28
Beg Occupant 0 0 0 4 0 0 3

5

Cycles from Beg 0 10 11 28 12 13 28
Beg Occupant 0 0 0 4 0 0 3

6

Table 4: Creating Ending Pipeline Information forSquare()

Inst Stage IF ID EX FEX CA WB FWB total cycles

Cycles from End 4 3 2 N/A 1 0 N/A
End Occupant 0 0 0 N/A 0 0 N/A

0 14

Cycles from End 4 3 2 N/A 0 10 N/A
End Occupant 1 1 1 N/A 1 0 N/A

1 24

Cycles from End 5 4 2 N/A 0 12 N/A
End Occupant 2 2 2 N/A 2 0 N/A

2 26

Cycles from End 7 5 3 N/A 1 14 0
End Occupant 3 3 3 N/A 3 0 3

3 29

Cycles from End 12 8 10 1 8 22 0
End Occupant 4 4 3 4 3 0 4

4 36

Cycles from End 8 7 10 1 8 22 0
End Occupant 5 5 5 4 3 0 4

5 36

Cycles from End 7 6 5 1 4 3 0
End Occupant 6 6 6 4 6 6 4

6 36

cycles value in the same row. For example, the first row of Table 4 says that if the path

consisted solely of instruction 0, the total cycle time for the path would be fourteen

cycles, according to the rightmost column. It also states that instruction 0 finishes the IF

stage four cycles before the end of the path.Since 14 - 4 = 10, instruction 0 finishes its

12

occupation of the IF stage during cycle 10. The second row of Table 4 refers to the path

if it only consisted of instructions 0 and 1. In this case the path’s total time is 24 cycles,

as given in the rightmost column, and the WB stage is last occupied 10 cycles before the

final stage, as given in the third column from the right. Subtracting these two figures

gives 24 - 10 = 14, meaning that the WB stage is last occupied during cycle 14.Table 4

indicates further that the last occupant of the WB stage was instruction 0, which agrees

with the pipeline diagram in Fig. 4.

The beginning pipeline information, as given in Table 3, is not immediately relevant

for the timing analysis of the functionSquare(). Its role comes into play when the

timing analyzer proceeds to the analysis of an entireloop, as described in the next

section. For path analysis, the ending pipeline information is necessary for the

avoidance of structural hazards. The beginning and ending occupants of the stages are

not needed for the timing analysis, but are provided here for clarity. Table 5 shows

information about the register operands whose values are needed and/or set by the

instructions. Thisregister information is needed to detect data hazards. Figures in the

rows labeledfirst needed show how many cyclesafter cycle 1that particular register’s

value is required as a source operand. Figures in the rows labeledlast produced count

how many cyclesbefore the last cyclethat register’s value is available.

Retaining this set of pipeline information allows additions to the beginning or end of

a path. Sincethe pipeline requirements for a path and for a single instruction can both

be represented with this set of pipeline information, concatenating two paths together

can be accomplished in the same manner as concatenating an instruction onto the end of

a path. Theconcatenation of two sets of pipeline information is accomplished one stage

13

Table 5: Data Hazard Information for the Instructions inSquare()

Inst Register ... %o6 ... %i0 %i1 ... %f0 ... %f2 ...
first needed N/A 10 N/A N/A N/A N/A N/A N/A N/A N/A
last produced N/A 2 N/A N/A N/A N/A N/A N/A N/A N/A

0

first needed N/A 10 N/A 21 N/A N/A N/A N/A N/A N/A
last produced N/A 12 N/A N/A N/A N/A N/A N/A N/A N/A

1

first needed N/A 10 N/A 21 22 N/A N/A N/A N/A N/A
last produced N/A 14 N/A N/A N/A N/A N/A N/A N/A N/A

2

first needed N/A 10 N/A 21 22 N/A N/A N/A N/A N/A
last produced N/A 17 N/A N/A N/A N/A N/A N/A 1 N/A

3

first needed N/A 10 N/A 21 22 N/A N/A N/A 27 N/A
last produced N/A 24 N/A N/A N/A N/A 1 N/A 8 N/A

4

first needed N/A 10 N/A 21 22 N/A N/A N/A 27 N/A
last produced N/A 24 N/A N/A N/A N/A 1 N/A 8 N/A

5

first needed N/A 10 N/A 21 22 N/A N/A N/A 27 N/A
last produced N/A 24 N/A N/A N/A N/A 1 N/A 8 N/A

6

at a time. A stage from the second set of pipeline information is moved to the earliest

cycle that does not violate any of the following conditions.

(1) There is no structural hazard with another instruction.For instance, the
beginning of the IF stage of instruction 2 in Fig. 4 could not be placed in cycle 20
since that stage was already occupied.

(2) Thereis no data hazard due to a previous instruction producing a result that is
needed by a source operand of the instruction in that stage.For example, the
beginning of the FEX stage for instruction 4 in Fig. 4 must take place after
instruction 3 finishes its CA stage due to the data hazard between theldd and
fmuld instructions.

(3) Theplacement of the instruction does not violate its own pipeline requirements.
For instance, in Fig. 4 the ID stage of instruction 1 has to occur at least eleven
cycles after the beginning of its IF stage.

Data and structural hazards can also occur upon entering and leaving a child loop.For

instance, ifSquare() in Fig. 4 is invoked from another function, and the instruction

that is executed after returning fromSquare() has%f0 as a source operand, then it

will have a data dependency with instruction 4 ofSquare(). The timing analyzer can

14

detect this potential hazard in much the same manner as thoughSquare() were a

single instruction in the calling function’s path.

After the beginning and ending pipeline behavior of a path has been determined,

other information associated with the pipeline analysis of a path need not be stored.For

instance, it does not matter when instruction 2 entered the ID stage after the pipeline

information has been calculated for all seven instructions in Fig. 4. No instruction being

added to either the beginning or end of the pipeline could possibly have a structural

hazard with the ID stage of instruction 2 since it would first have a structural hazard with

the ID stage of instruction 0 or instruction 6, respectively. Thus, the amount of pipeline

information associated with a path is dramatically reduced as opposed to storing how

each stage is used during every cycle. Furthermore,no limit need be imposed on the

amount of potential overlap when concatenating the analysis of two paths.

3.2 LoopAnalysis

To find the BCET and WCET for a loop, the timing analyzer must first evaluate all of the

possible paths through the loop.

3.2.1 TheUnion Concept

With pipelining it is possible that the combination of a set of paths may produce a longer

execution time than just repeatedly selecting the longest path.For instance, consider a

loop with two paths that take about the same number of cycles to execute. Path 1 has a

fdivd instruction near its beginning and path 2 has afdivd instruction near its end.

Alternating between the paths will produce the WCET since there will be a structural

hazard between the two instructions when path 1’s fdivd occurs shortly after path 2’s

15

fdivd.

To avoid the problem of calculating all combinations of paths, which would be the

only method for obtaining perfectly accurate estimations, the timing analyzer determines

the union of possible pipeline effects of the paths for an iteration of a loop.This

simplifies the algorithm and also does not cause any noticeable overestimation or

underestimation. Sinceall paths through a loop must begin with the same header block,

the beginning pipeline information among the various paths is usually the same.Also,

paths often end with the same block of instructions, so that ending pipeline information

is unaffected by the process of uniting the pipeline information.However, beginning and

ending pipeline information can significantly differ when one path consists exclusively

of integer instructions while another contains floating-point instructions. This situation

occurs in a simple program depicted in Figs. 5 and 6.

The generated assembly code has been optimized byvpo. The local variablesi,

count andfcount have been allocated to registers%o3, %o2 and%f1 respectively.

Since the SPARC has delayed branches, the instruction following each transfer of control

takes effect before the branch is taken. Theloop in this program consists of instructions

10 through 27.Vpo has replicated instruction 9, the comparison, to also appear in the

delay slot at the end of the loop, instruction 27.A branch instruction ending in ",a" is

an annulled branch, meaning that the result of the instruction in the delay slot will be

annulled if the branch is not taken.

To simplify this example, all of the instructions and data are assumed to already be in

cache. Table 6 shows the structural hazard information corresponding to the two paths in

Fig. 6, and Fig. 7 depicts the pipeline diagrams for the worst-case and best-case unions

of the two paths as a visual representation of the values contained in the bottom half of

16

C Source Code Inst Assembly Code
------------------------- ---- ----------------------------
main() 0 mov %g0,%o2
{ 1 sethi %hi(L01),%o0

int i; 2 ldd [%o0+%lo(L01)],%f1
int count = 0; 3 add %o1,%o1,%o1
float fcount = 0; 4 add %o1,1,%o1
extern int incr; 5 sub %o2,%o1,%o2
extern float fincr; 6 mov %g0,%o3

7 sethi %hi(_fincr),%o4
count -= i + i + 1; 8 sethi %hi(_incr),%o5

9 cmp %o3,5
for (i = 0; i < 10; ++i) 10 L18: bge,a L19
{ 11 sub %o3,%o2,%o1

if (i < 5) 12 add %o2,1,%o2
{ 13 ld [%o4+%lo(_fincr)],%f0

++count; 14 ba L16
fcount *= fincr; 15 fmuls %f1,%f0,%f1

} 16 L19: add %o1,1,%o1
else 17 ld [%o5+%lo(_incr)],%o0
{ 18 sub %o0,%o1,%o0

incr -= i - count + 1; 19 add %o3,%o2,%o1
incr += i + count - 2; 20 sub %o1,2,%o1
count += incr; 21 add %o0,%o1,%o0

