
THE FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

AUTOMATIC UTILIZATION OF CONSTRAINTS

FOR TIMING ANALYSIS

By

CHRISTOPHER A. HEALY

A Dissertation submitted to the
Department of Computer Science

in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

Degree Awarded:
Summer Semester, 1999

The members of the Committee approve the dissertation of Christopher A. Healy
defended on July 2, 1999.

David B. Whalley
Professor Directing Thesis

Steven F. Bellenot
Outside Committee Member

Theodore P. Baker
Committee Member

Kyle Gallivan
Committee Member

Robert A. van Engelen
Committee Member

Approved:

T. P. Baker, Chair, Department of Computer Science

CHAPTER 1

INTRODUCTION

Users of real-time systems are not only interested in obtaining correct computations

from their programs, but timely responses as well.Responses that are given past a

deadline is not acceptable.A real-time system is often comprised of a set of tasks that

are statically scheduled.Therefore, it is necessary to determine a program’s execution

time statically. It is unrealistic to attempt to predict a precise execution time for every

real-time program since the execution time often depends upon input values whose

influence on the program’s control flow is unknown until the program executes.

Consequently, instead of trying to derive a single execution time, a more pragmatic

approach is to calculate upper (worst-case) and lower (best-case) bounds on the

execution time. Real-time programmers tend to be more interested in the worst-case

execution time (WCET), rather than the best-case execution time (BCET), because of the

notion of real-time deadlines. In other words, a task that completes too early is not as

much of a concern as a task that finishes too late.

This dissertation discusses research in timing analysis to provide tighter WCET and

BCET predictions.A previous version of a timing analyzer focused on architectural

features, specifically integrating the analysis of pipelining and instruction caching [1, 2].

One could extend this implementation to take into account additional hardware features.

However, the author believes that addressing machine-independent issues in timing

1

analysis will have a greater and longer-lasting benefit than merely focusing on the

architecture. New architectural features are being developed at a rapid pace. Thus, it is

difficult for timing analysis research to keep up with the latest hardware features.On the

other hand, even if a timing analyzer perfectly models a processor’s architecture,

significant WCET overestimations and BCET underestimations can still result because

of dependences on data values that can constrain the number of loop iterations and the

set of paths that can be taken in a program.Tw o types of constraints will be discussed in

this dissertation:loop iteration constraints that influence the number of iterations of

loops, andbranch constraintsthat indicate whether or not a particular branch will be

taken or fall through.When the termconstraintappears hereafter in this dissertation, it

shall mean both types of constraints collectively. This dissertation describes how these

constraints in a program can be automatically detected and exploited to tighten the

execution time predictions.

The remainder of the dissertation will proceed as follows. Chapter2 examines

related work in the area of predicting execution time. Chapter 3 presents the context in

which the timing analyzer was originally designed with respect to its input/output and

ancillary software. Chapter4 discusses the work on loop iteration constraints to

calculate the number of loop iterations accurately and automatically. Chapter 5

describes the other extension to the timing analyzer pertaining to detecting and

exploiting branch constraints.Chapter 6 briefly summarizes the major results of the

timing analysis. Chapter 7 describes future work and Chapter 8 presents the

conclusions.

2

CHAPTER 2

RELATED WORK

Predicting execution time of programs is an emerging area of research in real-time

systems. Initialwork in this area concentrated on analyzing source programs.Puschner

and Koza [3] associated the number of machine cycles to individual C statements or

consecutive statements not containing conditional control flow. Niehaus [4] showed how

the execution time can correspond to basic blocks after intermediate code generation.

Park [5] created an Information Description Language so that the user could specify the

number of loop iterations or that two source code statements must execute in the same

path. However, all these studies ignored hardware effects. Over time, timing analysis

research encompassed the study of architectural features, such as pipelined execution

and caches [6, 7, 8, 9, 10, 2]. More recent research is concerned with how dependences

on data values can constrain paths and thereby influence the program’s execution time.

The major difference between the work described in this dissertation and the related

work performed elsewhere is the way in which the number of loop iterations and the

branch constraints are made known to the timing analyzer. Other research groups that

use constraint information require the user to painstakingly enter this information [9, 11,

12]. Chapters4 and 5 will describe how this information can instead be automatically

detected by a compiler and exploited by a timing analyzer.

Many existing timing analyzers require that a user specify the number of iterations of

3

each loop in the program. This specification may be requested interactively [13, 9].

Thus, each time the timing analyzer is invoked for a program, the bounds for every loop

in the program must be specified, which is error prone and tedious for the user.

Alternatively, one could specify this information as assertions in the source code to

prevent repeated specifications of the same information [14, 3].However, there are still

several disadvantages. First,the user is still required to write the assertions.Second,

there is no guarantee that the user will specify the correct minimum and maximum

iterations. Thisproblem may easily occur when a user changes the loop, but forgets to

update the corresponding assertion.Also, code generation strategies, such as whether to

place instructions for the loop exit condition code at the beginning or end of the loop,

may cause the number of loop iterations to vary by one iteration.A user should only be

required to examine the source code and not be required to know the code generation

strategies of the compiler. Finally, compiler optimizations, such as loop unrolling, may

affect the number of times a loop iterates. Inhibiting different code generation strategies

or compiler optimizations to more easily estimate loop bounds would sacrifice

performance, which is quite undesirable.

Other previous work in timing analysis has been accomplished using constraint-based

systems. Liet al. [15, 9] developed an Implicit Path Enumeration (IPE) technique that

used Integer Linear Programming (ILP) to solve constraints about the program to obtain

timing predictions. The cost function was a sum of terms of the formc
i
x
i
, where for

each blocki, c
i

is the execution time of the blocki and x
i

is the number of times the

block executes. Theirapproach uses structural constraints based on the program’s

control flow and functional constraints entered by the user that deal with the number of

times that each The work of Ottosson and Sjödin [11] extended the IPE technique by

4

using finite domain constraints to model the architectural features of the hardware.

However, in both approaches these constraints were entered manually by the user, which

is both a tedious and error-prone task.

Recent work by Ermedahl and Gustafsson [16], Lundqvist and Stenström [17] and

Liu and Gomez [18] use abstract interpretation and symbolic execution to automatically

derive many branch constraints. These approaches are quite powerful, but effectively

requires simulating all paths of a loop for every loop iteration. Thus, these approaches

require significant analysis overhead, which would be undesirable when analyzing long

running programs.

Wilhelm, Ferdinandet al. [19, 20, 12] have also contributed to the area of timing

prediction that uses constraints.They separate timing analysis into two distinct phases:

cache analysis and path analysis.The purpose of this partition is to use ILP only to

perform the path analysis. Their cache analysis is based on the principles developed in

[21]. Their path analysis technique is similar to that of Liet al., requiring the user to

enter the constraints.Even though their overall approach is powerful and yields accurate

WCET bounds, the ILP phase may be inefficient to implement in practice.

Much tighter bounds on the WCET and BCET can result when a timing analyzer

incorporates information about the program related to loop iteration and branch

constraints. Allof the approaches thus far proposed to extend timing analysis to include

the exploitation of constraints have either required the user to enter this information

manually, and/or required significant analysis overhead. It would be much more

convenient for the user if a timing analyzer could automate the process of detecting and

exploiting such constraints in an efficient manner. This is the major motivation of this

dissertation.

5

CHAPTER 3

FRAMEWORK FOR THE RESEARCH

The timing analyzer described in this dissertation is part of a software package that has

been under development by several researchers over the past few years. Thispackage

consists of an optimizing compiler calledvpo [22], a static instruction cache simulator

and a timing analyzer with a graphical user interface. Figure1 depicts an overview of

the approach for predicting the execution time of code segments or entire programs on

machines with pipelines and instruction caches.Table 1 outlines the work that has been

accomplished for the timing analysis environment.

