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CHAPTER 1

INTRODUCTION

Users of real-time systems are not only interested in obtaining correct computations
from their programs, but timely responses as wé&ksponses that arevgn past a
deadline is not acceptablé\ real-time system is often comprised of a set of tasks that
are statically scheduledlherefore, it is necessary to determine a progsasecution

time statically It is unrealistic to attempt to predict a precisee@ition time for gery
real-time program since thexeeution time often depends upon input values whose
influence on the prograsy control flov is unknovn until the program »xecutes.
Consequentlyinstead of trying to dere a #ngle execution time, a more pragmatic
approach is to calculate upper (worst-case) and lower (best-case) bounds on the
execution time. Real-time programmers tend to be more interested in thrstwwase
execution time (WCET), rather than the best-caseetion time (BCET), because of the
notion of real-time deadlines. In otheomds, a task that completes too early is not as
much of a concern as a task that finishes too late.

This dissertation discusses research in timing analysis tadertighter WCET and
BCET predictions. A previous \ersion of a timing analyzer focused on architectural
features, specifically integrating the analysis of pipelining and instruction caching [1, 2].
One could rtend this implementation to taknto account additional hardware features.

However, the author belies that addressing machine-independent issues in timing



analysis will hae a geater and longer-lasting benefit than merely focusing on the
architecture. N architectural features are beingvé®ped at a rapid pace. Thus, it is
difficult for timing analysis research to keep up with the latest hardware fea@nethe

other hand, en if a timing analyzer perfectly models a processoachitecture,
significant WCET werestimations and BCET underestimations can still result because
of dependences on data values that can constrain the number of loop iterations and the
set of paths that can be &kin a program.Two types of constraints will be discussed in

this dissertation:loop iteration constiints that influence the number of iterations of
loops, andbranch constraintsthat indicate whether or not a particular branch will be
taken or fall through.When the terntonstraintappears hereafter in this dissertation, it
shall mean both types of constraints collegy. This dissertation describesvadhese
constraints in a program can be automatically detected and exploited to tighten the
execution time predictions.

The remainder of the dissertation will proceed as Wadlo Chapter2 examines
related work in the area of predictingeeution time. Chapter 3 presents the context in
which the timing analyzer was originally designed with respect to its input/output and
ancillary softvare. Chapter4 discusses the work on loop iteration constraints to
calculate the number of loop iterations accurately and automatic@hapter 5
describes the other extension to the timing analyzer pertaining to detecting and
exploiting branch constraintsChapter 6 briefly summarizes the major results of the
timing analysis. Chapter 7 describes futurerkv and Chapter 8 presents the

conclusions.



CHAPTER 2

RELATED WORK

Predicting &ecution time of programs is an emerging area of research in real-time
systems. Initialvork in this area concentrated on analyzing source progréuschner

and Koza [3] associated the number of machine cycles to individual C statements or
consecutre gatements not containing conditional controifloNiehaus [4] shaed hav

the eecution time can correspond to basic blocks after intermediate code generation.
Pak [5] created an Information Description Language so that the user could specify the
number of loop iterations or that &wsource code statements musgeaute in the same
path. Havever, dl these studies ignored hardwardeets. Ower time, timing analysis
research encompassed the study of architectural features, such as pipemnidre

and caches [6, 7, 8, 9, 10, 2]. More recent research is concerned wittependences

on data values can constrain paths and thereby influence the pgratntion time.

The major difference between the work described in this dissertation and the related
work performed elsewhere is the way in which the number of loop iterations and the
branch constraints are made known to the timing analy@drer research groups that
use constraint information require the user to painstakingly enter this information [9, 11,
12]. Chapterst and 5 will describe he this information can instead be automatically
detected by a compiler and exploited by a timing analyzer.

Many existing timing analyzers require that a user specify the number of iterations of



each loop in the program. This specification may be requested intelsagti3, 9].

Thus, each time the timing analyzer igaked for a program, the bounds foveey loop

in the program must be specified, which is error prone and tedious for the user
Alternatively, one could specify this information as assertions in the source code to
prevent repeated specifications of the same information [14H8}wever, there are still
several disadantages. Firstthe user is still required to write the assertio®econd,
there is no guarantee that the user will specify the correct minimum and maximum
iterations. Thigproblem may easily occur when a user changes the loop, but forgets to
update the corresponding assertidiso, code generation strategies, such as whether to
place instructions for the loop exit condition code at thgirtmeng or end of the loop,

may cause the number of loop iterations to vary by one iterafiamser should only be
required to amine the source code and not be required tavkihe code generation
stratgyies of the compiler Finally, compiler optimizations, such as loop unrolling, may
affect the number of times a loop iterates. Inhibiting different code generatiorg&sate

or compiler optimizations to more easily estimate loop bounds would sacrifice
performance, which is quite undesirable.

Other previous wrk in timing analysis has been accomplished using constraint-based
systems. Liet al.[15, 9] developed an Implicit Path Enumeration (IPE) technique that
used Integer Linear Programming (ILP) to sobonstraints about the program to obtain
timing predictions. The cost functionas a sum of terms of the forqxi, where for
each blocki, C is the eecution time of the block and X, is the number of times the
block executes. Theirapproach uses structural constraints based on the pregram’
control flov and functional constraints entered by the user that deal with the number of

times that each The work of Ottosson and Sjodin [11] extended the IPE technique by
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using finite domain constraints to model the architectural features of the dmardw
However, in both approaches these constraints were entered manually by thehisbr
is both a tedious and error-prone task.

Recent wrk by Ermedahl and Gustafsson [16], Lundqgvist and Stenstrom [17] and
Liu and Gomez [18] use abstract interpretation and symbxdtugon to automatically
derive mary branch constraints. These approaches are quitneenbol, but efectively
requires simulating all paths of a loop faresy loop iteration. Thus, these approaches
require significant analysisverhead, which would be undesirable when analyzing long
running programs.

Wilhelm, Ferdinancet al. [19, 20, 12] hae dso contributed to the area of timing
prediction that uses constraint§hey separate timing analysis into owdistinct phases:
cache analysis and path analysidhe purpose of this partition is to use ILP only to
perform the path analysis. Their cache analysis is based on the princigtpee in
[21]. Their path analysis technique is similar to that ofettial, requiring the user to
enter the constraint€Even though theirerall approach is powerful and yields accurate
WCET bounds, the ILP phase may be inefficient to implement in practice.

Much tighter bounds on the WCET and BCET can result when a timing analyzer
incorporates information about the program related to loop iteration and branch
constraints. Allof the approaches thuarfproposed to extend timing analysis to include
the exploitation of constraints Y& d@ther required the user to enter this information
manually and/or required significant analysisveshead. It would be much more
convenient for the user if a timing analyzer could automate the process of detecting and
exploiting such constraints in an efficient manng&his is the major moigtion of this

dissertation.



CHAPTER 3

FRAMEWORK FOR THE RESEARCH

The timing analyzer described in this dissertation is part of a amtpackage that has
been under delopment by seeral researchersvar the past f& years. Thispackage
consists of an optimizing compiler callego [22], a static instruction cache simulator
and a timing analyzer with a graphical user irdeef Figurel depicts an werview of
the approach for predicting theeeution time of code segments or entire programs on
machines with pipelines and instruction cach&able 1 outlines the work that has been
accomplished for the timing analysis environment.

Control-flov information, which could he dso been obtained by analyzing
assembly or object files, is stored as the side effegp@s compilation of one or more
C source files. This control-fls information is passed to the static cache simuylator

which ultimately categorizes each instruct®mbtential caching behavior based on a

C Control Flow Timing ' User Timing
Source andConstraint [ -
Files Information nalyzer | Interfac Predictions

Cache Static Instruction Machine User
) . Cache Caching Dependen Timing
Configuratior] Simulato! Categorizations | Information Requests

Figure 1: Overviw of the Timing Analysis Environment



Table 1: Work Accomplished for Timing Analyzer

Module Lines Student Contributors Purpose

Provides information on control flow,
compiler | 64,000 loop iterations and branch
constraints.

Provides instruction cache
Frank Mueller

static categorizations.
cache 15,000
simulator Randall White Provides the data cache

categorizations.

Bounds execution time based on

Robert Arnold . .
instruction cache performance.
timing Bounds execution time based on
analyzer | 19,000 | Christopher Healy pipelining, wrap-around-file cache,
loop iteration and branch constraints.
Randall White Boqus execution time bases on data
caching.
user Lo Ko, Provides WCET and BCET for user-
interface | 10,000 | Emily Ratliff, selected code portions. Warns user if
Nagham Al-Yagoubi timing constraints can be violated.

given cache configuration. The caching behavior of an instruction is assigned one of
four categories, described in Tables 2 and 3, for each lgelgrievhich an instruction is
contained. Theheory and implementation of static cache simulation is described in
more detail elsghere [21, 23, 2, 24, 25]. The timing analyzer uses the instruction
caching categorizations to determine whether an instruction fetch should be treated as a
hit or a miss during the pipeline analysis of a path. The timing analyzer also reads a file
that specifies the harcnre’s instruction set pipeline characteristics in order to detect
structural and data hazards between instructions.

Given a pograms oontrol-flow information and instruction caching ocgéeizations



Table 2: Definitions of Worst-Case Instruction Categories

Instruction Category | Definition According to Behavior in Instruction Cache

always miss The instruction is not guaranteed to be in cache
when it is referenced.

always hit The instruction is guaranteed to always be in cache
when it is referenced.
first miss The instruction is not guaranteed to be in cache on

its first reference each time the loop is executed, but
is guaranteed to be in cache on subsequent refer-
ences.

first hit The instruction is guaranteed to be in cache on its
first reference each time the loop is executed, but is
not guaranteed to be in cache on subsequent refer-
ences.

Table 3: Definitions of Best-Case Instruction Categories

Instruction Category | Definition According to Behavior in Instruction Cache

always miss The instruction is guaranteed to not be in cache
when it is referenced.

always hit The instruction may be in cache every time it is refer-
enced.
first miss The instruction is guaranteed to not be in cache on

its first reference each time the loop is executed, but
may be in cache on subsequent references.

first hit The instruction may be in cache on its first reference
each time the loop is executed, but is guaranteed to
not be in cache on subsequent references.

along with the processarinstruction set information, the timing analyzer then\asri
best-case and worst-case estimates for each path, loop and function within the program.

A timing analysis tree is constructed, where the each node of the tree corresponds to a



loop or function in the function instance graph. Each node is considered a natural loop.
A node that represents a function instance is treated as a loop that will itcaetly e
once when enteredThe loops in the timing analysis tree are processed in a bottom-up
manner In other words, the WCET and BCET for a loop are not calculated until the
times for all of its immediate child loops are ko This means that the timing
analyzer determinesxecution time for programs by first analyzing the innermost loops
and functions, and proceeding to higheveleloops and functions until it reaches
mai n() .

The \ersion of the timing analyzer described in this dissertation is an extension of an
earlier timing tool [25, 2, 26] that bounded instruction cache and pipeline performance.
When the timing analyzer has completed its analysisyakas a gaphical user intedce
[27] allowing the user to request timing bounds for portions of the progrénese
portions may be at gnone of seeral levels of the analysis: the entire program, a
function, loop, code section, path, sub-path or ranges of instructions. Some of the
research that has been associated with the timing analyaegh not directly related to
this dissertation, includes analysis of data caches [28, 29, 10], wrap-around fill
instruction caches [10] and partitioning controlflon cases where the number of paths
is arbitrarily large [30]. Excerpts of this dissertation, including a concise description of
the algorithm and results, can be found in [31, 32].

A description of the programs used to test the timing analyzeves gi Table 4. Six

of these programsDes Matcnt Matsum Matmul Sort and Stats were used in the

1 A natural loop is a loop with a single entry blodk/hile the static simulator can process unnatural loops, the timing analyzer
is restricted to only analyzing natural loops since it would be difficult for both the timing analyzer and user to determine the set of
possible blocks associated with a single iteration in an unnatural loop. It should be noted that unnatural loops occur quite infrequent-

ly.



results of the original timing analyzefhe remaining programs were added to the test
suite to illustrate situations of various constraints that are described in Chapters 4 and 5.
The programs printed in boldface in Table 4 are publishedumerical Recipes in C
[33, 34]. The code size of all programs ranged from 22 to 668 assembly instructions,
with an aerage of 211 instructionsThe reason whthe programs in the test set are
relatvely small was so that it auld be feasible for the author to determine manually the
actual worst-case and best-case input data.

For each program a direct-mapped instruction cache configuration containing 8 lines
of 16 bytes was usedt was assumed that a cache hit required one cycle, a cache miss
required ten ycles, and all data cache references were assumed to be hits. This is the

same cache configuration that has been used/anasgrevious timing analysis studies

Table 4: Test Programs

Name Description or Emphasis
Des Encrypts and decrypts 64 bits
Expint Computes an exponential integral
Fresnel Computes non-complex Fresnel integrals
Gaujac Computes Abscissas and Weights of a 10 point Gauss-Jacobi quadrature formula
Hes Reduces a 100x100 matrix to Hessenberg form
Integ Evaluates a double integral over a trapezoidal region
Interp Polynomial interpolation of 500 points
LU Performs LU Decomposition on a 100x100 matrix
Matcnt Counts and sums nonnegative values in a 100x100 integer matrix
Matmul Multiplies two 50x50 integer matrices
Matsum Sums nonnegative values in a 100x100 integer matrix
Sort Bubblesort array of 500 integers into ascending order
Sprsin Converts a 20x20 integer matrix into row-index sparse storage mode
Stats Std. dev. & corr. coef. of two arrays of 1000 floating point values
Summidall Sums the middle half and all elements of a 1000 integer vector
Summinmax | Sums the min. and max. of corresponding elements of two 1000 element vectors
Sumnegpos Sums the negative, positive and all elements of a 1000 integer vector
Sumoddeven | Sums the odd and even numbered elements of a 1000 integer vector
Sym Tests if a 500x500 matrix is symmetric
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[25, 26, 31].

The implementation of the timing analysis environment includes about 19,000 lines
of C source code in the timing analyzer itself (14,000 written by the author), plus other
modules depicted in Figure 1. The compilgatic cache simulator and the algebraic
solver were implemented by other researchers at FE&Jadbtain results that inggate
instruction cache and pipeline effects, the author hadqusely amended a traditional
cache simulator [35]. This modification required about 2,000 lines of source code.

Assessing the accunaof the timing analyzer was accomplished by comparing the
timing analyzers (static) prediction with the simulater’ (dynamic) measurements.
Since the gecution time of diferent programs can differ widelit is useful to consider
theratio of the timing analyzes estimated cycle time to the simula®ibsened time.

Of course, the best possible timing predictioould yield a ratio of 1, when the
estimated and observed times are the same. In the worst-case analysis one finds ratios
greater than one, meaning that the timing prediction isvarestimate, being somat
pessimistic whenexr not being &act. Analogouslyfor best-case analysis, one should

find a ratio less than or equal to 1, indicating an underestimatiomeotiteon time
wheneer the exact time cannot be precisely determined.

Table 5 shows the results f@adce Onlyanalysis and Table 6\gs the results when
both caching and pipelining are analyzed. These resulig #ie state of the timing
analyzer before work on the dissertation wagupe 10 recognize the utility of the
timing analyzer one can compare its estimated ratio to avenaatio: whatthe ratio
would hare keen without performing ananalysis. HBble 5 shows that cache analysis

can provide much tighter bounds on theegeition time versus the na ratios.
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Table 5: Results for Cache-Only Analysis

Worst-Case Results
Name Observed Naive Naive Cache Only | Cache Only
Cycles Cycles Ratio Cycles Ratio
Des 149,706 770,142 5.144 398,604 2.663
Expint 58,217 2,933,194 | 50.384 2,004,151 34.426
Fresnel 47,749 106,121 2.222 73,199 1.533
Gaujac 786,786 1,579,588 2.006 1,153,123 1.466
Hes 55,834,609 | 686,873,410 | 12.302 | 404,879,389 7.251
Integ 22,538,082 99,585,206 4.419 54,544,607 2.420
Interp 25,469,403 | 107,183,344 4.208 75,543,529 2.966
LU 23,055,832 | 791,692,885 | 34.338 | 420,919,578 18.257
Matcnt 1,769,321 6,525,017 3.688 3,262,463 1.844
Matmul 4,444 911 22,122,016 4977 9,370,402 2.108
Matsum 1,277,465 5,214,645 4.082 2,401,380 1.880
Sort 7,672,281 80,913,015 | 10.546 38,220,912 4.982
Sprsin 28,339 188,294 6.644 76,838 2,711
Stats 1,016,048 3,168,159 3.118 1,852,107 1.823
Summidall 15,340 212,207 | 13.834 104,108 6.787
Summinmax 16,080 201,179 | 12.511 102,089 6.349
Sumnegpos 11,067 159,137 | 14.379 78,065 7.054
Sumoddeven 15,092 195,343 | 12.943 96,181 6.373
Sym 2,747,654 71,752,986 | 26.114 24,673,698 8.980
Average 7,734,420 99,019,784 | 11.993 54,723,917 6.414
Best-Case Results
Name Observed Naive Naive Cache Only | Cache Only
Cycles Cycles Ratio Cycles Ratio
Des 65,615 12,559 0.191 19,183 0.292
Expint 125 29 0.232 102 0.816
Fresnel 181 43 0.238 151 0.834
Gaujac 45,270 12,117 0.268 34,104 0.753
Hes 306,733 4,427 0.014 13,301 0.043
Integ 19,160,842 2,510,015 0.131 2,532,560 0.132
Interp 6,485,878 47,509 0.007 119,590 0.018
LU 12,883,939 216,528 0.017 232,782 0.018
Matcnt 1,549,095 383,241 0.247 1,020,783 0.659
Matmul 4,444,666 1,429,980 0.322 1,774,995 0.399
Matsum 1,257,239 323,214 0.257 957,111 0.761
Sort 19,966 9,600 0.481 9,888 0.495
Sprsin 17,436 7,313 0.419 15,701 0.900
Stats 607,399 182,312 0.300 417,230 0.687
Summidall 15,340 7,015 0.457 7,069 0.461
Summinmax 13,080 12,013 0.918 12,058 0.922
Sumnegpos 9,067 8,010 0.883 8,037 0.886
Sumoddeven 94 59 0.628 63 0.670
Sym 160 38 0.238 137 0.856
Average 2,467,480 271,896 0.329 377,623 0.558
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Table 6: Results After Adding Pipeline Analysis

