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CHAPTER 1

INTRODUCTION

Users of real-time systems are not only interested in obtaining correct computations
from their programs, it timely responses as welA program which gres a seful
result past a deadline is not acceptablénerefore, it is necessary to determine a
program$ execution time statically It is unrealistic to attempt to predict a precise
execution time for gery real-time program since theeeution time often depends upon
input values whose influence on the progsarntrol flov is unknovn until the
program eecutes. Inaddition, floating-point instructions usually vary ixeeution time
based on the values of their operan@ansequentlyinstead of trying to dere a sngle
execution time, a more pragmatic approach is to calculate upper (worst-caseyvand lo
(best-case) bounds on thz&eeution time. Real-time programmers tend to be more
interested in the worst-casgeeution time (WCET) because of the notion of real-time
deadlines. Irother words, a task that completes too early is not as much of a concern as
a task that finishes too late.

Many architectural features, such as pipelines and caches, in recent processors present
a dlemma for architects of real-time systems. Use of these architectural features can
result in significant performance imp@nents. t, these same features introduce a
potentially high lgel of unpredictability when it comes to establishing bounds on a

programs execution time. Dependencies between instructions can cause pipeline



hazards that may delay the completion of instructiofvhile there has been muclork
analyzing the xeecution of a sequence of instructions within a basic block, the analysis
of pipeline performance across basic blocks is more problembustruction or data
cache misses can also requirgesal cycles to resok. Predictingcaching behavior of

an instruction is wen more difficult since it may be affected by memory references that
occurred long before the instruction waseaited. Inaddition, caching and pipeline
behaior are not independent, exacerbating the problem of timing anaWstbout the
ability to predict instruction cache and pipeline performance simultaneously when
calculating a WCET it has been customary to be pessimistic, assuming that all
instruction cache accesses would be misses and that pipeline data hazardsweaysld al
give rise to additional xecution delay As an llustration, consider the following code
sggment and pipeline diagram in Fig. 1 consisting of three SPARC instructiiires.
pipeline cycles and stages represent tkecwgion on a MicroSPARC | processor [1].
Each number within the pipeline diagram represents an instruction that is currently in the
pipeline stage shown ab® it and occupies that stage during thesle indicated to the

left. Instruction0 performs a floating-point addition that requires a total of twenty
cycles. Fetchingnstruction 1 results in a cache miss, which is assumedvi® daiss
penalty of nine additionalycles.1 Instruction 2 has a data dependewdth instruction O

and the recution of its CA stage is delayed until the floating-point addition is
calculate® The miss penalty associated with the access to main memory to fetch

instruction 1 completely werlaps with the recution of the floating-point addition in

! The MicroSPARC | emplgs wrap-around filling upon a cache miss, so that the miss penalty actually depends onondhich w
within the cache line the instruction belongs. See Chapter 7 for a discussion of this feature.

2 Note that ast d instruction has no write back stage since a store instruction only updates memory andyistea Tae
st d instruction also requires three cycles to complete the CA stage on the MicroSPARC I.



SPARC Instructions Pipeline Diagram

inst 0: faddd 9%2,%0, % 2 stage
inst 1. sub %04, Y91, % 2 IF | ID | EX |FEX| CA |WB |FWB
inst 2: std % 2, [ Y©0+8] cycle| 1 0
2 1|0
3 1 0
4 1 0
5 1 0
Pipeline Stage Abbeviations
IF  Instruction Fetch 11 | 1 0
ID  Instruction Decode 12 | 2|1 0
EX integer EXecute 13 2|111]0
FEX Floating-point EXecute 14 2101
CA data Cache Access 15 2|0 1
WB integer Write Back 16 2|0
FWB Floating-point Write Back 17 2|0
18 2|0
19 21|10
20 2 0
21 2
22 2

Figure 1. Example of Overlapping Pipeline Stages with a Cache Miss

instruction 0. If the pipeline analysis and cache miss penalty were treated independently
then the number of estimategctes associated with these instructions would be
increased from 22 to 31 (i.e. by the cache miss penalty).

The remainder of the thesis will proceed as fetio ChapteR presents the context in
which the timing analyzer operates with respect to its input/output and ancillary
software. Chaptei3 explicates the algorithm for obtaining best-case armistcase
performance. Chaptet¥ reports hav well the timing analyzer predicts the performance
of six benchmark programs. Chapter 5 discusses the role of the graphical usacenterf
in communicating with the userChapter 6 ramines related work in the area of
predicting eecution time. Chapter 7 describes future impements planned for the

timing analyzerand Chapter 8 presents the conclusions.



CHAPTER 2

PREVIOUS WORK

The timing analyzer described in this thesis is part of a software package that has been
under degelopment by seeral researchersver the past f& years. Thigpackage consists
of an optimizing compiler calledpo [2], a static instruction cache simulator and a
timing analyzer with a graphical user intré. Fig.2 depicts an werview of the
approach for predicting performance of large codprents on machines with pipelines
and instruction caches.

Control-flov information, which could hee dso been obtained by analyzing
assembly or object files, is stored as the side effegp@s compilation of one or more
C source files. This control-fle information is passed to the static cache simulator

which ultimately categorizes each instructompbtential caching behavior based on a
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— | Information
C Control . ! -
Timing | User Timing
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Figure 2: Overvier of Bounding Pipeline and Cache Performance



given cache configuration. The caching behavior of an instruction is assigned one of
four categories, described in Tables 1 and 2, for each leelgnexhich an instruction is
contained. Theheory and implementation of static cache simulation is described in

more detail elsewhere [3, 4, 5, 6The timing analyzer uses the instruction caching

Table 1: Definitions of Worst-Case Instruction Categories

Instruction Category | Definition According to Behavior in Instruction Cache

always miss The instruction is not guaranteed to be in cache
when it is referenced.

always hit The instruction is guaranteed to always be in cache
when it is referenced.

first miss The instruction is not guaranteed to be in cache on

its first reference each time the loop is executed, but
is guaranteed to be in cache on subsequent refer-
ences.

first hit The instruction is guaranteed to be in cache on its
first reference each time the loop is executed, but is
not guaranteed to be in cache on subsequent refer-
ences.

Table 2: Definitions of Best-Case Instruction Categories

Instruction Category | Definition According to Behavior in Instruction Cache

always miss The instruction is guaranteed to not be in cache
when it is referenced.

always hit It is possible that the instruction is in cache every
time it is referenced.

first miss The instruction is guaranteed to not be in cache on

its first reference each time the loop is executed, but
may be in cache on subsequent references.

first hit The instruction may be in cache on its first reference
each time the loop is executed, but is guaranteed to
not be in cache on subsequent references.




catgyorizations to determine whether an instruction fetch should be treated as a hit or a
miss during the pipeline analysis of a pafthe timing analyzer also reads a file that
specifies the hardave’s instruction set pipeline constraints in order to detect structural
and data hazards between instructio@sven a pograms antrol-flow information and
instruction caching categorizations along with the processamstruction set
information, the timing analyzer then dess best-case and worst-case estimates for each
loop and function within the program. Thigrgion of the timing analyzer is an
extension of an earlier timing tool [5, 7] which bounded instruction cache performance.
Although most machines that & an instruction cache also & a @ta cache, the
timing analyzer does not as yet predict data cache performance. When the timing
analyzer has completed its analysis, voles a gaphical user interface [8] allowing the
user to request timing bounds for portions of the program. Excerpts of this thesis,

including a concise description of the algorithm aratstrcase results, can be found in

[9].



CHAPTER 3

TIMING ANALYSIS

Several steps are necessary to obtain the timing predictions of a program.
optimizing compilervpo determines control-fls information. Net, the static cache
simulator predicts the caching bela of each assembly instruction according to the
programs cntrol-flov. The timing analyzer also uses the controlvflimformation to
determine the set of paths through each loop and functiorQjage this information has
been computed, the timing analyzer turns its attention to predicting the BCET and
WCET.

The timing analyzer determinegeeution time for programs by first analyzing the
innermost loops and functions, and proceeding to higkelrli@ops and functions until it
reacheshai n(). For example, consider the skeleton program in Fig. 3. The timing
analyzer will establish best- andowgt-case time bounds dfun2(), | oop_2,
| oop_1, funl(), fun2() and finally mai n(). Note thatf un2() needs to be
analyzed twice since it is called fromdwvdifferent places.The pipeline and caching
behaior of the two invocations off un2() are likely to difer. For example, if an
instructioni in f un2() contains an assembly instruction that maps to the same cache
line as an instruction wolving the ++] operation inl oop_2, instructioni will always
be a miss in cache as longfasn2() is invoked from insidel oop_2. On the other

hand, instruction may still be a hit whefun2() is called frommai n() . The timing



voi d funl()

for (j 0; j < 100; ++) { /* loop_2 : inner |oop */

for (i = 0; i < 100; ++i) /* loop_1 : outer |oop */
fun2();

}

}
voi d fun2()
{

}

mai n()

/* body of function */

funl();
fun2();

}
Figure 3: A Skeleton Program

analyzer treats a function as a loop that omlscetes for a single iteratiortereafter a

loop being analyzed will refer to eitheﬂp3 or afunctionwithin the program.

3.1 AnalyzingA Single Rath of Instructions

Before the timing analyzer examines the program, it reads information from a machine-
dependent file concerning the pipeline requirements of each instruction in the precessor’
instruction set.This information includes o mary cycles each instruction spends in
each pipeline stagefor floating-point instructions, the number of cycles spent in the
FEX can vary significantly depending upon the values of the register opergads.
instance, the double-precision divide instructiodi vd (which is distinct from the

single precision divide instructidndi vs) can tale as éw & 3x cycles in the FEX or as

% In this thesis)oopswill be restricted to natural loopsA natural loop is a loop with a single entry block. While the static
simulator can process unnatural loops, the timing analyzer is restricted to only analyzing natural loops suidebi difficult for
both the timing analyzer and user to determine the set of possible blocks associated with a single iteration in an unndtural loop.
should be noted that unnatural loops occur quite infrequently.



mary as 56 gcles. Thus,a floating-point intensie pogram tends to k& a wder
difference between best-case and worst-caseuon times than a program with only
integer instructions. The timing analyzer also obtains from this file the latest pipeline
stage in which the values of itsgister operands are required via forwarding for each
instruction to proceed, and in which stage tlsu® of the destination register is
available via forwarding.