} 22 st %o0,[%o5+%lo(_incr)]
} 23 add %o2,%o0,%o2

} 24 L16: add %o3,1,%o3
25 cmp %o3,10
26 bl,a L18
27 cmp %o3,5
28 retl
29 nop

Figure 5: Program Containing a Loop with Two Paths

Table 6. Fig. 7 shows how little information is used to store the union, as opposed to the

pipeline diagrams in Fig. 6. It is only necessary to know when each stage is first and last

occupied. Someadditional information concerning the occupancy of the stages is also

calculated during best-case analysis, and this will be discussed in Section 3.2.4.To

calculate the union of the paths during worst-case analysis, one finds theearliest initial

occupation (relative to cycle 1) andlast finishing occupation (relative to the last cycle of

the longest path) of each stage. As Fig. 6 shows, the corresponding instructions in both

paths in this example begin the IF, ID, EX, CA and WB stages at the same time.Since

Path 1 never occupies the FEX or the FWB stages, the worst-case union will store the

17

Path 1 Instructions
inst 10: bge,a L19

inst 16: add %o1,1,%o1

inst 11: sub %o3,%o2, %o1

inst 18: sub %o0,%o1,%o0

inst 17: ld [%o5+%lo(_incr)],%o0

inst 19: add %o2,%o0,%o2

inst 20: sub %o1,2,%o1

inst 21: add %o0,%o1,%o0

inst 23: add %o2,%o0,%o2

inst 24: add %o3,1,%o3

inst 25: cmp %o3,10

inst 26: bl,a L18

inst 27: cmp %o3,5

Path 2 Instructions
inst 10: bge,a L19

inst 11: sub %o3,%o2,%o1

inst 12: add %o2,1,%o2

inst 13: ld [%o4+%lo(_fincr)],%f0

inst 14: ba L16

inst 15: fmuls %f1,%f0,%f1

inst 24: add %o3,1,%o3

inst 25: cmp %o3,10

inst 26: bl,a L18

inst 27: cmp %o3,5

Path 1 Pipeline Diagram

IF ID EX FEX CA WB FWB

stage

cycle 1

2

3

4

5

6

7

11

16

17

18

19

19

11

16

16

16

16

17

17

17

18

18

10

10

11

11

11

8

9

10

11

12

13

14

15

16

17

18

19

20

27

26

25

25

24

23

22

21

20

27

27

27

27

26

25

25

25

25

24

24

24

24

24

23

23

23

23

23

22

22

22

22

21

21

21

21

20

20

20

20

19

19

19

19

18

18

18

17

IF ID EX FEX CA WB FWB

stage

cycle 1

2

3

4

5

6

7

11

11

10

10

11

11

11

8

9

10

11

12

13

14

15

Path 2 Pipeline Diagram

...

32

33

12

13

14

15

24

25

26

12

13

14

15

24

25

2627

27

12

13

24

25

15

15

15

15

15

15

15

15

15

15

27

12

13

24

25

12

24

25

27

27

13

...

21

...

33

inst 22: st %o0,[%o5+%lo(_incr)]

Figure 6: Pipeline Diagrams for the Two Loop Paths in Fig. 5

18

IF ID EX FEX CA WB FWB

stage

cycle 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

IF ID EX FEX CA WB FWB

stage

cycle 1

2

3

4

5

6

7

10

10

11

11

11

8

9

10

11

12

13

14

15

27

27

27

27

27

33

Worst-Case Union Pipeline Diagram Best-Case Union Pipeline Diagram

33

32

...

20

19

18

17

16

...

32

10

27

10

27

11

27

15

15

27

11

11

27

13

15

Figure 7: Pipeline Diagrams for the Worst-Case and Best-Case Unions

Table 6: Structural Hazard Information for Unions in Fig. 7

Path 1 Info IF ID EX FEX CA WB FWB

Cycles from Beg 0 1 3 N/A 4 5 N/A
Cycles from End 4 3 2 N/A 1 0 N/A

Path 2 Info IF ID EX FEX CA WB FWB

Cycles from Beg 0 1 3 7 4 5 7
Cycles from End 23 22 21 1 20 19 0

WC Union Info IF ID EX FEX CA WB FWB

Cycles from Beg 0 1 3 7 4 5 7
Cycles from End 17 16 15 1 14 13 0

BC Union Info IF ID EX FEX CA WB FWB

Cycles from Beg 0 1 3 N/A 4 5 N/A
Cycles from End 23 22 21 N/A 20 19 N/A

19

beginning (as well as the finishing) times of Path 2. The two paths differ with respect to

the completion of the integer pipeline stages.For instance, in Path 1, instruction 27

finishes the IF stage during cycle 16, seventeen cycles before the last executing cycle of

the longer path (Path 2). On the other hand, in Path 2, instruction 27 leaves the IF stage

23 cycles before the path completes.Since the worst-case union seeks the latest possible

ending times of the stages, it will adopt Path 1’s finishing times for the integer stages.

Thus, as Fig. 7 shows, the worst-case union’s pipeline finishes the integer stages during

cycles 16, 17, 18, 19 and 20, respectively, and when these values are measured from the

last cycle of Path 2, one subtracts each from 33 to obtain the values in the row labeled

Cycles from End under theWC Union Info heading in Table 6.

During best-case analysis, it is necessary to modify the union calculation in order to

avoid detection of structural and data hazards that would cause an overestimation in the

BCET. In best case, the timing analyzer finds thelatest initial occupation andearliest

finishing occupation of each stage. If a stage is not occupied in one of the paths, then in

best case that stage will not be occupied by the union. In Fig. 7 and in Table 6, the FEX

and FWB stages of the best-case union are vacant because Path 1 contains no floating-

point instructions.

3.2.2 Worst-Case Algorithm for Timing a Loop

The algorithm for estimating the WCET for a loop is given in Fig. 8, wheren is the

maximum number of iterations associated with the loop.This algorithm is based on an

earlier method for determining the WCET of a loop in the context of predicting

instruction cache performance.A correctness argument for it is given in [7]. The

WHILE loop in the algorithm terminates when the number of calculated iterations

20

pipeline_information = NULL.
first_misses_encountered = NULL.
first_hits_encountered = NULL.
curr_iter = 0.

WHILE curr_iter != n - 1 DO
curr_iter += 1.
Find the longest continue path.
first_misses_encountered +=

first misses that were misses
in this path.

first_hits_encountered +=
first hits that were hits in this path.

Concatenate pipeline_information with the
worst-case union of the information for all paths.

IF no new first misses or first hits
are encountered in the path THEN
BREAK.

Concatenate pipeline_information with the worst-case
union of the pipeline information for all paths
(n - 1 - curr_iter) times.

FOR each set of exit paths that have a
transition to a unique exit block DO
Find the longest exit path in the set.
first_misses_encountered +=

first misses that were misses
in this path.

first_hits_encountered +=
first hits that were hits in this path.

Concatenate pipeline_information with the
worst-case union of the information for all
exit paths in the set.

Store this information with the exit block
for the loop.

Figure 8: Worst-Case Loop Analysis Algorithm

reachesn - 1 or no more first misses (first hits) are counted as misses (hits).If p is the

number of paths in the loop, then the WHILE loop in the algorithm will iterate up to (n -

1) or (p + 1) times, since a first miss (first hit) can miss (hit) at most once during the loop

execution.

The goal of the algorithm in Fig. 8 is to select the longest path on each iteration of the

loop. Asan illustration, consider the program shown in Fig. 5, which contains a loop.

The two paths of the loop are described in Fig. 6.Path 1 contains only integer

21

instructions while Path 2 contains a floating-point multiply instruction.The static cache

simulator has determined that instructions 12, 16, 20 and 24 are first misses while the

rest of the instructions in the loop are always hits.

If Path 1 executes during the first iteration of the loop, it will take twenty cycles,

according to the pipeline diagram in Fig. 6, plus the combined miss penalties of its first

misses, instructions 16, 20 and 24.Thus, its time would be 20 + 9*3 = 47 cycles. If

Path 2 executes during the first iteration of the loop, it will take 33 cycles, plus another

eighteen taking into account its first misses, instructions 12 and 24, for a total of 51

cycles. Therefore,Path 2 has a longer worst-case time for the loop’s first iteration.

When the timing analyzer prepares to examine the second iteration of the loop, Path

2’s first misses will hereafter be hits in cache. If Path 1 executes during the second

iteration of the loop, it will take sixteen cycles, plus the miss penalties for its two

remaining first misses, instructions 16 and 20, yielding a total of 34 cycles. If Path 2

executes on the second iteration of the loop, it will take 26 cycles with no additional miss

penalty. Hence Path 1 is the worst-case path for the second iteration of the loop.

By the third iteration of the loop, all of the first misses have been encountered, so they

will be treated as hits in the pipeline for each of the remaining iterations. If Path 1

executes on the third iteration of the loop, it will take sixteen additional cycles, while

Path 2 would require 29 additional cycles. Theseexecution times are four cycles fewer

than the pipeline diagrams in Fig. 6 indicate because the pipeline is already filled.Since

Path 2 has a longer execution time than Path 1, the timing analyzer will choose Path 2 for

the third iteration of the loop. No new first misses or first hits are encountered during the

third iteration, so the timing analyzer will exit the WHILE loop in the worst-case

algorithm in Fig. 8. The next phase of the algorithm uses Path 2 for all the remaining

22

iterations before the last one. When an iteration involving Path 2 follows a previous

iteration executing Path 2 as well, the FEX stage of instruction 15 overlaps with more

integer instructions than if Path 2 had followed an iteration traversing Path 1. As a

result, Path 2’s execution time for each iteration from the fourth through the ninth is 26

cycles.

The last iteration of the loop is treated separately. The timing analyzer uses the path

that will cause the final iteration to have the longest WCET. Because exit paths can be

distinct from continue paths, an exit path may contain a first miss instruction that has not

been encountered in any selected continue path, and such a first miss will not be

encountered until the last iteration.However, for the loop in Fig. 6, the exit paths are

identical to the continue paths, so its last iteration will follow Path 2, and this iteration

will contribute another 26 cycles to the loop’s WCET, precisely as with each of the

previous six iterations. In summary, the WCET for the entire execution of the loop is 51

+ 34 + 29 + 6*26 + 26 = 296 cycles.