Worst-Case Results

Name Observed Cache Only | Cache Only | + Pipelining | + Pipelining

Cycles Cycles Ratio Cycles Ratio
Des 149,706 398,604 2.663 172,509 1.152
Expint 58,217 2,004,151 34.426 1,293290 22.215
Fresnel 47,749 73,199 1.533 48,887 1.024
Gaujac 786,786 1,153,123 1.466 790,116 1.004
Hes 55,834,609 | 404,879,389 7.251 130,574,296 2.339
Integ 22,538,082 54,544,607 2.420 30,023,163 1.332
Interp 25,469,403 75,543,529 2.966 50,701,362 1.991
LU 23,055,832 | 420,919,578 18.257 124,577,237 5.403
Matcnt 1,769,321 3,262,463 1.844 1,861,150 1.052
Matmul 4,444,911 9,370,402 2.108 4,448,212 1.001
Matsum 1,277,465 2,401,380 1.880 1,279,322 1.001
Sort 7,672,281 38,220,912 4.982 15,251,603 1.988
Sprsin 28,339 76,838 2,711 28,664 1.011
Stats 1,016,048 1,852,107 1.823 1,016,128 1.000
Summidall 15,340 104,108 6.787 18,090 1.179
Summinmax 16,080 102,089 6.349 17,080 1.062
Sumnegpos 11,067 78,065 7.054 13,068 1.181
Sumoddeven 15,092 96,181 6.373 16,112 1.068
Sym 2,747,654 24,673,698 8.980 5,481,220 1.995
Average 7,734,420 54,723,917 6.414 19,347,974 2.631

Best-Case Results
Name Observed Cache Only | Cache Only | + Pipelining | + Pipelining

Cycles Cycles Ratio Cycles Ratio
Des 65,615 19,183 0.292 22,247 0.339
Expint 125 102 0.816 118 0.944
Fresnel 181 151 0.834 172 0.950
Gaujac 45,270 34,104 0.753 44,566 0.984
Hes 306,733 13,301 0.043 14,006 0.046
Integ 19,160,842 2,532,560 0.132 12,808,073 0.668
Interp 6,485,878 119,590 0.018 143,064 0.022
LU 12,883,939 232,782 0.018 284,011 0.022
Matcnt 1,549,095 1,020,783 0.659 1,548,798 1.000
Matmul 4,444,666 1,774,995 0.399 4,420,068 0.994
Matsum 1,257,239 957,111 0.761 1,167,140 0.923
Sort 19,966 9,888 0.495 19,950 0.999
Sprsin 17,436 15,701 0.900 17,379 0.997
Stats 607,399 417,230 0.687 601,406 0.990
Summidall 15,340 7,069 0.461 8,072 0.526
Summinmax 13,080 12,058 0.922 13,062 0.999
Sumnegpos 9,067 8,037 0.886 9,049 0.998
Sumoddeven 94 63 0.670 63 0.670
Sym 160 137 0.856 160 1.000
Average 2,467,480 377,623 0.558 1,111,653 0.741
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Likewise, Table 6 shows momuch tighter the WCET and BCET predictions become
when pipeline analysis is add@dhe nave WCET considers all instruction accesses to

be misses and assumes that no pipelireelap exists between instruction8est-case

nave exeution times are computed by considering all cache accesses as hits and
assuming the maximum possibieedap between instructions. Thus, a programgive

BCET is equal to the minimum number of instructions that couldkbeuged. Inorder

for the timing analyzer to be a useful tool, the estimated ratios should be significantly

closer to 1 (tward a perfect prediction) than the respeetmive ratios.

Tables 12 and 22 later in this dissertationvsttoe further tightening of the WCET and BCET based on theanalysis de-
scribed in this dissertationTable 23 summarizes all the worst-case and best-case ratiosvenyrievel of analysis so that the reader
can mak quick comparisons.
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CHAPTER 4

OBTAINING TIGHT BOUNDS OF LOOP ITERATIONS

This chapter discusses general methodg loop iteration constraints are automatically
calculated. Mosbf a progranms execution time is spent inside of loops, so to be able to
predict the WCET and BCET of a program, one mustktie number of iterations that

can be performed by the loops in the program. Under certain conditions, such as a loop
with a single exit, man compilers statically determine the exact number of loop
iterations [22]. Besides timing analysis, applications for determining this number
include loop unrolling [36], softare pipelining [37], and exploiting parallelism across
loop iterations [38]. When the number of iterations cannot be exactly determined, it
would be desirable in a real-time system towribe lower and upper iteration bounds.
These bounds can be used by a timing analysis tool to more accurately predict BCETs
and WCETs.

Several existing timing analyzers require the user to manually enter the number of
iterations for each loop, which is a tedious and error prone process. It would be more
appropriate to hae the compiler automatically and efficiently determine the bounds for
each loop in a program when possible. This chapter describes three approaches that
support timing analysis by bounding the number of loop iterations. First, an algorithm is
presented that determines a bounded number of iterations for loops with mudtiple e

Second, support is provided for loops whose number of iterations is dependent on loop-

15



invariant variables. Finallya method is gien to acurately predict thevarage number

of iterations for inner loops, whose number of iterations varies depending upon the
values of counter variables of enclosing outer loopd.three of these approaches are
efficiently implemented and result in less work for a usére last approach also results

in tighter timing analysis predictionsThese approaches were implemented by
modifying thevpo compiler [22] to analyze loops and this loop analysis information is

passed to a timing analyzer [25, 26, 29] to predict performance.

4.1 Boundindterations for Loops with Multiple Exits

This section presents a method to determine a bounded number of iterations for natural
loops with multiple rits. The method includes the following steps. (1) First, the
conditional branches within the loop that can affect the number of loop iterations are
identified. (2)Next, the compiler calculates when each of the identified branches can
change its result based on the number of loop iterations perforf@edfterwards, the

range of loop iterations when each of these branches can be reached is detg@hined.
Finally, the minimum and maximum number of iterations for the loop is calculated.

These steps are described in the following subsections.

4.1.1 Branchegéffecting the Number of Loop Iterations

Some terms are modefined to facilitate the presentation of the methossngin this
chapter A more complete description of these terms can be found elsewhereA39].
basic blo& is a sequence of instructions with a single entry point at the beginning and a
single exit point at the endA natural loop is a loop with a single entry poinfThe
headerof a natural loop is the single basic block where the loop is entdradsitions

from within the loop to the header are callextk edges Block A dominateslock B if

16



evay path from the initial node of the controlWagraph to B has to first go through A.

For instance, the header block of a natural loop dominates all other blocks in the loop.
Likewise, block Bpost-dominateblock A if all control paths from block Aventually

lead to block B. A block aways dominates and post-dominates itsefor this
dissertation, the number of loop iterations is defined to be the number of times the
header is xecuted once the loop is entered [25].

Figure 2(a) contains the code for & 6 function that will be used to illustrate the
algorithm for calculating loop iteration bounds for loops with multiplése Figure2(b)
depicts the RTLs, representing SPARC assembly instructions, thabdltempiler has
generated for this function(No delay slots hae keen filled in order to simplify the
example.) Figur&(c) explains the R notation used. The loop consists of basic blocks
2,3,5,6,7,and 8. The header of the loop is block 7.

An iteration branchin a loop is a conditional transfer of control, where the choice
between the tev outgoing transitions can directly or indirectlyfedt the number of loop
iterations. Theiteration branches in the loop that can directly affect this number are
branches that va (1) a transition to a basic block outside the loop or (2) a transition to
the header block of the loop or to a block that is post-dominated by the .h&acksion
branches that can indirectly affect the number of loop iterations are those branches
whose tvo auccessors are post-dominated by different iteration branches. Figure 3
shavs an algorithm to calculate the set of iteration branthesa loop. The wrst-case
complity of the algorithm isO(Bz), whereB is the number of basic blocks in the loop.
However, the average complexity would be closer @(B) since iteration branches that
indirectly affect the number of loop iterations are not common.

The algorithm shan in Figure 3 identifies block 5 as containing an iteration branch

17



mai n()

{

int i, j;

extern int somecond;

for (i =0, j =

1, i < 100; i++, j +=3)

if (j > 75 & sonecond || j > 300)

br eak;

(a) Source Code

r[ 10] =0;
r[9]=1;

PC=L18;

r[11] =H [ _somecond] ;

19 |1 C=r[ 9] ?75;
PC=I C<=0, L21;

'

r[8]=R[r[11] +L(g _sonecond]]; 3

| C=r[ 8] ?0;
PC=l C==0, L21;

17 | PC=RT, 4]
| C=r [ 9] 2300;

L21 | pcel o0, L17; 5
r{10] =r[ 10] +1; 6
r[9]=r[9]+3;

L1g |1 C=r[10] 2100; 7
PC=l C>=0, L17;

| PC=L19; 8

(b) Corresponding

SPARC Instructions

r[9]

r[10]

Hl [ <addr ess>]

LJ <addr ess>]

R[ <addr ess>]

| C=<i tenp?<itenp,

PC=I C<r el op>0, <I abel >;
PC=RT,;

PC=<I| abel >;

: dlocated for variable j

: dllocated for variable i

: high portion of address

: low portion of address

: integer memory reference
: comparison

: conditional branch

:return

: unconditional jump

(c) Explanation of RTL Notation in Figure 2b)

Figure 2: Example Loop with Multiple Exits
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/1 Find the iteration branches that can directly affect the number of iterations.
I={}
FOR each block B in the loop LDO
| F (B has two succs S1 and §2 THEN
IF (S10L) OR (S20L) OR (S10OPostDom(Header(L)) CR
(S2 O PostDom(Header(L)) THEN
I=10B
END | F
END | F
END FOR

/1 Find the iteration branches that can indirectly affect the number of iterations.
DO
FOR each block B in the loop LDO
| F (B hastw succs S1 and §2 AND (B 11) THEN
| F (there exists J,KI1) AND (J#K) AND (S10PostDom(J) AND
(S20Postbom(K) THEN
I=1OB
END | F
END | F
END FOR
WHI LE (ary change to)

Figure 3: Finding the Set of Iteration Branches for a Loop

since it has a transition to block 6, which is post-dominated by the loop h&ideks
3, 5, and 7 are identified as having iteration branches singeh#ive a transition to
block 4, which is not in the loop. Block 2 is added to the set of blocks containing
iteration branches since it can transfer to either block 3 or block 5, whiehkan
identified as containing iteration branches. In other words, block 2 can indirdetty af
the number of iterations of the loop.

Once the blocks containing iteration branches for the loae leen identified, a
precedence is established that represents the order that these blocks cuted en
ary given iteration of the loop.This precedence relationship can be represented as a
Directed Acyclic Graph (BG). Thenodes in the BG represent the blocks containing
the iteration branches anddwdditional nodesgontinueandbreak Figure 4 shows the

DAG depicting the precedence relationship between the blocks containing iteration
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branches from Figure 2. The construction of ti&can conceptually be accomplished

by starting with the graph representing the loop, replacing all back edges with transitions
to continue replacing each transition out of the loop with a transitiorbreak and
collapsing all nodes that do not represent iteration branches.actual implementation

of the DAG construction started with only nodes representoaogtinue break and

blocks containing iteration branches and used domination and post-domination
information to establish the edges between the nodes. This algorithm is essentially a sort

and require@(lz) complexity, wherel is the number of iteration branches in the loop.

4.1.2 WherEach lteration Branch Changes Direction

In this subsection a technique is presented that calculates when each iteration branch can
change its result based on the number of loop iterations perforited.technique is
similar to those used by other compilers that can calculate the number of iterations of a

loop with a single exit [22]For each iteration branctipoderives the information shwn

2 break

break 5

continue break

Figure 4: Precedence Relationship between Iteration Branches in Figure 2
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in Table 7. When all of the requirements listed in Table 7 are satisfied, the iteration
branch is classified dsmown Otherwise, the iteration branch is classifieduaknown

Note that detection ofinknowniteration branches in a loop does not mean that the
number of iterations of a loop cannot be boundé&tking the deried values, the
compiler applies Equation 1 to straightforwardly calculate on which iteratiorthat a
knowniteration branch will change direction.Table 8 shas the values dered for the
example in Figure 2.The iteration branch in block 3 is classifiedusdnownsince the
variablesomecond is not a basic inductionaviable. Thecompleity of this algorithm

is O(l), wherel is the number of iteration branches, since each iteration branch need only
be examined once.

_ Oimit; — (initial, + beforg) + adjust El+ 1

N:
' beforg + after, 0

(1)

In addition, various checks ¥at be made in case the iteration branch wilvays or
never be stisfied. Thesehecks depend on whether timait is greater or less than the
initial value, whether the sum of theeforeandafter values are greater or less than zero,
and the relational operator used in the compariséigure 5 shows tw loops that
require special checks. The implementation detects that the loop in Figurexifga) e
after a single iterationRecall that the timing analyzerdefinition of the number of
iterations is the number of times that the loop header block (i.e. téstingl00 in the
example) is gecuted once the loop is entered [29]he loop in Figure 5(b) is classified
as unboundedsince the loop may wmer exit depending on he overflow of negdive

integer values is handled.
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Table 7: Information Calculated for Each Iteration Branch

Term Explanation Requirement
variable | The control variable on which the | The control variable must be a basic induc-
branch depends, which is the vari- | tion variable, which is a variable v whose
able being compared in the block | only assignments within the loop are of the
containing the iteration branch. foomv := v £ c where c is a constant
[39].
limit The value being compared to the | The limit must be a constant. Section 4.2
variable in the block containing the | describes how this requirement can be re-
branch. laxed.
relop The relational operator used to com- | The initial description requires that the rela-
pare the variableand the limit. tional operator be an inequality operator (i.e.
<, £, 2, and >). Subsection 4.1.5 explains
how this restriction is relaxed to handle more
accurately the equality operators (i.e. == and
I=).
initial The value of tr13e variable when the | The initial value must be a constant. Sec-
loop is entered. tion 4.2 describes how this requirement can
be relaxed.
before | The amount by which the variableis | The amount by which the control variable is
changed before reaching the itera- | incremented or decremented must be a con-
tion branch in each iteration. stant and these constant changes must %c-
cur on each complete iteration of the loop.
after The amount by which the variableis | The amount by which the control variable is
changed after reaching the iteration | incremented or decremented must be a con-
branch in each iteration. stant and these constant changes must oc-
cur on each complete iteration of the loop.
adjust | An adjustment value of 0 or 1, which
compensates for the difference be-
tween relational operators (e.g. <
and <).
Table 8: Derved Information for Each Iteration Branch in Figure 2
branch variable register | limit | relop | initial | before | after | adjust class N
block 2 || j r[9] 75 <= 1 0 3 1 known 26
block 3 || somecond r[8] 0 == N/A 0 0 N/A unknown | N/A
block 5 || j r[9] 300 > 1 0 3 1 known 101
block 7 || i r[10] 100 >= 0 0 1 0 known 101

3 This value is found by searching backwards in the controf fitr assignments teariable The search starts with the
preheadermwhich is the block that has a transition to the loop header and is not in the loop.

*1n other words, the basic blocks containing these changes must domirgtpredecessor block of the header that is in the
loop.
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for (i =0; i > 100; i++) for (i =0; i < 100; i--)
A A
(a) A Loop That Exits Immediately (b) A Loop That May Never Exit

Figure 5: Tvo Loops Requiring Special Checks

4.1.3 WherEach lteration Branch Can Be Reached

The next step is to determine the iterations on which it is possibletate each node

of the DAG. This information is recorded as a range of iterations and a range is attached

to each node and edge. ThA®is processed in a preorder manner (i.e. all predecessors

of a node are processed before the node is processed). Calculating these ranges requires
O(l) complexity, wherel is the number of iteration branches. The head of tA6

assigned the range [¢]. All other nodes are assigned a range that is the union of the
ranges of all incoming edge3.he outgoing edges of a nodare assigned ranges using

one of the following tw rules:

(1) If iteration branch is known thenrelopi and the direction of the increment (i.e. the sign of
before+aftern) is used to determine which edge is taken on the Rrst iterations. That
edge is assigned the range that is the intersection Nf-[f.and the range of node The
other outgoing edge is assigned the range that is the intersectidincof and the range of
nodei. If a range assigned to an outgoing edge is entipgyn this edge corresponds to an
infeasible transition and is deleted from the@

(2) If iteration branchi is unknown then both outgoing edges are assigned the same range as
nodei.

Figure 6 shows the BG of iteration branches in Figure 4 with the range of possible
iterations for each node and edge also depicted. Nodeskmgthniteration branches
are marked with & and unknowniteration branches are marked withJa Iteration
branch 7 will tak the transition to branch 2 on the first 100 iterations. Note this iteration

range of [1..100] corresponds to theriablei 's value range of [0..99]. At this point, all
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1..
(1..100 L1 \[\101.901
2 K break
26,100 [1..100]
3 U
1..25
[26..100] [1..25]
[26..100 [26..100]
break 5
1.100] [1..100]
continue

Figure 6: DAG of Branches with Ranges of Iterations

values of variables he keen abstracted as ranges of loop iterations. Node 3 isthark
with a U to denote that its iteration branchusknown Thus, its tvo outgoing edges
have ranges that match the range in node 3. Noderahsition to abreakis deleted

since the range associated with that transition is empty (i.e. the transition is not possible).

4.1.4 Determininglinimum and Maximum lterations

The ranges of iterations associated with each node and edge dh@eab be used to
calculate the minimum and maximum number of iterations for the |dopdetermine

the minimum and maximum iteration value for each iteration branch, &@ 3
processed in a postorder manner (i.e. all successors of the node are processed before the
node can be processed), which requi@$) complexity wherel is the number of

iteration branches. The minimum and maximum iteration values for the root node of the
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DAG will be the minimum and maximum iteration values for the entire loop. Figure 7

defines the notation used in this subsectiblote that the range has been calculated

using the rules defined in Subsection 2.3.

The following rules are used to assign minimum and maximum iteration values to

edges.

(1) If an edge is to &reak then both theedge_exit_mirand edge_exit_maare assigned the
value of edge_range_min(If there is a transition to break then the loop can only mak
that transition once.his is the only point wherelzoundedvalue can be introduced since
these are the only points where the loop can exit.
(2) If an edge is to aontinue then theedge_exit_mimndedge_exit_maxalues for that edge
are marked aanboundedwhich will be denoted by “. (Thesetransitions do not supply
ary information about when the loop exits.)
(3) Otherwise, the incoming edge is to a node representing an iteration branch and the

edge_exit_mirand edge_exit_maxalues assigned to the edge depend upon one of three
possible relations between the range of the edge and the iteration values of thEhesde.

[edge_range_min..edge_range_max]
<edge exit_min, edge_exit_max>

<node_exit_min, node_exit_max>|

edge_range_min: lowest loop iteration when this edge can be reached
edge_range_max: highest loop iteration when this edge can be reached
edge_exit_min: first iteration when this edge may lead to a break
edge_exit_max: first iteration when this edge must lead to a break
(on subsequent iterations it must also lead to a break)
node_exit_min: first iteration when this node may lead to a break

node_exit_max: first iteration when this node must lead to a break
(on subsequent iterations it must also lead to a break)

Figure 7: Notation Used in Rules for Assigning Iteration Values
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relations and the corresponding edge assignments are depicted in Tebieetample, the
edge assignment whaerode_exit_mirsatisfies case 1 ambde_exit_masatisfies case 2
would be <edge_range_mimode_exit_max Casel depicts that theedge_exitis set to
edge_range_migince this is the first iteration the edge can beetsd when the edge may
lead to abreak Case 2 shows that tleglge _exits set to thenode_exitwhen it is within the
range of iterations that the edge i®e@uted. Cas@ illustrates that thedge_ exiis set to
unboundedvhen there is no iteration on which the edge will beensed after the edge can

lead to abreak
The following rules are used to assign minimum and maximum iteration values to
nodes.