The control-flav information thatvpo provides also identifies the register operands of
each instruction in the programAs mentioned before, the static cache simulator
cateorizes each instructios’expected caching beh@r. Based on an instructios’
catgyorization, the timing analyzer can decide whether the instruction will be treated as a
hit or miss in the pipeline. When an instruction is a hit in the pipeline, it will spend one
cycle in the IF stage, possibly more if it cannot immediately proceed to the ID due to a
stall. Whenan instruction is treated as a miss in the pipeline, it will spend the duration
of the miss penalty in the IF stage in addition to the singtéeat would hae cccupied
the IF had the instruction been a higven if it is a miss in cache, the instruction may
spend more than ten cycles in the IF stage if there is a &@allexample, a double-
precision floating-point divide instructidrdi vd may spend up to 56 cycles in the FEX
stage. Ifthef di vd is followed by tw instructions, the first of which being another
floating-point instruction that is a cache hit and the second of which that is cache miss,
then there will be a structural hazard betweenftievd instruction and the floating-
point instruction following it. As a result, while thieli vd instruction is occuging the
FEX for 56 cycles, the second instruction after it will spend the samgchkésan the IF
stage. Irthis case, the cache miss 1&dapped in time with the structural hazard.

A path of instructions consists of all the instructions that canxbeuted during a

9



single iteration of a loop (or in the case of a function, all the instructions that are
executed in one imocation of the function).If the loop has no conditional (e.gf or

swi t ch) statements, then there will be only one path associated with this loop. As an
example, consider the functioBquar e() in Fig. 4. This function contains &
instructions, numbered from O through 6, that comprise one path. Instructions 0 and 1
are classified aglways missesnd for this reason tlyamust each spend ten cycles in the

IF stage before proceeding to the other pipeline stadmestruction 1 is a store
instructionst , which must spend twcycles in the CA stage. This pipeline requirement
results in a structural hazard since instruction 2 is ready to enter the CA stage in cycle 24
but cannot do so until instruction 1 vacates Ttus, instruction 1 causes instructions 2,

3 and 4 to stall in the EX, ID and IF stages, respelti during cycle 24. A similar
structural hazard occurs duringate 26 when instruction 2, another store instruction,
occupies the CA stage for dwcycles. Later during cycles 27 and 28, a data hazard
takes place between instructions 3 andidstruction 3 loads the value ofgister % 2

which is instruction 4 ource operand. This means that instruction 4 cannot enter the
FEX stage until instruction 3 lees the CA stage.Finally, instruction 4 must spend
seven c¢ycles in the FEX stage, not due toyaache miss or pipeline hazard, but because

of the hardware ppeline requirement of thienul t d instruction.

The analyzer examines the instructions sequenti#tiligeeps track of the number of
cycles required toxecute the path up to the instruction currently being processed, plus
pipeline information rgarding the beginning and ending behavior of the pdibles 3
and 4 depict ho this pipeline information is gradually modified as the analyzer
processes each instructionSquar e() . The first rav of each table shows the pipeline

information after only instruction 0 has been processed, the secendhmws the

10



Pipeline Diagram

stage
C Source Code IF | ID | EX |[FEX| CA|WB |FWB
doubl e Squar e(x) cycle| 1 0
doubl e x;
{ 10 | O
return x * x; 11 1]0
} 12 | 1 0
13 | 1 0
14 | 1 0
15 | 1
20 | 1
SPARC Instructions 21 | 2 | 1
inst 0: save Ysp, (-72), ¥%sp 2321
inst 1: st % 0, [ ¥%sp+. 4_X] 231 4]13]2 1
inst 2: st % 1, [ Ysp+(.4_x+4)] 24 a]3] 2 1
inst 3: I1dd [Ysp+.4.x],% 2 25 [ 5] 4] 3 2
inst 4: fruld 9%2,%2, %0 % | 5] 4] 3 2
inst 5: ret 27151 4 3
inst 6: restore 28| 51 4 3
29 | 6 | 5 4 3
30 6 4
31 6| 4
32 416
33 4 6
34 4
35 4
36 4

Figure 4: Path through Functi@yuar e()

pipeline information taking into account instructions 0 and 1, and so on. ThewJast ro
depicts the the pipeline behavior of the entire pakthe values in the rows labeled
Cycles from Beg in Table 3 represent momary cycles after cycle 1that particular
stage is first occupied. The values in the rows lab€gces from End in Table 4
represent hw mary cyclesbefore the last cycldwhich is gven in the rightmost column)
that stage is last occupiedo determine during which cycle an instruction completed its

occupation of a particular stage, one subtract€iaes from End value from thetotal

11



Table 3: Creating Beginning Pipeline Information fquar e()

Inst Stage IF | ID| EX| FEX | CA | WB | FWB
0 CyclesfromBeg | O | 10 | 11 N/A | 12 13 N/A
Beg Occupant 0 0 0 | NA 0 0 N/A
1 CyclesfromBeg | O | 10 | 11 N/A | 12 13 N/A
Beg Occupant 0 0 0 | NA 0 0 N/A
2 CyclesfromBeg | O | 10 | 11 N/A | 12 13 N/A
Beg Occupant 0 0 0 | NA 0 0 N/A
3 CyclesfromBeg | O | 10 | 11 N/A | 12 13 28
Beg Occupant 0 0 0 | NA 0 0 3
4 CyclesfromBeg | O | 10 | 11 28 12 13 28
Beg Occupant 0 0 0 4 0 0 3
5 CyclesfromBeg | O | 10 | 11 28 12 13 28
Beg Occupant 0 0 0 4 0 0 3
6 CyclesfromBeg | O | 10 | 11 28 12 13 28
Beg Occupant 0 0 0 4 0 0 3

Table 4: Creating Ending Pipeline Information faguar e()

Inst Stage IF | ID | EX | FEX | CA | WB | FWB | total cycles

0 Cycles from End 4 | 3 2 | NA 1 0 N/A 14
End Occupant 0| 0 0 | NA 0 0 N/A

1 Cycles from End 4 | 3 2 | N/A 0 10 N/A 24
End Occupant 1] 1 1| NA 1 0 N/A

2 Cycles from End 51| 4 2 | NA 0 12 N/A 26
End Occupant 2| 2 2 | N/A 2 0 N/A

3 Cycles from End 715 3 | NA 1 14 0 29
End Occupant 31 3 3 | NA 3 0 3

4 CyclesfromEnd | 12 | 8 10 1 8 22 0 36
End Occupant 4 | 4 3 4 3 0 4

5 Cycles from End 8| 7 10 1 8 22 0 36
End Occupant 5|5 5 4 3 0 4

6 Cycles from End 7| 6 5 1 4 3 0 36
End Occupant 6| 6 6 4 6 6 4

cycles vaue in the same ma For example, the first w of Table 4 says that if the path
consisted solely of instruction 0, the total cycle time for the path would be fourteen
cycles, according to the rightmost column. It also states that instruction O finishes the IF

stage four cycles before the end of the p&mce 14 - 4 = 10, instruction 0 finishes its

12



occupation of the IF stage during cycle 10. The secondfdable 4 refers to the path
if it only consisted of instructions 0 and 1. In this case the p&ital time is 24 ygcles,
as gven in the rightmost column, and the WB stage is last occupied 10 cycles before the
final stage, as gen in the third column from the right. Subtracting these tiigures
gives 24 - 10 = 3, meaning that the WB stage is last occupied during cyclddale 4
indicates further that the last occupant of the WB stage was instruction 0, which agrees
with the pipeline diagram in Fig. 4.

The beginning pipeline information, as/gn in Table 3, is not immediately refant
for the timing analysis of the functiddquar e() . Its role comes into play when the
timing analyzer proceeds to the analysis of an emtiop, as ascribed in the ne
section. Br path analysis, the ending pipeline information is necessary for the
avadance of structural hazards. The beginning and ending occupants of the stages are
not needed for the timing analysiqjtbare provided here for clarityTable 5 shws
information about the register operands whose values are needed and/or set by the
instructions. Thigegister information is needed to detect data hazards. Figures in the
rows labeledirst needed shav how mary cyclesafter cycle 1that particular rgister’s
value is required as a source operand. Figures in the labeledast produced count
how mary cyclesbefore the last cycleéhat registes value is &ailable.

Retaining this set of pipeline information all® additions to the beginning or end of
a path. Sincethe pipeline requirements for a path and for a single instruction can both
be represented with this set of pipeline information, concatenatiogdtihs together
can be accomplished in the same manner as concatenating an instruction onto the end of

a path. Theconcatenation of twsets of pipeline information is accomplished one stage

13



Table 5: Data Hazard Information for the InstructionSguar e()

Inst Register %06 %i0 | %il %f0 %f2
0 first needed N/A 10 N/A | N/A | NJ/A | N/A | NJA | N/A | N/A | N/A
last produced | N/A 2 N/A | N/A | N/A | N/A | N/A | N/A | NJA | N/A
1 first needed N/A 10 N/A | 21 | NJA | N/A | NJA | N/A | N/A | N/A
last produced | N/A 12 N/A | N/A | N/A | N/A | NJA | N/A | N/A | N/A
2 first needed N/A 10 N/A | 21 22 | N/A | NJA | N/A | N/A | N/A
last produced | N/A 14 N/A | N/A | NJ/A | N/A | NJA | N/A | N/A | N/A
3 first needed N/A 10 N/A | 21 22 | N/A | NJA | N/A | N/A | N/A
last produced | N/A 17 N/A | N/A | N/A | N/A | N/A | N/A 1 N/A
4 first needed N/A 10 N/A | 21 22 | N/A | NJA | N/A | 27 | N/A
last produced | N/A 24 N/A | N/A | N/A | N/A 1 N/A 8 N/A
5 first needed N/A 10 N/A | 21 22 | N/A | NJA | N/A | 27 | N/A
last produced | N/A 24 N/A | N/A | N/A | N/A 1 N/A 8 N/A
6 first needed N/A 10 N/A | 21 22 N/A | NJA | N/A | 27 N/A
last produced | N/A 24 N/A | N/A | N/A | N/A 1 N/A 8 N/A

at a time. A stage from the second set of pipeline information isy@ddo the earliest

cycle that does not violate yaof the following conditions.

(1)

(2)

3)

There is no structural hazard with another instructiofRor instance, the
beginning of the IF stage of instruction 2 in Fig. 4 could not be placed in cycle 20
since that stage was already occupied.

Thereis no data hazard due to aypoais instruction producing a result that is
needed by a source operand of the instruction in that stageexample, the
beaginning of the FEX stage for instruction 4 in Fig. 4 mustetglace after
instruction 3 finishes its CA stage due to the data hazard betweéddhand

f mul d instructions.

Theplacement of the instruction does not violate its own pipeline requirements.
For instance, in Fig. 4 the ID stage of instruction 1 has to occur at least ele
cycles after the beginning of its IF stage.

Data and structural hazards can also occur upon entering and leaving a chilédoop.

instance, ifSquar e() in Fig. 4 is ivoked from another function, and the instruction

that is eecuted after returning fronsquar e() has% 0O as a source operand, then it

will have a éta dependerawith instruction 4 ofSquar e() . The timing analyzer can

14



detect this potential hazard in much the same manner as tiSsugr e() were a
single instruction in the calling functianpath.