However, it is possible that the longest exit path for a loop is shorter than the longest

continue path. Consider the programExit, depicted in Figs. 9 and 10. The final iteration

of the loop does not perform the floating-point division. Hadthe timing analyzer not

distinguished between continue and exit paths, the continue path containing thefdivd

would have been the worst-case path on every iteration, yielding an execution time of 87

cycles on the first iteration plus 83 cycles for each of the remaining four iterations,4

totaling 419 cycles. Instead,the fifth iteration should only take only three additional

cycles for a total of 339 cycles. Thus,the analysis avoids an unnecessarily large
4 The first iteration takes four more cycles to execute because the timing analyzer assumes the pipeline is initially empty.

23

C Source Code Inst Assembly Code
------------------------- ---- ---------------------------
main() 0 save %sp,(-112),%sp
{ 1 mov %g0,%o2
double a[5]; 2 sethi %hi(L01),%o3
int i; 3 add %sp,.1_a,%o4

4 mov %o4,%g1
for (i = 0; ; i++) 5 add %o4,32,%g2
{ 6 L17: cmp %g1,%g2

if (i == 4) 7 bne,a L18
break; 8 st %o2,[%sp + xfer_1]

else 9 ret
a[i] = i / 2.0; 10 restore

} 11 L18: ldd [%o3 + %lo(L01)],%f0
} 12 ld [%sp + xfer_1],%f2

13 fitod %f2,%f2
14 fdivd %f2,%f0,%f2
15 std %f2,[%g1]
16 add %g1,8,%g1
17 add %o2,1,%o2
18 ba L17
19 nop

Figure 9: C Source Code and Assembly Code for the ProgramExit

IF ID EX FEX CA WB FWB

stage

cycle 1

2

3

4

5

6

7

8

9

10

11

12

IF ID EX FEX CA WB FWB

stage

cycle 1

2

3

4

5

6

7

Continue Path Pipeline Diagram Exit Path Pipeline Diagram

6

7 6

8 7 6

11 8 6

12 11 8 6

13 12 11 8

13 12 11 8

14 13 12 11

14 13 12 11

14 13 12

15 14 12

15 14 13

... 15 14 13

15 14 1323

24 16 15 14 13

25 17 16 15 14

... 17 15 1416

79 17 16 15

80

81

18

18 17

17 16

16

15

15

13

11

87

86

85

84

83

82 18

18

17

17

17

17

16

16

16

15

19

19

19

19

19

14

14

6

6

6

6

6

8

8

8

8

7

7

8

Figure 10: Pipeline diagrams for the Two Paths through Loop inExit

24

overestimation of 80 cycles on this simple loop.

3.2.3 Best-CaseAlgorithm for Timing a Loop

The best-case algorithm given in Fig. 11 is somewhat simpler than the worst-case one

described in the previous section.It is also based on the best-case strategy for caching

only analysis [5].Here,n represents the minimum number of iterations associated with

the loop. The algorithm calculates the BCET for the first iteration, for the firstn - 1

iterations and finally for alln iterations. In the case of a function, the BCET is

calculated by theELSE portion of the algorithm since the timing analyzer considers a

function to have only a final iteration.

During the first iteration of a loop, the instructions classified as first misses will be

pipeline_information = NULL.
IF n > 1 THEN

Find the shortest continue path where all first misses are
treated as misses and all first hits are treated as hits.

pipeline_information = the best-case union of the
information for all paths.

Find the shortest continue path where all first misses are
treated as hits and all first hits are treated as misses.

Concatenate pipeline_information with the best-case union of
the pipeline information for all paths (n - 2) times.

For each set of exit paths that have a transition to a unique
exit block DO
Find the shortest exit path in the set where all first misses

are treated as hits and all first hits are treated as misses.
Concatenate pipeline_information with the best-case union

of the information for all the exit paths in this set.
Store this information with this exit block for the loop.

ELSE
For each set of exit paths that have a transition to a unique

exit block DO
Find the shortest exit path in the set where all first misses

are treated as misses and all first hits are treated as hits.
Concatenate pipeline_information with the best-case union

of the information for all the exit paths in this set.
Store this information with this exit block for the loop.

Figure 11: Best-Case Loop Analysis Algorithm

25

misses since they are being encountered for the first time. No first miss can be treated as

a hit until it has already been encountered.By the definition of first hit [3], instructions

categorized as first hits will be treated as hits on the first iteration, and as misses on

subsequent iterations. Because of the way a first hit is defined, one can safely assume

that such instructions will miss in cache after the first iteration. Therefore, beginning

with the second iteration of the loop, all first misses will become hits in the best-case

algorithm, which may cause an underestimation in a loop having conditional control

flow and first misses in multiple paths.This underestimation makes the timing

analyzer’s prediction of the BCET more conservative.

As in the worst-case loop algorithm, it is essential to handle the final iteration

separately. It is common for a loop to break upon a certain condition, in which case the

exit path is significantly shorter than the best-case continue path. This situation occurs

in the programExit, described in the previous section. In the worst-case loop algorithm,

failure to consider the final iteration separately would have merely led to a less tight

WCET prediction; in best case, however, such an overestimation would render the BCET

prediction invalid.

3.2.4 Useof Vacant Cycles

During best-case analysis, it is sometimes necessary to ignore a potential data hazard to

avoid an unwanted overestimation in execution time. Fig. 12 shows a situation in which

a data dependency exists between the last instruction before a loop and the first

instruction inside the loop. The lower two-thirds of the pipeline diagram show the

behavior of the loop’s instructions in isolation, without regard to the context of the loop.

When the timing analyzer views the loop simply as a pipeline construct to insert after

26

SPARC Instructions Pipeline Diagram

EXIF ID FEX CA WB FWB

cycle

stage34 ldd [%o4],%f0

L24: 35 faddd %f4,%f0,%f4

36 add %o4,8,%o4

37 cmp %o4,%o5

38 bl,a L24

39 ldd [%o4],%f0

514

515

516

517

518

519

34

34

34

34

34

1

2

3

4

5

6

7

...

11

12

13

19

18

17

16

15

14

35

35

35

35

36

36

36

36

36

36

36

36

36

36

36

37

37

37

37

38

38

39

35

35

34

82

81

80

79

78

77

76

75

74

39

73

39

39

39

39

37

35

35

35

35

35

35

35

36

36

36

36

36

37

37

37

37

38

38

39

39

39

39

35

39

37

39

last iteration :

first iteration :

...

Figure 12: Data Hazard upon Entering a Loop

instruction 34, the pipeline shape of the loop will change as a result of the data hazard.

For instance, instruction 35 can enter the IF stage at cycle 515, the ID at 516, but it

cannot begin the FEX until the value of%f0 can be forwarded. Thus,instruction 35

stays in ID two extra cycles before going on to the FEX during cycles 519-522 and

27

finally the FWB during cycle 523.

However, even though instruction 35 leaves the ID, FEX and FWB stages two cycles

later than originally expected when the loop was timed by itself, the rest of the loop’s

execution is unaffected by this data hazard. The reason is that instruction 36 misses in

cache and cannot enter the ID stage until well after instruction 35 has vacated it.Thus,

the delay due to the hazard would be overlapped with the instruction fetch miss.In

worst-case analysis, when the timing analyzer detects a structural or data hazard, it

delays both the victim’s starting and ending times for the stage it is being prevented to

enter on time.But in the best-case analysis this will lead to an unwanted overestimation.

Since it is desirable for the timing analyzer to be an efficient tool, it is advantageous

to store as little information about the child loop as necessary, as shown in Tables 3-5

and Fig. 7. To avoid such an overestimation in this situation depicted in Fig. 12, the

best-case analysis also keeps track of how many cycles each stage is vacant during all

the iterations of the child loop.To compute the number of vacant cycles, the timing

analyzer first determines when each stage is first occupied during the loop (which

usually occurs during the first iteration) and when each stage is last occupied (typically

during the last iteration). The number of cycles from the first occupation of a stage

through its last occupation is the amount of time that stage is considered to beactive

during the loop’s execution. For instance, as Fig. 12 and Table 7 indicate, the ID stage is

first occupied during cycle 2 and last occupied during cycle 78, so the ID stage isactive

for 77 cycles. Thetiming analyzer also counts how many cycles each stage isoccupied

during the execution of the loop, and subtracts this number from its number ofactive

cycles to obtain the number ofvacantcycles for that stage.For example, the ID stage is

28

Table 7: Computing Vacant Cycles for Loop in Fig. 12

Loop Info IF ID EX FEX CA WB FWB

First Occupied 1 2 13 3 14 15 7

Last Occupied 77 78 79 78 81 79 82

Number of Cycles Active 77 77 67 76 68 65 76

Number of Cycles Occupied 59 50 30 40 40 20 20

Number of Cycles Vacant 18 27 37 36 28 45 56

occupied for five cycles on each iteration of the loop in Fig. 12. Since the loop iterates

ten times, the ID stage is occupied for 50 cycles during the entire execution of the loop.

Subtracting the ID’s occupiedtime from its active time yields the number ofvacant

cycles for the ID stage: namely 77 - 50 = 27 vacant cycles. Table 7 shows the number of

active, occupied and vacant cycles for each pipeline stage for the loop in Fig. 12.

If there is a data or structural hazard for a particular stage, the delay is reduced by the

number of vacant cycles in that stage; or if the number of vacant cycles for a stage is at

least the amount of the delay due to a hazard, then the algorithm ignores the hazard.For

instance, in Fig. 12, the number of vacant cycles in the ID, FEX and FWB stages are 27,

36 and 56, respectively, which is substantially more than the amount of delay

experienced by instruction 35. Thus, the BCET of the child loop will not increase

despite the data hazard.