(1) Thenode_exit_mirior a node is set to the smallest of Hureinded edg _exit_minvalues on
the outgoing edges of the node or is denotedri®undedf both outgoing edges ka
unbounded edy exit_minvalues. (Thesmallest value represents the first possibilityxiv e
the loop.)

(2) If the iteration branch associated with a node is classifikd@sn then thenode_exit_max
for the node is set to the smallest of thmunded edg exit maxalues on the outgoing
edges or is denoted asboundedf both outgoing edges kia unbounded edg exit_max
values. (Thdoop has to exit when it will encountebeeak)

(3) If the iteration branch associated with a node is classifiecurdsiown then the
node_exit_mafor the node is set to the largest of Huge exit_maxaues on the outgoing
edges of the node or is denoteduadoundedf either outgoing edge has ambounded
edge_exit_maxalue. (Usethe largest &lue when it is not guaranteed that the node will
actually reach the exit associated with a lower value.)

Table 9: Rules for Assigning Iteration Values to an Incoming Edge

. Edge_Exit
Case Condition Test Assignment
1 ° node_exit < edge_range_min edge_range_min

2 o edge_range_min <= node_exit && node exit

node_exit <= edge_range_max -

3 () edge_range_max < node_exit —

——— [edge_range_min..edge_range_max]
° node_exit (i.e. node_exit_min or node_exit_max)
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Figure 8 shows the sameAB as in Hgure 6, but with minimum and maximum
iteration \alues assigned to edges and nodes. The pair of values represented on the
edges and in the nodes are the minimum and maximum iteration values, velgpecti
Node 5 and its incoming edges are assigonaboundedvalues since there is no
transition to ebreakfor the range of loop iterations in which yhare executed. Node3
is assigned a minimum iteration value of 26 since that is the first possible iteration at
which the node can teka tansition to areak Node 35 maximum iteration value is
unboundedsince node 3 iteration branch is classified amknownand there is no
guarantee that the transition to threakfrom node 3 will @er be aken. Theminimum
and maximum iterations for the entire loop is 26 and 101, respgctince these are

the iteration values in node 7, which is the root exit condition.

7 K
<26,101>
<26,_> \(5101,101>
2 X break
<26, >
<26, >
3 U
<, >
<26, > ——
<26,26> <, >
break 5 K
<_,_>
<_,_>
continue

Figure 8: DAG of Iteration Branches with Minimum and Maximum Iterations
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4.1.5 lteratiorBranches Using Equality Operators

As stated in @ble 7, an iteration branch using an equality operator (i.e. == ords) w
initially described as alays being treated as amknownbranch. Thismay result in
looser but safe iteration bounds for loops containing these iteration brancDes.
reason for not addressing iteration branches that use the equality operators isythat the
may cause loop iteration ranges to become noncontiguous and would complicate the
algorithms for bounding the number of iteratioridowever, in mary cases iteration
branches with equality operators can be handled using only contiguous ranges of
iterations. er instance, Figure 9(a) contains a loop with an equality operator that the
implementation was able to successfully boutie implementation classifies iteration
branches with equality operators &smown when the following three additional
requirements to those specified in Table 7 are satisfied. (1) Mest, gath ending in a

back edge in the loop must include the iteration bramggure 9(b) shows arxemple

for (i =0; ; i++) {
if (i <100 && sonecond)
. ) ) conti nue;
for (i =0; i !'=100; i++) if (i == 50)
A br eak;
}
(a) Bounded Loop (b) Potentially Unbounded Loop
for (i =0; i !'=100; i += 3)
A
(c) Unbounded Loop

Figure 9: Examples of Loops with Iteration Branches Using Equality Operators
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of a loop that may notxecute the test for equality on the iteration in which the loop
could «it. (2) Next, one of the outgoing transitions of the iteration branch with an
equality operator must be tadbaeak (3) Finally, the following expression, which is part

of Equation 1, must result in an integral value.

limit; — (initial; + before)
before + after,

In other words, thevariable must equal thdimit of the iteration branch on some
iteration. Figured(c) depicts a situation where thariablei will be assigned values (O,

3, ..., 99, 102, ...) that will skipver thelimit (100).

4.2 Non-Constantoop-Invariant Number of Iterations

Sometimes a bounded number of iterations for a loop cannot be determined since the
loop exit conditions imolve the values of ariables. Taditionally, timing analyzers hae
resohed this problem by requiring a user to specify the maximum number of iterations
for a loop interactiely [13, 9] or as an assertion in the source code [14, 3].
Unfortunately there is no guarantee that the user will specify the correct number of
iterations. Compilersmay emply different code generation strategies or compiler
optimizations that can affect the number of loop iterations. Thues, &n atute user
may incorrectly specify the number of loop iterations.

All of the variables on which the number of loop iterations depend are frequently
loop invariant. In this case, a loop-uariant expression is calculated to represent the

number of loop iterationsEssentially the technique is to use Equation 1 defined in
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Subsection 4.1.2, relaxing the requirement thatlithé and initial values hae  be
constants. Figurd0 shows an»ample function and corresponding SPARCLR.
(Some other compiler optimizations, such as loop strength reductiom nbiayet been
performed to simplify thexample.) Inthis example, the control variable for the loop is
r[ 13] and the limitis [ 12] , which is loop iwvariant. Theblock preceding the loop is
examined to determine the value associated with the limit, whiclxganeled in the

following steps:

r{12] # from instruction 12
r[9] +r[10] # from instruction 5
r{9]+Rr[10]+LO _n]] # from instruction 4
r[9)+R[HI[_n]+LQ _n]] # from instruction 3
m+n

iR E

The rayisterr [ 9] has been allocated to thggamentm whose value was also passed
to the function in the samegister The compiler remembers the register and the blocks
where each Vie range of a local variable or argument is allocated t@stex Thus, the
compiler was able to associate thgiseerr[ 9] with the agumentm and that the
memory reference is to the globanablen. The timing analyzer uses Equation 1 to
generate a symbolic expression (containing the lcmahllemand global ariablen) to

represent the number of iterations.

N = Uimit — (initial + before + adjustg+ 1

0 before+ after 0
Cm+n-(1+1)+00

- 1(0 00

O + O

=m+n-1

When the compiler can determine that the number of iterations is non-constant and
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Int sumarray(a, m
int al], m
{ int i, sum r[ 8] :address of array a
extern int n; r[ 9] :argumentm
sum = O r[ 11] :variable sum
val uebnd n{ 10: 100] n[20:80]| r[ 13] :variable i
for (i =1; I < mtn; i++)
sum += ali];
return sum
} (c) Register to Variable
(a) Source Code Mapping in Figure 9b)
r[11] =0; #instruction1 1
r[13] =1; # instruction 2
r[10]=H [ _n]; # instruction 3
r[10]=R[r[10] +Lg _n]]; # instruction 4
r{12]=r[9] +r[10]; # instruction 5
| C=0?r[12]; # instruction 6
PC=1 C=0, L25; # instruction 7
L18 |r[10] =r[ 13] <<2; #instruction 8 2
r[10] =R r[ 8] +r[ 10] ]; # instruction 9
r{11] =r[11] +r[ 10]; # instruction 10
r{13] =r[13] +1; # instruction 11
| C=r[13]?r[12]; # instruction 12
PC=I C<0, L18; # instruction 13
Y
L25 | PC=RT, # instruction 14 3
(b) Corresponding SPARC Instructions

Figure 10: Loop with a Non-constant LoopAinant Number of Iterations

loop invariant, the loop-imariant expression is passed to the timing analyZée user is

prompted by the timing analyzer for the minimum and maximum values for each
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variable in this &pression. ©® amplify identification of these variables, the timing
analyzer also informs the user of the function and line number associated with the loop.
After receving the minimum and maximum values for these variables, the timing
analyzer automatically calculates the minimum and maximum number of loop
iterations®

The compiler was also modified to allahe user to specify assertions about the
minimum and maximum values of variables associated with loops. The boldface line in
Figure 10(a) contains assertions for the minimum and maximum values drthbles
mandn. The compiler uses the loopvariant expression and replaces the variables with
the minimum and maximum specifiedlwres. Thaninimum number of iterations of 29
and the maximum number of iterations of 179 is automatically passed to the timing
analyzer and no user intervention is required. Note that the form alfia assertion is
analogous to the form of timing constraint loop assertion that can be specified in the
same environment [40].

When a loop-iwariant expression cannot be calculated, the timing analyzer will
prompt the user for the minimum and maximum number of iterations insteatlet\of
variables. Havever, the author has found that a constant or lomariant number of
iterations can be typically calculated for most loops in the numerical benchmarks and

applications that hee keen examined.

5 Note that the timing analyzer will not permit the number of iterations to be fewer thartlie abwe example, a user may
indicate that the minimumalues ofmandn are both 0. Simply substituting these values in the expression would result in the num-
ber of loop iterations beingl. Butif the loop is entered, then it has taeeute at least one iteration since the number of iterations is
defined as the number of times the loop header bloctecsid.
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4.3 Boundindterations for Non-Rectangular Loops

The approaches described sw flo not address loops whose number of iterations can
vary. The preious sections described approaches to determine the minimum and
maximum number of iterations for a loopyen that the number of iterations depends
only upon either constant or loopvamiant values. Figurell shows tw smple loops to
depict the essential d#rence between a rectangular and non-rectangular loop arst.
rectangular loops, the lower and upper bounds of the loopx watéables are constant.

In contrast, the number of iterations of a non-rectangular leojes: r instance, the
number of iterations typically depends on the values of counter variables from outer
loops. Theseloops hae long presented a problem for timing analyzers since the
resulting timing predictions are typically quite loose. &ttf these predictions may

indicate that a program does not meet its timing constraints, when it actually does.

for (i =0; i < 10; i ++ for (i =0; i < 10; i ++)
for (j =0; j <10; j++) for (j =15 ] <10; J++)
(a) Rectangular Loop Nest (b) Non-rectangular Loop Nest

Figure 11: Rectangular versus Non-Rectangular Loop Nest
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The authoss initial approach to calculating loop iterations only dealt with doubly
nested loops that were triangular in nature as the loop nest in Figure 11(b){84].
simple approach has been superseded by a more general approach presented here that is
not limited to the nesting depth oriadhe individual loop inde variables depend on one
another.

This section describes a general and efficient method for obtaining tight timing
predictions for non-rectangular loops usually encountered in prograhhss is
accomplished by formulating the number of loop iterations in terms of summations,
where each summation represents the number of iterations twetigtesl by a loop.

Such an equation can be efficiently solvedbgithat certain restrictions are met.

This work on bounding iterations for non-rectangular loops was inspired byottke w
of Sakellariou [41, 42].He calculated the total number of iterations for loops that are
dependent on counter variables of outer loops in order to obtain better load balance by
assigning approximately the same number of loop iterations to each proc&ksor
approach used was to formulate summations representing the number of loop iterations
by hand and to inteste to a mathematical packagélofe to sole the equationsThis
section describes an approach to automatically calculatevénega number of times
that a loop will iterate during the timing analysis of a program and to use this

information to obtain tighter timing predictions.

4.3.1 Frmulating the Number of Iterations

This subsection shows Wwa loop nest may be formulated in terms of summatidrigs
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framewvork was based on work by Sallariou [41, 42]. The number of iterations of a
single loop, where the loop variable is incremented by one (unit stride), can be
represented by a summation when the lower boaha (ess than or equal to the upper
bound b), as shwn in Equation 2. Figure 12 showsvihtwo dfferent loop nests can be
formulated in terms of summation$he total number of iterations to beeeuted by the
innermost loop in each loop nest are calculated by solving the corresponding equation.
The Bernoulli formula shown in Equation 3, whegre 1 & n> 1 and Bk is a Bernoulli
number of ordek, can be used tovaluate terms in a summation.

The constraint on the bounds in Equation 2 results from the fact that the value of the
sum must equal O if the lower bouads greater than the upper boumdThis constraint
is in accordance with the usual semantics of summations wremonal mathematical
notation, in which the upper bound is implicitly assumed to be greater than or equal to
the lower bound. Therefore, the explicit constraint is necessary to accurately count the
number of iterations of so-callero-triploops. Zero-trigdoops do not xecute the loop
body when the lower bound exceeds the upper boungh tiiat the stride is posite.

It is possible to represent summations with non-unit strides, where the sigde
specified along with the lower bouredand upper bound. Equation 4 shows ho a
non-unit stride can be used in a eemional summation, whereis an expression and
gi « si + a] denotes the substitution of all free occurrenceswf si + a. This way,

summations with strides can be represented by uniform summations.
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b [(b-a+1 if a<b
= = 2
N izzal g) otherwise @
n 1 Pp+1l .
p = p—k+1
Ell p+1kZODk k(n+1) 3)
for (i=1; i<99; for (j=1; j<=100; | ++)
I ++) for (i=j; i<=100; i++)
for (j=i+l; for (k=1; k<j; k++)
 <100; 100100 j-1
) N=3331
98 99 j=1i=j k=1
N = _Z Z 1 100100
i =3 2(-1)
98 99 i j=1i=j
=2(21- Z 1) 100 100 -1
'“ toor =_Zl(Zl(J-l)-_Z(J-1))
: j=1i= =
= .21(99_ 1) 100100 100  j-1
o o8 =2(2j-21- ZJ+Zl)
_ . =1 i=1 i=1 i=1 i=1
= _2199—_Zl| 100
1= 1= . -2
=2 (102) - j-101
= 4,851 2.(102) -] )
(a) Loop Nest from a 20 100, 1%
Sort Program B 1021.;11 Ell El 101
=166, 650
(b) Loop Nest from LU
Decomposition Program
Figure 12: Deriving the Total Number of Iterations fevolLoop Nests
b,s tfb—a)/sg
l=Se= 35 e[i«si+q] (4)
i=a i=0

Summations with non-unit strides are more difficult valwate since one has to deal

with summations of floors. Equation 5 s¥® hav a floor can be corerted to an
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expression imolving a modulo operation%). A modulo operation can often be
simplified using Equation 6 [42]However, summations imolving modulo operations

are more difficult to simplify when twwor more loops hee ron-unit strides and the
bounds are symbolicFortunately this situation rarely occursEquations 2-6 can be
used to correctly determine that the total iterations for the loop nest in Figure 13 is
1,717. Unfortunatelysometimes an expression in a summation may contain a product of
two or more terms containing modulo operations. this case, an approximation of the

iteration count is used, which is shown in Equation 7.

SeEs g ifm>0&n>0 (5)
n
) - S P if n<d
. _ i=0
izo('%d)p - a]ﬂd['rl d-1 n%d (6)
B > >iP+ > P ifn=>d
[l j=0 i=0 i=0
b,s th/sO
e= > els (7)
i=a i=a

As suggested by Sakellariou [41, 42], a computer algebra system can be exploited of
line to sole the equations of summationklowever, computer algebra systems, such as

Maple, give inaccurate results when the bounds restriction on the summation is violated.

for (i=0; i<100; i++)
for (j=i; j<100; j+=3)

Figure 13: A Loop Nest Containing a Non-unit Stride
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In general, eery loop iteration count problem that is cast as a summation should
evduate to zero if the lower bound is greater than the upper badodiever, it is not
always possible to \wluate the test when the bounds are symbolic. B@mele,
consider the loop nest in Figure 1&he inner loop is a zero-trip loop for valuesiof
greater than 2A patrtially zeo-trip is defined to be a loop that is zero-trip depending on
values of inde& variables of outer loop(s). By applying Equation 8, the iteration count of
the partially zero-trip loop can be defined asvaman Figure 14. Clear|ythe result iN

= 3. Howeve, a raive evaluation without the bounds test resultsNr= —7. Thismeans

that when a computer algebra system is to be uddihef the summations should be
guarded with bounds test&infortunately computer algebra systems canndeetively

deal with the simplification of nested summations with additional tests on the bounds of
inner summations. The reason is that the test may be symbolic,vas ishBigure 14.

The solution is to isolate possible conditions on the iteratioiabie from the test and to
simplify summations as shown in Equation 8 foy axpressione. Note thatc may not

necessarily lie within the range.b] and relations besides may be used.

for (i=1; i<8; i++)
for (j=i; j<3; j++)
7[B-i if i<3
N=> _
i=1 otherwise

Figure 14: A Partially Zero-Trip Loop
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|jﬂin(b,c)

%% if i<c Di:Zaelf a<c ©
| = 0O
|=a§) otherwise B 0 otherwise

4.3.2 Implementation

The implementation fon@luating the summations described in thevpres section \&s
accomplished by using the General-Purpose Algebraic Simplifier (GPAS) portion of the
Ctadel system [43, 44]. The autl®timing analyzer [2] and Ctadel were compiled
separatelybut Ctadel is directly ingrated into the timing analyzer by linking the object
files. This avads unnecessaryverhead that would result from passing messages
between the timing analyzer and AR if they were different processesThe
summations are formulated in the timing analyzer andS5R invoked as a C dinction

with the summation parameters as arguments.

Another complication when dealing with zero-trip loops in the timing analyzer is due
to the way the timing analyzer counts iteratiomss mentioned in Section 3.2, the
number of loop iterations is the number of times the loop headeedsted, as opposed
to the number of times the loop body is encountefdtls, when a loop is entered, it is
guaranteed to iterate at least once. The zero-trip case in Equation 8 can be modified to

indicate a single iteration, as shown in Equatiofrgure 15 shows o the loop nest in

in(b,c-1) b
LB ifi<c IS Ve it a<c Sz 1if c<b
>0 =g + gmeed (9)
i:aEfL otherwise B 0 otherwise B 0 otherwise
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Figure 14 can be formulated as a summation and solved to produce an accurate number
of iterations. Note that the test in Figure 15 has iterateorablei isolated to the left of

the relation. In practice, lnever, an isolation algorithm is used by GPAS to analyze the

test and isolate the variable.

It is knavn that the detection of zero-trip loops in the general case is NP-complete,
because it amounts to solving a linear programming probl®milarly, adjusting the
bounds of loops tovaid partially zero-trip loops is NP-complete. This normalization
process can be performed with theuFerMotzkin (FM) elimination method [45].
However, one can argue that real-world algorithms rarely exhibit (partially) zero-trip
loops, because algorithms with partially zero-trip loops are deemed to be inefficient.