After the beginning and ending pipeline behavior of a path has been determined,
other information associated with the pipeline analysis of a path need not be &red.
instance, it does not matter when instruction 2 entered the ID stage after the pipeline
information has been calculated for aaginstructions in Fig. 4. No instruction being
added to either the beginning or end of the pipeline could possilby daructural
hazard with the ID stage of instruction 2 since it would firserasructural hazard with
the ID stage of instruction O or instruction 6, respebti Thus, the amount of pipeline
information associated with a path is dramatically reduced as opposed to staving ho
each stage is used duringesy cycle. Furthermoreno limit need be imposed on the

amount of potential\werlap when concatenating the analysis ob paths.

3.2 LoopAnalysis

To find the BCET and WCET for a loop, the timing analyzer must fiagtiate all of the

possible paths through the loop.

3.2.1 TheUnion Concept

With pipelining it is possible that the combination of a set of paths may produce a longer
execution time than just repeatedly selecting the longest gabhinstance, consider a
loop with two paths that taé ebout the same number of cycles t@aite. Rth 1 has a
f di vd instruction near its beginning and path 2 hdslavd instruction near its end.
Alternating between the paths will produce the WCET since there will be a structural

hazard between the dainstructions when path 4f di vd occurs shortly after path £’

15



f divd.

To avoid the problem of calculating all combinations of paths, whicluld/ be the
only method for obtaining perfectly accurate estimations, the timing analyzer determines
the union of possible pipeline effects of the paths for an iteration of a lodms
simplifies the algorithm and also does not causg moticeable gerestimation or
underestimation. Sincal paths through a loop must begin with the same header block,
the beginning pipeline information among the various paths is usually the gdsoe.
paths often end with the same block of instructions, so that ending pipeline information
is unaffected by the process of uniting the pipeline informatitowever, begnning and
ending pipeline information can significantly differ when one path consistaswely
of integer instructions while another contains floating-point instructions. This situation
occurs in a simple program depicted in Figs. 5 and 6.

The generated assembly code has been optimizegpody The local wariablesi
count andf count have keen allocated to gisters%®3, %©2 and% 1 respectiely.
Since the SPARC has delayed branches, the instruction following each transfer of control
takes effect before the branch iseéak Theloop in this program consists of instructions
10 through 27.Vpo has replicated instruction 9, the comparison, to also appear in the
delay slot at the end of the loop, instruction 27branch instruction ending in a" is
an annulled branch, meaning that the result of the instruction in the delay slot will be
annulled if the branch is not taken.

To amplify this example, all of the instructions and data are assumed to already be in
cache. @ble 6 shass the structural hazard information corresponding to tleepaths in
Fig. 6, and Fig. 7 depicts the pipeline diagrams for the worst-case and best-case unions

of the two paths as a visual representation of th&ugs contained in the bottom half of

16



C Source Code Assenbl y Code

| nst
0 nov %0, Y02
1 sethi  %i (LO1), %0
int i; 2 | dd [ %00+% o(L01)],% 1
int count = O; 3 add %1, %01, %01
float fcount = O; 4 add %1, 1, %01
extern int incr; 5 sub %2, Y01, Y02
extern float fincr; 6 nov %90, %03
7 sethi  %i (_fincr), %04
8
9

count -=1i + i + 1; sethi  %i (_incr), %05
cnp %03, 5
for (i =0; i < 10; ++i) 10 L18: bge,a L19
11 sub %03, %02, Y01
if (i <5) 12 add %2, 1, %02
13 Id [Y04+% o( _fincr)],% 0
++count ; 14 ba L16
fcount *= fincr; 15 fruls % 1,%0,% 1
} 16 L19: add %1, 1, %01
el se 17 I d [ Y%©5+% o( _i ncr)], %0
18 sub %0, Y01, %00
incr -=i - count + 1; 19 add %03, %02, %01
incr += i + count - 2; 20 sub %1, 2, %01
count += incr; 21 add %00, %01, %00
} 22 st %0, [ Y©5+% o( _i ncr) ]
} 23 add %2, Y00, %92
} 24 L16: add %3, 1, %03
25 cnp %03, 10
26 bl,a L18
27 cnp %03, 5
28 retl
29 nop

Figure 5: Program Containing a Loop witiv@ Paths

Table 6. Fig. 7 shows hwlittle information is used to store the union, as opposed to the
pipeline diagrams in Fig. 6. It is only necessary tovkmden each stage is first and last
occupied. Somadditional information concerning the occupamd the stages is also
calculated during best-case analysis, and this will be discussed in SectionT&2.4.
calculate the union of the paths during worst-case analysis, one finelarliestinitial
occupation (relatie © cycle 1) andastfinishing occupation (relate © the last cycle of

the longest path) of each stage. As Fig. 6 shows, the corresponding instructions in both
paths in this example gm the IF ID, EX, CA and WB stages at the same tins#nce

Pah 1 never occupies the FEX or the FWB stages, therst-case union will store the
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Path 1 Instructions

inst 10: bge,a L19
inst 11: sub %03, %02, %1
inst 16: add %1, 1, %1
inst 17: Id [ Y%05+% o(_i ncr)], %0
inst 18: sub %0, %1, %0
inst 19: add %2, %00, %02
inst 20: sub %1, 2, %1
inst 21: add %0, %1, %00
inst 22: st %00, [ Y©5+% o( _i ncr)]
inst 23: add %2, %00, %02
inst 24: add %03, 1, %03
inst 25: cnp %3, 10
inst 26: bl,a L18
inst 27: cnp %03, 5
Path 1 Pipeline Diagram
stage
IF | ID | EX |FEX| CA |WB [FWB
cycle] 1 |10
2 |11 10
3 |16 11
4 | 17|16 11
5 | 18| 17| 16 11
6 | 19| 18| 17 16 | 11
7 |19 18 17 | 16
8 | 20|19 18 17
9 | 21|20 19 18
10 | 22| 21| 20 19| 18
11 | 23| 22|21 20 | 19
12 | 24| 23| 22 21| 20
13 | 25| 24| 23 22|21
14 | 25| 24| 23 22
15 | 26| 25| 24 23
16 | 27| 26| 25 24 | 23
17 27 25| 24
18 27 25
19 27
20 27
21
33

Path 2 Instructions

i nst
i nst
i nst
i nst
i nst
i nst
i nst
i nst
i nst
i nst

10:
11

12:
13:
14:
15:
24
25:
26:
27:

bge,a L19

sub
add
Id

ba
fruls
add
cnp
bl, a
cnp

%3, %02, %01

%2, 1, %02

[Y04+% o(_fincr)],% 0
L16

%1,9%0,%1

%3, 1, %03

%03, 10

L18

%3, 5

Path 2 Pipeline Diagram

stage

IF

ID | EX [FEX| CA |WB |FWB

cycle

10

11

10
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Figure 6: Pipeline Diagrams for thevd Loop Paths in Fig. 5
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Worst-Case Union Pipeline Diagram Best-Case Union Pipeline Diagram

stage stage
IF | ID | EX |[FEX| CA |WB FWH IF | ID | EX |FEX| CA |WB|FWB
cycle|] 1 |10 cycle|] 1 |10
2 10 2 10
3 3
4 11 4 11
5 11 5 11
6 11 6 11
7 7
8 15 13 8
9 9
10 10 | 27
11 11 27
12 12 27
13 13 27
14 14 27
15 15
16 | 27 16
17 27 17
18 27 18
19 27 19
20 27 20
32 15 32
33 15 33

Figure 7: Pipeline Diagrams for the Worst-Case and Best-Case Unions

Table 6: Structural Hazard Information for Unions in Fig. 7

Path 1 Info IF | ID | EX | FEX | CA | WB | FWB

Cycles from Beg 0 1 3 N/A 4 5 N/A
Cycles from End 4 3 2 N/A 1 0 N/A

Path 2 Info IF | ID | EX | FEX | CA | WB | FWB

Cycles from Beg 0 1 3 7 4 5 7
CyclesfromEnd | 23 | 22 | 21 1 20 19 0

WC Union Info IF | ID | EX | FEX | CA | WB | FWB

Cycles from Beg 0 1 3 7 4 5 7
CyclesfromEnd | 17 | 16 | 15 1 14 13 0

BC Union Info IF | ID | EX| FEX | CA | WB | FWB

Cycles from Beg 0 1 3 N/A 4 5 N/A
CyclesfromEnd | 23 | 22 | 21 N/A | 20 19 N/A
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beginning (as well as the finishing) times of Path 2. The paths differ with respect to
the completion of the integer pipeline stagésr instance, in Path 1, instruction 27
finishes the IF stage during cycle 16yesdgeen cycles before the lasteeuting cycle of
the longer path (Path 2). On the other hand, in Path 2, instructionvg tea IF stage
23 cycles before the path complet&nce the worst-case union seeks the latest possible
ending times of the stages, it will adopt Path fidishing times for the intger stages.
Thus, as Fig. 7 shes, the worst-case uniapeline finishes the integer stages during
cycles 16, 17, 18, 19 and 20, respedyi, and when thesealues are measured from the
last cycle of Path 2, one subtracts each from 33 to obtain the values invthebeted
Cycles from End under theNC Union Info heading in Table 6.

During best-case analysis, it is necessary to modify the union calculation in order to
avad detection of structural and data hazards thauld/cause anwerestimation in the
BCET. In best case, the timing analyzer finds thtestinitial occupation angkarliest
finishing occupation of each stage. If a stage is not occupied in one of the paths, then in
best case that stage will not be occupied by the union. In Fig. 7 aaddle @, the FEX
and FWB stages of the best-case union are vacant because Path 1 contains no floating-

point instructions.

3.2.2 Worst-Case Algorithm foriming a Loop

The algorithm for estimating the WCET for a loop isegi in Hg. 8, wheren is the
maximum number of iterations associated with the lobpis algorithm is based on an
earlier method for determining the WCET of a loop in the odntd predicting
instruction cache performanceA correctness argument for it isvgn in [7]. The

WHILE loop in the algorithm terminates when the number of calculated iterations
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pi pel i ne_informati on = NULL.
first_msses_encountered = NULL.
first _hits _encountered = NULL.
curr_iter = 0.

VWHI LE curr_iter !'=n- 1 DO
curr_iter += 1.
Find the | ongest continue path.
first_mi sses_encountered +=
first misses that were m sses
in this path.
first_hits_encountered +=
first hits that were hits in this path.
Concat enate pipeline_information with the
wor st -case union of the information for all paths.
IF no new first msses or first hits
are encountered in the path THEN
BREAK.

Concat enate pipeline_information with the worst-case
union of the pipeline information for all paths
(n-1- curr_iter) times.