On the other hand, had instruction 36 been a hit in cache on the first iteration,

ignoring the data hazard would give rise to anunderestimationwhen the child loop is

inserted after instruction 34.In this case, the loop by itself would have an execution time

of 73 cycles instead of 82 cycles. However, the number of cycles that each stage is

29

occupied during the loop would be unchanged. The number of vacant cycles in the ID,

FEX and FWB would be 18, 27 and 47, respectively, each nine cycles fewer than in the

situation in which instruction 36 was a hit on the first iteration of the loop. The number

of vacant cycles for each of these stages is still larger than the amount of the delay due to

instruction 35’s data hazard, so again the delay is ignored. This causes an

underestimation in the BCET equal to the data hazard delay. The timing analyzer does

not know whether instruction 36 is a hit or miss in cache during the analysis of the

program construct that contains the loop as its child. All that is known about the loop is

its total execution time and the information in Table 7, in order to maintain a reasonable

limit on how much information to store about each loop and function in the program.

3.3 Timing an Entire Program

A timing analysis tree is constructed to predict the worst-case times of code segments

containing nested loops and function calls. Each node of the tree represents either a loop

or a function in the function instance graph.Each node is considered a natural loop.

The nodes representing the outer level of function instances are treated as loops that will

iterate only once when entered.

1

2

3 4

5 6

7

back edgeback edge

loop header

exit block

continue path: 2->3

exit path: 2->4

continue/exit path: 2->4->6

Figure 13: Example Introducing Loop Terminology

30

The loops in the timing analysis tree are processed in a bottom-up manner. In other

words, the worst-case time for a loop is not calculated until the times for all of its

immediate child loops are known. Therewill be a worst-case time calculated that

corresponds to each exit block.Thus, when the timing analyzer is calculating the worst-

case time for a path containing a child loop, it uses the child loop times associated with

the exit block of the child loop that is the next block along the path.For instance,

consider a loop depicted by the block diagram in Fig. 13. Each block, which consists of

several assembly instructions, is represented by a numbered box. Blocks 5 and 7 are not

part of the loop, but are rather exit blocks from the loop.Suppose that this loop is nested

in an outer loop so that a backedge connects the end of block 5 to the beginning of block

1, and other backedge leads from the end of block 7 to the beginning of block 1.This

outer loop has block 1 as its loop header block, and it contains two paths, one containing

block 5 but not block 7, and the other containing block 7 but not block 5. It is necessary

for the timing analyzer to distinguish the inner loop’s total time depending on which exit

path is taken. Thepath that exits to block 7 will have a longer time for the last iteration

of the inner loop than the exit path to block 5. When the timing analyzer is processing

the outer loop path containing block 5, it will follow these steps:

(1) Evaluate the BCET/WCET for block 1.
(2) Add the child loop time associated with exit block 5.
(3) Add the time for block 5.

As soon as the timing analyzer reaches block 5 in the outer loop’s path, it detects that the

inner loop must execute before the first instruction in block 5, and it looks up the timing

estimate stored with this block.A similar scenario takes place upon reaching block 7 in

the other outer loop path.

31

3.3.1 FirstMiss Transitions in Worst Case

When incorporating a child loop’s time into a parent loop, an adjustment is necessary if

the child contains an instruction that is classified as afirst missin both the child and in

the parent. Consider a program in which a child loop,loop_2, iterates ten times and

contains an instructioni that is afirst missin the context ofloop_2, and the parent,

loop_1, also seesi as afirst missand also has 10 iterations.Instructioni should miss

only the first time it is referenced: during the first iteration ofloop_2 within the first

iteration ofloop_1. The 99 subsequent references ofi should all be hits.

Fig. 14 shows two pipeline diagrams for such aloop_2, where instruction 16 is a

first missat both loop levels. In the worst-case analysis, the instruction is considered a

hit in the pipeline. The miss penalty is added whenloop_2 is being examined in the

context ofloop_1, and only added to the first iteration.

It is possible that this approach will produce an overestimation in the WCET. If the

instruction that is categorized as afirst missspends more than one cycle in the IF stage

as a result of an earlier hazard in the pipeline, then the miss penaltyoverlaps withthe

hazard. InFig. 14, instruction 16, when seen as a hit in the pipeline, spends two cycles

in the IF stage because of a structural hazard between instructions 13 and 14. But when

instruction 16 misses in cache, it spends ten cycles in the IF stage, unaffected by the

hazard. Addingthe miss penalty afterloop_2’s pipeline behavior has been evaluated

results in an overestimation of one cycle forloop_2’s entire WCET.

3.3.2 FirstMiss Transitions in Best Case

The timing analyzer uses a slightly different approach tofm=>fm transitions for best

case. Theworst-case method for handling these transitions cannot be used in best case

32

IF ID EX FEX CA WB FWB

stage

cycle 1

2

3

4

5

6

7

8

9

10

13

14

15

16

16

15 14

15

15

13

13

13

13

14

15

15

16

14

14

14

17

17

17

17

17

IF ID EX FEX CA WB FWB

stage

cycle 1

2

3

4

5

6

7

8

9

...

13

14

15

16

17

18 17

17

17

17

17

16

16

16

16

16

16

16

16

13

13

13

13

14

14

14

14 13

15

15

15

15

15

15

14

14

inst 13: st %g2,[%g1]

inst 14: add %g1,4,%g1

inst 15: cmp %g1,%g3

inst 17: sub %g2,1,%g2

inst 16: bl L19

Inner Loop Instructions

Worst-Case Pipeline Diagram

Best-Case Pipeline Diagram

...

Figure 14: Pipeline diagrams for First Miss Transition

because it may cause a small overestimation, and best-case overestimations result in

invalid timing predictions. In the case ofloop_2 in Fig. 14, instruction 16 is again a

first miss in both loop levels. Thebest-case approach considers the instruction to be a

missin the pipeline, in order to allow us to exploit as much pipeline overlap as possible

in loop_2. When the timing analyzer evaluatesloop_2 in the context ofloop_1,

the miss penalty issubtractedfrom each iteration after the first.

However, as in worst case, the miss penalty does not always represent the difference

between how many cycles the first miss instruction 16 spends in the IF stage when it is

viewed as a hit and when it is viewed as a miss. In Fig. 14, although the miss penalty is

nine cycles, instruction 16 only spends eight additional cycles in the IF stage when it

misses in cache, because of the structural hazard between instructions 13 and 14.

Subtracting the miss penalty fromloop_2’s second through last iterations, when

33

instruction 16 is a hit, will cause an underestimation of one cycle per iteration.Hence,

the BCET for the first entire execution ofloop_2 will be underestimated by 9 cycles.

3.3.3 FirstHit Transitions in Worst Case

A less common type of instruction categorization transition that requires special

attention in worst-case analysis is one involving a missor first missinstruction in an

inner loop categorized as afirst hit at the next higher level. Considerthe short program

shown in Fig. 15. For this example, the cache configuration has two lines of four

instructions each. The static cache simulator detects that instruction 0 infun() is a

first miss within the context of that function. Since a function only has one iteration, its

first miss classification is equivalent to being an always miss. In addition, instruction 0

is determined to be a first hit in the context of the loop insidemain(). Instructions 0

and 1 of fun() and instructions 0 and 1 ofmain() comprise program line 0,

C Source Code
void fun()

{

return;

}

main()

{

int i;

for (i = 0; i < 10; i++)

{

fun();

}

}

SPARC Instructions

9 restore

8 ret

7 add %l0,1,%l0

6 bl,a L19

5 cmp %l0,10

4 nop

2 add %l0,1,%l0

1 mov %g0,%l0

0 save %sp,(-96),%sp

L19: 3 call _fun,0

1 nop

0 retl

Program Line Cache Line
0
0

0

0

0

0

0

0

0

0

0

0

1

1

1

1 1

1

1

1

2

2

2

2

Figure 15: Program ContainingMiss -> First Hit Instruction

34

instructions 2-5 ofmain() comprise program line 1, and instructions 6-9 ofmain()

make up program line 2. Program line 0 arrives into cache whenmain() begins

execution. Thecall tofun() is made from an instruction that maps to program line 1.

When control transfers frommain()’s instruction 4 to the functionfun(), theretl

instruction is already in cache.However, after control returns tomain(), reference to

instruction 6 causes cache line 0 to be overwritten because program line 2 also maps to

cache line 0.When the loop iterates a second time,fun() is called again. Butthis time

when theretl instruction is referenced, program line 0 must replace program line 2 in

cache line 0, which means thatretl instruction is a cache miss. Because of this cache

conflict betweenfun() and the loop inmain() that calls it, program lines 0 and 2 will

repeatedly alternate occupation of cache line 0. Thus, while instruction 0 infun() is a

hit in cache during the first iteration of the loop inmain(), it is a miss for all of the

nine remaining iterations.Consequently, the static cache simulator concludes that this

instruction should be classified as a first hit when viewed in the context of the loop in

main(). It is necessary to detect that theretl instruction will only be a cache miss

the first time it is referenced. The timing analyzer, when computing the execution time

of fun(), realizes that such a categorization transition exists and that the function is

being called from inside a loop.In this situation the timing analyzer considers the

instruction as ahit in the pipeline when analyzingfun() in worst case and will add the

miss penalty only to the second through final iterations of the loop that callsfun().

3.3.4 Adjustmentsto Worst Case

Occasionally there is a situation in a program in which a loop being timed contains more

paths than the maximum number of iterations.This can occur when a function has

35

multiple paths since a function onlyiterates once. Fig.16 shows a function that

contains three paths. The instruction cache was reconfigured to contain 32 lines of four

bytes each. There is one instruction per cache line, and the entire function fits in cache.