The timing analyzer erifies that there are no zero-trip loops for an inner loop by
expanding its initial value and limitLikewise, the timing analyzer is able tenfy that
there are no partially zero-trip loops in the loop nddowever, if the verification is

inconclusve, the loop nest may or may not contain (partial) zero-trip looper

7B-i ifi<3
N =
El otherwise
2 7
=>@B-N+>1
i=1 i=3
=3+5
=8

Figure 15: Deriving the Number of Iterations for the Loop Nest in Figure 14
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instance, consider the loop nest in Figure The expansion of the innermost loop initial
value and limit is depicted in Table 10. The timing analyzer is able to guarantee that the
inner loop is not zero-trip since the initial value iseregreater than the limit.

Now consider the loop in Figure 17 and the correspondipamsion of the initial
value and limit in Table 11. The test is inconclgsi Howeve, the loop nest is not zero-
trip due to thg<i condition in the middle loop. Since the range analysis can be used to
safely \erify if a loop is partially zero-trip, it is possible to use the results in deciding
which summation solver to uséor example, the loop in Figure 16 can be safely cast
into a summation without a bounds tests, while the summations for the loop in Figure 17
requires a bounds test (see Figure 15 forxamgle bounds test). The disadvantage of
having a bounds test is that a loop with a stride poses problems for solving the
summation because the summation bounds test may contain modulo operations on the
iteration variable, which prohibits the application of Equation 9.

The timing analyzer decides among three possible solution methodsluate the

summation representing a loop nest:

(1) GRAS evduates the summation without testing the bounds of thexivaigables.
(2) GFAS evaluates the summation while testing the bounds.

(3) Thetiming analyzer devies wonservatre lower and upper bounds on the sum,
based on constant boundse in outer level loops.

The algorithm for selecting the appropriate method is described in FigurehE8act
solutions are computed using safe assumptions in the possible presence of partially zero-

trip loops, using either method (1) or (2)his algorithm will resort to method (3) only
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for (i=0; i<10; i++)
for (j=i; j<l1; j++)
for (k=i-3; k<j+8; k++)

Figure 16: Innermost Loop Detected Zero-Trip Free by the Timing Analyzer

Table 10: Expanding Initial and Limit Values of Innermost Loop in Figure 16

Initial Value Limit
i-3 j+8
[0..9]-3 [i..10]+8
[-3..6] [[0..9]..10]+8
[0..10]+8
[8..18]

for (i=1; i<10; i++4)
for (j=0; j<i; j++)
for (k=j; k<i; k++)

Figure 17: Innermost Loop Nest Detected Zero-Trip Free by GPAS

Table 11: Expanding Initial and Limit Values of Innermost Loop in Figure 17

Initial Value Limit
] i-1
[0..] [1..9]-1
[0..[1..9]] [0..8]
[0..9]

in the presence of multiple loops with non-unit strides, in which the strides aredglati
prime and the bounds on the indeariables are not all constant.

The following approach is used in the timing analyzer to obtain tight predictions of
non-rectangular loops whose total iterations in a loop nest are&nknd he timing

analyzer calculates WCET and BCET predictions based on the maximum and minimum
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The timing analyzer attempts to determine if the loop nest is not (partially) zero-trip.

| F the check is successfulHEN

The loop nest is formulated into summation without bounds tests and presented to GPAS.
ELSE

The check is inconcluge and the loop nest is cast into a summation with bounds tests.

The rewritten summation is presented to GPAS.

| F GPAS is able to sobsthe summationTHEN
RETURN the integer count.

ELSE
GPAS could not sol/the summation in the presence obtar more loops with non-unit strides
RETURN conservatie tounds on the sum.

Figure 18: Algorithm for Selecting a Solution Method for Summations

number of iterations for a non-rectangular loop, respdgti These predictions are
made in case a user requests the WCET or BCET predictions for thelhoagdition to

these absolute predictions, the timing analyzer also calcate¢sesye WCET and BCET
predictions for each loopTo calculate the werage number of iterations for a loop, the
timing analyzer diides the total iterations by the total number of times the loop is
entered. Br instance, the total number of iterations for the innermost loop frosotie
program in Figure 12 as 4,851. The timing analyzer also calculates the number of
times the current loop is entered by calculating the total number of iterations for the loop
that encloses the current loop. In the example shown in Figure 12, the innermost loop is
entered 98 times. Thus, theeeage number of iterations for the loop is 49.5 (4,851/98).
The arerage number of iterations is used to calculate treeage WCET and BCET

predictions. Whera ron-integer is calculated, the timing analyzer rounds up for the
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WCET prediction and truncates for the BCET prediction since the loop analysis

algorithm is designed to work on an integral number of iterations.

4.4 Results

Table 12 shws the results of the timing analysis taking into account loop iteration
constraints. Theolumns labeled+ Pipelining" show the results if the timing analyzer
did not perform the loop iteration constraint analysis described in this chajpter+
Iter. Count" columns shw that the timing predictions become much tighter when these
loop iterations constraints are taken into account. In partjctiar lines printed in
boldface indicate the programs whose timing predictions became tighter as a result of
this additional analysis.

Among the programs listed in Table l8es Integ Interp, LU, Sort and Symbenefit
from using this approach since yheach contain one or more non-rectangular loops.
Interp shaved a significant imprement in best case since the best case number of
iterations for a non-rectangular inner loop was 1, whiels significantly lower than the
avaage number of iterationdf the timing analyzer did not use ameeage number of
inner loop iterations in worst case, then the number of loop iterations for the triangular
loops ininterp, Sort and Symwould have keen approximately double. The WCET of
these programs are nearly exact using therage number of iterationsThe Integ
program had a higher best-cas¢ Pipelining" ratio and a lower worst-caset "
Pipelining" ratio since there were other loops in this program that contributed more

significantly to the total ecution time. The Sort and Symprograms did not he a
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Table 12: Results After Adding Accurate Iteration Counts

Worst-Case Results

Name Observed + Pipelining | + Pipelining | + Iter. Count | + Iter. Count

Cycles Cycles Ratio Cycles Ratio
Des 149,706 172,509 1.152 172,509 1.152
Expint 58,217 1,293,290 22.215 1,293,290 22.215
Fresnel 47,749 48,887 1.024 48,887 1.024
Gaujac 786,786 790,116 1.004 790,116 1.004
Hes 55,834,609 | 130,574,296 2.339 56,739,136 1.016
Integ 22,538,082 30,023,163 1.332 22,553,163 1.001
Interp 25,469,403 50,701,362 1.991 25,478,409 1.000
LU 23,055,832 | 124,577,237 5.403 23,572,337 1.022
Matcnt 1,769,321 1,861,150 1.052 1,861,150 1.052
Matmul 4,444 911 4,448,212 1.001 4,448,212 1.001
Matsum 1,277,465 1,279,322 1.001 1,279,322 1.001
Sort 7,672,281 251,603 1.988 7,672,292 1.000
Sprsin 28,339 28,664 1.011 28,664 1.011
Stats 1,016,048 1,016,128 1.000 1,016,128 1.000
Summidall 15,340 18,090 1.179 18,090 1.179
Summinmax 16,080 17,080 1.062 17,080 1.062
Sumnegpos 11,067 13,068 1.181 13,068 1.181
Sumoddeven 15,093 16,112 1.068 16,112 1.068
Sym 2,747,654 5,481,220 1.995 2,747,708 1.000
Average 7,734,420 19,347,974 2.631 7,882,403 2.157

Best-Case Results
Name Observed + Pipelining | + Pipelining | + Iter. Count | + Iter. Count

Cycles Cycles Ratio Cycles Ratio
Des 65,615 22,247 0.339 22,247 0.339
Expint 125 118 0.944 118 0.944
Fresnel 181 172 0.950 172 0.950
Gaujac 45,270 44,566 0.984 44,566 0.984
Hes 306,733 14,006 0.046 258,908 0.844
Integ 19,160,842 12,808,073 0.668 19,135,118 0.999
Interp 6,485,878 143,064 0.022 6,479,865 0.999
LU 12,883,939 284,011 0.022 637,365 0.049
Matcnt 1,549,095 1,548,798 1.000 1,548,798 1.000
Matmul 4,444,666 4,420,068 0.994 4,420,068 0.994
Matsum 1,257,239 1,167,140 0.923 1,167,140 0.923
Sort 19,966 19,950 0.999 19,950 0.999
Sprsin 17,436 17,379 0.997 17,379 0.997
Stats 607,399 601,406 0.990 601,406 0.990
Summidall 15,340 8,072 0.526 8,072 0.526
Summinmax 13,080 13,062 0.999 13,062 0.999
Sumnegpos 9,067 9,049 0.998 9,049 0.998
Sumoddeven 94 63 0.670 63 0.670
Sym 160 160 1.000 160 1.000
Average 2,467,480 1,111,653 0.741 1,809,658 0.853
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significant underestimation (i.e+ 'Pipelining" ratio) in best caseln the best case for
Sortthe walues were initially sorted and the sort function exited once the array has been
detected to be in ascending ordéikewise, theSymprogram terminates when it finds

the first pair of values that are not equal.

Hesand LU are unlile the other programs in that theontain some triply nested
loops. Insome loop nests the loopnables of the innermost and middle loops depend
on the outermost inatevariable. Inother loop nests the innermost loggriable depends
on the loop wriable of the middle loop, which in turn depends on the loop variable of the
outer loop. GPAS correctly determines the exact number of loop iterations in all of these
cases and the results are more accurate WCET predictions compared to its "
Pipelining" ratios. Whenthe timing analyzer computes the number of iterations of a
loop in a non-rectangular nest, it is sometimes necessary to round this number to an
integer The programdies IntegandLU each contain tev or more loops in which this
rounding causes slightly consative predictions. Br example, in the case b, there
were two inner loops that were triply nesteddvhen computing the number of iterations
of these loops, the rounding of iterations introduced a 1-&&@stimation in Wrst case
and a 1-3% underestimation in best cabagether these tavloops comprised 89.8% of
the instructions »ecuted in the program. Another reason for the corasees
predictions forLU is that when the number of iterations of nested loopgdasged, the
resulting eecution time prediction times may be looser since each iteration nvayasha

different execution time. In worst case, for each iteratioantil the last iteration, the
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execution time ofi is greater than or equal to thatiefl.. Thus,the eecution times for
successie iterations are monotonically decreasing or stay the sahmalogously in
best case, thexecution times are monotonically increasing or stay the same for

successie iterations.

4.5 Conclusions

This chapter has presented three different methods for bounding the number of iterations
of a loop. First, a methodas described that determines the minimum and maximum
number of iterations of loops with multipl&its and also detects infeasible pattsr
instance, loops of the form in Figure 19(a) that can prematurely when some
condition becomes true are quite common and the bounded number of iterations of such
loops can be detected by the general algorithm presented in this chapter.

Second, a non-constant loopsrnant number of iterations is calculated when the

for (i =0; i < 100; i++) {
for (i =0; i <n; i++) {
if (sonecond) o
br eak; }
o (b) Loop with a Nonconstant
} Loop-Invariant Number
(a) Loop with Multiple Exits of Iterations

for (i =0; i <99; i++)
for (j =i+1; j < 100; j++) {

}

(c) Inner Loop Whose Number of Iterations
Depends on an Outer Loop Counter Variable

Figure 19: Common Forms of Loops
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variables on which the number of iterations depends cannot chahges\nside of the

loop. Figurel19(b) depicts anxample of this common type of loop. The user can
specify the minimum and maximunalues of these variables by placing assertions in the
source code or by interaefly responding to prompts from the timing analyz&hese
assertions are more reliable than specifying the minimum and maximum number of loop
iterations directly since the user does novend be avare of the code generation
strategies or optimizations performed by the compiler.

Finally, timing analysis support is\gn to tightly predict the recution time of non-
rectangular loops whose number of iterations is dependent on counter variables of outer
level loops. Thesdoops, such as the one shown in Figure 19(c), appear frequently in
programs and can result in significant underestimations in best-case predictions and
overestimations in wrst-case predictions. Using the methods of this chafites
possible to more tightly predict loops when the initial value or limit of the control
variable in an inner loop depends on a control variable of an enclosing outer loop.

These methods kia been successfully integrated in aristing compiler and an
associated timing analyzer that predicts the performance for optimized code on a
machine that exploits caching and pipelining. The result is tighter and more reliable

timing analysis predictions and less work for the user.
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CHAPTER 5

BRANCH CONSTRAINT DETECTION AND EXPLOIATION

Even with perfect architectural modeling and a correct calculation of the number of loop
iterations, significant\@restimations of WCET and underestimations of BCET can still
occur The reasons for the loose timing predictions are due to dependences on data
vaues that can constrain the outcome of conditional branches and restrict the set of paths
that can be tan. Whilebranch constraint information has been used in the past by
some timing analyzers, it has typically been specified manuwetigh is both tedious

and error prone. This chapter describesvhwanch constraints can be automatically

detected by a compiler and exploited by a timing analyzer.

5.1 AutomatidDetection of Constraints

A branch constraint causes the outcome of a conditional branch to ba kmaler
certain conditions. The compiler emp#otechniques to detect these constraints, which

are classified asffect-base@nditeration-based

5.1.1 Detectingeffect-Based Constraints

The compiler performs analysis to determine if the outcome of a conditional branch is
known at ary given point in the control flae. Hrst, the compiler calculates the set of
registers and variables upon which a branch (and its associated comparison) depends.

This set is calculated by expanding the effects of the comparison instruction associated
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with the branch.For instance, consider the SPARC instructions representedlas R
(Register Transfer Lists) and the associateghamded comparison in Figure 2@\
comparison is expanded by searching backwards for assignments to registers in the
comparison until all rgisters are replaced or the beginning of a block with multiple
predecessors is encountereldoop-invariant registers in the expression argpanded

from the preheader of the loop in which yhere assignedalues. Ng&t, the compiler
determines the set of effects associated with assignments to registers and variables for
each basic block. Each branch iamined to see if it could be affected by the block.
Thus, the compiler can determine that a basic block updating the géstzaddleg could

affect the result of the branch in Figure 20. Updates to thestexsr[ 1] (%g1) or

r[ 8] (%0) would hare o efect.

A state is associated with each conditional branch, which cae tee of three
vaues: unknown fall-through or jump. The compiler determines if a branch becomes
known by substituting the value assigned for the variable gister and ealuating the
expanded comparison. The compiler then issues a diesttithe timing analyzer for

each branch placed in amknown fall-through or jump state by an effect in the block.

Instructions in a Basic Block

r[11=H1[_g]; /* sethi %i(_g), %1 * |
r[8]=R[r[1]+L] _g]]; /*Id [Yg1+% o(_Qq)], @0 */
| C=r[ 8] ?5; /[* cmp %00, 5 */
PC=I C<0, L20; /* bl L20 */

Expanded Comparison
ICGRHI[_g]+Lg _g]]?5;

Figure 20: Example of Expanding a Comparison
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Thus, this analysis requir€¥B*C) complexity whereB is the number of basic blocks

andC is the number of conditional branches.more complete explanation for detecting

branch states has been described in previous work [46].

Consider the source code in Figure 21(a). The corresponding controthiéd is

sunodd =
odd = quit = 0;
for (i =0; !'quit &&
i < 1000; i++)
if (a[i] 0)
quit = 1;
else if (odd) {
sunodd += a[i];

sumeven = 0;

odd = 0;
}
el se {
sunmeven += a[i];
odd = 1;
}

(a) Source Code

(2) blk 1 nullifies blk 2

(2) blk 1 makes blk 4 jump
(3) blk 1 makes blk 8 fall thru
(4) blk 1 makes blk 9 jump
(5) blk 3 makes blk 8 jump
(6) blk 5 makes blk 4 jump
(7) blk 6 makes blk 4 fall thru
(8) blk 7 nullifies blks 2,9

(c) Explicit Constraints

1) 8

(2) 8-9
(3) 8-9-
(4) 8-9-
(5) 8592

(d) Paths in

-3-7
-4-5.7
-4-6-7

Loop

sunmodd=0; 1

sunmeven=0;

odd=0; {4J}

qui t =0; {8F}

i =0; {2U,9J}
la[i]!=0 2
23} y 2R
’qui t=1; {83} 3 ‘
| odd==0 4|
(43} y (4R}

sunodd+=ali]; 5

odd=0; {43}

sunmeven+=a[i] ;6
odd=1; {4F}

'

li++ f2u0U} 7

|

quit!=0 8

|

83} | {87}

i <1000 9

|

| {9F}

10|

(b) Control Flow

Figure 21: Effects of Assignments on Branches
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generated by the compiler is stioin Figure 21(b). While the control fhoin the figure
is represented at the source codesllethe analysis is performed by the compiler at the
machine instruction lel after compiler optimizations are applied to provide more
accurate timing predictions. Note that some branches in Figure 2M®&)aaditions
that are reersed from the code in Figure 21(a) to depict the branch conditions that are
evduated at the machine instructiorvée Only when the condition associated with a
branch in a block isvaluated to be true will the jumpl) occur. If the condition is not
true, then control will fall [f) into the next sequential block. The contromflalso
shavs the effect-based constraints, which are enclosed in curly braces and associated
with basic blocks or control-fl@ transitions. Figure@1(c) describes thexplicit branch
constraints that are automatically detected by the compiler and passed to a timing
analyzer The initialization ofi in block 1 {(=0;) puts the branch in block 2
(@[ i]!=0) in an unknownstate RU) and the branch in block 9 €1000) in ajump
state 9J). In addition, the assignmentsaald in blocks 1 and 50dd=0; ) and in block
6 (odd=1; ) cause the branch in block 4dd==0) to jump (4J) and fall through (4F),
respectrely. Likewise, the assignment tquit in blocks 1 Quit=0;) and 3
(qui t =1; ) cause the branch in block i t ! =0) to fall through(8F) and jump(8J),
respectiely. Finally, the increment ofi in block 7 ( ++;) sets the states of the
branches in blocks 2a[i]!=0) and 9 { <1000) to unknown(2U,9U) since thg
depend on the value bf

Figure 21(b) also shows implicit branch constraints. When a branch hasma gi
outcome, then it will hae the same outcome again unless the variables or registers being
compared are tdcted. Thusa fall-through E) or jump @) transition from a branch will

implicitly cause that same branch to be irdali-through or jump state, respeatély.
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These implicit constraints are notpdicitly passed to a timing analyzer since a timing
analyzer can create them when it is performing analysis on paths.