FOR each set of exit paths that have a
transition to a unique exit block DO
Find the longest exit path in the set.
first_mi sses_encountered +=

first misses that were m sses
in this path.
first_hits_encountered +=
first hits that were hits in this path.
Concat enate pipeline_information with the
wor st -case union of the information for all
exit paths in the set.
Store this information with the exit bl ock
for the | oop.

Figure 8: Worst-Case Loop Analysis Algorithm

reaches: - 1 or no nore first misses (first hits) are counted as misses (Hitg.is the
number of paths in the loop, then the WHILE loop in the algorithm will iterate up-to (
1) or (p + 1) imes, since a first miss (first hit) can miss (hit) at most once during the loop
execution.

The goal of the algorithm in Fig. 8 is to select the longest path on each iteration of the
loop. Asan illustration, consider the program shown in Fig. 5, which contains a loop.

The two paths of the loop are described in Fig. Bah 1 contains only intger
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instructions while Path 2 contains a floating-point multiply instructibne static cache
simulator has determined that instructions 12, 16, 20 and 24 are first misses while the
rest of the instructions in the loop aravays hits.

If Path 1 e&ecutes during the first iteration of the loop, it will éakventy g/cles,
according to the pipeline diagram in Fig. 6, plus the combined miss penalties of its first
misses, instructions 16, 20 and ZBhus, its time would be 20 + 9*3 = 4yates. If
Pah 2 eecutes during the first iteration of the loop, it will &aB3 gcles, plus another
eighteen taking into account its first misses, instructions 12 and 24, for a total of 51
cycles. ThereforeRah 2 has a longer worst-case time for the ledipst iteration.

When the timing analyzer prepares t@mine the second iteration of the loopthP
2’s first misses will hereafter be hits in cache. If Pathxdcetes during the second
iteration of the loop, it will ta& dxteen cycles, plus the miss penalties for it® tw
remaining first misses, instructions 16 and 20, yielding a total ofy8lés If Pah 2
executes on the second iteration of the loop, it wilket2é g/cles with no additional miss
penalty Hence Path 1 is the worst-case path for the second iteration of the loop.

By the third iteration of the loop, all of the first misseseneeen encountered, so the
will be treated as hits in the pipeline for each of the remaining iterations. If Path 1
executes on the third iteration of the loop, it will eakxteen additional cycles, while
Pah 2 would require 29 additionaycles. Thesexecution times are fourycles fever
than the pipeline diagrams in Fig. 6 indicate because the pipeline is alreadySihed.

Pah 2 has a longerxecution time than Path 1, the timing analyzer will chocat R for
the third iteration of the loop. No wefirst misses or first hits are encountered during the
third iteration, so the timing analyzer will exit the WHILE loop in therst-case

algorithm in Fig. 8. The next phase of the algorithm ussh B for all the remaining
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iterations before the last one. When an iteratiorolinng Path 2 follows a preous
iteration executing Rath 2 as well, the FEX stage of instruction Mertaps with more
integer instructions than if Path 2 had felled an iteration trgersing Path 1. As a
result, Path & execution time for each iteration from the fourth through the ninth is 26
cycles.

The last iteration of the loop is treated separaté@lye timing analyzer uses the path
that will cause the final iteration toveate longest WCET Because )t paths can be
distinct from continue paths, an exit path may contain a first miss instruction that has not
been encountered in yarselected continue path, and such a first miss will not be
encountered until the last iteratioMowever, for the loop in Fig. 6, the exit paths are
identical to the continue paths, so its last iteration will feleath 2, and this iteration
will contribute another 26 cycles to the loepNCET, precisely as with each of the
previous six iterations. In summarthe WCET for the entirexecution of the loop is 51
+34 + 29 + 626 + 26 = 296 cycles.

However, it is possible that the longest exit path for a loop is shorter than the longest
continue path. Consider the progr&nxit, depicted in Figs. 9 and 10. The final iteration
of the loop does not perform the floating-pointision. Hadthe timing analyzer not
distinguished between continue and exit paths, the continue path containfrdj the
would have been the worst-case path oresy iteration, yielding anxecution time of 87
cycles on the first iteration plus 83 cycles for each of the remaining four iterétions,
totaling 419 gcles. Insteadthe fifth iteration should only takanly three additional

cycles for a total of 339 ycles. Thus,the analysis wids an unnecessarily e

4 The first iteration takes four more cycles x@aite because the timing analyzer assumes the pipeline is initially empty.
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C Source Code

mai n()
doubl e a[5];
int i;
for (i =0; ; i++)
if (i == 4)
br eak;
el se
a[i] =i [/ 2.0;
}

10
11
12
13
14
15
16
17
18
19

Assenbl y Code

save
nov

set hi

add
nov
add

cnp

bne, a

st
ret

restore

| dd
Id

fitod
fdivd

std
add
add
ba

nop

%sp, (-112), %sp
%90, %02

%i (LO1), %3
%p,.1_a, %4

%04, Ygl

%04, 32, %92

%1, Yg2

L18

%02, [ ¥%sp + xfer_1]

[%©3 + % o(L01)],%0
[Ysp + xfer_1],9%2
% 2,9% 2

%2,9%0,9%2

% 2, [ Yg1]

%1, 8, %gl

%2, 1, %02

L17

Figure 9: C Source Code and Assembly Code for the Program

Continue Path Pipeline Diagram

stage
IF | ID | EX |FEX| CA | WB |FWB
cycle| 1 6

2 6
3 716
4 11 6
5 12| 11| 8 6
6 13| 12| 11 8
7 13| 12| 11 8
8 14 | 13| 12 11
9 14 | 13| 12 11
10 | 14| 13 12 11
11 | 15| 14 13 12
12 | 15| 14 13
15| 14 13
23 | 15| 14 13
24 | 16| 15 14 13
25 | 17| 16| 15| 14
17|16 | 15| 14
79 | 17| 16| 15| 14
80 | 18 | 17| 16 15 14
81 | 18 | 17| 16 15
82 | 18| 17| 16 15
83 | 19| 18| 17 16
84 19 17 | 16
85 19 17
86 19
87 19

Exit Path Pipeline Diagram

stage
IF | ID | EX |FEX| CA | WB |FWB|
cycle| 1
2 6
3 7|6
4 8 6
5 8 6
6
7

Figure 10: Pipeline diagrams for the/d Paths through Loop i&xit
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oveestimation of 80 cycles on this simple loop.

3.2.3 Best-CasAlgorithm for Timing a Loop

The best-case algorithmvgn in FHg. 11 is somewhat simpler than thenst-case one
described in the previous sectiolt.is also based on the best-case strategy for caching
only analysis [5].Here,n represents the minimum number of iterations associated with
the loop. The algorithm calculates the BCET for the first iteration, for thenfirst
iterations and finally for alln iterations. Inthe case of a function, the BCET is
calculated by théL SE portion of the algorithm since the timing analyzer considers a
function to hae aly a final iteration.

During the first iteration of a loop, the instructions classified as first misses will be

pi peline_information = NULL.
IFn>1 THEN
Find the shortest continue path where all first msses are
treated as misses and all first hits are treated as hits.
pi peline_informati on = the best-case union of the
information for all paths.
Find the shortest continue path where all first msses are
treated as hits and all first hits are treated as nisses.
Concat enate pipeline_information with the best-case union of
the pipeline information for all pathsn - 2) tines.
For each set of exit paths that have a transition to a unique
exit block DO
Find the shortest exit path in the set where all first m sses
are treated as hits and all first hits are treated as ni sses.
Concat enate pi peline_information with the best-case union
of the information for all the exit paths in this set.
Store this information with this exit block for the | oop
ELSE
For each set of exit paths that have a transition to a unique
exit block DO
Find the shortest exit path in the set where all first m sses
are treated as misses and all first hits are treated as hits.
Concat enate pipeline_information with the best-case union
of the information for all the exit paths in this set.
Store this information with this exit block for the | oop

Figure 11: Best-Case Loop Analysis Algorithm
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misses since tlyeare being encountered for the first time. No first miss can be treated as
a ht until it has already been encounterd®ly the definition of first hit [3], instructions
cateorized as first hits will be treated as hits on the first iteration, and as misses on
subsequent iterations. Because of tley\& first hit is defined, one can safely assume
that such instructions will miss in cache after the first iteration. Therefogerieg
with the second iteration of the loop, all first misses will become hits in the best-case
algorithm, which may cause an underestimation in a loop having conditional control
flow and first misses in multiple pathsThis underestimation makes the timing
analyzers prediction of the BCET more conserwadi

As in the wvorst-case loop algorithm, it is essential to handle the final iteration
separately It is common for a loop to break upon a certain condition, in which case the
exit path is significantly shorter than the best-case continue path. This situation occurs
in the progranExit, described in the previous section. In thergt-case loop algorithm,
failure to consider the final iteration separately wouldehaerely led to a less tight
WCET prediction; in best case,wever, such an eerestimation would render the BCET

prediction irvalid.

3.2.4 Useof Vacant Cycles

During best-case analysis, it is sometimes necessary to ignore a potential data hazard to
avad an unwanted\erestimation in gecution time. Fig. 12 shows a situation in which

a cdata dependencexists between the last instruction before a loop and the first
instruction inside the loop. The lower two-thirds of the pipeline diagramv gshe
behaior of the loops instructions in isolation, without gerd to the context of the loop.

When the timing analyzer views the loop simply as a pipeline construct to insert after
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SPARC Instructions

34

L24: 35
36
37
38
39

instruction 34, the pipeline shape of the loop will change as a result of the data hazard.
For instance, instruction 35 can enter the IF stage at cycle 515, the ID atubib, b
cannot begin the FEX until theale of% 0 can be fonarded. Thusjnstruction 35

stays in ID tvo extra cycles before going on to the FEX duringcles 519-522 and

| dd

faddd
add
cnp
bl, a
| dd

[%4], %0

% 4,9%0,% 4
%04, 8, Y04
%4, Y05

L24
[Y%04],% 0

Pipeline Diagram

stage
IF | ID | EX |FEX| CA |WB FWB
cycle| 514 | 34
515 34
516 34
517 34
518 34
519 34
first iteration : 1 35
2 36| 35
3 36 35
4 | 36 35
5 36 35
6 36 35
7 36 35
11 | 36
12 | 37| 36
13 | 38| 37| 36
14 | 39| 38| 37 36
15 39 37| 36
16 39 37
17 39
18 39
19 39
last iteration : 73 | 35
74 | 36| 35
75 | 37| 36 35
76 | 38| 37| 36| 35
77 | 39| 38| 37| 35| 36
78 39 35|37 36
79 39 37| 35
80 39
81 39
82 39

Figure 12: Data Hazard upon Entering a Loop
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finally the FWB during cycle 523.