As a result, every instruction infun() is classified as a first miss.Table 8 shows the

result of the timing analysis of the function’s three paths. When analyzing Path 1, all of

its instructions are first misses encountered for the first time.The combined miss penalty

from all seven instructions in the path is 63 cycles. Pipelineanalysis of Path 1

determined that, had all the instructions been hits, the execution time would have been

C Source Code Inst Assembly Code
------------------------- ---- -------------------------
int fun (i) 0 cmp %o0,%g0
int i; 1 bne,a L14
{ 2 cmp %o0,1
if (i == 0) 3 retl

return 25; 4 mov 25,%o0
else if (i == 1) 5 bne L15

return 50; 6 nop
else 7 L14: retl

return 75; 8 mov 50,%o0
} 9 L15: retl

10 mov 75,%o0

Figure 16: A Function with Multiple Paths

Table 8: Path Information Pertaining to Functionfun() in Fig. 16

Path List of WCET if newly WCET if newly

Number Instructions encountered fm = miss encountered fm = hit

1 0,1,2,5,6,9,10 74 11
2 0,1,2,5,6,7,8 29 11
3 0,1,2,3,4 27 9

36

11 cycles: 7 cycles due to the seven instructions each occupying the pipeline stages for

one cycle apiece, plus the 4 cycles required to drain the pipeline.Adding the combined

miss penalty results in a total of 74 cycles. Path 2 contains only two instructions (7 and

8) that were not encountered in Path 1’s analysis, and Path 3 similarly contains only two

first misses (instructions 3 and 4) not encountered in Paths 1 and 2.If fun() is called

from a loop, during worst-case analysis the first misses will be encountered during the

first three iterations.After the third iteration, each subsequent call tofun() will take

eleven cycles.

Since the timing analyzer operates in a bottom-up manner, it does not know that

fun() is being called from a loop until it begins to analyze that loop. If the timing

analyzer does not detect the situation that a loop or function being timed has more paths

than iterations, then an underestimation in the WCET prediction may result. The longest

path infun() takes 74 cycles when all first misses are misses, and 11 cycles when they

are hits. The timing analyzer, when discovering a loop that callsfun(), would use 74

cycles as the function’s WCET during the first iteration, and 11 cycles for the remaining

iterations. However, it is possible that after traversing Path 1 during the first call to

fun(), the function may use Path 2 during the second call.Thus, the second call of

fun() will take 29 cycles, not 11 cycles, resulting in an underestimation of 18 cycles.

A potentially underestimated WCET result is not acceptable.

The timing analyzer employs a simple procedure to handle this situation. It calculates

a base timefor the loop by finding the longest path where all first misses are treated as

hits. Anadjust valueis calculated that is equal to the number of first misses in the entire

loop times the cache miss penalty. When viewing the inner loop or function from an

outer loop context, theadjust valuewill be added only to the first iteration of the outer

37

loop. For example, according to Table 8, the base time forfun() is 11 cycles and the

adjust value is 99 cycles (eleven first misses multiplied by the nine cycle miss penalty).

If fun() is called from a loop, the timing analyzer computes the first call tofun() to

take 110 cycles, and then 11 cycles for each subsequent iteration.In doing so, the timing

analyzer is assessing the miss penalty from every first miss in the function the first time

it is invoked, thereby avoiding a WCET underestimation on the second and third calls to

fun(). Howev er, if the loop callingfun() has only one or two iterations, then the

timing analyzer will overestimate the loop’s time, since in reality not all offun()’s first

misses would be encountered.

38

CHAPTER 4

TIMING ANALYSIS RESULTS

This chapter discusses the accuracy of the timing analyzer’s predictions of best-case and

worst-case execution time.

4.1 TheSimulator and Test Programs

Theeaseenvironment creates an instrumented executable file that invokes a simulator at

each basic block in the program [10, 11].The simulator traces the execution of the

program and counts the number of clock cycles elapsed taking into consideration the

SPARC instruction set and cache configuration.This author modified the existing cache

simulator withineaseto support measurements that take into account the MicroSPARC

I’s pipeline behavior. In addition, the modified simulator assumed a much smaller

instruction cache, eight lines of sixteen bytes (four instructions) per line, than the

MicroSPARC I’s 4K cache in order to observe cache conflicts that would be more

common in larger programs. Six simple programs were selected to assess the

effectiveness of the timing analyzer. A description of these programs is given in Table 9.

Column 2 gives the size of the assembly code for each program, assuming that an

instruction occupies four bytes.For example, theMatcnt program contains 203

assembly instructions, so its code size is 203 * 4 = 812 bytes.The programs are each

four to seventeen times larger than the 128-byte cache.Column 3 shows that each

39

Table 9: Test Programs

Num Num
Bytes Functions

Name Description or Emphasis

Des 2,240 5 Encr ypts and decrypts 64 bits
Matcnt 812 8 Counts and sums nonnegative values in a 100x100 integer matrix
Matmul 768 7 Multiplies two 50x50 integer matrices
Matsum 644 7 Sums nonnegative values in a 100x100 integer matrix
Sor t 556 5 Bubblesor t array of 500 integers into ascending order
Stats 1,428 9 Std. dev. & corr. coef. of two arrays of 1000 floating point values

program was highly modularized to illustrate the handling of timing predictions across

function calls.

Assessing the accuracy of the timing analyzer requires comparing the timing

analyzer’s (static) prediction with the simulator’s (dynamic) measured time. Since the

MicroSPARC I has a clock speed of 50 MHz [1], one can multiply the number of cycles

by 20 nanoseconds to obtain an actual real-world time.5 Since the execution time of

different programs can differ widely, it is useful to consider theratio of the timing

analyzer’s estimated cycle time to the simulator’s observed time. Of course, the best

possible timing prediction would yield a ratio of 1, when the estimated and observed

times are the same. In the worst-case analysis one finds ratios greater than one, meaning

that the timing prediction is an overestimate, being somewhat pessimistic whenever not

being exact. Analogously, for best-case analysis, one should find a ratio less than or

equal to 1 indicating an underestimation of execution time whenever the exact time

cannot be precisely determined.

To recognize the utility of the timing analyzer, one can compare its estimated ratio to

5 The number of cycles given by the timing analyzer does not take into account such issues as data caching and utility func-
tions. All data cache accesses are assumed to be hits. Library functions such asprintf() are assigned a time of 0 cycles.

40

a naive ratio: whatthe ratio would have been without performing either the pipeline or

instruction cache analysis or neither. In particular, when assessing the timing analyzer’s

predictions of WCET considering only pipelining, the naive execution time assumes that

all instruction accesses are hits and each executing instruction takes the number of cycles

necessary to complete all of its pipeline stages with no overlap with the instructions

before or after it.For a typical integer instruction, this means that it cannot enter the IF

stage until the preceding instruction has left the WB stage.The naive WCET for

combined pipeline and cache analysis considers all instruction assesses to be misses and

assumes that no pipeline overlap exists between instructions.Best-case naive execution

times are computed by considering all cache accesses as hits and assuming the maximum

possible overlap between instructions. Thus, for all three types of analysis, a program’s

naive BCET is equal to the minimum number of instructions that could be executed. In

order for the timing analyzer to be a useful tool, the estimated ratios should be

significantly closer to 1 (toward a perfect prediction) than the respective naive ratios.

4.2 PipelineOnly

Table 10 shows the results of thepipeline onlyanalysis for the six test programs listed in

Table 9. The worst-casepipeline only timing analysis had exact predictions for all

programs except Des and Sort. The analysis of these two programs depicts problems

faced by all timing analyzers. The timing analyzer did not accurately determine the

worst-case paths in a function withinDesprimarily due to data dependencies.A longer

path deemed feasible by the timing analyzer could not be taken in a function due to a

variable’s value in anif statement. TheSort program contains an inner loop whose

number of iterations depends on the counter variable of an outer loop. At this point the

41

Table 10: Test Program Results for Pipeline-only Analysis

Name Best Case Worst Case

Obser ved Estimated Estim. Naive Obser ved Estimated Estim. Naive
Cycles Cycles Ratio Ratio Cycles Cycles Ratio Ratio

Des 34,837 15,684 0.45 0.36 66,594 68,254 1.02 3.82
Matcnt 1,013,307 1,013,207 1.00 0.38 1,063,572 1,063,572 1.00 2.38
Matmul 4,347,541 4,347,541 1.00 0.33 4,347,806 4,347,806 1.00 2.13
Matsum 913,275 913,175 1.00 0.35 933,540 933,540 1.00 2.28
Sor t 11,158 4,174 0.37 0.32 3,380,660 6,748,925 2.00 8.13
Stats 447,478 447,477 1.00 0.41 900,231 900,231 1.00 1.70

timing tool either automatically receives the maximum loop iterations from the control-

flow information produced by the compiler or requests a maximum number of iterations

from the user. Yet, the tool would need a sequence of values representing the number of

iterations for each invocation of the inner loop.A similar scenario to what happens in

Sort is a nested loop such as this one:

for (i = 0; i < MAX; ++i)
for (j = 0; j < i; ++j)
{
/* body of loop */
}

in which the total number of times the body of the inner loop is invoked is approximately

1⁄2(MAX 2). In worst-case analysis the number of inner loop invocations would be MAX2

and in best case the number of invocations would be MAX.Consequently, the number

of iterations performed was overrepresented on average by about a factor of two for this

specific loop during worst-case timing analysis. The error for best case is potentially

more extreme because the timing analyzer assumes the inner loop will iterate only once

for each iteration of the outer loop.Note that both of these problems are encountered by

other timing tools and have nothing to do with the pipeline analysis.