Control-flow information, which could have also been obtained by analyzing

assembly or object files, is stored as the side effect ofvpo’s compilation of one or more

C source files. This control-flow information is passed to the static cache simulator,

which ultimately categorizes each instruction’s potential caching behavior based on a

Configuration
Caching

Simulator
Cache
Static

CompilerSource
Interface

User Timing
Predictions

Timing
Analyzer

andConstraint
Files

C Control Flow

Information

Cache

Categorizations

Instruction
Dependent Timing
Machine

Information

User

Requests

Figure 1: Overview of the Timing Analysis Environment

6

Table 1: Work Accomplished for Timing Analyzer

Module Lines Student Contributors Purpose

Provides infor mation on control flow,
loop iterations and branch
constraints.

compiler 64,000

Provides instruction cache
static categor izations.

Fr ank Mueller

cache
simulator Provides the data cache

categor izations.
Randall White

15,000

Bounds execution time based on
instr uction cache perfor mance.

Rober t Ar nold

timing Bounds execution time based on
analyzer pipelining, wrap-around-file cache,

loop iteration and branch constraints.
Chr istopher Healy

Bounds execution time bases on data
caching.

Randall White

19,000

user Lo Ko, Provides WCET and BCET for user-
interface Emily Ratliff, selected code portions. War ns user if

Nagham Al-Yaqoubi timing constraints can be violated.
10,000

given cache configuration. The caching behavior of an instruction is assigned one of

four categories, described in Tables 2 and 3, for each loop level in which an instruction is

contained. Thetheory and implementation of static cache simulation is described in

more detail elsewhere [21, 23, 2, 24, 25]. The timing analyzer uses the instruction

caching categorizations to determine whether an instruction fetch should be treated as a

hit or a miss during the pipeline analysis of a path. The timing analyzer also reads a file

that specifies the hardware’s instruction set pipeline characteristics in order to detect

structural and data hazards between instructions.

Given a program’s control-flow information and instruction caching categorizations

7

Table 2: Definitions of Worst-Case Instruction Categories

Instr uction Categor y Definition According to Behavior in Instruction Cache

always miss The instruction is not guaranteed to be in cache
when it is referenced.

always hit The instruction is guaranteed to always be in cache
when it is referenced.

first miss The instruction is not guaranteed to be in cache on
its first reference each time the loop is executed, but
is guaranteed to be in cache on subsequent refer-
ences.

first hit The instruction is guaranteed to be in cache on its
first reference each time the loop is executed, but is
not guaranteed to be in cache on subsequent refer-
ences.

Table 3: Definitions of Best-Case Instruction Categories

Instr uction Categor y Definition According to Behavior in Instruction Cache

always miss The instruction is guaranteed to not be in cache
when it is referenced.

always hit The instruction may be in cache every time it is refer-
enced.

first miss The instruction is guaranteed to not be in cache on
its first reference each time the loop is executed, but
may be in cache on subsequent references.

first hit The instruction may be in cache on its first reference
each time the loop is executed, but is guaranteed to
not be in cache on subsequent references.

along with the processor’s instruction set information, the timing analyzer then derives

best-case and worst-case estimates for each path, loop and function within the program.

A timing analysis tree is constructed, where the each node of the tree corresponds to a

8

loop or function in the function instance graph. Each node is considered a natural loop.1

A node that represents a function instance is treated as a loop that will iterate exactly

once when entered.The loops in the timing analysis tree are processed in a bottom-up

manner. In other words, the WCET and BCET for a loop are not calculated until the

times for all of its immediate child loops are known. This means that the timing

analyzer determines execution time for programs by first analyzing the innermost loops

and functions, and proceeding to higher level loops and functions until it reaches

main().

The version of the timing analyzer described in this dissertation is an extension of an

earlier timing tool [25, 2, 26] that bounded instruction cache and pipeline performance.

When the timing analyzer has completed its analysis, it invokes a graphical user interface

[27] allowing the user to request timing bounds for portions of the program.These

portions may be at any one of several levels of the analysis: the entire program, a

function, loop, code section, path, sub-path or ranges of instructions. Some of the

research that has been associated with the timing analyzer, though not directly related to

this dissertation, includes analysis of data caches [28, 29, 10], wrap-around fill

instruction caches [10] and partitioning control flow in cases where the number of paths

is arbitrarily large [30]. Excerpts of this dissertation, including a concise description of

the algorithm and results, can be found in [31, 32].

A description of the programs used to test the timing analyzer is given in Table 4. Six

of these programs,Des, Matcnt, Matsum, Matmul, Sort and Stats, were used in the

1 A natural loop is a loop with a single entry block.While the static simulator can process unnatural loops, the timing analyzer
is restricted to only analyzing natural loops since it would be difficult for both the timing analyzer and user to determine the set of
possible blocks associated with a single iteration in an unnatural loop. It should be noted that unnatural loops occur quite infrequent-
ly.

9

results of the original timing analyzer. The remaining programs were added to the test

suite to illustrate situations of various constraints that are described in Chapters 4 and 5.

The programs printed in boldface in Table 4 are published inNumerical Recipes in C

[33, 34]. The code size of all programs ranged from 22 to 668 assembly instructions,

with an average of 211 instructions.The reason why the programs in the test set are

relatively small was so that it would be feasible for the author to determine manually the

actual worst-case and best-case input data.

For each program a direct-mapped instruction cache configuration containing 8 lines

of 16 bytes was used.It was assumed that a cache hit required one cycle, a cache miss

required ten cycles, and all data cache references were assumed to be hits. This is the

same cache configuration that has been used in several previous timing analysis studies

Table 4: Test Programs

Name Description or Emphasis

Des Encr ypts and decrypts 64 bits
Expint Computes an exponential integral
Fresnel Computes non-complex Fresnel integrals
Gaujac Computes Abscissas and Weights of a 10 point Gauss-Jacobi quadrature for mula
Hes Reduces a 100x100 matrix to Hessenberg for m
Integ Evaluates a double integral over a trapezoidal region
Interp Polynomial interpolation of 500 points
LU Perfor ms LU Decomposition on a 100x100 matrix
Matcnt Counts and sums nonnegative values in a 100x100 integer matrix
Matmul Multiplies two 50x50 integer matrices
Matsum Sums nonnegative values in a 100x100 integer matrix
Sor t Bubblesor t array of 500 integers into ascending order
Sprsin Converts a 20x20 integer matrix into row-index sparse storage mode
Stats Std. dev. & corr. coef. of two arrays of 1000 floating point values
Summidall Sums the middle half and all elements of a 1000 integer vector
Summinmax Sums the min. and max. of corresponding elements of two 1000 element vectors
Sumnegpos Sums the negative, positive and all elements of a 1000 integer vector
Sumoddeven Sums the odd and even numbered elements of a 1000 integer vector
Sym Tests if a 500x500 matrix is symmetric

10

[25, 26, 31].

The implementation of the timing analysis environment includes about 19,000 lines

of C source code in the timing analyzer itself (14,000 written by the author), plus other

modules depicted in Figure 1. The compiler, static cache simulator and the algebraic

solver were implemented by other researchers at FSU.To obtain results that integrate

instruction cache and pipeline effects, the author had previously amended a traditional

cache simulator [35]. This modification required about 2,000 lines of source code.

Assessing the accuracy of the timing analyzer was accomplished by comparing the

timing analyzer’s (static) prediction with the simulator’s (dynamic) measurements.

Since the execution time of different programs can differ widely, it is useful to consider

the ratio of the timing analyzer’s estimated cycle time to the simulator’s observed time.

Of course, the best possible timing prediction would yield a ratio of 1, when the

estimated and observed times are the same. In the worst-case analysis one finds ratios

greater than one, meaning that the timing prediction is an overestimate, being somewhat

pessimistic whenever not being exact. Analogously, for best-case analysis, one should

find a ratio less than or equal to 1, indicating an underestimation of execution time

whenever the exact time cannot be precisely determined.