The source code in Figure 22(a) and corresponding contnel ifloFigure 22(b)
depict a situation where one conditional branch may be logically correlated with another
branch. Inother words, the direction taken by one conditional branch may indicate the
direction taken by another conditional brandhblock 2 @[ i ] >=0) falls into block 3,

then the value o[ i ] is negaive and block 5 &[ i ] <=0) must jump to block 75J).

sumal | = O;

sumeg = sumeg=0; 1
sunpos = 0; sunmal | =0;
for (i =0; i < 1000; sunpos=0;

i) | i =0; {2U,7J}

if (a[i] < 0)

sumeg += a[i];
sumal | += a[i]; ’a[i]>=0 2
if (a[i] > 0) {23} {2F,53}

sumpos += a[i]; |sumeg+=a[i]; 3]

sumal | +=a[i]; 4

}

(a) Source Code

(1) blk 1 nullifies blk 2

(2) blk 1 makes blk 7 jump ’ a[i]<=0 5 ‘
(3) blk 2 fall thru makes blk 5 jump

(4) blk 5 fall thru makes blk 2 jump {53} {5F.2J}
(5) block 7 nullifies blocks 2,5,7 ’ sunpos+=a[i]; 6 ‘

(c) Explicit Constraints

i ++; {2U,5U,7U} 7

1)2-4-5-7 i <1000
(2)2-3-4-5-7 (7F} {73}
(4)2-3-4.5.6-7 8

(d) Paths in Loop (b) Control Flow

Figure 22: Logical Correlation between Branches
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This is described by branch constraint 3 in Figure 22(Mpte that if block 2

(@[ i]>=0) jumps to block 4, there is no guarantee that bloc&[5 | <=0) will fall
through to block 6 since the value af i] could hae keen zero. The compiler
evduates each pair of branches in a function to determine if there is a logical correlation
between one branch and anoth&hus, this analysis requir@(Cz) complexity, where

C is the number of conditional brancheslote that a branch is vaflys logically
correlated with itself and these self correlations are implicit constraints. Xdt e
conditions when one branch is logically correlated with anotheg been described in

previous work [46].

5.1.2 Detectindteration-Based Constraints

A basic induction variable is a variable or register that is incremented or decremented by
a monstant value on each iteration of a loop [39]. Some branches compare a basic
induction variable to a constant. In these situations, the compiler can determine the
ranges of iterations in which such a branch wall through or jump. The compiler
produces directies for a timing analyzer that indicate ranges of iterations for each of the
two outgoing edges of the block containing the branch. The manner in which this
information is derred was described in Section 4.1.3.

Consider the source code and corresponding contmlshiown in Figures 23(a) and
23(b). Whilei can range from 0..999 as each path in the loop is entered, the number of
corresponding iterations in the loop will range from 1..100thus, the compiler
associates ranges of iterations with transitions from blocks that compare basic induction
variables to constantd-or instance, block 3 <=249) will only fall through to block 4

when the loop is performing the last 750 iteratiof#51..1000]. Constraints5-8 in
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0;
< 1000;

sumi d sumal |
for (i 0; i
i+4) {
if (i m &&
249<i && i <750)
sumid += afi];
sumal | += afi];
}

(a) Source Code

(1) blk 1 makes blks 3,7 jump

(2) blk 1 makes blk 4 fall thru

(3) blk 2 will jump at most once
(4) blk 3 jump makes blk 4 fall thr
(5) blk 3 fallthru in iters [251..100
(6) blk 3 jump in iters [1..250]

(7) blk 4 fallthru in iters [1..750]
(8) blk 4 jump in iters [751..1000]
(9) blk 4 jump makes blk 3 fall thr
(10) blk 7 nullifies blks 2,3,4,7

(c) Explicit Constraints

u
D

(1) 2->6-7
(2) 2->3.6-7
(3) 2->3-.4-6-7

(d) Paths in Loop

summ d=0; 1
sumal | =0;

i =0; {3J,4F,7J}

!

y {27}

i ==m
{2J once}
i <=249 3]
{3F} [251..1000} {3J,4F}{1..250]
(3F.43 | i >=750 4
[751..1000] y {4F} [1..750]
|summi d+=a[i]; 5]

2]

-

sumal | +=a[i]; 6‘
v
{3U,4U,7U} 7
i <1000

v {7F}
| d

i ++;

{73}

(b) Control Flow

Figure 23: Ranges of Iterations and Branch Outcomes

Figure 23(c) depict the range of iterations whamious transitions in the loop can be
taken. Animplicit iteration-based constraint is that the header of the loop (block 2 in
Figure 23(b)) can bexecuted in ®ery loop iteration [1..1000] for Figure 23).
Sometimes a basic induction variable is compared to a hon-constantvadgninvalue,

as shown in block 2i E=m of Figure 23(b). The value afnis not known, but it is
invariant with respect to the loop/Vhen the comparison of such a branch is an equality

test (== or =), then the transition that occurs when the w@lues are equal can &k

55




place at most once for eackeeution of the loop since the basic inducticarigble
changes by a constardlue on each iteration. Constraint 3 in Figure 23(c) shows that
the compiler determines that block 2 will jump to block 6 at most ch¢®iicg. The
analysis to detect iteration-based constraints req@(€3 complexity whereC is the

number of conditional branches, since each branch must be inspected once.

5.2 UsingConstraints in aiiming Analyzer

The analysis techniques described in the previous section to identify branch constraints
could be used by aawiety of timing analyzers, which include those that use agente
linear programming (ILP) soér. While an ILP approach can be simple,gate, and

quite powerful, there are avfedisadwantages. &r instance, an ILP approaclorks best

when each basic block can be associated with a single time, whiais #iis time to be
expressed as a constraint associated with that block. Caching and pipelining change the
context in which a block could bexecuted and can often affect its associatestation

time. Whileapproaches wa keen suggested for addressing caching behavior [9], it is
still unclear hav pipelining can be accurately modeled across multiple blodksre
importantly the time required for the analysis with an ILP approach haistwase
exponential compbety. A program that required only avieseconds of timing analysis

using a more traditional approach [26] required minutes using an ILP approadh [9].
fact, ILP methods can be used to solvary compiler optimization problems, but are
infrequently used in production compilers due to potentialessve cmpilation time.

Finally, when a timing constraint is violated, a user would li&x knov where the time is

being spent in the code associated with the constraints. The timing analysis approach

described in this dissertation not only produces WCET and BCET predictions for an
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entire program, but alsogs the WCET and BCET for each function, loop and path in
the program [27]. In contrast, an ILP approach only calculates a single WCET and
BCET prediction for the entire program. Thus, the author decided it would be
worthwhile to irvestigate hev branch constraints could be exploited by a non-ILP based
timing analyzer.

The remainder of this section will describe the details of Hwe timing analyzer
makes use of the branch constraints to compute the WCET and BCET predictions for a
particular loop or function. In particulaconstraints on paths are generated from the
branch constraints.For example, effect-based branch constraints can be used to
determine if a gien path is infeasible, or that one path cannot felkome other path on
a subsequent iteration of the loop. Further constraints arise from analyzing which paths
can e&ecute on the first iteration.lteration-based branch constraints are used to
determine the range of iterations a particular path may bentakiring the loop
execution. Oncethe path constraints @ keen calculated, tlyeare used in the arst-
case and best-case loop analysis algorithms. The purpose of using these path constraints
is to tighten the »xeecution time predictions.For instance, if the timing analyzer can
determine that the longest (shortest) path is infeasible or can xadyte for a proper

subset of the loop’iterations, then the WCET (BCET) bound will be tighter.

5.2.1 Owerview for Generating &h Constraints

The timing analyzer uses branch constraints to calculate a minimum and maximum
number of iterations associated with each path duringxésugon of a loop.Table 13
depicts worst-case iteration information associated with each loop path described in

Figures 21(d), 22(d), and 23(d)able 14 shows the analogous path iteration information
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Table 13: Worst-Case Path Information for Figures 21(d), 22(d), and 23(d)

Loop Total | Path | Path Poss'ible Unique Min Max
Iters ID Type Iterations Iters Iters Iters
Loop 1 exit | [1001..1001] O 0 1
in 2 exit | [1001..1001] O 0 1
Figure | 1,001 3 cont | [1000..1000] O 0 1
21 4 cont [2..1000] O 0 500
5 cont [1..1000] 0 0 500
Loop 1 both [1..1000] O 0 | 1,000
in 1.000 2 both [1..1000] O 0 | 1,000
Figure ' 3 both [1..1000] 0 0 | 1,000
22 4 N/A N/A N/A N/A N/A
Loop 1 both [1..1000] O 0 1
in 1.000 2 cont [1..250] [1..250]-1 249 250
Figure ' 3 both [751..1000] | [751..1000]-1 | 249 250
23 4 cont [251..750] [251..750]-1 499 500

for best case. The second and thirdraple loops are not shown in Table 14 because
their best case iteration information is identical to their worst case information from
Table 13. The first loop ample from Figure 21 does V& a dfferent number of
iterations for worst case and best case, and this results irfegendif set of possible
iterations and number of maximum iterations for each patre total number of loop
iterations is automatically calculated using techniques described in the previous section

[31]. A path is a sequence of blocks in a loop connected by contwolfémsitions.

Table 14: Best-Case Path Information for Figure 21(d)

Loop Total | Path | Path Poss_ible Unique | Min | Max
Iters | Type ID Iterations Iters Iters | Iters
Loop exit 1 [2..2] O 0 1
in exit 2 [2..2] O 0 1
Figure 2 cont 3 [1..1] O 0 1
21 cont 4 [2..2] O 0 1
cont 5 [1..1] O 0 1
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Each path starts with the loop headé&mxit paths are terminated by a block with a
transition out of the loopContinuepaths are terminated by a block with a transition to
the loop headerThe 'Path Type" column shows that a path may be classified in one of
four ways. Exit andcontrepresent that the path is an exit or continue path, regggcti
The word both means the path is both an exit and a continue pathiNéatheans that
the path is infeasible. Thébssible Iterations" column indicates the range of possible
iterations for each path. TheJhique Iters" column represents the unique iterations
associated with each path. The finabtaolumns shw the minimum and maximum
number of times the path could beseuted in the loop.

Figure 24 gres a hgh-level description of the algorithm used to calculate the
information gven in the last fie wlumns of Table 13 and 14The next four sections
5.2.2 through 5.2.5 provide examples to illustratev this information is calculated.
Except for the construction of the REACH_SELF table, the complexity of the algorithm
is O(P2), whereP is the number of paths in the loop. The author found that, in practice,
the construction of the REAH_SELF table was not time consuming since most paths in

a loop could either immediately follothemselves or could only exit the loop.

5.2.2 Usingeffect-Based Constraints

Effect-based constraints are associated with a block or a transition between Blarcks.
each path in a loop the timing analyzewéraes the basic blocks and transitions between
blocks in the order in which the path would beeceited. Whenan efect-based
constraint is encountered, it is added to a list of constraints for that path. If another
effect-based constraint is later encountered for that same branch, then the current

constraint is nullified.

59



[ * remove infeasible paths*/
FOR each path P in the | oop DO
Propagate effect-based constraints in P.
IF any transition in P is not feasible THEN
Renove P fromthe | oop.

/* calculate CAN_FOLLG@V table using effect-based constrairits
FOR each path P in the | oop DO
IF Pis a continue path THEN
FOR each path Qin the | oop DO
Propagate effect-based constraints
at end of P through Q
| F any infeasible transition in Q THEN
CAN_FOLLON P [Q = FALSE.
ELSE
CAN FOLLON P][Q@ = TRUE.
ELSE
FOR each path Qin the | oop DO
CAN FOLLOWNP][Q = FALSE.

[ * calculate REACH_SELF table using CAN_FOLWQable */
FOR each path P in the | oop DO
| F CANFOLLOW P] [ Pl THEN
REACH SELF[P] = 1.
ELSIF P is not a continue path THEN
REACH SELF[P] = 0.
ELSE
Recursively inspect the CAN FOLLOWtable
to determ ne the shortest number of paths
to be traversed before P can be reached.
Zero represents P cannot reach itself.

[ * procesonceconstraints*/
FOR each path P in the | oop DO
| F a once constraint was found on
atransition in P THEN
P->once = TRUE.
ELSE
P->once = FALSE.
P->nonunigiters = 0.
FOR each block B in P DO
IF B's other outgoing transition has a
once constraint THEN
P- >nonunigiters += 1.

/ * initialize possible iteration path information, whéte
represents the total loop iteratiorig
FOR each path P in the | oop DO
P->range = 0.
IF Pis a continue path THEN
P->range = P->range O [1..max(N-1,1)].
IF Pis an exit path THEN
P->range = P->range O [N..N].

Figure 24: Algorithm for Calculating Path Iteration Information in Tables 13,14
(continued on next page)
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/ * constrain possible iterations using iteration-based constraihts
FOR each path P in the | oop DO
Propagate iteration-based constraints in P.
P->range = P->range n
iteration range at end of P.
IF P->range = O THEN
Renove P fromthe | oop.

/ * constrain iterations of each path that cannot reach itself
Construct a DAG D representing the execution
order of paths P where REACH SELF[P] ==
FOR each non-leaf path Pin D, where P is not
processed until all paths it can reach

are processed DO
S = first imediate successor of P.
P->range.l ow = S->range.low - 1.
P- >range. high = S->range. high - 1.
FOR each remai ning path S that is an
i mredi at e successor of P in D DO
IF S->range.low - 1 < P->range.| ow THEN
P- >range. |l ow = S->range.low - 1.
| F S->range. high - 1 > P->range. hi gh THEN
P- >range. high = S->range. high - 1.

/ * calculate unique iterations for each pdth
FOR each path P in the | oop DO
P- >uni gr ange = P->range
FOR each path Q where Q # P DO
P- >uni grange = P->uni grange - Q >range.

/* assign minimum number of iterations for each path
FOR each path P in the | oop DO

P->mniter =
nunber of iterations in P->unigrange.
P->miniter -= P->nonuniqiters.

[ * assign maximum number of iterations for each path
FOR each path P in the | oop DO
| F REACH SELF[P] = 0 OR P->once THEN
P->maxiter = 1.
ELSE
P->maxiter =
nunmber of iterations in P->range.
| F REACH SELF[P] > 1 THEN
P->maxiter =
cei |l (P->maxiter/ REACH SELF[ P]).

/ * assign each path to a set of path's
s = 0.
FOR each path P in the | oop DO
IF P->range n with existing set i THEN
P->set =i;
ELSE
P- >set = ++s;

Figure 24: Algorithm for Calculating Path Iteration Information in Tables 13,14 (contd.)
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Effect-based constraints can be used to detect infeasible paths. Figure 25 depicts the
constraints being propagated through path 4 in Figure 2Z{.transition from block 2
to block 3 causes the branch in block 5 to be placedumpstate 5J). Thebranch in
block 5 is encountered with this constraibO)( still in effect and the transition from
block 5 to block 6 in path 4 is deemed gk When such an infeasible path is
encountered, the timing analyzer rere® the path to pnent ary additional analysis
time to be spent on it.

The maximum number of iterations for a path can sometimes be constrained by
effect-based constraintsConsider paths 1 and 2 in Figure 21(d), which et paths
because theend with a transition to block 10 that is outside the loQmnstraint 5 in
Figure 21(c) indicates that when blockd{ t =1; ) in Figure 21(b) is recuted, block
8 (qui t'! =0) will jump to block 10. When the timing analyzer detects that &cef
based constraint can reach the end of the path without nullification, the timing analyzer
propagtes the constraint through all the paths of the loop to see if it can reach the
branch identified in the constraint. Figure 26 illustrates that the constraint causing the
branch in block 8 tgump (8J) reaches the end of path 3 and that paths 2, 3, 4, and 5
cannot follav path 3 since therequire a fall through from block 8 to block 9. Figure 27
shaws that the constraint for branch 4 reaching the end of paths 4 and 5 from Figure 21

contains the opposite outcome of branch 4 in the same Pph#se constraints can reach

{2F,53} {2F,5J} {2F,53}

{2F,53} {2F,5J} {2F,5J) invalid

Figure 25: Path 4 in Figure 22(d) Is Not Feasible
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{8F} {8F,9J} {2F,8J,93} {83}
{8F} {8F,9J} {2F,8F,9J} {2F,8J,93}

path 3: E n
{83} . alid
> paths 2,345

Figure 26: Paths 2-5 Cannot Fell#ath 3 in Figure 21(d)

path4: {8F}  {8F9J} {23,8F,9} {23,4J,8F,9} {43,8F}
{8F} {8F9J}  {2J,8F9J}  {2J4F8F9J}  {2J,4J,8F9J}

(89—~ 2]

path5: {8F}  {8F,9J} {2J,8F,9} {2J,4F,8F,9} {4F,8F}
{8F} {8F9J} {2J,8F9J}  {2J,4J,8F9J}  {2J4F8F9J}

(89—~ 2] 6|

Figure 27: Paths 4 and 5 Cannot Immediately Motlee Same Path in Figure 21(d)

block 4 on the nd iteration without being &fcted. Thiscauses these paths not to
follow themselves on the next loop iteration.

A Can Follow matrix is constructed by the timing analyzer that indicates for each
path the set of paths that cagdéy follow it on the next iteration. If a constraint from
one path can reach its associated branch in other paths without being nullified, then such
paths that hae transitions that do not satisfy the constraint are marked gslilfethe
matrix. No paths are allowed to folo a path that only gits. Table 15 depicts the
matrix of paths that candelly follow each path in Figure 21(d).

After the Can Bllow matrix is completed, it is examined to see if restrictions on the
number of iterations associated with each path can be appliegeneral, the timing

analyzer examines the matrix for each path to determine Wesfenumber of other
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Table 15: Can Folle Matrix for Figure 21

Current | Paths That Can Immediately Follow
Path in
Loop 1 2 3 4 5
1 N N N N N
2 N N N N N
3 Y N N N N
4 N Y Y N Y
5 N Y Y Y N

paths required to be trarsed before the current path can beceted agin. If the
algorithm indicates that a path cannot reach itself, then the path will be assigned a
maximum of one iterationPahs 1, 2, and 3 of Figure 21(d) are all assigned a maximum
number of one iteration becauseytltannot reach themseds after gecuting. Ifa path

cannot directly follav itself, but can entually be reached again, then it canndaceate

on every iteration of the loop. If the algorithm indicates that Khaerations required to

be eecuted before aontinuepath can reach itself is greater than one, then it is assigned
a maximum number of iterations froroeil(R/K), whereR is the possible number of
iterations for the pathPahs 4 and 5 of Figure 21(d) can onlyeeute again on the
second iteration after it laskecuted. Thuspaths 4 and 5 are assignesll(999/2) and

ceil(1,000/2), respeately, or 500 maximum iterations.

5.2.3 Usingeffect-Based Constraints On Entering a Loop

The previous section discussedvaranch constraints are used to create path constraints
within a loop. But there are further constraints that arise when the loop is entered that
affect which paths can initiallyxecute. Thesteps ta&n by the timing analyzer related

to preheader constraints are as follows.
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usedata-flav analysis to determine the initial constraints
determinehe first iteration on which each path in the loop cestete
updatehe range of possible iterations for the paths

Hw NP

updateéhe minimum and maximum number of iterations of the loop

These steps are described in this section.