42

The timing analyzer predicted the best-casepipeline onlyperformance ofMatmuland

Statsexactly. The times reported forMatcnt andMatsumwere both underestimated by

100 cycles (about 0.01%) because a data dependency upon entering an inner loop was

discounted by theVacant cyclemethod described in the previous chapter. The only way

to detect this dependency as a hazard would be to know more information about the

inner loop than just the beginning shape of its union.The best-case times forDesand

Sort were more substantially underestimated for the same reason that the worst-case

analysis was overestimated: multipleloop paths in which the dynamic execution takes a

different path based on thevalue of a variablein the program, which cannot be easily

determined by static analysis.

4.3 CacheOnly

As reported in [5], theinstruction caching onlytiming analysis results given in Table 11

are quite accurate. This analysis had exact predictions forMatmulandStatssince there

were no conditional constructs except to exit loops. Besides looping constructs, the

programMatsumhad only oneif-then construct to check if array elements were

Table 11: Test Program Results for Cache-only Analysis

Name Best Case Worst Case

Obser ved Estimated Estim. Naive Obser ved Estimated Estim. Naive
Cycles Cycles Ratio Ratio Cycles Cycles Ratio Ratio

Des 59,998 19,345 0.32 0.21 142,956 163,015 1.14 3.86
Matcnt 929,073 929,073 1.00 0.41 1,169,055 1,259,055 1.08 3.79
Matmul 1,527,648 1,527,648 1.00 0.94 1,527,648 1,527,648 1.00 9.36
Matsum 687,219 687,219 1.00 0.47 707,219 707,219 1.00 4.85
Sor t 10,439 3,901 0.37 0.35 7,639,611 15,253,902 2.00 8.17
Stats 372,410 372,410 1.00 0.49 372,410 372,410 1.00 4.90

43

nonnegative. Thus,Matsum’s caching behavior was also predicted exactly. TheMatcnt

program used an anif-then-else construct to either add a nonnegative value to a

sum and increment a counter for the number of nonnegative elements or just increment a

counter for the negative elements. Theadding of the nonnegative value to a sum was

accomplished in a separate function, which was purposely placed in a location that

would conflict with the program line containing the code to increment a counter for the

negative elements. Multipleexecutions of thethen path, which includes the call to the

function to perform the addition, still required more cycles than alternating between the

two paths. Yet, the static cache simulator assumes that the first reference to a program

line within a path would always be a miss if there were accesses to any other conflicting

program lines within the same loop. This assumption simplified the algorithm since the

effect of all combinations of paths did not have to be calculated. Asa result, one

reference was counted repeatedly as a miss instead of a hit.This path was executed

10,000 times and accounted for a 90,000 cycle [10,000*miss penalty] or an 8%

overestimation. Theexecution of this single path accounted for 40.61% of the total

instructions referenced during the execution of the program. The programsDesandSort

had overestimations in the predicted WCET and underestimations in the predicted BCET

caused by the same problems described previously for thepipeline onlymeasurements.

4.4 CombinedAnalysis Results

The integratedpipeline and caching analysis also resulted in quite tight predictions, as

shown in Table 12.Again the predictions for the programsMatmul andMatsumwere

very accurate. Note that the worst-case estimated cycles was slightly greater than the

observed cycles for both of these programs. This overestimation was due to the problem

44

Table 12: Test Program Results for Pipeline and Cache Analysis

Name Best Case Worst Case

Obser ved Estimated Estim. Naive Obser ved Estimated Estim. Naive
Cycles Cycles Ratio Ratio Cycles Cycles Ratio Ratio

Des 65,615 22,247 0.34 0.19 149,706 169,613 1.13 5.02
Matcnt 1,549,095 1,548,798 1.00 0.25 1,769,321 1,859,323 1.05 3.69
Matmul 4,444,666 4,420,068 0.99 0.32 4,444,911 4,445,413 1.00 4.98
Matsum 1,257,239 1,157,240 0.92 0.26 1,277,465 1,277,477 1.00 4.08
Sor t 19,957 4,428 0.22 0.18 7,765,648 15,504,693 2.00 10.78
Stats 607,399 601,406 0.99 0.30 1,016,048 1,016,145 1.00 3.12

of an instruction’s caching behavior changing between loop levels. Thischange requires

an adjustment as described in Section 3.3.1. This approach treats the instruction as a hit

in the pipeline analysis and simply adds the miss penalty to the total time. When the

instruction should be viewed as a hit at an outer level, then this miss penalty was

subtracted and an accurate estimation is obtained.However, in these two programs the

potential overlap between the miss penalty and a load hazard stall was not detected.In

particular, Matmul had 50 miss penalties completely overlapping with stalls from an

integer multiply instruction and another 52 misses overlapping with a one-cycle load

hazard, resulting in the 502 cycle overestimation. Thecause of the overestimation in

Statswas similar, due to the presence of long-running floating-point instructions.6 The

Matcnt, Des, and Sort programs had its usual overestimations due to a cache conflict,

data dependencies, and an inaccurate number of estimated loop iterations, respectively.

For the benchmark programs with little conditional control flow, Matcnt, Matmul,

Matsumand Stats, the BCET forpipeline and caching analysis was within 8% of the
6 In order to make an exact prediction in these situations, the timing analyzer would need to store a different union of the loop

in which the instruction is considered a miss in the pipeline. The amount of information required would become unwieldy if there
aren instructions within the loop that have afm=>fm transition: it would need to store 2n unions of the loop, thus making the algo-
rithm too complex to be practical.

45

dynamically observed time. The underestimation was largely due to a situation in which

an instruction is classified as a first miss in both an inner and outer loop, and when the

instruction is a hit in cache, it spends an extra cycle in the IF stage because of a data

hazard involving the previous instruction. The timing analyzer treats the instruction as a

miss in the pipeline, and makes sure the miss penalty is only applied the first time the

program references the instruction by subtracting the miss penalty from all subsequent

references in the nested loop.Again, one can achieve an exact prediction by storing

pipeline information aboutboth cases (whether an instruction classified as a first miss

should be treated as a miss or hit in the pipeline) for each first miss in the pipeline, but

just as in worst case, this would potentially mean storing an exponential amount of data,

making the algorithm overly inefficient. In Matcnt, some of the underestimation was

also due to the use of theVacant cyclemethod to ignore a data dependency when in fact

a hazard took place when the program executed. TheBCET of Des and Sort were

significantly underestimated just as in thepipeline onlyanalysis, again because of data

dependencies and an inaccurate number of loop iterations.

Many real-time programs are larger than the ones listed in Table 9 that were analyzed

for obtaining the results described in this chapter. The timing analyzer is most accurate

when a test program has no conditional control flow, no data dependencies and when the

number of loop iterations can be predicted at compile-time. But larger programs will

likely contain conditional control flow, more data dependencies and more loops in which

the number of iterations cannot be determined statically. Consequently, the timing

analyzer’s performance will typically be more similar to programsDesandSort than to

the other four programs.To address the question of how well the timing analyzer can

evaluate a larger program, the author created a program which subsumed all six test

46

programs plus a new main() function which called each subprogram in turn.This

program occupied 6572 bytes, 51 times the size of the simulated cache.In the worst-

case analysis, the simulated and estimated cycle counts were each 85 cycles greater than

the sum of the simulated and estimated values for the six programs given in Table 12,

and the Estimated Ratio was 1.48. This ratio was influenced most by the subprogram

Sort since its own estimated ratio and total executing time were both much greater than

those of the other five subprograms.

The benefit of integrating the pipeline and instruction cache analysis is shown in

Table 13. Had the analyses been handled independently, one would anticipate a greater

overestimation in predicting WCET, since the cache miss penalty would not have the

opportunity to overlap with a pipeline stall, as depicted in Fig. 1. The effect of an

independent analysis strategy would be to add the cache miss penalty to the total time of

a path when an instruction is predicted to be a miss and treat the instruction as a hit in

the pipeline.As a result, the test programs would have been overestimated, on average,

by an additional 3%.

Table 13: Ratios for Overlapped versus Independent Analysis

Estim. Ratio With Estim. Ratio With
Over lapped Analysis Independent Analysis

Name

Des 1.133 1.174
Matcnt 1.051 1.057
Matmul 1.000 1.000
Matsum 1.000 1.016
Sor t 1.997 2.029
Stats 1.000 1.082

average 1.197 1.226

47

CHAPTER 5

USER INTERFACE

Vpo can automatically determine the minimum and maximum number of iterations of

many loops in real-time programs.However, if the compiler cannot statically determine

the loop bounds, the timing analyzer will query the user for them.Afterwards, the

analysis proceeds as before, and when finished the timing analyzer invokes a graphical

user interface that is depicted in Fig. 17.

Figure 17: Timing Analyzer User Interface

48

The user-interface is a tool allowing the user to quickly obtain information revealed

by the timing analysis. It can provide the calculations derived during timing analysis

concerning the BCET and WCET of paths, loops and entire programs [8, 12].When the

user interface is running, the user sees three windows on the screen. The main window

on the left allows the user to request timing predictions at various levels: for functions,

loops, paths and subpaths consisting of a sequence of basic blocks, and ranges of

individual source instructions.For example, one can request an analysis of one

particular loop, and then choose one of the paths through that loop. The timing

predictions for BCET and WCET appear in the main window. The middle window

depicts the C source code and the right window shows the corresponding assembly code.

Whenever the user selects a different construct in the main window, the highlighted lines

in the source and assembly windows are simultaneously updated and scrolled to the

appropriate position. The user interface also permits the user to use the mouse to select a

portion of source code as a way to request a particular path to highlight and analyze.

While the design and implementation of the user-interface are described elsewhere

[12], the timing analyzer supplies the timing estimates and pipeline diagrams for it.

Within the timing analysis tree, which is the major data structure that is traversed to

evaluate an entire program, are the nodes representing loops and function instances.