However, even though instruction 35 leas the ID, FEX and FWB stages dveycles
later than originally expected when the loopsatimed by itself, the rest of the losp’
execution is undkected by this data hazard. The reason is that instruction 36 misses in
cache and cannot enter the ID stage until well after instruction 35 has vacaktbdsi.
the delay due to the hazard would bertapped with the instruction fetch missn
worst-case analysis, when the timing analyzer detects a structural or data hazard, it
delays both the victins’ darting and ending times for the stage it is beiny@red to
enter on time.But in the best-case analysis this will lead to an unwante@stimation.

Since it is desirable for the timing analyzer to be dicient tool, it is adantageous
to store as little information about the child loop as necesaargiovn in Tables 3-5
and Fig. 7. To avoid such an werestimation in this situation depicted in Fig. 12, the
best-case analysis also keeps track o hwarny cycles each stage isawant during all
the iterations of the child loopTo compute the number of vacant cycles, the timing
analyzer first determines when each stage is first occupied during the loop (which
usually occurs during the first iteration) and when each stage is last occupied (typically
during the last iteration). The number of cycles from the first occupation of a stage
through its last occupation is the amount of time that stage is considerechttiviee
during the loops execution. For instance, as Fig. 12 andble 7 indicate, the ID stage is
first occupied duringycle 2 and last occupied during cycle 78, so the ID stagetiige
for 77 g/cles. Thetiming analyzer also counts Wanary cycles each stage accupied
during the ®ecution of the loop, and subtracts this number from its numbacie

cycles to obtain the number wacantcycles for that stageFor example, the ID stage is
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Table 7: Computing Vacant Cycles for Loop in Fig. 12

Loop Info IF ID | EX | FEX | CA | WB | FWB
First Occupied 1 2| 13 3 14 15 7
Last Occupied 77 | 718 | 79 78 81 79 82

Number of Cycles Active 77| 77 | 67 76 68 65 76
Number of Cycles Occupied | 59 | 50 | 30 40 40 20 20
Number of Cycles Vacant 18 | 27 | 37 36 28 45 56

occupied for fie g/cles on each iteration of the loop in Fig. 12. Since the loop iterates
ten times, the ID stage is occupied for 50 cycles during the eréceteon of the loop.
Subtracting the I occupiedtime from its active time yields the number ofacant
cycles for the ID stage: namely 77 - 50 = Z¢ant gcles. Rble 7 shows the number of
active, occupied and vacant cycles for each pipeline stage for the loop in Fig. 12.

If there is a data or structural hazard for a particular stage, the delay is reduced by the
number of vacant cycles in that stage; or if the numberoént cycles for a stage is at
least the amount of the delay due to a hazard, then the algorithm ignores the Razard.
instance, in Fig. 12, the number of vacant cycles in the ID, FEX and FWB stages are 27,
36 and 56, respegtly, which is substantially more than the amount of delay
experienced by instruction 35. Thus, the BCET of the child loop will not increase
despite the data hazard.

On the other hand, had instruction 36 been a hit in cache on the first iteration,
ignoring the data hazard wouldvgitise to anunderestimatiorwhen the child loop is
inserted after instruction 34n this case, the loop by itself wouldveaan execution time

of 73 cycles instead of 8%des. Havever, the number of cycles that each stage is
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occupied during the loop would be unchanged. The number of vacant cycles in the ID,
FEX and FWB would be 18, 27 and 47, respebti each nine cycles fewer than in the
situation in which instruction 36 was a hit on the first iteration of the loop. The number
of vacant cycles for each of these stages is still larger than the amount of the delay due to
instruction 358 data hazard, so again the delay is ignored. This causes an
underestimation in the BCET equal to the data hazard.délag timing analyzer does

not knav whether instruction 36 is a hit or miss in cache during the analysis of the
program construct that contains the loop as its child. All that is known about the loop is
its total execution time and the information iralble 7, in order to maintain a reasonable

limit on how much information to store about each loop and function in the program.

3.3 Timing an Entire Program

A timing analysis teis constructed to predict theonst-case times of codegrents
containing nested loops and function calls. Each node of the tree represents either a loop
or a function in the function instance grapBach node is considered a natural loop.

The nodes representing the outeselef function instances are treated as loops that will

iterate only once when entered.

back edge back edge

Figure 13: Example Introducing Loop Terminology
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The loops in the timing analysis tree are processed in a bottom-up mamm#rer
words, the worst-case time for a loop is not calculated until the times for all of its
immediate child loops are kmm. Therewill be a worst-case time calculated that
corresponds to each exit blockhus, when the timing analyzer is calculating thorst
case time for a path containing a child loop, it uses the child loop times associated with
the «it block of the child loop that is the next block along the pdtbr instance,
consider a loop depicted by the block diagram in Fig. 13. Each block, which consists of
several assembly instructions, is represented by a numbered box. Blocks 5 and 7 are not
part of the loop, but are rather exit blocks from the loSpppose that this loop is nested
in an outer loop so that a batlge connects the end of block 5 to the beginning of block
1, and other ba@dge leads from the end of block 7 to the beginning of blockhls
outer loop has block 1 as its loop header block, and it contamnpaitivs, one containing
block 5 but not block 7, and the other containing blockit/niot block 5. It is necessary
for the timing analyzer to distinguish the inner Ieoptal time depending on whickxie
path is takn. Thepath that exits to block 7 will ka a bnger time for the last iteration
of the inner loop than the exit path to block 5. When the timing analyzer is processing
the outer loop path containing block 5, it will folldhese steps:

(1) Evaluate the BCET/WCET for block 1.

(2) Add the child loop tinme associated with exit bl ock 5.

(3) Add the tinme for block 5.

As soon as the timing analyzer reaches block 5 in the outeslpaip, it detects that the
inner loop must ecute before the first instruction in block 5, and it looks up the timing
estimate stored with this block similar scenario tags place upon reaching block 7 in

the other outer loop path.
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3.3.1 FirstMiss Transitions in \&fst Case

When incorporating a child looptime into a parent loop, an adjustment is necessary if
the child contains an instruction that is classified &issamissin both the child and in
the parent. Consider a program in which a child Idopop_2, iterates ten times and
contains an instructionthat is afirst missin the context ol oop_2, and the parent,
| oop_1, dso sees as afirst missand also has 10 iterationstructioni should miss
only the first time it is referenced: during the first iteratiorl obp_2 within the first
iteration ofl oop_1. The 99 subsequent references stiould all be hits.

Fig. 14 shows tw pipeline diagrams for such laoop_2, where instruction 16 is a
first missat both loop leels. Inthe worst-case analysis, the instruction is considered a
hit in the pipeline. The miss penalty is added whewp_2 is being examined in the
context ofl oop_1, and only added to the first iteration.

It is possible that this approach will produce aerestimation in the WCETIf the
instruction that is categorized agiist missspends more than one cycle in the IF stage
as a result of an earlier hazard in the pipeline, then the miss pewmattstps withthe
hazard. InFig. 14, instruction 16, when seen as a hit in the pipeline, spendytles
in the IF stage because of a structural hazard between instructions 13 and 14. But when
instruction 16 misses in cache, it spends ten cycles in the IF stage, unaffected by the
hazard. Addinghe miss penalty aftdroop_2’s pipeline behavior has beenatuated

results in an werestimation of one cycle fdroop_2’s entire WCET.

3.3.2 FirstMiss Transitions in Best Case

The timing analyzer uses a slightly different approachnte>fm transitions for best

case. Theworst-case method for handling these transitions cannot be used in best case
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Inner Loop Instructions Best-Case Pipeline Diagram

inst 13: st %2, [ Ygl] stage
inst 14: add %1, 4, %gl IF | ID | EX |FEX| CA |WB FWB
inst 15: cnp %1, %93 cycle| 1 |13
inst 16: bl L19 2 14 | 13
inst 17: sub %2, 1, %92 3 | 15|14 13
4 16 | 15| 14 13
Worst-Case Pipeline Diagram 5 | 16| 15| 14 13
stage 6 16 15 14
IF | ID | EX |[FEX| CA |WB FWHBH| 7 16 15| 14
cycle| 1 |13 8 |16 15
2 14 | 13 9 16
3 15| 14 | 13
4 16| 15| 14 13 13 | 16
5 16| 15| 14 13 14 | 17| 16
6 17 | 16 | 15 14 15 17
7 17 15| 14 16 17
8 17 15 17 17
9 17 18 17
10 17

Figure 14: Pipeline diagrams for First Miss Transition

because it may cause a smalkrestimation, and best-cas@etestimations result in
invalid timing predictions. In the case bbop_2 in Fig. 14, instruction 16 is again a
first miss in both loop lels. Thebest-case approach considers the instruction to be a
missin the pipeline, in order to allous to eploit as much pipelineverlap as possible

in 1 oop_2. When the timing analyzewauatesl oop_2 in the context of oop_1,

the miss penalty isubtractedrom each iteration after the first.

However, as in worst case, the miss penalty does notagé represent the dédrence
between her mary cycles the first miss instruction 16 spends in the IF stage when it is
viewed as a hit and when it is viewed as a miss. In Fig. 14, although the miss penalty is
nine cycles, instruction 16 only spends eight additiogales in the IF stage when it
misses in cache, because of the structural hazard between instructions 13 and 14.

Subtracting the miss penalty fromoop_2's second through last iterations, when
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instruction 16 is a hit, will cause an underestimation of giméeqger iteration.Hence,

the BCET for the first entirexecution ofl oop_2 will be underestimated by 9 cycles.

3.3.3 FirstHit Transitions in Vdrst Case

A less common type of instruction categorization transition that requires special
attention in worst-case analysis is ongolwing a missor first missinstruction in an
inner loop categorized asfiast hitat the ng&t higher level. Considerthe short program
shavn in Fig. 15. For this example, the cache configuration hae tmes of four
instructions each. The static cache simulator detects that instructiof Uh{n) is a

first miss within the context of that function. Since a function only has one iteration, its
first miss classification is equaent to being an alays miss. In addition, instruction O

is determined to be a first hit in the context of the loop insmien() . Instructions O

and 1 offun() and instructions 0 and 1 afai n() comprise program line O,

C Source Code SPARC Instructions Program Line Cache Line

voi d fun() 0 retl 0 0
{ 1 nop 0 0

return;

}

mai n() 0 save %sp, (-96), ¥%sp 0 0
{ 1 nov %90, % 0 0 0
int i; 2 add %0,1,%0 1 1
L19: 3 call _fun, 0 1 1
for (i =0; i < 10; i++) 4 nop 1 1
{ 5 cnp %0, 10 1 1
fun(); 6 bl,a L19 2 0
} 7 add %0,1,%0 2 0
} 8 ret 2 0
9 restore 2 0

Figure 15: Program Containiriss -> First Hit Instruction
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instructions 2-5 ofrai n() comprise program line 1, and instructions 6-9vaf n()

make up pogram line 2. Program line O arvies into cache whenrai n() begins
execution. Thecall tof un() is made from an instruction that maps to program line 1.
When control transfers frommai n() ’s instruction 4 to the functiohun() , ther et |
instruction is already in cachédowever, after control returns torai n( ), reference to
instruction 6 causes cache line 0 to beraritten because program line 2 also maps to
cache line 0.When the loop iterates a second tifnen( ) is called agin. Butthis time
when ther et | instruction is referenced, program line O must replace program line 2 in
cache line 0, which means thagt | instruction is a cache miss. Because of this cache
conflict betweeri un() and the loop imai n() that calls it, program lines 0 and 2 will
repeatedly alternate occupation of cache line 0. Thus, while instructiohuhin) is a

hit in cache during the first iteration of the loopnmi n(), it is a mss for all of the
nine remaining iterationsConsequentlythe static cache simulator concludes that this
instruction should be classified as a first hit when viewed in thextaoitehe loop in

mai n() . Itis necessary to detect that thet | instruction will only be a cache miss
the first time it is referenced. The timing analyzaenen computing thexecution time

of fun(), realizes that such a categorization transition exists and that the function is
being called from inside a loopin this situation the timing analyzer considers the
instruction as &it in the pipeline when analyzirfgun() in worst case and will add the

miss penalty only to the second through final iterations of the loop that aal(s .