The timing analyzer uses datavil@nalysis [39] to calculaténs and outs for each
block in a function. The algorithm for accomplishing this isvgh in FHgure 28. The
data-flav equations 10 through 15 that determine the ins and outs are based on truth
tables gren in Table 16. The implementation uses six bit vectors for each block:

in.jump, in.fallthru, in.unknown, out.jump, oulfthru and out.unknen. The jump,

FOR each function in the program DO
DO
change = FALSE
FOR each bl ock in the function DO
NULL
NULL
NUL L
e block has at |east one predecessor (pred) THEN
pred. out.j
pred. out.f
pred. out.u
ach ot her predecessor bl ock (pred) DO
.j O= pred.out.]j
.f O= pred.out.f
.u
(

c -
I

O= pred.out.u O (in.j n pred.out.f) O
in.f n pred.out.j)

Initialize this.e, this.u and this.j based on the branch
constraints contained in this bl ock.

out.j =this.j O (in.j - this.f - this.u)
out.f =this.f O (in.f - this.j - this.u)
out.u =this.u O (in.u - this.j - this.f)

IF any in or out bit vector changed THEN
change = TRUE
WHI LE change

Figure 28: Calculating Ins and Outs
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B.in. | = N p.out. |

p O pred¥B) (10)

B.in. f = . prr\eds(B) p.out. f (11)
B.in.u=(B.in.j [] B.in. f)’ (12)
B.out.j =B.j [l (B.in.j-B. f-B.u) (13)
B.out. f =B. f [] (B.in. f =B.j-B.u) (14)
B.outu=B.u[] (B.in.u-B.j-B.f) (15)

fallthru and unknown bit vectors indicate which branches are made to jump, fall through
or become unknown, respadly, based on this blockFor determining the ins and outs
of a block, exactly one of the three corresponding bit vectors must be set, since a branch
must be in either a jump, fall through or uniwmostate. Each block also contains bit
vectors indicating if it causes a branch to jumall through or become unknm.
However, the current block may ke ro efect on the branch in question, so it is possible
that the bit vectors representing the effect from the current block may all be zero.

The first part of &ble 16 enumerates the cases to calculate the ins, based on the outs
of the predecessor blocks. As an illustration, consider line 7. Predecessor block pl
makes a branch unknown, and predecessor block p2 makes the samewuedpaath

jump. Thecombination of these effects is to neathat branch unknen. Sincethe
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Table 16: Truth Tables for Ins and Outs

line INPUT 1 INPUT 2 RESULT
pl. pl.f plu | p2,) | p2f | p2.u in.j in.f in.u
1 1 0 0 1 0 0 1 0 0
2 1 0 0 0 1 0 0 0 1
3 1 0 0 0 0 1 0 0 1
4 0 1 0 1 0 0 0 0 1
5 0 1 0 0 1 0 0 1 0
6 0 1 0 0 0 1 0 0 1
7 0 0 1 1 0 0 0 0 1
8 0 0 1 0 1 0 0 0 1
9 0 0 1 0 0 1 0 0 1
this.j | this.f | this.u in.j in.f in.u out.j | out.f | out.u
10 0 0 0 0 0 0 0 0 0
11 0 0 0 1 0 0 1 0 0
12 0 0 0 0 1 0 0 1 0
13 0 0 0 0 0 1 0 0 1
14 1 0 0 0 0 0 1 0 0
15 1 0 0 1 0 0 1 0 0
16 1 0 0 0 1 0 1 0 0
17 1 0 0 0 0 1 1 0 0
18 0 1 0 0 0 0 0 1 0
19 0 1 0 1 0 0 0 1 0
20 0 1 0 0 1 0 0 1 0
21 0 1 0 0 0 1 0 1 0
22 0 0 1 0 0 0 0 0 1
23 0 0 1 1 0 0 0 0 1
24 0 0 1 0 1 0 0 0 1
25 0 0 1 0 0 1 0 0 1

timing analyzer cannot assume which predecessor block wdlalprecede the block in
question, it has to intersect the information from all the predeces$besinner FOR-

loop in Figure 28 combines the effects from each predecessor block one at a time.

67



Equations 10 and 11 skothat the current block’ ins for the jump (fall through)
branches are simply the intersection of the jumgdl (fhrough) bit vectors of the
predecessors’ outs. Equation 12 states that the ins for the wmKkmanches are the
complement of the union of the ins for the jump aadtithrough branchesk-or example,
if one predecessor out says that a certain branch wlfill through, but another
predecessor out says the same branch will jump, then the in of the current block will
shaw that that branch is unknown due to the conflict between the predecessors.

The second part of Table 16 shows the cases that determine the outs, based on the
effects of the block in question combined with its ins. If the current block hadewt ef
on a branch, then the out bators will be assigned the value of the ins. Otherwise, the
effect of this block will @erride the ins to determine the outs of this bloEkr example,
consider line 16 indble 16. It depicts a situation where the block in question makes a
particular branch jump, while the effect of the ins is to entalat jump fall through.In
this case, since this block has an effectyvériades the ins, so thealue of the out bit
vectors will represent that the branch will jump. The equations 13 through 15 to
compute the outs are straightforward and felldirectly from the truth tableln Figure
28, the outs are calculated after the ikBwever, the algorithm is a typical data-flo
calculation in which the ins and outs depend on each,atbdne algorithm continues
until there is no change to the bit vectors.

After the ins and outs ofvery block are calculated, the timing analyzer uses the outs

of the preheader to see which paths cetge on the first iteration. The algorithm in
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Figure 29 setp. on_first to true (false) if it determines paghcan (cannot)ecute
on the first iteration. The cases in whighon_fi r st is false correspond to situations
where a branch in the path contradicts the information from the preheadetf@upath
is found not able toxecute on the first iteration as a result of this algorithm, then in
some cases it may be assigneddie maximum iterations, and a more accurate timing
bound can be obtained. The prehealetit constraints are propagated through each
path. Ary path that does not opehe preheader constraints canne¢oeite on the first
iteration. For example, consider the loop in Figure Zlhe application of the algorithm
in Figure 29 to the paths of this loop is depicted in Figure 30. This figure shows the
propagtion of the preheader constraints to determine which pathsxeante on the
first iteration. The solid arrows indicate transitions that occur between blocks inside the
loop, while dashed arrows indicate transitions to or from a block outside theBmgk
1 is the preheader of the loop, and block 10 is the block to which the lotsp &he
value of odd is initialized to O in block 1, which is in the outs of the preheader of the
loop, so the associated branch constraif4d$. Thus, on the first iteration of the loop,
the branch in block 4 must be &ak Rith 4 contains a transition from block 4 to block
5, which is a fall through situation, contradicting the preheader constraint. The timing
analyzer detects that path 4 cannacete on the first iteration.

The algorithm in Figure 29 also detects if a logg gansition in a path causes it to
be ineligible to gecute on the first iterationConsider exit paths 1 and 2 from the loop

in Figure 21.Pah 1 consists only of block 8, so this block is considered the last block in
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Initialize pre.j, pre.f and pre.u to be the union of the
respective bit vectors of all the header’s inmediate predecessors.
FOR each path (p) in the I oop DO
| F we al ready know t he path cannot execute on
first iteration THEN
CONTI NUE
FOR each block (b) in path p DO
p.on_first = TRUE
IF there is no branch in this block THEN

CONTI NUE

IF all three bit vectors at bit b are zero THEN
CONTI NUE

succ = nunber of imredi ate successor bl ock that |ies outside
the | oop

[ * if the preheader says this branch must jump
pre.j[b] THEN
IF this is not the last block in path THEN
| F nunber of next block in path == b + 1
p.on_first = FALSE
ELSE
| F succ == b + 1 THEN
p.on_first = FALSE

[ * if the preheader says this branch must fall throddgh
ELSIF pre.f[b] THEN
IFthis is not last block in path THEN
| F nunber of next block in path !'=b + 1
p.on_first = FALSE
ELSE
IF succ '=b + 1 THEN
p.on_first = FALSE

Figure 29: Which Paths Can Execute on First Iteration

the path. The timing analyzer determines the successor block to block 8 that is located
outside the loop, which is block 10. The exit transition from block 8 to block 10 is a
jump, havever the preheader constraint is for the branch in block 8 to fall through (see
8F constraint shown for path 1 in Figure 30). This contradiction means that path 1
cannot &ecute on the first iterationPah 2 has a similar situation. Its last block is block

9, and its successor that is located outside the loop is blocKd @it the loop by

taking path 2 implies that the branch in block 9 must fall through, but the preheader

constraint says that it must jump ($kconstraint shown for path 2 in Figure 3®o
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path 1:

{4J,8F,93} {4J,8F9J}
{4J,8F,9J3} invalid

path 2:

{43,8F93} {4J,8F9J} {4J,8F9J}
{4J,8F, 93} {4J,8F9J}  invalid

path 3:

{43,8F93} {4J,8F9J} {4J,8F9J} {4J,8F9J}  {2FA4J,8J,93} {43,83}
{43,8F 93} {4J,8F9J} {4J,8F9J} {2F4J8F9J} {2F4J,8J,9J}

(1} ---~{8] 9]

path 4:
{43,8F9J3} {4J,8F9J} {4J,8F9J} {4J,8F9J} {23,43,8F,9J}

{43,8F9J3} {4J,8F9J} {4J,8F9J} {2J,4J,8F9J} invalid
[1b---ssf—fo)—2}— a5 |7
path 5:
{43,8F9J3} {4J,8F9J} {4J,8F9J} {4J,8F9J} {23,43,8F9J3} {2J,4F,8F,9J} {4F,8F}

{43,8F93} {4J,8F9J} {4J8F9J} {2J,4J,8F9J} {2J,4J,8F9J} {2J,4F8F9J}

(1] -8 9] o7

Figure 30: Propagating Preheader Constraints for Figure 21

the timing analyzer concludes that path 2 canretige on the first iteration as well.

For those paths that cannoteeute on the first iteration, the next step is to determine
on which iteration it can first be tak. Table 17 shows a Path Distance matrix for the
example loop in Figure 21 that is de#il from the Can 6llow matrix given in Table 15.
The table entries containing indicate that it is impossible for one path to reach the
other path. For paths that cannotxecute on the first iteration, the timing analyzer

determines on which iteration it careeute as follovs. LetP be the set of paths that
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Table 17: Path Distance Matrix for Figure 21

Current | How Many Iterations to Reach Path
Path in
Loop 1 2 3 4 5
1 00 00 00 00 00
2 00 00 00 00 00
3 1 00 00 00 00
4 2 1 1 2 1
5 2 1 1 1 2

can &ecute on the first iteration, and Btbe the set of paths that cann&or each path

g in Q, the timing analyzer finds the shortest number of iterations to @acdm ary

path inP. This shortest distance plus 1 represents the first iteration on whicly path
execute. Continuingvith the example from Figure 21, path 4 belongs to thsdiath

5is a @mth inP, and according to Table 17 the path distance from path 5 to path 4 is one
iteration. Sothe timing analyzer concludes that path 4 can fixetwe on the second
iteration, and the range of possible iterations becomes [2..1@ilarly, the timing
analyzer determined that exit paths 1 and 2 could retuée on the first iteration.
However, the path distances from path 3 to path 1 and from path 5 to path 2 are both one
iteration as indicated inable 17. Since both path 3 and path 5 castuge on the first
iteration, paths 1 and 2 can firsteeute on the second iteration of the lodpor best

case analysis, their ranges of possible iterations are adjusted to [2..2}vasiisable

14. Theirworst-case possible iterations are not updated singe Hheé already been

determined to be [1001..1001] in Table 13.

The timing analyzer enforces a rule that ifyaxit path can recute on the first
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iteration, then it must all® all exit paths to be chosen for the first iteration. The reason
for this rule is that in best case, the BCET is assumed to occur for the minimum number
of iterations. Consider a loop havingdwaths, where only path 1 careeute on the

first iteration, but path 2 is significantly shortéfhen the loop may takless time to
execute path 2 for tw iterations than toxecute path 1 for just one iteration. The author
believes that requiring the best-case loop analysis algorithm to repeatedly examine a
loop for varying numbers of iterations would begedy inefficient. Specifyingthe
minimum number of iterations before starting loop analysisasdke algorithm much
simpler and only slightly more consatiwe in this highly unlikely scenario. In the
above genario, the timing analyzer will makhe conserative assumption that path 2

can eecute on the first iteration, and that the minimum number of iterations is still one.

If it turns out that no exit path carxeeute on the first iteration, then the timing
analyzer updates the number of iterations of the loop based on whexitthatles can
execute. Inthe example from Figure 21, both exit paths can orégte on the second
iteration, so the timing analyzer sets the minimum number of iterations ver2theugh
the compiler had pxeously determined, before this path analysis was performed, that
the minimum number of iterations wouldveabeen 1 [31].

The total number of iterations of the loop may also be updated in the case where the
user is prompted to enter information from which the timing analyzer computes the
number of iterations. If the user provides unrealistic values, then the number of

iterations based on the useinformation may be too small, and updating the number of
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iterations would be appropriate. But the situation ofifg to updating the number of
iterations is quite rare, only occurring when the number of paths exceeds the original

number of loop iterations.

5.2.4 Usindteration-Based Constraints

The maximum number of iterations can sometimes be constrained by analyzing
iteration-based constraints. The header block is assigned a range that spans all iterations
of the loop. This range is propagated through each p#itnen a transition is
encountered that has an iteration-based constraint, the range in the constraint is
intersected with the range in the current block in the p&igure 31 illustrates ho
iteration-based constraints are propagated through path 4 in Figure ZB&jransition
from block 3 (<=249) to block 4 results in the range [1..1000] being intersected with
[251..1000], which is the range specified in constraint 5 of Figure 23(c). The transition
from block 4 { >=750) to block 5 results in the current range of [251..1000] being
intersected with [1..750]. Thus, path 4 can only possikég@te in iterations [251..750].

If a path can only bexecuted in a gien range of iterations, then the maximum

iterations in which that path cameeute cannot be greater than the number of iterations

[1..1000] [1..1000] [251..1000]  [251..750] [251..750] [251..750]
[1..1000] [251..1000] __ [251..750 [251..750

Figure 31: Iteration-Based Constraints Propagated Through Path 4 in Figure 23
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in the range.A path with no possible iterations is infeasible and is nestidrom the list

of paths by the timing analyzeNote that the range of a path that onkt®is alvays

the last iteration of the loop, which is the case for paths 1 and 2 of Figure 21(d).
Likewise, if path A cannot reach itself and can only be immediately followed by a
different path B, which has a range [Bmin..Bmax], then pa&hafsge cannot span more
than [Bmin-1..Bmax1]. For instance, Table 15 shows that path 3 of Figure 21(d)
always leads to path 1, which has an iteration range of [1001..1001]s, path 3
possible range of iterations is [10€11.100%1] or [1000..1000] for WCET analysis.

The minimum number of iterations of a path is calculated by simply subtracting the
possible range of iterations of all other paths in the loop from the possible range of
iterations for the current pathlhe result is the unique set of iterations for the current
path, which is the minimum number of times that the path hasetmte. Therds one
exception to this rule.Consider path 1 in Figure 23(d). Its maximum number of
iterations is one due to constraintZl (once in Figure 23(c). The timing analyzer does
not reduce the range of unique iterations of the other paths, but does indicate that one

iteration in these paths may not be unique.

5.2.5 Usinghe Constraints in Loop Analysis

The author decided to use the minimum and maximum iterations associated with each
loop path to obtain tighter loop predictions without restricting the order in which these
paths are\wluated. Theravere sgeral reasons winthis approach was used. First, the

approach supports paths that caecete at most once, but inyamteration. Consider
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path 1 of the loop in Figure 23This situation may occur frequently in numerical
applications. Br instance, special conditions are often clkeckor the diagonal
elements of a matrix (diagonal systems). Second, the approach deals with paths that
have dependencies on other paths, such as paths 4 and 5 in Figufaally, the timing
analyzer often calculates aveeage WCET and BCET for a loop using average
number of iterations when the number of iterations can vary depending caldleeot a

outer loop counter variable [31]. Using this approachvalthe calculation of a safe
avaage WCET (BCET) since the longest (shortest) paths are selected first in the
respectre loop analysis algorithms.

In addition, the timing analyzer determines sets of paths, where the range of iterations
of the paths in one set do notedap with other sets. Each path is assigned to a single
set of paths.The timing analyzer uses the maximum number of iterations that can be
executed by a set of paths, which is the number of iterations in tisersegie. able 18
depicts an xample with 4 paths and 2 sets. Each set of paths can retute a
maximum of 50 iterationslIf only the maximum iterations of each path was used, then

two paths from a single set could be selected and a signifieargstimation may occur

Table 18: Example lllustrating Use of Path Sets

Possible Min Max
Path lterations | Iters | Iters Set
1 [1..50] 0 50 1
2 [1..50] 0 50 1
3 [51..100] 0 50 2
4 [51..100] 0 50 2
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when the paths in one set require snarore cycles than the paths in the other Jdtis
approach has limitationsConsider if a fifth path existed in this example which could
execute in ay iteration of the loop.All of the loop paths would be assigned to a single
set, which could result in an consative iming prediction. Fortunately inequality tests

(<, <=, >=, >) on loop induction variables do not occur frequentlye two subsections

that follov describe the worst-case and best-case loop analysis algorithms thay emplo

the path constraint information.

5.2.6 Worst Case Loop Analysis

Figure 32 shows ho the WCET loop analysis algorithm uses the path constraint
information. LetN be the maximum number of iterations d@the the number of paths
in a loop. The DO-WHILE will process at most the minimuniNadr 2P total iterations
since the first misses and first hits in each path can miss or hit at most once,
respects'vely.6

The algorithm selects the longest path on each iteration of the loop from the set of
paths that can still possiblyxeute. Inorder to demonstrate the correctness of the
algorithm, one must skothat no other path for agn iteration of the loop will produce
a longer worst-case time than that path selected by the algorBrascriptions of he
the caching categorizations and pipeline information are used in the loop analysis and
correctness arguments about selecting the longest path using thegeizatiens and

information hae keen gven in previous work [25, 26]. Thus, it remains to be aimo

51f the number of paths within a loop exceeds a reasonable limit, then the loop contiisldéotitioned to reduce the timing
analysis complexity [30].
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/ * calculate required and non-required path informattan
req_iters = 0.
FOR P = each path in the | oop DO
P->req_iters = P->mn_iters.
P->nonreq_iters = P->max_iters - P->min_iters.
req iters += P->nin_iters.
nonreq_iters = N - req_iters.

[ * process all iterations of the loop/
iters_handl ed = 0.

pi peline_info = NULL.

WH LE iters_handled < N DO

/ * process iters while longest path has a first miss or first hit

DO
IFreg_iters < N - iters_handl ed THEN
Fi nd | ongest path P where
P->reqg_iters+P->nonreqg_iters > 0 &&
P->set. maxiters > 0.
ELSE

Fi nd | ongest path P where
P->req_ iters > 0 &&
P->set. maxiters > 0.
Concat enate pipeline_info with the current
wor st - case uni on of executabl e pat hs.
iters_handled += 1.
IF P->req_iters > 0 THEN

P->req iters -= 1.
req_iters -= 1.
ELSE
P->nonreq_iters -= 1.
nonreq_iters -= 1.
P->set. maxiters -= 1.