Table 5 shows the results forCache Onlyanalysis and Table 6 gives the results when

both caching and pipelining are analyzed. These results show the state of the timing

analyzer before work on the dissertation was begun. To recognize the utility of the

timing analyzer, one can compare its estimated ratio to a naive ratio: what the ratio

would have been without performing any analysis. Table 5 shows that cache analysis

can provide much tighter bounds on the execution time versus the naive ratios.

11

Table 5: Results for Cache-Only Analysis

Worst-Case Results

Obser ved Naive Naive Cache Only Cache Only
Cycles Cycles Ratio Cycles Ratio

Name

Des 149,706 770,142 5.144 398,604 2.663
Expint 58,217 2,933,194 50.384 2,004,151 34.426
Fresnel 47,749 106,121 2.222 73,199 1.533
Gaujac 786,786 1,579,588 2.006 1,153,123 1.466
Hes 55,834,609 686,873,410 12.302 404,879,389 7.251
Integ 22,538,082 99,585,206 4.419 54,544,607 2.420
Inter p 25,469,403 107,183,344 4.208 75,543,529 2.966
LU 23,055,832 791,692,885 34.338 420,919,578 18.257
Matcnt 1,769,321 6,525,017 3.688 3,262,463 1.844
Matmul 4,444,911 22,122,016 4.977 9,370,402 2.108
Matsum 1,277,465 5,214,645 4.082 2,401,380 1.880
Sor t 7,672,281 80,913,015 10.546 38,220,912 4.982
Sprsin 28,339 188,294 6.644 76,838 2.711
Stats 1,016,048 3,168,159 3.118 1,852,107 1.823
Summidall 15,340 212,207 13.834 104,108 6.787
Summinmax 16,080 201,179 12.511 102,089 6.349
Sumnegpos 11,067 159,137 14.379 78,065 7.054
Sumoddeven 15,092 195,343 12.943 96,181 6.373
Sym 2,747,654 71,752,986 26.114 24,673,698 8.980
Av erage 7,734,420 99,019,784 11.993 54,723,917 6.414

Best-Case Results

Obser ved Naive Naive Cache Only Cache Only
Cycles Cycles Ratio Cycles Ratio

Name

Des 65,615 12,559 0.191 19,183 0.292
Expint 125 29 0.232 102 0.816
Fresnel 181 43 0.238 151 0.834
Gaujac 45,270 12,117 0.268 34,104 0.753
Hes 306,733 4,427 0.014 13,301 0.043
Integ 19,160,842 2,510,015 0.131 2,532,560 0.132
Inter p 6,485,878 47,509 0.007 119,590 0.018
LU 12,883,939 216,528 0.017 232,782 0.018
Matcnt 1,549,095 383,241 0.247 1,020,783 0.659
Matmul 4,444,666 1,429,980 0.322 1,774,995 0.399
Matsum 1,257,239 323,214 0.257 957,111 0.761
Sor t 19,966 9,600 0.481 9,888 0.495
Sprsin 17,436 7,313 0.419 15,701 0.900
Stats 607,399 182,312 0.300 417,230 0.687
Summidall 15,340 7,015 0.457 7,069 0.461
Summinmax 13,080 12,013 0.918 12,058 0.922
Sumnegpos 9,067 8,010 0.883 8,037 0.886
Sumoddeven 94 59 0.628 63 0.670
Sym 160 38 0.238 137 0.856
Av erage 2,467,480 271,896 0.329 377,623 0.558

12

Table 6: Results After Adding Pipeline Analysis

Worst-Case Results

Obser ved Cache Only Cache Only + Pipelining + Pipelining
Cycles Cycles Ratio Cycles Ratio

Name

Des 149,706 398,604 2.663 172,509 1.152
Expint 58,217 2,004,151 34.426 1,293290 22.215
Fresnel 47,749 73,199 1.533 48,887 1.024
Gaujac 786,786 1,153,123 1.466 790,116 1.004
Hes 55,834,609 404,879,389 7.251 130,574,296 2.339
Integ 22,538,082 54,544,607 2.420 30,023,163 1.332
Inter p 25,469,403 75,543,529 2.966 50,701,362 1.991
LU 23,055,832 420,919,578 18.257 124,577,237 5.403
Matcnt 1,769,321 3,262,463 1.844 1,861,150 1.052
Matmul 4,444,911 9,370,402 2.108 4,448,212 1.001
Matsum 1,277,465 2,401,380 1.880 1,279,322 1.001
Sor t 7,672,281 38,220,912 4.982 15,251,603 1.988
Sprsin 28,339 76,838 2.711 28,664 1.011
Stats 1,016,048 1,852,107 1.823 1,016,128 1.000
Summidall 15,340 104,108 6.787 18,090 1.179
Summinmax 16,080 102,089 6.349 17,080 1.062
Sumnegpos 11,067 78,065 7.054 13,068 1.181
Sumoddeven 15,092 96,181 6.373 16,112 1.068
Sym 2,747,654 24,673,698 8.980 5,481,220 1.995
Av erage 7,734,420 54,723,917 6.414 19,347,974 2.631

Best-Case Results

Obser ved Cache Only Cache Only + Pipelining + Pipelining
Cycles Cycles Ratio Cycles Ratio

Name

Des 65,615 19,183 0.292 22,247 0.339
Expint 125 102 0.816 118 0.944
Fresnel 181 151 0.834 172 0.950
Gaujac 45,270 34,104 0.753 44,566 0.984
Hes 306,733 13,301 0.043 14,006 0.046
Integ 19,160,842 2,532,560 0.132 12,808,073 0.668
Inter p 6,485,878 119,590 0.018 143,064 0.022
LU 12,883,939 232,782 0.018 284,011 0.022
Matcnt 1,549,095 1,020,783 0.659 1,548,798 1.000
Matmul 4,444,666 1,774,995 0.399 4,420,068 0.994
Matsum 1,257,239 957,111 0.761 1,167,140 0.923
Sor t 19,966 9,888 0.495 19,950 0.999
Sprsin 17,436 15,701 0.900 17,379 0.997
Stats 607,399 417,230 0.687 601,406 0.990
Summidall 15,340 7,069 0.461 8,072 0.526
Summinmax 13,080 12,058 0.922 13,062 0.999
Sumnegpos 9,067 8,037 0.886 9,049 0.998
Sumoddeven 94 63 0.670 63 0.670
Sym 160 137 0.856 160 1.000
Av erage 2,467,480 377,623 0.558 1,111,653 0.741

13

Likewise, Table 6 shows how much tighter the WCET and BCET predictions become

when pipeline analysis is added.2 The naive WCET considers all instruction accesses to

be misses and assumes that no pipeline overlap exists between instructions.Best-case

naive execution times are computed by considering all cache accesses as hits and

assuming the maximum possible overlap between instructions. Thus, a program’s naive

BCET is equal to the minimum number of instructions that could be executed. Inorder

for the timing analyzer to be a useful tool, the estimated ratios should be significantly

closer to 1 (toward a perfect prediction) than the respective naive ratios.

2Tables 12 and 22 later in this dissertation show the further tightening of the WCET and BCET based on the new analysis de-
scribed in this dissertation.Table 23 summarizes all the worst-case and best-case ratios from every level of analysis so that the reader
can make quick comparisons.

14

CHAPTER 4

OBTAINING TIGHT BOUNDS OF LOOP ITERATIONS

This chapter discusses general methods how loop iteration constraints are automatically

calculated. Mostof a program’s execution time is spent inside of loops, so to be able to

predict the WCET and BCET of a program, one must know the number of iterations that

can be performed by the loops in the program. Under certain conditions, such as a loop

with a single exit, many compilers statically determine the exact number of loop

iterations [22]. Besides timing analysis, applications for determining this number

include loop unrolling [36], software pipelining [37], and exploiting parallelism across

loop iterations [38]. When the number of iterations cannot be exactly determined, it

would be desirable in a real-time system to know the lower and upper iteration bounds.

These bounds can be used by a timing analysis tool to more accurately predict BCETs

and WCETs.