3.3.4 Adjustmentto Worst Case

Occasionally there is a situation in a program in which a loop being timed contains more

paths than the maximum number of iteratiois can occur when a function has
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multiple paths since a function oniferates once. Fig.16 shows a function that
contains three paths. The instruction cache was reconfigured to contain 32 lines of four
bytes each. There is one instruction per cache line, and the entire function fits in cache.
As a result, eery instruction inf un() is classified as a first mis§able 8 shows the

result of the timing analysis of the functierfiree paths. When analyzing Path 1, all of

its instructions are first misses encountered for the first tifhe. combined miss penalty

from all seven instructions in the path is 63yaes. Pipelineanalysis of Path 1

determined that, had all the instructions been hits, xbeugon time would hee been

C Sour ce Code | nst Assenbl y Code
int fun (i) 0 cnp %00, %g0
int i; 1 bne,a L14
{ 2 cnp %00, 1

if (i ==0) 3 retl
return 25; 4 nmov 25, %00

else if (i == 1) 5 bne L15

return 50; 6 nop

el se 7 L14: retl
return 75; 8 nmov 50, %00

} 9 L15: retl
10 nmov 75, %00

Figure 16: A Function with Multiple Paths

Table 8: Path Information Pertaining to Functiomn() in Fig. 16

Path List of WCET if newly WCET if newly
Number Instructions encountered fm = miss | encountered fm = hit
1 0,1,2,5,6,9,10 74 11
2 0,1,2,5,6,7,8 29 11
3 0,1,2,3,4 27 9
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11 cycles: 7 cycles due to thevee instructions each occupying the pipeline stages for
one cycle apiece, plus the 4 cycles required to drain the pip&lisding the combined
miss penalty results in a total of 7¥ictes. Rith 2 contains only twinstructions (7 and

8) that were not encountered in Path &ialysis, and Path 3 similarly contains onlyotw
first misses (instructions 3 and 4) not encountered in Paths 1 dhd @n() is called

from a loop, during wrst-case analysis the first misses will be encountered during the
first three iterations After the third iteration, each subsequent calf ton() will take
eleven ¢ycles.

Since the timing analyzer operates in a bottom-up marindoes not knw that
fun() is being called from a loop until it begins to analyze that loop. If the timing
analyzer does not detect the situation that a loop or function being timed has more paths
than iterations, then an underestimation in the WCET prediction may result. The longest
path inf un() takes 74 gcles when all first misses are misses, and 11 cycles when the
are hits. The timing analyzewhen discoering a loop that call§ un() , would use 74
cycles as the functioa WCET during the first iteration, and 1%ates for the remaining
iterations. Havever, it is possible that after txersing Rath 1 during the first call to
fun(), the function may use Path 2 during the second ddlus, the second call of
fun() will take 29 gcles, not 11 cycles, resulting in an underestimation ofyt&s.

A potentially underestimated WCET result is not acceptable.

The timing analyzer employs a simple procedure to handle this situation. It calculates
a base timdor the loop by finding the longest path where all first misses are treated as
hits. Anadjust valudas calculated that is equal to the number of first misses in the entire
loop times the cache miss penalhen viewing the inner loop or function from an

outer loop context, thadjust valuewill be added only to the first iteration of the outer
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loop. For example, according toable 8, the base time féun() is 11 cycles and the
adjust \alue is 99 cycles (elfen first misses multiplied by the nine cycle miss penalty).
If fun() is called from a loop, the timing analyzer computes the first caluty ) to

take 110 cycles, and then 11 cycles for each subsequent iterdtiaiming so, the timing
analyzer is assessing the miss penalty frganyefirst miss in the function the first time

it is invoked, thereby @oiding a WCET underestimation on the second and third calls to
fun(). Howeve, if the loop callingf un() has only one or tw iterations, then the
timing analyzer will @erestimate the loog’ime, since in reality not all dfun() ’s first

misses would be encountered.
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CHAPTER 4

TIMING ANALYSIS RESULTS

This chapter discusses the accyratthe timing analyzes predictions of best-case and

worst-case ¥ecution time.

4.1 TheSimulator and &st Programs

The easeernvironment creates an instrumenteaautable file that imokes a smulator at

each basic block in the program [10, 1Tfhe simulator traces thexeution of the
program and counts the number of clock cycles elapsed taking into consideration the
SFARC instruction set and cache configuratidrhis author modified the existing cache
simulator withineaseto support measurements thatdakto account the Micro¥RC

I’s ppeline behsaior. In addition, the modified simulator assumed a much smaller
instruction cache, eight lines of sixteen bytes (four instructions) per line, than the
MicroSFARC I's 4K ache in order to obsezvcaache conflicts that would be more
common in larger programs. Six simple programs were selected to assess the
effectveness of the timing analyzeA description of these programs iv@i in Table 9.
Column 2 gves the size of the assembly code for each program, assuming that an
instruction occupies four bytesFor example, the Matcnt program contains 203
assembly instructions, so its code size is 203 * 4 = 812 bytes.programs are each

four to seenteen times larger than the 128-byte caclmlumn 3 shows that each
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Table 9: Test Programs

Num Num - .

Name Bytes | Functions Description or Emphasis
Des 2,240 5 Encrypts and decrypts 64 bits
Matcnt 812 8 Counts and sums nonnegative values in a 100x100 integer matrix
Matmul 768 7 Multiplies two 50x50 integer matrices
Matsum 644 7 Sums nonnegative values in a 100x100 integer matrix
Sort 556 5 Bubblesort array of 500 integers into ascending order
Stats 1,428 9 Std. dev. & corr. coef. of two arrays of 1000 floating point values

program was highly modularized to illustrate the handling of timing predictions across

function calls.

Assessing the accunacof the timing analyzer requires comparing the timing
analyzers (static) prediction with the simulatsr(dynamic) measured time. Since the
MicroSFARC | has a clock speed of 50 MHz [1], one can multiply the numberatésc
by 20 nanoseconds to obtain an actual real-world YiBince the recution time of
different programs can @& widely, it is useful to consider theatio of the timing
analyzer$ estimated cycle time to the simula®rtbsened time. Of course, the best
possible timing prediction awld yield a ratio of 1, when the estimated and oleskry
times are the same. In the worst-case analysis one finds ratios greater than one, meaning
that the timing prediction is arverestimate, being somewhat pessimistic wenaot
being &act. Analogouslyfor best-case analysis, one should find a ratio less than or

equal to 1 indicating an underestimation akaition time whener the exact time

cannot be precisely determined.

To recognize the utility of the timing analyzene can compare its estimated ratio to

5 The number of cycles ggn by the timing analyzer does not &lnto account such issues as data caching and utility func-

tions. Alldata cache accesses are assumed to be hits. Library functions pucmtg () are assigned a time of O cycles.
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a naive ratio: whatthe ratio would hee keen without performing either the pipeline or
instruction cache analysis or neithén particular, when assessing the timing analyzer’
predictions of WCET considering only pipelining, theveagxeution time assumes that

all instruction accesses are hits and eaebwging instruction takes the number gtles
necessary to complete all of its pipeline stages with veolap with the instructions

before or after it.For a typical integer instruction, this means that it cannot enter the IF
stage until the preceding instruction has left the WB staljee nave WCET for
combined pipeline and cache analysis considers all instruction assesses to be misses and
assumes that no pipelingenlap exists between instructionBest-case nae exeution

times are computed by considering all cache accesses as hits and assuming the maximum
possible werlap between instructions. Thus, for all three types of analysis, a pragram’
nave BCET is equal to the minimum number of instructions that couldxbeuted. In

order for the timing analyzer to be a useful tool, the estimated ratios should be

significantly closer to 1 (t@ard a perfect prediction) than the respeetnive ratios.

4.2 PipelineDnly

Table 10 shows the results of thgeline onlyanalysis for the six test programs listed in
Table 9. The wrst-casepipeline onlytiming analysis had exact predictions for all
programs rcept Desand Sort The analysis of these twprograms depicts problems
faced by all timing analyzers. The timing analyzer did not accurately determine the
worst-case paths in a function withidesprimarily due to data dependencies.longer

path deemed feasible by the timing analyzer could not be taken in a function due to a
variable’s value in ani f statement. Thé&ort program contains an inner loop whose

number of iterations depends on the coungerable of an outer loop. At this point the
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Table 10: Test Program Results for Pipeline-only Analysis

Name Best Case Worst Case
Observed | Estimated | Estim. | Naive || Observed | Estimated | Estim. | Naive
Cycles Cycles Ratio Ratio Cycles Cycles Ratio Ratio
Des 34,837 15,684 0.45 0.36 66,594 68,254 1.02 3.82

Matcnt 1,013,307 | 1,013,207 1.00 0.38 1,063,572 | 1,063,572 1.00 2.38
Matmul 4,347,541 | 4,347,541 1.00 0.33 || 4,347,806 | 4,347,806 1.00 2.13
Matsum 913,275 913,175 1.00 0.35 933,540 933,540 1.00 2.28
Sort 11,158 4,174 0.37 0.32 3,380,660 | 6,748,925 2.00 8.13
Stats 447,478 447,477 1.00 0.41 900,231 900,231 1.00 1.70

timing tool either automatically reass the maximum loop iterations from the control-

flow information produced by the compiler or requests a maximum number of iterations

from the user Yet, the tool would need a sequence aties representing the number of

iterations for each wocation of the inner loopA similar scenario to what happens in

Sortis a nested loop such as this one:

for (i =0; i < MAX; ++i)
for (j =0; j <i; +4j)

/* body of |oop */
}

in which the total number of times the body of the inner loopviskied is goproximately
Y(MAX 2). In worst-case analysis the number of inner loopaations would be MAX
and in best case the number ofacations would be MAX.Consequentlythe number

of iterations performed was/errepresented onvarage by about aattor of two for this

specific loop during worst-case timing analysis. The error for best case is potentially

more extreme because the timing analyzer assumes the inner loop will iterate only once

for each iteration of the outer loopNote that both of these problems are encountered by

other timing tools and va rothing to do with the pipeline analysis.