3

LE encountered a first mss or first hit
AND i ters_handled < N

/ * Efficiently process iterations for the current longest path
IFiters_handled < N THEN
nonreq_iters_to do =
m n(nonreq_iters, P->nonreq_iters,
P->set. maxiters - P->req_iters).
iters to do = P->req_iters + nonreqg_iters_to_do.
req_iters -= P->req_iters.
nonreq_iters -= nonreqg_iters_to_do.
P->set.maxiters -= iters_to_do.
P->req_iters = 0.
P->nonreq_iters -= nonreq_iters_to_do.
Concatenate pipeline_info iters to do
times with current worst-case union.
iters _handled += iters_to_do.

Figure 32: WCET Loop Analysis Algorithm

that each time a path is selected, it is in fact chosen from the paths that can still possibly

execute gven that the minimum and maximum number of iterations for each path and
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set were accurately estimate@. path’s number of required iterations is its minimum
iterations to be performed. The non-required iterations of a path is tfezedife
between its maximum and minimum number of iteratioAgath is initially chosen in
the IF-THEN-ELSE construct at the beginning of the DO-WHILE loop in Figurelf32.
the iterations remaining is greater than the required iterations left to be processed (sum
of each patls minimum iterations not yet processed), then the path selected is chosen
from ary path that has aniterations that can be performed. Otherwise, the iterations
remaining must be equal to the required loop iterations remaining and the path must be
selected only from paths thatyearemaining required iterations left. The code after the
DO-WHILE in the algorithm diciently uses repeated instances of a path that has no first
misses or first hits and thus will remain the longest path since its worst-cas#obeha
cannot change. This code processes the remaining required iterations of the path and the
minimum of the remaining non-required iterations of the path, the set of paths to which
the path belongs, or the entire loopherefore, the paths that can still possibigogite is
accurate since a\gin path’s required iterations are \aflys processed before its non-
required iterations and the number of non-required iterations to be processed for a path is
never allowed to exceed the number of non-required iterations remaining in the loop.

Table 19 illustrates the @rst-case loop analysis algorithm using the example loop
given in Hgure 21. The iteration information pertaining to theefpgaths was gien in
Table 13. None of the paths hasyaequired iterations, so the number of non-required

iterations is the same as their number of maximum iteratimilsilale. Table 19 outlines
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Table 19: Example for Worst-Case Loop Analysis

Iteration P1 | P2 | P3| P4 )| P5 | Longest | Time
1 16 28 44 56 | 54 4 56

2 7 10 17 20 18 4 72
3-500 7 10 17 20 | 18 4 8040
501 7 10 17 18 5 8054
502-1000 7 10 17 18 5 15040
1001 7 10 2 15046

the progress of the loop analysis algorithm. It selects the longest path for each iteration.
Note that the iteration numbers in the first column are accounting for the iterations of the
loop, but not necessarily in the order in whichytheke pace. D actually identify
which path is the longest on each sequential iteration woulce ringkloop analysis
algorithm more comple with little or no benefit in tightening theeeution time bound.
However, the use of path sets is used to determine whether a particular path is eligible to
execute during a particular range of iterations, and this feature will also be illustrated
shortly For the remainder of this illustration of the algorithm, and also for the
subsequent example for best case, the iterations will be referred to ordmélihe
reader should note that these iteration numbers are only used for accounting all the loop
iterations and does imply the temporal order of paths actually taken.

Columns 2 through 6 in the table indicate the pa#twion times for a particular
iteration. All five paths are eligible toxecute for the first iteration, and path 4 is the
longest, taking 56ycles. Itturns out in this example that all the first misses encountered

during the first iteration, so that the instruction cache \iehaoes not change starting
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with the second iterationFor the second iteration, all first misses arevriceated as
hits. Onceagain path 4 is the longest path. Itgeeution time is 20 ycles, but starting
with the second iteration it is no longer necessary to fill the pipeline, so 16)(@@les

are added to the total time for the loop afteo tterations.

Since there is no change in the instruction cacheviomhaduring the second iteration,
the algorithm proceeds to the second phase where it efficiently replicates path 4 until it
has exhausted its 500atable iterations.For iteration 501 the algorithm returns to the
first phase, where the individual paths arevatmted. Atthis point path 4 is ineligible
for consideration since it hagheusted its iterations. The longest pathilable is path
5, whose recution time is 18 cycles, which includes the pipeline filling time that is not
included in the accumulation of the total time for the loop. So the algorithm adds 14
cycles to the loo execution time. Since there is no change to the cache \iehgath
5 is dficiently replicated starting at iteration 502, for its remaining 499 iterations.

For iteration 1001, which is the last iteration of the loop, the algorithm cannot
consider paths 4 or 5 becauseytimave exhausted their number of iteration®ah 3
cannot be considered eithaince the previous analysis determined that it is in the same
set of paths as paths 4 and 5 that share iterations [1..1000], and this set has exhausted all
1000 of its maximum iterations. So only paths 1 and 2 are in contention for the final
iteration and path 2 is the longer path. The totatetion time for the loop is predicted
to be 15,046 cycles, which ixact. If the timing analyzer did not generate path

constraints, then path 4 wouldveakeen selected for 1000 iterations rather than 500, and
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the loops WCET would hae keen oerestimated by about 7%.

5.2.7 BestCase Loop Analysis

Figure 33 depicts the best-case loop analysis algorithm, which is for the most part
analogous to the worst-case algorithm described in the previous subsection. As a
preliminary step, the algorithm computes the number of required and non-required
iterations for each path, as was done in worst case. The rest of the algorithm consists of
two phases. Thdirst phase finds the shortest p&tiior the first iteration.For the first
iteration only the timing analyzer treats all first misses as misses and all first hits as hits
when analyzing the cache behavior of all the paths’ instructidhg. major issue for
selecting the shortest patis determining which paths are eligible to be selectethe
loop has at least one non-required iteration, tRemay be chosen from wgrof the
continue pathsHowever, if the loop has no non-required iterations, tRemay only be
selected from those continue paths thathaquired iterations.

The WHI LE- DO loop in Figure 33 represents the second phase of the best-case
algorithm, which processes all the remaining iterations of the loop after theNits.
that the timing analyzer treats a function as a loop with a single iteration, so its best case
analysis will only perform the first phase of this algorithim.the second phase, all first
misses are treated as hits and all first hits are treated as misses. In other words, the
instruction cache behavior is assumed not to change during tme-dsiterations. The
reason for the difference in Wothe worst-case and best-case loop analysis algorithms

are oganized is described in the xtesection. The method of selecting the shortest path
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/ * calculate required and non-required path informatfdn

req_iters = 0.

FOR P = each path in the | oop DO
P->req_iters = P->nmin_iters.
P->nonreqg_iters = P->max_iters - P->nin_iters
req iters += P->min_iters.

nonreq_iters = N - req_iters.

pi peline_info = NULL.

[ * process the first iteration of the looy
first_mss treatnent = mss.
first _hit treatment = hit.
IF reqg_iters < N THEN
Find shortest path P anong the paths in which
P->req_iters + P->nonreqg_iters >0 && P->set.maxiters > 0.
ELSE
Find shortest path P anong the paths in which
P->reqg_iters >0 && P->set.maxiters > 0.
Concatenate pipeline_info with the current
best -case uni on of executabl e paths.
iters_handled = 1.
IF P->reqg_iters > 0 THEN

P->req_ iters -= 1.
req_iters -= 1.
ELSE
P->nonreq_iters -= 1.
nonreq_iters -= 1.
P->set.maxiters -= 1.

/* process the remmining iterations */
VWH LE iters_handl ed < N DO
first_ mss treatnent = hit.
first_hit_treatment = niss.
IFreqg_iters < N THEN
Find shortest path P anong the paths in which
P->reqg_iters + P->nonreq_iters >0 && P->set.nmaxiters > 0.
ELSE
Find shortest path P anong the paths in which
P->reqg_iters >0 && P->set.maxiters > 0.
nonreq iters to do = mn (nonreq_iters, P->nonreq_iters,
P->set.maxiters - P->reqg_iters).
iters to do = P->req_iters + nonreqg_iters_to_do.
req iters -= P->req_iters.
nonreq_iters -= nonreqg_iters_to_do.
P->reqg_iters = 0.
P->set.max_iters -= iters_to_do
P->nonreq_iters -= nonreqg_iters_to_do.
Concatenate pipeline_info with the current
best -case uni on of executabl e paths.
iters_handled += iters_to_do.

Figure 33: BCET Loop Analysis Algorithm

P is the same as in the first phas@nceP is selected, it is necessary to calculate the

number of iterations to account for p&hwhich is done in the same manner as ors
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case. Thdiming analyzer will usé® for all of its required iterations, plus the minimum
of P’'s non-required iterationd}’s set’s maximum iterations remaining and the remaining
non-required iterations of the looggince the method of selecting the shortest path for
the best-case algorithm is analogous to selecting the longest path irorstecase
algorithm, the correctness argument for best casgldvalso follev analogously from
the worst-case explanatiorvgn in the previous section.

Table 20 illustrates the best-case loop analysis algorithm, using the samele
loop (from Figure 21) that as described for worst case. Thisamples best case
iteration information \@s gven in Table 14. This loop only has twterations instead of
1001 for worst case. The first phase of the algorithm selects the shortest path for the first
iteration. Theonly paths that are eligible for iteration 1 are paths 3 and 5, and path 3 is
shorter The second phase of the algorithm examines the remaining iterations in the
loop, and in this case there is only iteration 2 to consiBer this iteration, only paths 1
and 2 are eligiblePah 4 is a continue path and its range of possible iterations is [2..2],
but this iteration is the last iteration of the loopah 4 cannot seesas a ontinue path,
and it is not an»at path either so mth 4 is not eligible to be chosen for the second

iteration. Amongpaths 1 and 2 for the second iteration, path 1 is the shorter jp&th.

Table 20: Example for Best-Case Loop Analysis

Iteration | P1 | P2 | P3 | P4 | P5 | Shortest | Time

1 44 54 3 44
2 7 10 1 47
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execution time of 7 cycles includes 4ales for pipeline filling, which is not used after
the first iteration. The best-caseseution time for the loop is computed to be 4¢les,

which is an exact prediction.

5.2.8 Reasofor Different Algorithms

It is important to note that the worst-case and best-case loop analysis algorithms are
not perfectly analogous with respect to the effect of first misses [2]. Consider a loop
having three paths with information depicted in Table Pihs 1 and 2 each a a
distinct first miss instruction, while path 3 has no first misses. According todis-w
case loop analysis algorithm, the timing analyzer selects path 1 for the first iteration,
path 2 for the second iteration, and path 3 for all other iteratibasthis example, the
worst-case algorithm computes the WCET exactly formmmber of loop iterations.

For best case, path 3 will be chosen for the first iteratiBuoit starting with the
second iteration, all first misses will be treated as hits, so path 2 will be selected for all
iterations after the firstThus, the timing analyzer will compute a BCET of 13 +9*(

1) cycles for this loop, whemis the minimum number of loop iterationklowever, the

true BCET of this loop can be slightly greatdf the loop has just one iteration, the

Table 21: Information on Three Paths in Hypothetical Loop

How Path is Evaluated Path1l | Path2 | Path 3

Treat first misses as misses 19 18 13
Treat first misses as hits 10 9 13
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timing analyzer correctly predicts that path 3 should beertakand there is no
underestimation in the BCET(f the loop has tw iterations, then path 3 should bedak

for both iterations, yielding 26ycles for the loop. The timing analyzer would compute
22 gcles if there are tw iterations, a BCET underestimation of foyclkes. Onthe
other hand, if there are three or more iterations, the BCET is realized if the l@sp tak
path 2 for gery iteration. In this case, the timing analyzer will underestimate the BCET
of the loop by fie ¢gycles, and this underestimation is due to the incorrect prediction of
which path had been chosen for the first iteratibmorder to mak an &act prediction

in best case, it becomes necessary txagn@ne path choices for prior iteration¥he
author beliges that having to re-examine all combinations of path choices for prior
iterations to compute the BCET of a current iterationvirlp inefficient, and thus the

slightly more conservate gproach described in Figure 33 is used.

5.3 Results
The results of the test programs arevaan Table 22. This table shows the benefit of
automatically addressing branch constraints within the timing analyizex lines that
are printed in boldface indicate which timing predictions became tighter as a result of
this additional analysis. As in previous result tables,Qbserved Cyclesepresent the
cycles required for an xecution with worst-case and best-case input data, as

appropriate7. The last tvo columns indicate the results when the analysis includes the

" The author modified the desired reletigror of theExpintand Gaujacprograms so thewould not comerge early in worst
case, which made it possible to obtain an accurate maximum iterations for a loop and worst-case input d@&bdervibe Cycles
in Table 22.
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Table 22: Results After Adding Branch Constraint Analysis

Worst-Case Results
Name Observed + Iter. Count | + Iter. C?ount + Br. Constr. | + Br. Cpnstr.

Cycles Cycles Ratio Cycles Ratio
Des 149,706 172,509 1.152 167,165 1.117
Expint 58,217 1,293,290 22.215 58,289 1.001
Fresnel 47,749 48,887 1.024 47,783 1.001
Gaujac 786,786 790,116 1.004 787,134 1.000
Hes 55,834,609 | 56,739,136 1.016 56,739,136 1.016
Integ 22,538,082 | 22,553,163 1.001 22,553,163 1.001
Interp 25,469,403 | 25,478,409 1.000 25,478,409 1.000
LU 23,055,832 | 23,572,337 1.022 23,444,562 1.017
Matcnt 1,769,321 1,861,150 1.052 1,861,150 1.052
Matmul 4,444,911 4,448,212 1.001 4,448,212 1.001
Matsum 1,277,465 1,279,322 1.001 1,279,322 1.001
Sort 7,672,281 7,672,292 1.000 7,672,292 1.000
Sprsin 28,339 28,664 1.011 28,404 1.002
Stats 1,016,048 1,016,128 1.000 1,016,128 1.000
Summidall 15,340 18,090 1.179 15,341 1.000
Summinmax 16,080 17,080 1.062 16,080 1.000
Sumnegpos 11,067 13,068 1.181 11,068 1.000
Sumoddeven 15,093 16,112 1.068 15,102 1.001
Sym 2,747,654 2,747,708 1.000 2,747,708 1.000
Average 7,734,420 7,882,403 2.157 7,815,352 1.011

Best-Case Results
Name Observed + Iter. Count | + lter. C_:ount + Br. Constr. | + Br. anstr.

Cycles Cycles Ratio Cycles Ratio
Des 65,615 22,247 0.339 57,920 0.883
Expint 125 118 0.944 118 0.944
Fresnel 181 172 0.950 172 0.950
Gaujac 45,270 44,566 0.984 45,127 0.997
Hes 306,733 258,908 0.844 258,908 0.844
Integ 19,160,842 19,135,118 0.999 19,135,118 0.999
Interp 6,485,878 6,479,865 0.999 6,479,865 0.999
LU 12,883,939 637,365 0.049 11,847,472 0.920
Matcnt 1,549,095 1,548,798 1.000 1,548,798 1.000
Matmul 4,444,666 4,420,068 0.994 4,420,068 0.994
Matsum 1,257,239 1,167,140 0.923 1,167,140 0.923
Sort 19,966 19,950 0.999 19,950 0.999
Sprsin 17,436 17,379 0.997 17,379 0.997
Stats 607,399 601,406 0.990 601,406 0.990
Summidall 15,340 8,072 0.526 15,312 0.998
Summinmax 13,080 13,062 0.999 13,062 0.999
Sumnegpos 9,067 9,049 0.998 9,049 0.998
Sumoddeven 94 63 0.670 94 1.000
Sym 160 160 1.000 160 1.000
Average 2,467,480 1,809,658 0.853 2,395,748 0.970
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automatic detection and exploitation of branch constraints.

Several of the test programs exhibit branch constraints thee lleen described in
this chapter The SumoddeverSumnegpgsand Summidallprograms correspond to the
examples illustrated in Figures 21, 22, and 23, resgsbyti The Desprogram contains a
loop in which the indevariable is being compared to constants, giving rise to iteration-
based constraintsThe Expintprogram performs more computation when a loapable
is equal to a loop-irariant value on a single loop iteratiofresneltakes different paths
on the odd andven geps in the waluation of the seriesGaujacexecutes different paths
depending upon the specified iteration of a lodpe LU program contains some nested
loops in which the the body of the inner loop may or may not be entered based on a
condition in the outer loopThe Sprsinprogram does not perform a computation for a
single column (the diagonal element) of each ob a matrix. TheSumminmayprogram
determines the minimum and maximum of each corresponding pair of elements in tw
vectors and these twests are logically correlated.

The results she that eploiting value-dependent constraint information in a timing
analyzer can significantly tighten WCET and BCET predictions. The progreeasel
andSumoddeveaxecute alternating paths in a loop depending upon a #eagble. One
of the alternating paths has a slightly longer WCET than the other path in both of these
programs. Theiming analyzer \&s able to determine that longer path of each program
could only be recuted for one half of the iterations, which reduced treeastimations.

In the case oSumoddevem best case, the compiler originally determined that the loop
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had a minimum number of iterations of 1, but the timing analyzer was able to predict
that the loop s required to iterate twice, using the methods described in Section 5.2.3.
The result of this analysis was an exact BCET predictldd.also shaved a dramatic
tightening in its BCET prediction. There were three nested loops in which the timing
analyzer was able to exploit iteration-based constraints. The prevevs®rv of the
timing analyzer assumed that the inner loop in these three nasis abvays be aoided

along the best-case path of their respeectiirrounding loops. But in fact these loops
execute on all but one iteration of the surrounding looghe Summinmaxand
Sumnegpoprograms hee logically correlated branches and the timing analyzas w
able to detect for each program that the longest path was infeasible due to this
correlation. Thecompiler detected iteration-based constraints for Gaujac and
Summidallprograms indicating that certain paths could only kec&ted in specific
iterations. Theravas little overestimation in the previous version of the timing analyzer
for Gaujacsince these iteration-based constraints were associated with paths that were
not in the most deeply nested loop of the progratowever, Summidalk iteration-

based constraints were for the most frequentlscated portion of that program and a
significant werestimation of WCET wasvaided. Inbest case, the timing analyzeasv

able to determine that the logghortest path irsummidalicould execute at most once,

and its second shortest path coutdoaite for at most 250 of the 1,000 iteratios/en

the longest path was required taeeute for at least 499 iterations. These iteration-based

constraints significantly tighteneésummidals BCET prediction. Finally, the compiler

89



detected an iteration-based constrainSprsinand Expint that was associated with an
equality test between a looanable and a value that wasanant for that loop. This
means that the loop could onlxeeute a path associated with the equality transition
from the block containing the test for a single iteration of the Idaw.Sprsinthis path
required a smaller WCET than when the loop variabes wot equal to the loop-
invariant value. Thusthe orerestimation by the previous version of the analyzas w
quite small and wuld decrease when applied to arrays with larger dimensions.
However, the opposite situation occurs kxpint which has a higher WCET associated
with the path where the loopasable is equal to the loopvariant value. Thus,
exploiting this branch constraint significantly reduces the WCHK®&eastimation of
Expint

The slight remaining WCETwerestimations and BCET underestimations foress
of the programs in the current version of the timing analyzer were due woradsons.
First, theDesprogram in particular had geral arrays in which the elements are hard-
coded in the data segment, and these array element values affect various comparisons.
These branch constraints were not detected in the comféepnd, in wrst case some
instructions conseatively categorized as misses actually hit in cache due to the order in
which paths werexecuted because of dependences on daltzes. Matcnthad about a
90,000 cycle (about 5%) verestimation in wrst case due to this consative
cateyorization. Similarly in best case some instructions were coremly classified

as hits gen though thg actually miss in cacheHeshad a 44,541ycle (about 15%)
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underestimation in best case for this reasbhird, there were some minor limitations to
the timing analysis that result in consaive predictions. er instance, the programs
Hes Integ and LU had non-rectangular loop nests where the number of iterations is
rounded to an ingger, and this efect was described in the previous chapt&lso, the
underestimation iU was partially due to the fact that an iteration-based constradast w
not generated by the compiler for a condition containing a comgdpression that
needed to bexpanded. Finallythere were slightly consemtive predictions that resulted
from instruction caching cagerizations that change between loopelse and their
interaction with the pipeline analysis, affecting both WCET and BCET [26].
particular the 8% underestimation of the BCET &ummatrixwas due to this

interaction.