Several existing timing analyzers require the user to manually enter the number of

iterations for each loop, which is a tedious and error prone process. It would be more

appropriate to have the compiler automatically and efficiently determine the bounds for

each loop in a program when possible. This chapter describes three approaches that

support timing analysis by bounding the number of loop iterations. First, an algorithm is

presented that determines a bounded number of iterations for loops with multiple exits.

Second, support is provided for loops whose number of iterations is dependent on loop-

15

invariant variables. Finally, a method is given to accurately predict the average number

of iterations for inner loops, whose number of iterations varies depending upon the

values of counter variables of enclosing outer loops.All three of these approaches are

efficiently implemented and result in less work for a user. The last approach also results

in tighter timing analysis predictions.These approaches were implemented by

modifying thevpo compiler [22] to analyze loops and this loop analysis information is

passed to a timing analyzer [25, 26, 29] to predict performance.

4.1 BoundingIterations for Loops with Multiple Exits

This section presents a method to determine a bounded number of iterations for natural

loops with multiple exits. The method includes the following steps. (1) First, the

conditional branches within the loop that can affect the number of loop iterations are

identified. (2)Next, the compiler calculates when each of the identified branches can

change its result based on the number of loop iterations performed.(3) Afterwards, the

range of loop iterations when each of these branches can be reached is determined.(4)

Finally, the minimum and maximum number of iterations for the loop is calculated.

These steps are described in the following subsections.

4.1.1 BranchesAffecting the Number of Loop Iterations

Some terms are now defined to facilitate the presentation of the methods given in this

chapter. A more complete description of these terms can be found elsewhere [39].A

basic block is a sequence of instructions with a single entry point at the beginning and a

single exit point at the end.A natural loop is a loop with a single entry point.The

headerof a natural loop is the single basic block where the loop is entered.Transitions

from within the loop to the header are calledback edges. Block A dominatesblock B if

16

ev ery path from the initial node of the control flow graph to B has to first go through A.

For instance, the header block of a natural loop dominates all other blocks in the loop.

Likewise, block Bpost-dominatesblock A if all control paths from block A eventually

lead to block B. A block always dominates and post-dominates itself.For this

dissertation, the number of loop iterations is defined to be the number of times the

header is executed once the loop is entered [25].

Figure 2(a) contains the code for a toy C function that will be used to illustrate the

algorithm for calculating loop iteration bounds for loops with multiple exits. Figure2(b)

depicts the RTLs, representing SPARC assembly instructions, that thevpo compiler has

generated for this function.(No delay slots have been filled in order to simplify the

example.) Figure2(c) explains the RTL notation used. The loop consists of basic blocks

2, 3, 5, 6, 7, and 8. The header of the loop is block 7.

An iteration branch in a loop is a conditional transfer of control, where the choice

between the two outgoing transitions can directly or indirectly affect the number of loop

iterations. Theiteration branches in the loop that can directly affect this number are

branches that have (1) a transition to a basic block outside the loop or (2) a transition to

the header block of the loop or to a block that is post-dominated by the header. Iteration

branches that can indirectly affect the number of loop iterations are those branches

whose two successors are post-dominated by different iteration branches. Figure 3

shows an algorithm to calculate the set of iteration branchesI for a loop. The worst-case

complexity of the algorithm isO(B2), whereB is the number of basic blocks in the loop.

However, the average complexity would be closer toO(B) since iteration branches that

indirectly affect the number of loop iterations are not common.

The algorithm shown in Figure 3 identifies block 5 as containing an iteration branch

17

: allocated for variable jr[9]
: allocated for variable ir[10]
: high portion of addressHI[<address>]
: low portion of addressLO[<address>]
: integer memory referenceR[<address>]
: comparisonIC=<item>?<item>;
: conditional branchPC=IC<relop>0,<label>;
: returnPC=RT;
: unconditional jumpPC=<label>;

(c) Explanation of RTL Notation in Figure 2(b)

r[10]=0; 1
r[9]=1;
r[11]=HI[_somecond];
PC=L18;

2IC=r[9]?75;L19
PC=IC<=0,L21;

3r[8]=R[r[11]+LO[_somecond]];

L21 5

IC=r[8]?0;
PC=IC==0,L21;

4PC=RT;

IC=r[9]?300;
PC=IC>0,L17;

L17

r[10]=r[10]+1;

L18

6
r[9]=r[9]+3;

IC=r[10]?100; 7
PC=IC>=0,L17;

8PC=L19;

(b) Corresponding SPARC Instructions

(a) Source Code

for (i = 0, j = 1; i < 100; i++, j += 3)
if (j > 75 && somecond || j > 300)

break;
}

main()
{

int i, j;
extern int somecond;

Figure 2: Example Loop with Multiple Exits

18

// Find the iteration branches that can directly affect the number of iterations.
I = { }
FOR each block B in the loop LDO

IF (B has two succs S1 and S2) THEN
IF (S1 ∈/ L) OR (S2 ∈/ L) OR (S1 ∈ PostDom(Header(L))) OR

(S2 ∈ PostDom(Header(L))) THEN
I = I ∪ B

END IF
END IF

END FOR

// Find the iteration branches that can indirectly affect the number of iterations.
DO

FOR each block B in the loop LDO
IF (B has two succs S1 and S2) AND (B ∈/ I) THEN

IF (there exists J,K∈ I) AND (J ≠ K) AND (S1 ∈ PostDom(J)) AND
(S2 ∈ PostDom(K)) THEN
I = I ∪ B

END IF
END IF

END FOR
WHILE (any change to I)

Figure 3: Finding the Set of Iteration Branches for a Loop

since it has a transition to block 6, which is post-dominated by the loop header. Blocks

3, 5, and 7 are identified as having iteration branches since they hav e a transition to

block 4, which is not in the loop. Block 2 is added to the set of blocks containing

iteration branches since it can transfer to either block 3 or block 5, which have been

identified as containing iteration branches. In other words, block 2 can indirectly affect

the number of iterations of the loop.

Once the blocks containing iteration branches for the loop have been identified, a

precedence is established that represents the order that these blocks can be executed on

any giv en iteration of the loop.This precedence relationship can be represented as a

Directed Acyclic Graph (DAG). Thenodes in the DAG represent the blocks containing

the iteration branches and two additional nodes,continueandbreak. Figure 4 shows the

DAG depicting the precedence relationship between the blocks containing iteration

19

branches from Figure 2. The construction of the DAG can conceptually be accomplished

by starting with the graph representing the loop, replacing all back edges with transitions

to continue, replacing each transition out of the loop with a transition tobreak, and

collapsing all nodes that do not represent iteration branches.The actual implementation

of the DAG construction started with only nodes representingcontinue, break, and

blocks containing iteration branches and used domination and post-domination

information to establish the edges between the nodes. This algorithm is essentially a sort

and requiresO(I2) complexity, whereI is the number of iteration branches in the loop.

4.1.2 WhenEach Iteration Branch Changes Direction

In this subsection a technique is presented that calculates when each iteration branch can

change its result based on the number of loop iterations performed.This technique is

similar to those used by other compilers that can calculate the number of iterations of a

loop with a single exit [22].For each iteration branchvpoderives the information shown

7

2 break

break 5

3

continue break

Figure 4: Precedence Relationship between Iteration Branches in Figure 2

20

in Table 7. When all of the requirements listed in Table 7 are satisfied, the iteration

branch is classified asknown. Otherwise, the iteration branch is classified asunknown.

Note that detection ofunknowniteration branches in a loop does not mean that the

number of iterations of a loop cannot be bounded.Using the derived values, the

compiler applies Equation 1 to straightforwardly calculate on which iteration,Ni, that a

knowniteration branchi will change direction.Table 8 shows the values derived for the

example in Figure 2.The iteration branch in block 3 is classified asunknownsince the

variablesomecond is not a basic induction variable. Thecomplexity of this algorithm

is O(I), whereI is the number of iteration branches, since each iteration branch need only

be examined once.