Each loop has a list of its execution paths, and with each path is stored its BCET and

WCET. The user-interface can query the user for a path within the loop he wishes to

consider, and merely look up the execution times for that path that have already been

stored.

For the situation in which the user wants the execution times for a subpath, the user-

interface can call a routine within the timing analyzer to compute either the BCET or

49

WCET of those blocks that comprise the subpath. The routine in the timing analyzer

that computes the execution time of a path can be passed two parameters denoting the

starting and ending block numbers of a subpath, plus two additional parameters which

denote the starting assembly instruction within the first block of the subpath and the

ending instruction within the last block.Default values for the instruction numbers

indicate that the user wants the blocks that comprise the subpath to be timed in their

entirety, while default values for block numbers mean that the entire path is to be

evaluated. Theuser-interface obtains these parameters and passes them to the timing

analyzer’s path-timing routine which returns the appropriate execution time. To satisfy

the user’s request, the user-interface needs to call this routine twice: once to obtain the

WCET and a second time to obtain the BCET.

The timing analyzer’s routine to compute a path’s execution time also creates a

pipeline diagram similar to the ones depicted in Fig. 18. If the user selects a path or

subpath containing no child loops or function calls, then the interface gives the user the

option to view the pipeline diagram created by the timing analyzer for that section of

assembly code. If the user tells the user-interface to produce a pipeline diagram, the

user-interface will call the path-timing routine to create the pipeline diagram as it is

processing the instructions in the path (or subpath) in the manner described in Section

3.1.

50

Figure 18: Pipeline Diagrams as Shown in User Interface

51

CHAPTER 6

RELATED WORK

There has been much work on the issue of predicting execution time of programs.Most

approaches in the past have not dealt with the effect of pipelining and instruction caching

[13, 14, 15]. There have also been some recent studies on predicting pipeline

performance by Harmonet. al. [16] and Narasimhan and Nilsen [17].Yet, these studies

did not address caching issues.7 Furthermore, the former study was limited to nonnested

functions and the latter study required the sequence of executed instructions to be

known. Finally, there has been some recent work on predicting instruction caching

performance. Liet. al. [18] used an integer linear programming approach to model

instruction cache behavior. Arnold et. al. [5] implemented a timing analysis system to

tightly bound instruction cache performance.However, these approaches did not address

pipelining issues.

There has been only one previous study that attempted to address the issue of

predicting the WCET of programs on machines with both pipelining and an instruction

cache. Limet. al. [19] described a method based on an extension of a previous timing

tool [20]. Lim’s method differs quite significantly from the approach described in this

thesis. It builds on flow analysis techniques found in optimizing compilers.Lim’s

7 Harmon assumed the entire code segment would fit into cache. Thus, he assumed at most one miss for each cache reference.

52

method uses a timing schema associated with each source-level language program

construct. They stored information about a predetermined number of cycles at the head

and tail of a reservation table produced as a result of the pipeline analysis on the

instructions associated with a program construct.In addition, this method stored

information about the set of memory blocks whose first reference depends upon the

cache contents prior to the execution of the construct.Lim also stored the set of memory

blocks known to remain in cache after the execution of the construct.Eventually, this

timing information is concatenated with another construct that would be executed

immediately before the current construct. Their timing analyzer attempted to overlap the

head of the reservation table of the current construct with the tail of the reservation table

of the other construct as much as possible.Likewise, the list of memory blocks known

to be in cache after executing the other construct is used to adjust the time of the current

construct by comparing this list to the list of first reference blocks in the current

construct. Thismethod stored multiple paths for conditional constructs, such as anif-

then-else. They pruned or eliminated a particular path when it was found that the

worst-case execution time of the path was faster than the best-case execution time of

another path within the same construct.

There are some limitations with Lim’s method. Theaccuracy of their results is

limited by the length of the head and tail of the reservation table stored with the program

constructs. They concluded that the length of this head and tail only had to be large

enough to contain information for five cycles. This conclusion was based on

experiments indicating that their timing analysis results did not change significantly

when the length was increased further. Howev er, there are some instructions that require

many cycles. For instance, a floating-point division on the MicroSPARC I can require

53

up to 56 cycles to complete [1]. If such an instruction were at the end of a construct,

then many more than five integer instructions at the head of a following construct could

be overlapped with the floating-point division. In addition, their method stores

information about each stage for every cycle in the head and tail of the reservation table.

In contrast, our method requires much less information and imposes no limit on the

length of the potential pipeline overlap. Only the relative distance from the beginning

and end of the path has to be stored for each stage for the structural hazard pipeline

information as shown by the numbers represented in Tables 3 and 4.

The approach that Limet. al.used to analyze caching behavior limits the accuracy of

the analysis.They used a single bottom-up pass when performing the timing analysis of

a program. Thecaching behavior of a large percentage of the instruction fetches within

a construct would be unknown until many of the surrounding constructs were processed.

Their approach was to treat the instruction fetch as a hit within the pipeline and add the

cycles associated with a cache miss penalty to the total time of the construct. When it

was later found that an instruction reference was a hit, they would subtract the miss

penalty from the total time.However, an overestimation may result when the instruction

is not found in cache.As shown in Fig. 1, the instruction fetch miss penalty of one

instruction (instruction 1) can be completely hidden by a stall with a long running

instruction (data hazard stall on instruction 2).Whether the fetch of instruction 1 was a

hit or a miss would have no effect on the total number of cycles. TheLim method would

rarely detect instruction fetches that would always be misses until the surrounding

constructs are analyzed, which is after the pipeline analysis of a construct has already

occurred. Theapproach taken in this thesis, as described in Chapter 2, of categorizing

the caching behavior of each instruction before the timing analysis, allows the detection

54

of such situations.For instance, thepipeline and caching estimated ratio for the six test

programs increased on average by about 3% when the complete miss penalty was always

added for each predicted miss.

55

CHAPTER 7

FUTURE WORK

Enhancements to the timing analyzer are ongoing.One goal is to make the tool

retargetable, so that if a user wishes to obtain timing estimates on a different processor,

all that would be necessary is a modification of the input file to the timing analyzer (see

Fig. 2). While the performance of the timing analyzer described in this thesis was

compared to a simulator of the MicroSPARC I’s instruction cache and pipeline, it will

also be beneficial to compare the timing predictions against measurements obtained from

a logic analyzer running the test programs on a MicroSPARC I processor. To ensure that

the timing analyzer can give estimates accurate for the MicroSPARC I, additional

hardware features, such as wrap-around filling of cache lines and data caching, need to

be taken into consideration.

The MicroSPARC I employs a wrap-around fill method of loading words into its

cache upon a cache miss [1].Each line in the instruction cache contains eight words or

32 bytes. These words are grouped into four pairs. When a cache miss occurs on word

w, eight words includingw, properly aligned, are loaded from main memory. The words

are inserted into the cache line one at a time.The first word that arrives in the cache is

w, sev en cycles after the miss occurred. During the eighth cycle, the word paired withw,

eitherw + 1 if w is even or w - 1 if w is odd, is brought into cache. The ninth cycle is a

dead cycle; no word is written. The next pair of words is then loaded into cache,

56

followed by another dead cycle, and so on until the entire line has been loaded. As an

example, consider Table 14, a situation in which requesting word 5 results in a miss.

As a result of the wrap-around filling of the cache lines, the miss penalty is not

constant, in contrast to the assumption in this thesis that the miss penalty is always nine

cycles. For example, suppose that three instructions, which map to word numbers 5, 6

and 7, respectively, within the same cache line, are executed. If referencing word 5

causes a miss, then the entire line will be loaded into cache.The instruction mapping to

word 5 will suffer a miss penalty of 7 cycles, and the instruction mapping to word 6 will

itself be delayed two cycles. Inaddition, a branch may transfer control to an instruction

in the same cache line.For instance, if referencing word 0 results in a miss, and a

branch is then taken to word 7, the instruction mapping to word 7 will experience a 9

cycle delay.

Unlike instruction caching, many of the addresses of references to data can change

during the execution of a program, making the task of bounding execution time more

challenging. However, many of the data references are known. For instance, static and

global data references do retain their same addresses during the execution of a program.

Due to the analysis of a function instance tree (no recursion allowed), addresses of run-

time stack references can be statically determined even when the addresses may vary for

Table 14: When Cache Words Are Loaded If Word 5 Causes a Miss

cache word 0 1 2 3 4 5 6 7
cycle when loaded 13 14 16 17 8 7 10 11

57

different invocations of the same function. Compiler flow analysis can be used to detect

the pattern of many calculated references, such as indexing through an array. While the

benefits of using a data cache for real-time systems will probably not be as significant as

using an instruction cache, its effect on performance should still be substantial.

58

CHAPTER 8

CONCLUSION

This thesis has presented a technique for bounding the execution time of programs on

machines with pipelining and instruction caches.First, a static cache simulator analyzes

the control flow of a program to statically categorize the caching behavior of each

instruction in the program. Second, a timing analyzer uses these instruction

categorizations when analyzing the pipeline performance of a path of instructions.

Third, the timing analyzer uses a concise representation of the pipeline information to

accurately concatenate the performance of paths in an efficient manner when predicting

the performance of loops.Fourth, the tool uses a timing analysis tree to predict the

performance of an entire program.Finally, a user interface allows users to obtain bounds

on portions of the program.The simulated results show that the method of analysis,

which takes into account the processor’s pipeline and instruction cache behavior

simultaneously, leads to tight bounds on the execution time of programs. In the case of

worst-case analysis, detecting the overlap of pipeline hazards and cache misses provides

tighter predictions than performing the timing analysis of both features independently.

59

REFERENCES

[1] Texas Instruments, Inc.,Product Preview of the TMS390S10 Integrated SPARC
Processor, 1993.