5.4 Conclusions

This chapter has describedvihdranch constraints were automatically detected by a
compiler and exploited by a timing analyzefhis chapter described techniques to
efficiently detect constraints from effects causing the outcome of a branch to become
known and from ranges of iterations associated with branch outcomes. This constraint
information could be used by a variety of timing analyzers, including those that use an
ILP soler. These branch constraints were used in a non-ILP based timing analyzer to
constrain the minimum and maximum iterations associated with each path in a loop and
how these path constraints were used in WCET loop analysis. The results indicate that

detection and»>loitation of branch constraints can significantly tighten WCET timing
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predictions. Furthermordghe approaches used for detection and exploitation of branch
constraints were shown to be quite efficient and are fully automated, requiring no

interaction from the user.
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CHAPTER 6

SUMMARY RESULTS

Table 23 summarizes all of the WCET and BCET ratios for tagous leels of
analysis. TheéNaive Ratio column refers to no analysis being performé&hch of the
remaining ratio columns she the result of the analysis adding one feature to the
column to its left. The ratios in the rightmost column represent all of the analysis
described in this dissertation, taking into account instruction caching, pipelining, as well
as automatic iteration calculation and branch constraint analykes.results she that,
on average, the WCET is predicted to within 1.1% of the observed worst-case time, and
the BCET is predicted to within 3.0% of the observed best-case time.

Table 24 shows the response time of the timing analysisoement. Allmodules in
the timing analysis environmentJealeen compiled with optimizations. The first three
columns gve the percentage share of the total analysis time divided among the compiler
static cache simulator and the timing analyzém some rows of the table, the
percentages do not total 100% due to rounding. The last colwes je &ecution
time in seconds required for the timing analyzer to en#le WCET and BCET
predictions. Thdimes were obtained by calculating for each program ¥bege of the
elapsed times of tenxecutions of the timing analyzer on an Ultr&&C. These

response time measurements vghimat on &erage, the timing analysis takes only
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Table 23: Estimated Ratios for s of Analysis

Worst-Case Results

Name Naiye Cache.OnIy + Pipellining + lter. (?ount + Br. anstr.

Ratio Ratio Ratio Ratio Ratio
Des 5.144 2.663 1.152 1.152 1.117
Expint 50.384 34.426 22.215 22.215 1.001
Fresnel 2.222 1.533 1.024 1.024 1.001
Gaujac 2.006 1.466 1.004 1.004 1.000
Hes 12.302 7.251 2.339 1.016 1.016
Integ 4.419 2.420 1.332 1.001 1.001
Interp 4.208 2.966 1.991 1.000 1.000
LU 34.338 18.257 5.403 1.022 1.017
Matcnt 3.688 1.844 1.052 1.052 1.052
Matmul 4,977 2.108 1.001 1.001 1.001
Matsum 4.082 1.880 1.001 1.001 1.001
Sort 10.546 4,982 1.988 1.000 1.000
Sprsin 6.644 2.711 1.011 1.011 1.002
Stats 3.118 1.823 1.000 1.000 1.000
Summidall 13.834 6.787 1.179 1.179 1.000
Summinmax 12.511 6.349 1.062 1.062 1.000
Sumnegpos 14.379 7.054 1.181 1.181 1.000
Sumoddeven | 12.943 6.373 1.068 1.068 1.001
Sym 26.114 8.980 1.995 1.000 1.000
Average 11.993 6.414 2.631 2.157 1.011

Best-Case Results
Name Naive | Cache Only | + Pipelining | + Iter. Count | + Br. Constr.

Ratio Ratio Ratio Ratio Ratio
Des 0.191 0.292 0.339 0.339 0.883
Expint 0.232 0.816 0.944 0.944 0.944
Fresnel 0.238 0.834 0.950 0.950 0.950
Gaujac 0.268 0.753 0.984 0.984 0.997
Hes 0.014 0.043 0.046 0.844 0.844
Integ 0.131 0.132 0.668 0.999 0.999
Interp 0.007 0.018 0.022 0.999 0.999
LU 0.017 0.018 0.022 0.049 0.920
Matcnt 0.247 0.659 1.000 1.000 1.000
Matmul 0.322 0.399 0.994 0.994 0.994
Matsum 0.257 0.761 0.923 0.923 0.923
Sort 0.481 0.495 0.999 0.999 0.999
Sprsin 0.419 0.900 0.997 0.997 0.997
Stats 0.300 0.687 0.990 0.990 0.990
Summidall 0.457 0.461 0.526 0.526 0.998
Summinmax 0.918 0.922 0.999 0.999 0.999
Sumnegpos 0.883 0.886 0.998 0.998 0.998
Sumoddeven 0.628 0.670 0.670 0.670 1.000
Sym 0.238 0.856 1.000 1.000 1.000
Average 0.329 0.558 0.741 0.853 0.970
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Table 24: Response Time Measurements

Compiler Sta_tic Cache Timing Timing
Name Simulator Analyzer || Analyzer
Percent Percent Percent || Seconds
Des 32 5 63 1.35
Expint 38 4 58 31
Fresnel 52 4 46 .22
Gaujac 11 1 88 3.08
Hes 81 1 18 71
Integ 27 4 69 .15
Interp 36 3 61 .33
LU 70 1 29 1.17
Matcnt 43 6 50 .16
Matmul 40 5 55 .21
Matsum 41 6 53 .15
Sort 32 5 64 .28
Sprsin 44 5 51 A1
Stats 36 6 58 .36
Summidall 24 5 49 .06
Summinmax 59 5 36 .05
Sumnegpos 62 4 34 .04
Sumoddeven 60 4 37 .04
Sym 21 3 77 21
Average 43 4 52 A7

slightly longer than compilationHowever, there were a & anomalies. Therograms
Hes and LU took proportionally longer to compile since their source files weee o
1,000 lines long, mostly due to the initialization of array elements. The timing analysis
of Gaujactook significantly longer than the compilation since this program contains a
loop with twele long paths with man floating-point instructions. In addition, the
timing analyzer examines each function instance separateigh adds to the response
time whenger a function is called from multiple sites. The prograies and Stats
contain functions that are called from four or more sites.

The timing analyzer is no faster than the version that was used prior to the
constraint research described in this dissertation [1, 2]. The decrease in elapsed time for

the analysis was due to aweasons. Firstthe timing analyzer was modified tecid
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redundant analysis of a path when its caching \beh&as not changed. Second, the
new approach does not analyze a path in\emiteration when the path was infeasible,

its maximum iterations had been exhausted, or only required iterations of other paths
were &ailable. Thus,the timing analyzer implemented for this dissertation remains a

highly efficient tool.
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CHAPTER 7

FUTURE WORK

There are additional aspects of using constraints in timing analysis that can be
investigated. Maw branch constraints were not detected due to function calls separating
effects and the branchesfedted. Thesdoranch constraints could be detected using
inter-procedural analysisSimilarly, interprocedural analysis could also detect more
loop iteration constraints, in the case where one loop contains a call to a function and
another loop is in the called function. As was mentioned in Section 5.4, further branch
constraints could also be obtained from analyzing values assigned to global variables and
arrays.

Another goal is to makthe tool more retargetable, so that if a user wishes to obtain
timing estimates on a different processtirthat would be necessary is a modification of
the input file to the timing analyzer (see Figure Aj.present, it is straightforward to
retaget the timing analyzer to a similar type machine, a single issue RISC with a direct-
mapped instruction cachdretageting to more varied machines, containing additional
hardware features such as a secondary cache, non-blocking caches, registersyindo
multiple issue, etc. will require more work.

While the performance of the timing analyzer described in this dissertatgn w
compared to a simulator of the MicroSPARGE ilistruction cache and pipeline, it will

also be beneficial to compare the timing predictior@sre measurements obtained from
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a logic analyzer running the test programs on a MicroSPARC | procegsdogic
analyzer inspects addresses sent on the bus to main medmoytunately it is difficult

to measureacution time using a logic analyzer on a modern machine because man
references to instructions and data are obtained from cache instead of main.miémory
is also difficult to obtain accurate timing measurements due to the complexity of virtual
memory and operating systemvethead. Anotherdisadwantage with only using
execution time measurements is that capturing just the to&duédon time does not
verify the correctness of the timing analyzét is possible that a faulty implementation
for the timing analyzer could i@ an overestimation and an underestimation that cancel
each other out, resulting in what initially appears to be a tight bound onxdttien
time.

Rather than focusing on the specific details of one machine, the author chose to use
an existing retargetable hardware simulatAssumptions were built into the simulator
based on published documentation from the nectufer Howeve, mary details about
the hardware were not specified, and the matufers technical stdf were not
particularly forthcoming in responding to the autkoruestions via telephone or
electronic mail. One adwntage to using a simulator is that it is trivial to change certain
aspects of the hardware such as the cache configuration. This feature is especially
beneficial since the MicroSPARC |, designed in 1993, is becoming obsdletther
reason the simulator was used was tonathae to examine lower Vels of detail, such as
pipeline stages of an individual instructiowith such fine-grain detalils, it is possible to
test and debug the timing analyzer using simulator output.

On maty embedded machines the measurement of teeution time can tak pace

in the absence of virtual memory and operating systerhead. Somerecent
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architectures support hardwe performance counters that are automatically updated
during &ecution and introduce no additionateshead. Onesuch counter can keep track

of the number of machineycles. Thus,n the future, the ideal testing \@ronment

would be on an embedded machine with both a simulator and hardware performance
counters. Asimulator of the architecture can be used abdate the timing analyzer

Next, hardware performance counters on an embedded machine can be usathte v

the simulatar Using both testing components, one can then be more confident that the

timing analyzer generates accurate WCET and BCET predictions for the actual machine.

99



CHAPTER 8

CONCLUSION

This dissertation has presented amersion to an earlier timing tool [1, 2] thatwo
bounds gecution time based on automatically generated constraints about the program.
The two type of constraints are the calculation of the number of loop iterations discussed
in Chapter 4 and the constraints related to branch outcomes described in Chapter 5.

The compiler calculates the number of loop iterations for loopmda single exit or
multiple «its. Incases where this number of loop iterations depends on a non-constant
loop invariant expression, the user can enter the minimum and maxiraluasvfor each
variable in the expression interaadly or through the use of assertions to bound the
number of loop iterations. If the number of loop iterations depends on an outes loop’
index variable, then the timing analyzer formulates a summation expression to be
evduated by an algebraic simplifier [47].

Constraints that can fatt branch outcomes are automatically detected by the
compiler and a set of branch constraints is associated with each basic Bloekiming
analyzer propaates these branch constraints along each possible pakeooftien to
determine path constraints. The analysis of path constraints can determine if certain
paths are infeasible or if thean only e&ecute on a certain set of iterations. These path
constraints are used in the worst-case and best-case loop analysis algorithms to more

tightly bound the xecution time. For instance, a loop’'worst case (best case) time can
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be more tightly predicted if is determined that the longest (shortest) path is infeasible.

The implementation of the timing analysisveanment includes the four modules
depicted in Figure 1. The compiletatic cache simulator and the algebraic solver that
support the timing analysis were implemented by other researchers at FSU. The total
response time including the compilation, static cache simulation and timing analysis,
takes only a f& seconds for the benchmark programs used in this dissertation.

The major contribution of this dissertation to timing analysis research is the nature in
which constraints are made known and used within the timing analyettre past, such
constraints were manually entered by the usich is quite tedious and error prone.
Using the techniques described in this dissertation, it has been shown that this process
can be automated. It is much more likely that a real-time programmeldwse an
automated tool as opposed to an unautomated one to obtain timing predictions in order
to relieve the tedium and get a quicker response. Theversion of the timing analyzer
bounds the WCET and BCET much more tightly than beftmeaddition, this analysis

can still be performed in a small amount of time.
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APPENDIX

The following context-free grammar describes the syntax of the file that is created by the

compiler and used as input into the timing analyZére file contains information about

the control flev of the program and the branch constraini©ie grammar follows the

following syntax comentions.

1. Thedefinition operator is "::=".

2. Nonterminalsare enclosed in angle brackets.

3.  Asuperscript asterisk indicates that apression may he z2ro or more instances.
A superscript plus indicates one or more instances.

4. Optionalexpressions are enclosed in square brackets.

5. PRarentheses are used as grouping symbols.

6. A boldface token represents a terminal whoséue is not specifiedA token
appearing in the standard font is a terminal that appears verbatim in the information
file.

7. Concatenatiommplies that the expressions appear in the specified order.

8. Thevertical bar (]) separates alternas within an expression.

<Inf_file> = <Function>

<Function> == func_identifier new_line <Func_name> new_line

<Ioop>* <block>

<Func_name> = <letter> (<letter> | <digit> | :)

<loop> 2= loop_identifier <loop_number> <nesting_u\el>

[<induction_\ar>] [<iteration_info>] [<user_pndded>]
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<loop_number>
<nesting_lgel>

<induction_\ar>

<init_value_rtl>
<limit_rtl>
<increment>

<iteration_info>

<iter_mode>
<inner_initial>
<inner_limit>

<relop>

<inner_incr>

<outer_number>

<min_iterations> <max_iterations>  «ler_bound>
<upper_bound> <block_listrew_line
<nonngdive_integer>

<nonngdive_integer>

induction_var_identifier  <register>  <init_\alue_rtl>
<limit_rtl> <increment>

<rtl>

<rtl>

<integer>

iteration_info_identifier <iter_mode> <inner_initial>
<inner_limit> <relop> <inner_incr> <outer_number>
((c <outer_initial_value>) | (r | <outer_initial_rtl>))
((c  <outer_limit_value) | (r <outer_limit_rtl>))
<outer_increment>

0|1

<integer> | <rtl>

<integer> | <rtl>

equal_id | not_equal_id | greater_id |
less_id| greater_or_equal_id|less_or_equal_id
<integer>

<positve_integer>
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<outer_initial_\alue> ::

<outer_initial_rtl>
<outer_limit_\alue>
<outer_limit_rtl>
<outer_increment>

<user_proided>

<min_iterations>
<max_iterations>
<lower_bound>
<upper_bound>
<block_list>
<block>

<block_intro>

<block_number>
<begin_line>
<end_line>
<pred_list>

<succ_list>

<integer>

<rtl>

<integer>

<rtl>

<integer>

user_provided_identifier (<integer> | <wariable_name>)
[(+ | -) (<integer> | <variab|e_name;)]
<positve_integer>

<positve_integer>

<nonngdive_integer>[s|m|u|n]
<nonngdive_integer>[s|m|u|n]

<integer_list>

<block_intro> <effects> <doms> <inst_list>
block_identifier <block_number> lines <lggn_line>
— <end_line> preds <pred_list> succs <succ_list>
new_line

<positve_integer>

<positve_integer>

<positve_integer>

<integer_list>

<integer_list>
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<effects> = [makes_unknown <integer_listrew_ling]
[makes_fallthru <integer_listrew_ling]
[makes_branch <integer_listrew_ling
[makes_unknown_if_not_fellthru <integer_listew_ling]
[makes_unknown_if_not_branched <integer_liséw_lin€]
[fallthru_causes_branch <integer_listew_ling]
[fallthru_causes_fallthru <integer_listrew_ling]
[branch_causes_branch <integer_lisew_ling
[branch_causes_fallthru <integer_listew_ling]

[(<iters_range> | <iters_oncergw_ling

<iters_range> .= iters_range <range> <range>
<range> = [<positve_integer> .. <positie_integer}
<iters_once> = iters_once (R | L) (<posite_integer> |

non_guarantee_id| will_occur_id)

<doms> == doms <integer_listmew_line
<inst_list> = <instruction>
<instruction> = <block_number> <opcode> <data_type>

<condition_code> <operand_info> <operand_info>
<operand_infosnew_line
<opcode> = <nonn@aive_integer>

<data_type> = <nonngdive_integer>
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<condition_code>
<operand_info>

<operand_addr>

<operand_data_type> ::=

<operand>
<SPARC rgister>
<integer_list>
<rtl>

<register>

<nonngdive_integer>

<operand_addr> <operand_data_type> <operand>
<nonngdive_integer>

<nonngdive_integer>

([<integer> | (<SPARC_register> [<SPARC_register])]
% (g|o|l]i]|f) onn@aive integer>
<posit'r\/e_integer>+ list_terminator

<register> [(+ |F) <nonn@aive_integer>]

r [ <nonnggdive_integer>]
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ABSTRACT

Predicting the wrst-case »ecution time (WCET) and best-caseeeution time (BCET)

of a real-time program is a challenging tagkhough much progress has been made in
obtaining tighter timing predictions by using techniques that model the architectural
features of a machine, significantetestimations of WCET and underestimations of
BCET can still occur It is essential to accurately calculate the number of loop iterations
for all loops in order to tightly bound the prograneéecution time since most of a
typical progranms execution takes place inside of loops. In addition, dependences on data
values can constrain the outcome of conditional branches and the corresponding set of
paths that can be taken in a prograhhis dissertation describesvdiming analysis can

be impraed when these tartypes of constraints are addressed. First, the minimum and
maximum number of iterations are automatically calculatesops with multiple it
conditions or a varying number of iterations are also addressed. Second, constraints on
branches are automatically detected during compilation. These branch constraints are
then used to determine \Wwamnary times each path in a loop or function can besmak
Finally, this iteration and branch constraint information is automatically utilized to obtain
tighter bounds on thexecution time. Not only does the timing analysis \pde
significantly tighter WCET and BCET predictions, the analysis response time is typically

faster as well.