(1)Ni =




limit i − (initial i + beforei) + adjusti
beforei + afteri





+ 1

In addition, various checks have to be made in case the iteration branch will always or

never be satisfied. Thesechecks depend on whether thelimit is greater or less than the

initial value, whether the sum of thebeforeandafter values are greater or less than zero,

and the relational operator used in the comparison.Figure 5 shows two loops that

require special checks. The implementation detects that the loop in Figure 5(a) exits

after a single iteration.Recall that the timing analyzer’s definition of the number of

iterations is the number of times that the loop header block (i.e. testingi > 100 in the

example) is executed once the loop is entered [25].The loop in Figure 5(b) is classified

as unboundedsince the loop may never exit depending on how overflow of neg ative

integer values is handled.

21

Table 7: Information Calculated for Each Iteration Branch

Term Explanation Requirement

variable The control var iable on which the
branch depends, which is the var i-
able being compared in the block
containing the iteration branch.

The control var iable must be a basic induc-
tion var iable, which is a var iable v whose
only assignments within the loop are of the
form v := v ± c where c is a constant
[39].

limit The value being compared to the
variable in the block containing the
branch.

The limit must be a constant. Section 4.2
descr ibes how this requirement can be re-
laxed.

relop The relational operator used to com-
pare the variableand the limit.

The initial description requires that the rela-
tional operator be an inequality operator (i.e.
<, ≤, ≥, and >). Subsection 4.1.5 explains
how this restriction is relaxed to handle more
accurately the equality operators (i.e. == and
!=).

initial The value of the variable when the
loop is entered.3

The initial value must be a constant. Sec-
tion 4.2 describes how this requirement can
be relaxed.

before The amount by which the variable is
changed before reaching the itera-
tion branch in each iteration.

The amount by which the control var iable is
incremented or decremented must be a con-
stant and these constant changes must oc-
cur on each complete iteration of the loop.4

after The amount by which the variable is
changed after reaching the iteration
branch in each iteration.

The amount by which the control var iable is
incremented or decremented must be a con-
stant and these constant changes must oc-
cur on each complete iteration of the loop.

adjust An adjustment value of 0 or 1, which
compensates for the difference be-
tween relational operators (e.g. <
and ≤).

Table 8: Derived Information for Each Iteration Branch in Figure 2

branch var iable register limit relop initial before after adjust class N

block 2 j r[9] 75 <= 1 0 3 1 known 26
block 3 somecond r[8] 0 == N/A 0 0 N/A unknown N/A
block 5 j r[9] 300 > 1 0 3 1 known 101
block 7 i r[10] 100 >= 0 0 1 0 known 101

3 This value is found by searching backwards in the control flow for assignments tovariable. The search starts with the
preheader, which is the block that has a transition to the loop header and is not in the loop.

4 In other words, the basic blocks containing these changes must dominate every predecessor block of the header that is in the
loop.

22

(a) A Loop That Exits Immediately (b) A Loop That May Never Exit

for (i = 0; i > 100; i++)
A;

for (i = 0; i < 100; i--)
A;

Figure 5: Two Loops Requiring Special Checks

4.1.3 WhenEach Iteration Branch Can Be Reached

The next step is to determine the iterations on which it is possible to execute each node

of the DAG. This information is recorded as a range of iterations and a range is attached

to each node and edge. The DAG is processed in a preorder manner (i.e. all predecessors

of a node are processed before the node is processed). Calculating these ranges requires

O(I) complexity, whereI is the number of iteration branches. The head of the DAG is

assigned the range [1..∞]. All other nodes are assigned a range that is the union of the

ranges of all incoming edges.The outgoing edges of a nodei are assigned ranges using

one of the following two rules:

(1) If iteration branchi is known, thenrelopi and the direction of the increment (i.e. the sign of
beforei+afteri) is used to determine which edge is taken on the firstNi-1 iterations. That
edge is assigned the range that is the intersection of [1..Ni-1] and the range of nodei. The
other outgoing edge is assigned the range that is the intersection of [Ni..∞] and the range of
nodei. If a range assigned to an outgoing edge is empty, then this edge corresponds to an
infeasible transition and is deleted from the DAG.

(2) If iteration branchi is unknown, then both outgoing edges are assigned the same range as
nodei.

Figure 6 shows the DAG of i teration branches in Figure 4 with the range of possible

iterations for each node and edge also depicted. Nodes withknown iteration branches

are marked with aK and unknowniteration branches are marked with aU. Iteration

branch 7 will take the transition to branch 2 on the first 100 iterations. Note this iteration

range of [1..100] corresponds to the variablei’s value range of [0..99]. At this point, all

23

7

[1..∞]

K

2

[1..100]

K break

3

[26..100]

U

break

[26..100]

5

[1..100]

K

[1..100]

continue

[26..100]

[26..100]

[1..100] [101..∞]

[1..25]

Figure 6: DAG of Branches with Ranges of Iterations

values of variables have been abstracted as ranges of loop iterations. Node 3 is marked

with a U to denote that its iteration branch isunknown. Thus, its two outgoing edges

have ranges that match the range in node 3. Node 5’s transition to abreak is deleted

since the range associated with that transition is empty (i.e. the transition is not possible).

4.1.4 DeterminingMinimum and Maximum Iterations

The ranges of iterations associated with each node and edge of the DAG can be used to

calculate the minimum and maximum number of iterations for the loop.To determine

the minimum and maximum iteration value for each iteration branch, the DAG is

processed in a postorder manner (i.e. all successors of the node are processed before the

node can be processed), which requiresO(I) complexity, where I is the number of

iteration branches. The minimum and maximum iteration values for the root node of the

24

DAG will be the minimum and maximum iteration values for the entire loop. Figure 7

defines the notation used in this subsection.Note that the range has been calculated

using the rules defined in Subsection 2.3.

The following rules are used to assign minimum and maximum iteration values to

edges.

(1) If an edge is to abreak, then both theedge_exit_minandedge_exit_maxare assigned the
value of edge_range_min. (If there is a transition to abreak, then the loop can only make
that transition once.)This is the only point where aboundedvalue can be introduced since
these are the only points where the loop can exit.

(2) If an edge is to acontinue, then theedge_exit_minandedge_exit_maxvalues for that edge
are marked asunbounded, which will be denoted by ‘_’. (Thesetransitions do not supply
any information about when the loop exits.)

(3) Otherwise, the incoming edge is to a node representing an iteration branch and the
edge_exit_minand edge_exit_maxvalues assigned to the edge depend upon one of three
possible relations between the range of the edge and the iteration values of the node.These

<node_exit_min, node_exit_max>

<edge_exit_min, edge_exit_max>

[edge_range_min..edge_range_max]

highest loop iteration when this edge can be reached

lowest loop iteration when this edge can be reachededge_range_min:

edge_range_max:

edge_exit_min: first iteration when this edge may lead to a break

node_exit_min:

edge_exit_max:

first iteration when this node may lead to a break

node_exit_max:

first iteration when this edge must lead to a break

first iteration when this node must lead to a break

(on subsequent iterations it must also lead to a break)

(on subsequent iterations it must also lead to a break)

Figure 7: Notation Used in Rules for Assigning Iteration Values

25

relations and the corresponding edge assignments are depicted in Table 9.For example, the
edge assignment whennode_exit_minsatisfies case 1 andnode_exit_maxsatisfies case 2
would be <edge_range_min, node_exit_max>. Case1 depicts that theedge_exitis set to
edge_range_minsince this is the first iteration the edge can be traversed when the edge may
lead to abreak. Case 2 shows that theedge_exitis set to thenode_exitwhen it is within the
range of iterations that the edge is executed. Case3 illustrates that theedge_exitis set to
unboundedwhen there is no iteration on which the edge will be traversed after the edge can
lead to abreak.

The following rules are used to assign minimum and maximum iteration values to

nodes.