42



The timing analyzer predicted the best-capeline onlyperformance oMatmuland
Statsexactly. The times reported favlatcntand Matsumwere both underestimated by
100 cycles (about 0.01%) because a data dependpon entering an inner loopas
discounted by th&acant cyclemethod described in the previous chapféne only way
to detect this dependenas a lazard would be to kmo more information about the
inner loop than just the beginning shape of its unidhe best-case times f@resand
Sort were more substantially underestimated for the same reason thabtbiecase
analysis was\@restimated: multipléoop paths in which the dynamigzegution takes a
different path based on thvalue of a variablen the program, which cannot be easily

determined by static analysis.

4.3 Cachénly

As reported in [5], thénstruction caching onlyiming analysis results gen in Table 11
are quite accurate. This analysis had exact predictiongldmul and Statssince there
were no conditional constructs except to exit loops. Besides looping constructs, the

program Matsumhad only onei f -t hen construct to check if array elements were

Table 11: Test Program Results for Cache-only Analysis

Name Best Case Worst Case

Observed | Estimated | Estim. | Naive || Observed Estimated Estim. | Naive

Cycles Cycles Ratio Ratio Cycles Cycles Ratio Ratio

Des 59,998 19,345 0.32 0.21 142,956 163,015 1.14 3.86
Matcnt 929,073 929,073 1.00 0.41 1,169,055 1,259,055 1.08 3.79
Matmul 1,527,648 | 1,527,648 1.00 0.94 1,527,648 1,527,648 1.00 9.36
Matsum 687,219 687,219 1.00 0.47 707,219 707,219 1.00 4.85
Sort 10,439 3,901 0.37 0.35 7,639,611 | 15,253,902 2.00 8.17
Stats 372,410 372,410 1.00 0.49 372,410 372,410 1.00 4,90
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nonn@aive. Thus,Matsun®s caching behavior was also predictecetly. The Matcnt
program used an anf - t hen- el se construct to either add a nomagve \alue to a

sum and increment a counter for the number of ngaive dements or just increment a
counter for the ngative dements. Theadding of the nonmgtive value to a sum as
accomplished in a separate function, which was purposely placed in a location that
would conflictwith the program line containing the code to increment a counter for the
negdive dements. Multipleexecutions of tha hen path, which includes the call to the
function to perform the addition, still required more cycles than alternating between the
two paths. “et, the static cache simulator assumes that the first reference to a program
line within a path would alays be a miss if there were accesses toatimer conflicting
program lines within the same loop. This assumption simplified the algorithm since the
effect of all combinations of paths did notveatb be @lculated. Asa result, one
reference was counted repeatedly as a miss instead of &hmt.path was xecuted
10,000 times and accounted for a 90,000 cycle [10,000*miss penalty] or an 8%
overestimation. Theexecution of this single path accounted for 40.61% of the total
instructions referenced during theeeution of the program. The progra@gsandSort

had werestimations in the predicted WCET and underestimations in the predicted BCET

caused by the same problems described previously fgipglke&ne onlymeasurements.

4.4 CombinedAnalysis Results

The intgratedpipeline and caging analysis also resulted in quite tight predictions, as
shavn in Table 12.Again the predictions for the progranvatmul and Matsumwere
very accurate. Note that the worst-case estimated cycles was slightly greater than the

obsered gcles for both of these programs. Thigestimation was due to the problem
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Table 12: Test Program Results for Pipeline and Cache Analysis

Name Best Case Worst Case
Observed | Estimated | Estim. | Naive || Observed Estimated Estim. | Naive
Cycles Cycles Ratio Ratio Cycles Cycles Ratio Ratio
Des 65,615 22,247 0.34 0.19 149,706 169,613 1.13 5.02

Matcnt 1,549,095 | 1,548,798 1.00 0.25 1,769,321 1,859,323 1.05 3.69
Matmul || 4,444,666 | 4,420,068 0.99 0.32 || 4,444,911 4,445,413 1.00 4.98
Matsum || 1,257,239 | 1,157,240 0.92 0.26 1,277,465 1,277,477 1.00 4.08
Sort 19,957 4,428 0.22 0.18 7,765,648 | 15,504,693 2.00 10.78
Stats 607,399 601,406 0.99 0.30 1,016,048 1,016,145 1.00 3.12

of an instructiors caching behavior changing between loogels. Thischange requires
an adjustment as described in Section 3.3.1. This approach treats the instruction as a hit
in the pipeline analysis and simply adds the miss penalty to the total time. When the
instruction should be viewed as a hit at an outegellehen this miss penalty ag
subtracted and an accurate estimation is obtaiktvever, in these tvo programs the
potential @erlap between the miss penalty and a load hazard saslinot detectedln
particular, Matmul had 50 miss penalties completelyedapping with stalls from an
integer multiply instruction and another 52 missesrapping with a one-cycle load
hazard, resulting in the 502 cycleerestimation. Thecause of the \@restimation in
Statswas dmilar, due to the presence of long-running floating-point instructfonke
Matcnt Des and Sort programs had its usuav@estimations due to a cache conflict,
data dependencies, and an inaccurate number of estimated loop iterationsyebspecti

For the benchmark programs with little conditional controfléatcnt Matmul,

Matsumand Stats the BCET forpipeline and caging analysis vas within 8% of the

8 In order to mak an eact prediction in these situations, the timing analyzer would need to store a different union of the loop
in which the instruction is considered a miss in the pipeline. The amount of information required would become unwieldy if there
aren instructions within the loop that e afm=>fm transition: it would need to storé @nions of the loop, thus making the algo-
rithm too compl& to be pactical.
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dynamically observed time. The underestimation was largely due to a situation in which
an instruction is classified as a first miss in both an inner and outer loop, and when the
instruction is a hit in cache, it spends an exyrelecin the IF stage because of a data
hazard inolving the previous instruction. The timing analyzer treats the instruction as a
miss in the pipeline, and makes sure the miss penalty is only applied the first time the
program references the instruction by subtracting the miss penalty from all subsequent
references in the nested loopgain, one can achie an exact prediction by storing
pipeline information abouboth cases (whether an instruction classified as a first miss
should be treated as a miss or hit in the pipeline) for each first miss in the pipadine, b
just as in worst case, this would potentially mean storingcparential amount of data,
making the algorithm werly inefficient. In Matcnt some of the underestimationas

also due to the use of tMacant cyclemethod to ignore a data dependendien in fct

a hazard took place when the prograxeaited. TheBCET of Des and Sort were
significantly underestimated just as in fipeline onlyanalysis, again because of data
dependencies and an inaccurate number of loop iterations.

Many real-time programs are larger than the ones listed in Table 9 that were analyzed
for obtaining the results described in this chapliére timing analyzer is most accurate
when a test program has no conditional contraV,flao data dependencies and when the
number of loop iterations can be predicted at compile-time. But larger programs will
likely contain conditional control flg more data dependencies and more loops in which
the number of iterations cannot be determined staticalynsequently the timing
analyzers performance will typically be more similar to prograiesand Sortthan to
the other four programsTo adress the question of Wwowell the timing analyzer can

evduate a larger program, the author created a program which subsumed all six test
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programs plus a me nmai n() function which called each subprogram in turhhis
program occupied 6572 bytes, 51 times the size of the simulated dactie worst-
case analysis, the simulated and estimayetk counts were each 85 cycles greater than
the sum of the simulated and estimated values for the six prograemsigiTable 12,
and the Estimated Ratio was 1.48. This ratesvinfluenced most by the subprogram
Sortsince its own estimated ratio and totaéaiting time were both much greater than
those of the other fevsubprograms.

The benefit of integrating the pipeline and instruction cache analysis is shown in
Table 13. Had the analyses been handled independendywould anticipate a greater
oveaestimation in predicting WCETance the cache miss penalty would notvédhe
opportunity to eerlap with a pipeline stall, as depicted in Fig. 1. The effect of an
independent analysis strategy would be to add the cache miss penalty to the total time of
a path when an instruction is predicted to be a miss and treat the instruction as a hit in
the pipeline. As a result, the test programs would/éddeen oerestimated, on\aerage,

by an additional 3%.

Table 13: Ratios for Overlapped versus Independent Analysis

Name Estim. Ratio With Estim. Ratio With
Overlapped Analysis | Independent Analysis
Des 1.133 1.174
Matcnt 1.051 1.057
Matmul 1.000 1.000
Matsum 1.000 1.016
Sort 1.997 2.029
Stats 1.000 1.082
average 1.197 1.226

a7



CHAPTER 5

USER INTERRCE

Vpo can automatically determine the minimum and maximum number of iterations of
mary loops in real-time programd-owever, if the compiler cannot statically determine
the loop bounds, the timing analyzer will query the user for théfterwards, the
analysis proceeds as before, and when finished the timing analyakesira gaphical

user interface that is depicted in Fig. 17.

Figure 17: Timing Analyzer User Interface
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The useiinterface is a tool allowing the user to quickly obtain informatioreaked
by the timing analysis. It can provide the calculationsvedrduring timing analysis
concerning the BCET and WCET of paths, loops and entire programs [8/\VI#&n the
user interface is running, the user sees three wiadm the screen. The main windo
on the left allows the user to request timing predictions at variees:ldor functions,
loops, paths and subpaths consisting of a sequence of basic blocks, and ranges of
individual source instructions.For example, one can request an analysis of one
particular loop, and then choose one of the paths through that loop. The timing
predictions for BCET and WCET appear in the main wimdd'he middle windw
depicts the C source code and the right wmdlbows the corresponding assembly code.
Wheneer the user selects a different construct in the main windlee highlighted lines
in the source and assembly windows are simultaneously updated and scrolled to the
appropriate position. The user int&ck also permits the user to use the mouse to select a
portion of source code as a way to request a particular path to highlight and analyze.

While the design and implementation of the tin&grface are described elgleere
[12], the timing analyzer supplies the timing estimates and pipeline diagrams for it.
Within the timing analysis tree, which is the major data structure thatviysea to
evduate an entire program, are the nodes representing loops and function instances.
Each loop has a list of itxecution paths, and with each path is stored its BCET and
WCET. The useiinterface can query the user for a path within the loop he wishes to
considey and merely look up thexecution times for that path that veadready been
stored.