[2] M. E. Benitez and J. W. Davidson, “A Portable Global Optimizer and Linker,”
Proceedings of the SIGPLAN ’88 Symposium on Programming Language Design
and Implementation, pp. 329-338 (June 1988).

[3] F. Mueller, Static Cache Simulation and Its Applications,PhD Dissertation,
Florida State University, Tallahassee, FL (August 1994).

[4] F. Mueller and D. Whalley, “Efficient On-the-fly Analysis of Program Behavior
and Static Cache Simulation,” Static Analysis Symposium, pp. 101-115
(September 1994).

[5] R. Arnold, F. Mueller, D. Whalley, and M. Harmon, “Bounding Instruction
Cache Performance,” ACM Transactions on Computer Systems, (submitted June
1995).

[6] F. Mueller and D. B. Whalley, “Fast Instruction Cache Analysis via Static Cache
Simulation,” Proceedings of the 28th Annual Simulation Symposium, pp.
105-114 (April 1995).

[7] R. Arnold, F. Mueller, D. Whalley, and M. Harmon, “Bounding Worst-Case
Instruction Cache Performance,” Proceedings of the Fifteenth IEEE Real-Time
Systems Symposium, pp. 172-181 (December 1994).

[8] L. Ko, D. B. Whalley, and M. G. Harmon, “Supporting User-Friendly Analysis of
Timing Constraints,” Proceedings of the ACM SIGPLAN Notices 1995 Workshop
on Languages, Compilers, and Tools for Real-Time Systems30(11) pp. 99-107
(November 1995).

[9] C. A. Healy, D. B. Whalley, and M. G. Harmon, “Integrating the Timing Analysis
of Pipelining and Instruction Caching,” Proceedings of the Sixteenth IEEE Real-
Time Systems Symposium, pp. 288-297 (December 1995).

[10] J. W. Davidson and D. B. Whalley, “Ease: An Environment for Architecture
Study and Experimentation,” Proceedings SIGMETRICS ’90 Conference on
Measurement and Modeling of Computer Systems, pp. 259-260 (May 1990).

[11] J. W. Davidson and D. B. Whalley, “A Design Environment for Addressing
Architecture and Compiler Interactions,” Microprocessors and Microsystems
15(9) pp. 459-472 (November 1991).

60

[12] L. Ko, Supporting User-Friendly Analysis of Timing Constraints, Masters
Project, Florida State University, Tallahassee, FL (April 1995).

[13] C. Y. Park, “Predicting Program Execution Times by Analyzing Static and
Dynamic Program Paths,”Real-Time Systems5(1) pp. 31-61 (March 1993).

[14] D. Niehaus, “Program Representation and Translation for Predictable Real-Time
Systems,”Proceedings of the Twelfth IEEE Real-Time Systems Symposium, pp.
53-63 (December 1991).

[15] P. Puschner and C. Koza, “Calculating the Maximum Execution Time of Real-
Time Programs,”Real-Time Systems1(2) pp. 159-176 (September 1989).

[16] M. G. Harmon, T. P. Baker, and D. B. Whalley, “A Retargetable Technique for
Predicting Execution Time,” Proceedings of the Thirteenth IEEE Real-Time
Systems Symposium, pp. 68-77 (December 1992).

[17] K. Narasimhan and K. D. Nilsen, “Portable Execution Time Analysis for RISC
Processors,”Proceedings of the ACM SIGPLAN Workshop on Language,
Compiler, and Tool Support for Real-Time Systems, (June 1994).

[18] Y. S. Li, S. Malik, and A. Wolfe, “Performance Estimation of Embedded
Software with Instruction Cache Modeling,” International Conference on
Computer-Aided Design, (November 1995).

[19] S.S. Lim, Y. H. Bae, G. T. Jang, B. D. Rhee, S. L. Min, C. Y. Park, H. Shin, K.
Park, and C. S. Kim, “An Accurate Worst Case Timing Analysis Technique for
RISC Processors,” Proceedings of the Fifteenth IEEE Real-Time Systems
Symposium, pp. 97-108 (December 1994).

[20] A. C. Shaw, “Reasoning about Time in Higher-Level Language Software,” IEEE
Tr ansactions on Software Engineering15(7) pp. 875-889 (July 1989).

61

BIOGRAPHICAL SKETCH

Christopher Andrew Healy was born in Danbury, Connecticut in 1971.He

earned the Bachelor of Science degree in mathematics from Florida State

University in 1993. After obtaining the master’s degree, he plans to embark on

the doctoral program in Computer Science at F.S.U.

62

ACKNOWLEDGEMENTS

I wish to thank my major professor, Dr. David Whalley, for his patience,

guidance and support during my research.I am also grateful for the assistance

both he and Dr. Kacmar offered in typesetting this thesis.Dr. Riccardi and Dr.

Baker also provided helpful suggestions that improved the quality of this thesis.

The timing analyzer described in this thesis is an extension of an earlier tool

created by Robert Arnold which bounded instruction cache performance.Frank

Mueller implemented the static cache simulator that provides necessary

information to the timing analyzer. Lo Ko and Emily Ratliff implemented the

graphical user interface. Theresearch upon which this thesis is based was

supported in part by the Office of Naval Research under contract number

N00014-94-1-0006.

iii

TABLE OF CONTENTS

Page

List of Tables ...vi

List of Figures... vii

Abstract ...ix

1 INTRODUCTION ..1

2 PREVIOUS WORK ..4

3 TIMING ANALYSIS ..7

3.1 AnalyzingA Single Path of Instructions... 8

3.2 LoopAnalysis ..15

3.2.1 TheUnion Concept... 15

3.2.2 Worst-Case Algorithm for Timing a Loop................................. 20

3.2.3 Best-CaseAlgorithm for Timing a Loop.................................... 25

3.2.4 Useof Vacant Cycles.. 26

3.3 Timing an Entire Program... 30

3.3.1 FirstMiss Transitions in Worst Case.. 32

3.3.2 FirstMiss Transitions in Best Case.. 32

3.3.3 FirstHit Transitions in Worst Case... 34

3.3.4 Adjustmentsto Worst Case... 35

4 TIMING ANALYSIS RESULTS ..39

4.1 TheSimulator and Test Programs... 39

4.2 PipelineOnly ...41

4.3 CacheOnly ..43

4.4 CombinedAnalysis Results... 44

iv

5 USER INTERFACE .. 48

6 RELATED WORK ..52

7 FUTURE WORK ..56

8 CONCLUSION ...59

References ...60

Biographical Sketch ..62

v

LIST OF TABLES

TABLE NUMBER AND DESCRIPTION PA GE

1. Definitionsof Worst-Case Instruction Categories .. 5

2. Definitionsof Best-Case Instruction Categories ... 5

3. CreatingBeginning Pipeline Information forSquare() 12

4. CreatingEnding Pipeline Information forSquare() 12

5. DataHazard Information for the Instructions inSquare() 14

6. StructuralHazard Information for Unions in Fig. 7... 19

7. ComputingVacant Cycles for Loop in Fig. 12... 29

8. Path Information Pertaining to Functionfun() in Fig. 16 36

9. Test Programs.. 40

10. Test Program Results for Pipeline-only Analysis.. 42

11. Test Program Results for Cache-only Analysis... 43

12. Test Program Results for Pipeline and Cache Analysis..................................... 45

13. Ratiosfor Overlapped versus Independent Analysis... 47

14. WhenCache Words Are Loaded If Word 5 Causes a Miss............................... 57

vi

LIST OF FIGURES

FIGURE NUMBER AND DESCRIPTION PA GE

1. Exampleof Overlapping Pipeline Stages with a Cache Miss............................. 3

2. Overview of Bounding Pipeline and Cache Performance.................................. 4

3. A Skeleton Program.. 8

4. Path through FunctionSquare() ... 11

5. ProgramContaining a Loop with Two Paths .. 17

6. PipelineDiagrams for the Two Loop Paths in Fig. 5.. 18

7. PipelineDiagrams for the Worst-Case and Best-Case Unions........................... 19

8. Worst-Case Loop Analysis Algorithm.. 21

9. CSource Code and Assembly Code for the ProgramExit 24

10. Pipelinediagrams for the Two Paths through Loop inExit 24

11. Best-CaseLoop Analysis Algorithm... 25

12. DataHazard upon Entering a Loop... 27

13. ExampleIntroducing Loop Terminology ...30

14. Pipelinediagrams for First Miss Transition ... 33

vii

15. ProgramContainingMiss -> First Hit Instruction .. 34

16. AFunction with Multiple Paths ...36

17. GraphicalUser Interface for the Timing Analyzer.. 48

18. PipelineDiagrams as Shown in User Interface .. 51

viii

ABSTRACT

Recently designed machines contain pipelines and instruction caches. While both

features provide significant performance advantages, they also pose problems for

predicting execution time of code segments in real-time systems. Pipeline hazards may

result in multicycle delays. Instruction or data memory references may not be found in

cache and these misses typically require several cycles to resolve. Whetheran instruction

will stall due to a pipeline hazard or a cache miss depends on the dynamic sequence of

previous instructions executed and the memory references performed.Furthermore, these

penalties are not independent since delays due to pipeline stalls and cache miss penalties

may overlap. Thisthesis describes an approach for predicting the execution time of large

code segments on machines that exploit both pipelining and instruction caching. First, a

method is used to analyze a program’s control flow to statically categorize the caching

behavior of each instruction.Next, these categorizations are used in the pipeline analysis

of sequences of instructions representing paths within the program.A timing analyzer

uses the pipeline path analysis to estimate the execution time of each loop and function in

the program.Finally, a graphical user interface is invoked that allows a user to request

timing predictions on portions of the program. The results indicate that the timing

analyzer efficiently produces tight predictions of best-case and worst-case performance

on machines with pipelining and instruction caching.

ix