(1) Thenode_exit_minfor a node is set to the smallest of thebounded edge_exit_minvalues on
the outgoing edges of the node or is denoted asunboundedif both outgoing edges have
unbounded edge_exit_minvalues. (Thesmallest value represents the first possibility to exit
the loop.)

(2) If the iteration branch associated with a node is classified asknown, then thenode_exit_max
for the node is set to the smallest of thebounded edge_exit_maxvalues on the outgoing
edges or is denoted asunboundedif both outgoing edges have unbounded edge_exit_max
values. (Theloop has to exit when it will encounter abreak.)

(3) If the iteration branch associated with a node is classified asunknown, then the
node_exit_maxfor the node is set to the largest of theedge_exit_maxvalues on the outgoing
edges of the node or is denoted asunboundedif either outgoing edge has anunbounded
edge_exit_maxvalue. (Usethe largest value when it is not guaranteed that the node will
actually reach the exit associated with a lower value.)

Table 9: Rules for Assigning Iteration Values to an Incoming Edge

2

3

1

Case Condition Test

node_exit < edge_range_min

edge_range_min <= node_exit &&
node_exit <= edge_range_max

edge_range_max < node_exit

edge_range_min

Assignment

Edge_Exit

node_exit

__

[edge_range_min..edge_range_max]

node_exit (i.e. node_exit_min or node_exit_max)

26

Figure 8 shows the same DAG as in Figure 6, but with minimum and maximum

iteration values assigned to edges and nodes. The pair of values represented on the

edges and in the nodes are the minimum and maximum iteration values, respectively.

Node 5 and its incoming edges are assignedunboundedvalues since there is no

transition to abreakfor the range of loop iterations in which they are executed. Node3

is assigned a minimum iteration value of 26 since that is the first possible iteration at

which the node can take a transition to abreak. Node 3’s maximum iteration value is

unboundedsince node 3’s iteration branch is classified asunknownand there is no

guarantee that the transition to thebreakfrom node 3 will ever be taken. Theminimum

and maximum iterations for the entire loop is 26 and 101, respectively, since these are

the iteration values in node 7, which is the root exit condition.

7 K

<26,101>
<26,_> <101,101>

break2 K

<26,_>

3 U

<26,_>

break 5 K

<_,_>

continue

<_,_><26,26>

<_,_>

<26,_>

<_,_>

Figure 8: DAG of I teration Branches with Minimum and Maximum Iterations

27

4.1.5 IterationBranches Using Equality Operators

As stated in Table 7, an iteration branch using an equality operator (i.e. == or !=) was

initially described as always being treated as anunknownbranch. Thismay result in

looser, but safe iteration bounds for loops containing these iteration branches.One

reason for not addressing iteration branches that use the equality operators is that they

may cause loop iteration ranges to become noncontiguous and would complicate the

algorithms for bounding the number of iterations.However, in many cases iteration

branches with equality operators can be handled using only contiguous ranges of

iterations. For instance, Figure 9(a) contains a loop with an equality operator that the

implementation was able to successfully bound.The implementation classifies iteration

branches with equality operators asknown when the following three additional

requirements to those specified in Table 7 are satisfied. (1) First, every path ending in a

back edge in the loop must include the iteration branch.Figure 9(b) shows an example

(c) Unbounded Loop

(a) Bounded Loop (b) Potentially Unbounded Loop

for (i = 0; ; i++) {
if (i < 100 && somecond)

continue;
if (i == 50)

break;
}

for (i = 0; i != 100; i += 3)
A;

for (i = 0; i != 100; i++)
A;

Figure 9: Examples of Loops with Iteration Branches Using Equality Operators

28

of a loop that may not execute the test for equality on the iteration in which the loop

could exit. (2) Next, one of the outgoing transitions of the iteration branch with an

equality operator must be to abreak. (3) Finally, the following expression, which is part

of Equation 1, must result in an integral value.

limit i − (initial i + beforei)

beforei + afteri

In other words, thevariable must equal thelimit of the iteration branch on some

iteration. Figure9(c) depicts a situation where thevariablei will be assigned values (0,

3, ..., 99, 102, ...) that will skip over the limit (100).

4.2 Non-ConstantLoop-Invariant Number of Iterations

Sometimes a bounded number of iterations for a loop cannot be determined since the

loop exit conditions involve the values of variables. Traditionally, timing analyzers have

resolved this problem by requiring a user to specify the maximum number of iterations

for a loop interactively [13, 9] or as an assertion in the source code [14, 3].

Unfortunately, there is no guarantee that the user will specify the correct number of

iterations. Compilersmay employ different code generation strategies or compiler

optimizations that can affect the number of loop iterations. Thus, even an astute user

may incorrectly specify the number of loop iterations.

All of the variables on which the number of loop iterations depend are frequently

loop invariant. In this case, a loop-invariant expression is calculated to represent the

number of loop iterations.Essentially, the technique is to use Equation 1 defined in

29

Subsection 4.1.2, relaxing the requirement that thelimit and initial values have to be

constants. Figure10 shows an example function and corresponding SPARC RTLs.

(Some other compiler optimizations, such as loop strength reduction, have not yet been

performed to simplify the example.) Inthis example, the control variable for the loop is

r[13] and the limit isr[12], which is loop invariant. Theblock preceding the loop is

examined to determine the value associated with the limit, which is expanded in the

following steps:

1. r[12] # from instruction 12
2. r[9]+r[10] # from instruction 5
3. r[9]+R[r[10]+LO[_n]] # from instruction 4
4. r[9]+R[HI[_n]+LO[_n]] # from instruction 3
5. m+n

The registerr[9] has been allocated to the argumentm, whose value was also passed

to the function in the same register. The compiler remembers the register and the blocks

where each live range of a local variable or argument is allocated to a register. Thus, the

compiler was able to associate the register r[9] with the argumentm and that the

memory reference is to the global variablen. The timing analyzer uses Equation 1 to

generate a symbolic expression (containing the local variablem and global variablen) to

represent the number of iterations.

N =




limit − (initial + before) + adjust

before+ after





+ 1

=




m + n − (1 + 1) + 0

1 + 0





+ 1

= m + n − 1

When the compiler can determine that the number of iterations is non-constant and

30

: address of array a

: argument m

: variable sum

: variable i

r[8]

r[9]

r[11]

r[13]

int sumarray(a, m)
int a[], m;
{

int i, sum;
extern int n;

sum = 0;
valuebnd m[10:100] n[20:80]
for (i = 1; i < m+n; i++)

sum += a[i];
return sum;

}

(a) Source Code
(c) Register to Variable
Mapping in Figur e 9(b)

1r[11]=0; # instruction 1
instruction 2r[13]=1;

r[10]=HI[_n];
r[10]=R[r[10]+LO[_n]];
r[12]=r[9]+r[10];
IC=0?r[12];
PC=IC>=0,L25;

instruction 3
instruction 4
instruction 5
instruction 6
instruction 7

L18 2r[10]=r[13]<<2; # instruction 8
r[10]=R[r[8]+r[10]];
r[11]=r[11]+r[10];
r[13]=r[13]+1;
IC=r[13]?r[12];
PC=IC<0,L18;

instruction 9
instruction 10
instruction 11
instruction 12
instruction 13

L25 3PC=RT; # instruction 14

(b) Corresponding SPARC Instructions

Figure 10: Loop with a Non-constant Loop-Invariant Number of Iterations

loop invariant, the loop-invariant expression is passed to the timing analyzer. The user is

prompted by the timing analyzer for the minimum and maximum values for each

31

variable in this expression. To simplify identification of these variables, the timing

analyzer also informs the user of the function and line number associated with the loop.

After receiving the minimum and maximum values for these variables, the timing

analyzer automatically calculates the minimum and maximum number of loop

iterations.5

The compiler was also modified to allow the user to specify assertions about the

minimum and maximum values of variables associated with loops. The boldface line in

Figure 10(a) contains assertions for the minimum and maximum values of the variables

m andn. The compiler uses the loop-invariant expression and replaces the variables with

the minimum and maximum specified values. Theminimum number of iterations of 29

and the maximum number of iterations of 179 is automatically passed to the timing

analyzer and no user intervention is required. Note that the form of a value assertion is

analogous to the form of timing constraint loop assertion that can be specified in the

same environment [40].