For the situation in which the user wants thxeaution times for a subpath, the user

interface can call a routine within the timing analyzer to compute either the BCET or
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WCET of those blocks that comprise the subpath. The routine in the timing analyzer
that computes thexecution time of a path can be passe® parameters denoting the
starting and ending block numbers of a subpath, plasatiditional parameters which
denote the starting assembly instruction within the first block of the subpath and the
ending instruction within the last blockDefault values for the instruction numbers
indicate that the user wants the blocks that comprise the subpath to be timed in their
entirety while default values for block numbers mean that the entire path is to be
evduated. Theuser-interhce obtains these parameters and passes them to the timing
analyzers path-timing routine which returns the appropriakecaition time. To satisfy

the users request, the usenterface needs to call this routine twice: once to obtain the
WCET and a second time to obtain the BCET.

The timing analyzes routine to compute a path’execution time also creates a
pipeline diagram similar to the ones depicted in Fig. 18. If the user selects a path or
subpath containing no child loops or function calls, then the interfaes e user the
option to viev the pipeline diagram created by the timing analyzer for that section of
assembly code. If the user tells the dseéerface to produce a pipeline diagram, the
user-interbce will call the path-timing routine to create the pipeline diagram as it is
processing the instructions in the path (or subpath) in the manner described in Section

3.1.
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Figure 18: Pipeline Diagrams as Shown in User Interface
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CHAPTER 6

RELATED WORK

There has been much work on the issue of predictieguéion time of programsMost
approaches in the pastearot dealt with the déct of pipelining and instruction caching
[13, 14, 15]. There heae dso been some recent studies on predicting pipeline
performance by Harmoet. al.[16] and Narasimhan and Nilsen [1et, these studies
did not address caching issJeEurthermore, the former study was limited to nonnested
functions and the latter study required the sequencexafuted instructions to be
known. Finally there has been some recenbrkv on predicting instruction caching
performance. Liet. al. [18] used an integer linear programming approach to model
instruction cache bekir. Arnold et. al. [5] implemented a timing analysis system to
tightly bound instruction cache performandg¢owever, these approaches did not address
pipelining issues.

There has been only one previous study that attempted to address the issue of
predicting the WCET of programs on machines with both pipelining and an instruction
cache. Limet. al.[19] described a method based on an extension of a previous timing
tool [20]. Lim’s method differs quite significantly from the approach described in this

thesis. Itbullds on flov analysis techniques found in optimizing compilensim’s

" Harmon assumed the entire codgreent would fit into cache. Thus, he assumed at most one miss for each cache reference.
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method uses a timing schema associated with each souetddaguage program
construct. The stored information about a predetermined number of cycles at the head
and tail of a reseation table produced as a result of the pipeline analysis on the
instructions associated with a program construlet. addition, this method stored
information about the set of memory blocks whose first reference depends upon the
cache contents prior to thgeeution of the constructLim also stored the set of memory
blocks known to remain in cache after theaution of the constructEventually this
timing information is concatenated with another construct thatildv be e&ecuted
immediately before the current construct. Their timing analyzer attempteditamthe

head of the reservation table of the current construct with the tail of theatsernable

of the other construct as much as possilhlié&ewise, the list of memory blocks kwo

to be in cache aftemxecuting the other construct is used to adjust the time of the current
construct by comparing this list to the list of first reference blocks in the current
construct. Thisnethod stored multiple paths for conditional constructs, such ag-an

t hen- el se. They pruned or eliminated a particular path when @swfound that the
worst-case xecution time of the path was faster than the best-cassugon time of
another path within the same construct.

There are some limitations with Lisymethod. Theaccurag of their results is
limited by the length of the head and tail of the reson table stored with the program
constructs. The concluded that the length of this head and tail only had to lge lar
enough to contain information for &v gycles. This conclusion was based on
experiments indicating that their timing analysis results did not change significantly
when the length was increased furtheloweve, there are some instructions that require

mary cycles. For instance, a floating-point division on the MicroSPARC | can require
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up to 56 cycles to complete [1]. If such an instruction were at the end of a construct,
then mag more than fie integer instructions at the head of a feliog construct could
be overlapped with the floating-point wsion. In addition, their method stores
information about each stage faregy cycle in the head and tail of the reservation table.
In contrast, our method requires much less information and imposes no limit on the
length of the potential pipelineverlap. Onlythe relatve dstance from the lggnning
and end of the path has to be stored for each stage for the structural hazard pipeline
information as shown by the numbers represented in Tables 3 and 4.

The approach that Lirat. al.used to analyze caching behavior limits the acquohc
the analysis.They used a single bottom-up pass when performing the timing analysis of
a pogram. Thecaching behavior of a large percentage of the instruction fetches within
a onstruct would be unknown until manf the surrounding constructs were processed.
Their approach was to treat the instruction fetch as a hit within the pipeline and add the
cycles associated with a cache miss penalty to the total time of the construct. When it
was later found that an instruction referencaswa hit, thg would subtract the miss
penalty from the total timeHowever, an overestimation may result when the instruction
is not found in cacheAs shown in Fig. 1, the instruction fetch miss penalty of one
instruction (instruction 1) can be completely hidden by a stall with a long running
instruction (data hazard stall on instruction ¥yhether the fetch of instruction 1 was a
hit or a miss wuld hare ro efect on the total number oycles. TheLim method would
rarely detect instruction fetches that wouldvals be misses until the surrounding
constructs are analyzed, which is after the pipeline analysis of a construct has already
occurred. Theapproach taken in this thesis, as described in Chapter 2, gbaateg

the caching behavior of each instruction before the timing analysis, allows the detection
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of such situationsFor instance, th@ipeline and calting estimated ratio for the six test
programs increased onaiage by about 3% when the complete miss penadty aways

added for each predicted miss.
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CHAPTER 7

FUTURE WORK

Enhancements to the timing analyzer are ongoi@me goal is to mak the tool
retagetable, so that if a user wishes to obtain timing estimates on a different processor
all that would be necessary is a modification of the input file to the timing analyzer (see
Fig. 2). While the performance of the timing analyzer described in this thesss w
compared to a simulator of the MicroSPARGE ilistruction cache and pipeline, it will

also be beneficial to compare the timing predictior@sresy measurements obtained from

a logic analyzer running the test programs on a MicroSPARC | proceBse@nsure that

the timing analyzer can g estimates accurate for the MicroSPARC I, additional
hardware features, such as wrap-around filling of cache lines and data caching, need to
be taken into consideration.

The MicroSPARC | employs a wrap-around fill method of loading words into its
cache upon a cache miss [Hach line in the instruction cache contains eight words or
32 bytes. These words are grouped into four pairs. When a cache miss occunrslon w
w, eight words includingw, properly aligned, are loaded from main memoiye words
are inserted into the cache line one at a tiffiee first word that arvees in the cache is
w, seven ¢ycles after the miss occurred. During the eighth cycle, the word paireawvith
eitherw + 1 if wis even or w - 1 if wis odd, is brought into cache. The ninth cycle is a

dead cycle; no word is written. The next pair obrds is then loaded into cache,
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followed by another dead/ce, and so on until the entire line has been loaded. As an
example, consider Table 14, a situation in which requesting word 5 results in a miss.

As a result of the wrap-around filling of the cache lines, the miss penalty is not
constant, in contrast to the assumption in this thesis that the miss penaltgyis @he
cycles. For example, suppose that three instructions, which map to word numbers 5, 6
and 7, respeatély, within the same cache line, argeeuted. Ifreferencing word 5
causes a miss, then the entire line will be loaded into caldie instruction mapping to
word 5 will suffer a miss penalty of #cles, and the instruction mapping to word 6 will
itself be delayed tw cycles. Inaddition, a branch may transfer control to an instruction
in the same cache lingror instance, if referencing avd O results in a miss, and a
branch is then taken to word 7, the instruction mappingdaw will experience a 9
cycle delay.

Unlike instruction caching, magnof the addresses of references to data can change
during the ®ecution of a program, making the task of boundimgcation time more
challenging. Hwever, mary of the data references are kvim For instance, static and
global data references do retain their same addresses duringethéan of a program.

Due to the analysis of a function instance tree (no recursion allowed), addresses of run-

time stack references can be statically determined when the addresses may vary for

Table 14: When Cache Words Are Loaded If Word 5 Causes a Miss

cache word 0 1 2 3 14|65 6 7
cyclewhenloaded | 13 | 14 | 16 | 17 | 8 | 7 | 10 | 11
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different irvocations of the same function. Compilenilanalysis can be used to detect
the pattern of mancalculated references, such as indexing through an. aviénie the
benefits of using a data cache for real-time systems will probably not be as significant as

using an instruction cache, its effect on performance should still be substantial.
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CHAPTER 8

CONCLUSION

This thesis has presented a technique for boundingxtizaiteon time of programs on
machines with pipelining and instruction cach&gst, a static cache simulator analyzes
the control flev of a program to statically categorize the caching behavior of each
instruction in the program.Second, a timing analyzer uses these instruction
categorizations when analyzing the pipeline performance of a path of instructions.
Third, the timing analyzer uses a concise representation of the pipeline information to
accurately concatenate the performance of paths infiareef manner when predicting

the performance of loopsFourth, the tool uses a timing analysis tree to predict the
performance of an entire prograrginally, a user interface allows users to obtain bounds
on portions of the programThe simulated results shothat the method of analysis,
which takes into account the processogdpeline and instruction cache befa
simultaneouslyleads to tight bounds on thgeeution time of programs. In the case of
worst-case analysis, detecting thestap of pipeline hazards and cache missesiges

tighter predictions than performing the timing analysis of both features independently.
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ABSTRACT

Recently designed machines contain pipelines and instruction caches. While both
features provide significant performance advantagesy H&o pose problems for
predicting e&ecution time of code segments in real-time systems. Pipeline hazards may
result in multicycle delays. Instruction or data memory references may not be found in
cache and these misses typically requikerse cycles to resol. Whetheian instruction
will stall due to a pipeline hazard or a cache miss depends on the dynamic sequence of
previous instructionsxecuted and the memory references performiegrthermore, these
penalties are not independent since delays due to pipeline stalls and cache miss penalties
may overlap. Thisthesis describes an approach for predicting eegion time of lage
code segments on machines that exploit both pipelining and instruction caching. First, a
method is used to analyze a programontrol flov to gatically categorize the caching
behaior of each instructionNext, these categorizations are used in the pipeline analysis
of sequences of instructions representing paths within the proghatiming analyzer
uses the pipeline path analysis to estimate xbeugion time of each loop and function in
the program.Finally, a gaphical user interface isvioked that allows a user to request
timing predictions on portions of the program. The results indicate that the timing
analyzer diciently produces tight predictions of best-case and worst-case performance

on machines with pipelining and instruction caching.