When a loop-invariant expression cannot be calculated, the timing analyzer will

prompt the user for the minimum and maximum number of iterations instead of values of

variables. However, the author has found that a constant or loop-invariant number of

iterations can be typically calculated for most loops in the numerical benchmarks and

applications that have been examined.
5 Note that the timing analyzer will not permit the number of iterations to be fewer than 1.In the above example, a user may

indicate that the minimum values ofm andn are both 0. Simply substituting these values in the expression would result in the num-
ber of loop iterations being−1. But if the loop is entered, then it has to execute at least one iteration since the number of iterations is
defined as the number of times the loop header block is executed.

32

4.3 BoundingIterations for Non-Rectangular Loops

The approaches described so far do not address loops whose number of iterations can

vary. The previous sections described approaches to determine the minimum and

maximum number of iterations for a loop, given that the number of iterations depends

only upon either constant or loop-invariant values. Figure11 shows two simple loops to

depict the essential difference between a rectangular and non-rectangular loop nest.For

rectangular loops, the lower and upper bounds of the loop index variables are constant.

In contrast, the number of iterations of a non-rectangular loop varies. For instance, the

number of iterations typically depends on the values of counter variables from outer

loops. Theseloops have long presented a problem for timing analyzers since the

resulting timing predictions are typically quite loose. In fact, these predictions may

indicate that a program does not meet its timing constraints, when it actually does.

.

.

.

.

.

.

.

.

.

.

(a) Rectangular Loop Nest

.

. .

. . .

. . . .

.

.

.

.

.

.

(b) Non-rectangular Loop Nest

for (i = 0; i < 10; i++)
for (j = i; j < 10; j++)

for (i = 0; i < 10; i++)
for (j = 0; j < 10; j++)

Figure 11: Rectangular versus Non-Rectangular Loop Nest

33

The author’s initial approach to calculating loop iterations only dealt with doubly

nested loops that were triangular in nature as the loop nest in Figure 11(b) [31].This

simple approach has been superseded by a more general approach presented here that is

not limited to the nesting depth or how the individual loop index variables depend on one

another.

This section describes a general and efficient method for obtaining tight timing

predictions for non-rectangular loops usually encountered in programs.This is

accomplished by formulating the number of loop iterations in terms of summations,

where each summation represents the number of iterations to be executed by a loop.

Such an equation can be efficiently solved given that certain restrictions are met.

This work on bounding iterations for non-rectangular loops was inspired by the work

of Sakellariou [41, 42].He calculated the total number of iterations for loops that are

dependent on counter variables of outer loops in order to obtain better load balance by

assigning approximately the same number of loop iterations to each processor. The

approach used was to formulate summations representing the number of loop iterations

by hand and to interface to a mathematical package off l ine to solve the equations.This

section describes an approach to automatically calculate the average number of times

that a loop will iterate during the timing analysis of a program and to use this

information to obtain tighter timing predictions.

4.3.1 Formulating the Number of Iterations

This subsection shows how a loop nest may be formulated in terms of summations.This

34

framework was based on work by Sakellariou [41, 42]. The number of iterations of a

single loop, where the loop variable is incremented by one (unit stride), can be

represented by a summation when the lower bound (a) is less than or equal to the upper

bound (b), as shown in Equation 2. Figure 12 shows how two different loop nests can be

formulated in terms of summations.The total number of iterations to be executed by the

innermost loop in each loop nest are calculated by solving the corresponding equation.

The Bernoulli formula shown in Equation 3, wherep ≥ 1 & n ≥ 1 and B
k

is a Bernoulli

number of orderk, can be used to evaluate terms in a summation.

The constraint on the bounds in Equation 2 results from the fact that the value of the

sum must equal 0 if the lower bounda is greater than the upper boundb. This constraint

is in accordance with the usual semantics of summations in conventional mathematical

notation, in which the upper bound is implicitly assumed to be greater than or equal to

the lower bound. Therefore, the explicit constraint is necessary to accurately count the

number of iterations of so-calledzero-trip loops. Zero-triploops do not execute the loop

body when the lower bound exceeds the upper bound, given that the stride is positive.

It is possible to represent summations with non-unit strides, where the strides is

specified along with the lower bounda and upper boundb. Equation 4 shows how a

non-unit stride can be used in a conventional summation, wheree is an expression and

e[i ← si + a] denotes the substitution of all free occurrences ofi by si + a. This way,

summations with strides can be represented by uniform summations.

35

(2)N =
b

i=a
Σ 1 =





b − a + 1

0

if a ≤ b

otherwise

(3)
n

i=1
Σ i p =

1

p + 1

p

k=0
Σ 


p + 1

k


Bk(n + 1)p−k+1

for (i=1; i<99;
i++)

for (j=i+1;
j<100;
j++)

N =
98

i=1
Σ

99

j=i+1
Σ 1

=
98

i=1
Σ(

99

j=1
Σ 1 −

i

j=1
Σ 1)

=
98

i=1
Σ(99− i)

=
98

i=1
Σ 99−

98

i=1
Σ i

= 4, 851

(a) Loop Nest from
Sort Program

for (j=1; j<=100; j++)
for (i=j; i<=100; i++)

for (k=1; k<j; k++)

N =
100

j=1
Σ

100

i= j
Σ

j−1

k=1
Σ 1

=
100

j=1
Σ

100

i= j
Σ(j − 1)

=
100

j=1
Σ(

100

i=1
Σ(j − 1) −

j−1

i=1
Σ(j − 1))

=
100

j=1
Σ(

100

i=1
Σ j −

100

i=1
Σ 1 −

j−1

i=1
Σ j +

j−1

i=1
Σ 1)

=
100

j=1
Σ(102j − j2 − 101)

= 102
100

j=1
Σ j −

100

j=1
Σ j2 −

100

j=1
Σ 101

= 166, 650

(b) Loop Nest from LU
Decomposition Program

Figure 12: Deriving the Total Number of Iterations for Two Loop Nests

(4)I =
b,s

i=a
Σ e =

 (b−a)/s

i=0
Σ e [i ← si + a]

Summations with non-unit strides are more difficult to evaluate since one has to deal

with summations of floors. Equation 5 shows how a floor can be converted to an

36

expression involving a modulo operation (%). A modulo operation can often be

simplified using Equation 6 [42].However, summations involving modulo operations

are more difficult to simplify when two or more loops have non-unit strides and the

bounds are symbolic.Fortunately, this situation rarely occurs.Equations 2-6 can be

used to correctly determine that the total iterations for the loop nest in Figure 13 is

1,717. Unfortunately, sometimes an expression in a summation may contain a product of

two or more terms containing modulo operations.In this case, an approximation of the

iteration count is used, which is shown in Equation 7.

(5)


n

m



=
n − n%m

m
, if m > 0 & n > 0

(6)
n

i=0
Σ(i%d)p =







n

i=0
Σ i p

 n/d −1

j=0
Σ

d−1

i=0
Σ i p +

n%d

i=0
Σ i p

if n < d

if n ≥ d

(7)
b,s

i=a
Σ e ≈

 b/s

i=a
Σ e/s

As suggested by Sakellariou [41, 42], a computer algebra system can be exploited off

line to solve the equations of summations.However, computer algebra systems, such as

Maple, giv e inaccurate results when the bounds restriction on the summation is violated.

for (i=0; i<100; i++)
for (j=i; j<100; j+=3)

Figure 13: A Loop Nest Containing a Non-unit Stride

37

In general, every loop iteration count problem that is cast as a summation should

evaluate to zero if the lower bound is greater than the upper bound.However, it is not

always possible to evaluate the test when the bounds are symbolic. For example,

consider the loop nest in Figure 14.The inner loop is a zero-trip loop for values ofi

greater than 2.A partially zero-trip is defined to be a loop that is zero-trip depending on

values of index variables of outer loop(s). By applying Equation 8, the iteration count of

the partially zero-trip loop can be defined as shown in Figure 14. Clearly, the result isN

= 3. Howev er, a naive evaluation without the bounds test results inN = −7. Thismeans

that when a computer algebra system is to be used off l ine, the summations should be

guarded with bounds tests.Unfortunately, computer algebra systems cannot effectively

deal with the simplification of nested summations with additional tests on the bounds of

inner summations. The reason is that the test may be symbolic, as shown in Figure 14.

The solution is to isolate possible conditions on the iteration variable from the test and to

simplify summations as shown in Equation 8 for any expressione. Note thatc may not

necessarily lie within the range [a..b] and relations besides< may be used.

for (i=1; i<8; i++)
for (j=i; j<3; j++)

N =
7

i=1
Σ





3 − i

0

if i < 3

otherwise

Figure 14: A Partially Zero-Trip Loop

38

(8)
b

i=a
Σ







e

0

if i < c

otherwise

=







min(b,c)

i=a
Σ e

0

if a < c

otherwise

4.3.2 Implementation

The implementation for evaluating the summations described in the previous section was

accomplished by using the General-Purpose Algebraic Simplifier (GPAS) portion of the

Ctadel system [43, 44]. The author’s timing analyzer [2] and Ctadel were compiled

separately, but Ctadel is directly integrated into the timing analyzer by linking the object

files. This avoids unnecessary overhead that would result from passing messages

between the timing analyzer and GPAS if they were different processes.The

summations are formulated in the timing analyzer and GPAS is invoked as a C function

with the summation parameters as arguments.

Another complication when dealing with zero-trip loops in the timing analyzer is due

to the way the timing analyzer counts iterations.As mentioned in Section 3.2, the

number of loop iterations is the number of times the loop header is executed, as opposed

to the number of times the loop body is encountered.Thus, when a loop is entered, it is

guaranteed to iterate at least once. The zero-trip case in Equation 8 can be modified to

indicate a single iteration, as shown in Equation 9.Figure 15 shows how the loop nest in

(9)
b

i=a
Σ







e

1

if i < c

otherwise

=







min(b,c−1)

i=a
Σ e

0

if a < c

otherwise

+







b

i=max(a,c)
Σ 1

0

if c ≤ b

otherwise

39

Figure 14 can be formulated as a summation and solved to produce an accurate number

of iterations. Note that the test in Figure 15 has iteration variablei isolated to the left of

the relation. In practice, however, an isolation algorithm is used by GPAS to analyze the

test and isolate the variable.

It is known that the detection of zero-trip loops in the general case is NP-complete,

because it amounts to solving a linear programming problem.Similarly, adjusting the

bounds of loops to avoid partially zero-trip loops is NP-complete. This normalization

process can be performed with the Fourier-Motzkin (FM) elimination method [45].

However, one can argue that real-world algorithms rarely exhibit (partially) zero-trip

loops, because algorithms with partially zero-trip loops are deemed to be inefficient.

The timing analyzer verifies that there are no zero-trip loops for an inner loop by

expanding its initial value and limit.Likewise, the timing analyzer is able to verify that

there are no partially zero-trip loops in the loop nest.However, if the verification is

inconclusive, the loop nest may or may not contain (partial) zero-trip loops.For

N =
7

i=1
Σ





3 − i

1

if i < 3

otherwise

=
2

i=1
Σ(3 − i) +

7

i=3
Σ 1

= 3 + 5

= 8

Figure 15: Deriving the Number of Iterations for the Loop Nest in Figure 14

40

instance, consider the loop nest in Figure 16.The expansion of the innermost loop initial

value and limit is depicted in Table 10. The timing analyzer is able to guarantee that the

inner loop is not zero-trip since the initial value is never greater than the limit.

Now consider the loop in Figure 17 and the corresponding expansion of the initial

value and limit in Table 11. The test is inconclusive. Howev er, the loop nest is not zero-

trip due to thej<i condition in the middle loop. Since the range analysis can be used to

safely verify if a loop is partially zero-trip, it is possible to use the results in deciding

which summation solver to use.For example, the loop in Figure 16 can be safely cast

into a summation without a bounds tests, while the summations for the loop in Figure 17

requires a bounds test (see Figure 15 for an example bounds test). The disadvantage of

having a bounds test is that a loop with a stride poses problems for solving the

summation because the summation bounds test may contain modulo operations on the

iteration variable, which prohibits the application of Equation 9.

The timing analyzer decides among three possible solution methods to evaluate the

summation representing a loop nest:

(1) GPAS evaluates the summation without testing the bounds of the index variables.

(2) GPAS evaluates the summation while testing the bounds.

(3) The timing analyzer derives conservative lower and upper bounds on the sum,
based on constant bounds given in outer level loops.

The algorithm for selecting the appropriate method is described in Figure 18.The exact

solutions are computed using safe assumptions in the possible presence of partially zero-

trip loops, using either method (1) or (2).This algorithm will resort to method (3) only

41

for (i=0; i<10; i++)
for (j=i; j<11; j++)

for (k=i-3; k<j+8; k++)

Figure 16: Innermost Loop Detected Zero-Trip Free by the Timing Analyzer

Table 10: Expanding Initial and Limit Values of Innermost Loop in Figure 16

Initial Value Limit

i−3 j+8
[0..9]−3 [i..10]+8
[−3..6] [[0..9]..10]+8

[0..10]+8
[8..18]

for (i=1; i<10; i++)
for (j=0; j<i; j++)

for (k=j; k<i; k++)

Figure 17: Innermost Loop Nest Detected Zero-Trip Free by GPAS

Table 11: Expanding Initial and Limit Values of Innermost Loop in Figure 17

Initial Value Limit

j i−1
[0..i] [1..9]−1

[0..[1..9]] [0..8]
[0..9]

in the presence of multiple loops with non-unit strides, in which the strides are relatively

prime and the bounds on the index variables are not all constant.

The following approach is used in the timing analyzer to obtain tight predictions of

non-rectangular loops whose total iterations in a loop nest are known. The timing

analyzer calculates WCET and BCET predictions based on the maximum and minimum

42

The timing analyzer attempts to determine if the loop nest is not (partially) zero-trip.

IF the check is successfulTHEN

The loop nest is formulated into summation without bounds tests and presented to GPAS.

ELSE

The check is inconclusive and the loop nest is cast into a summation with bounds tests.

The rewritten summation is presented to GPAS.

IF GPAS is able to solve the summationTHEN

RETURN the integer count.

ELSE

GPAS could not solve the summation in the presence of two or more loops with non-unit strides.

RETURN conservative bounds on the sum.

Figure 18: Algorithm for Selecting a Solution Method for Summations

number of iterations for a non-rectangular loop, respectively. These predictions are

made in case a user requests the WCET or BCET predictions for the loop.In addition to

these absolute predictions, the timing analyzer also calculatesaverageWCET and BCET

predictions for each loop.To calculate the average number of iterations for a loop, the

timing analyzer divides the total iterations by the total number of times the loop is

entered. For instance, the total number of iterations for the innermost loop from thesort

program in Figure 12 was 4,851. The timing analyzer also calculates the number of

times the current loop is entered by calculating the total number of iterations for the loop

that encloses the current loop. In the example shown in Figure 12, the innermost loop is

entered 98 times. Thus, the average number of iterations for the loop is 49.5 (4,851/98).

The average number of iterations is used to calculate the average WCET and BCET

predictions. Whena non-integer is calculated, the timing analyzer rounds up for the

43

WCET prediction and truncates for the BCET prediction since the loop analysis

algorithm is designed to work on an integral number of iterations.

4.4 Results

Table 12 shows the results of the timing analysis taking into account loop iteration

constraints. Thecolumns labeled "+ Pipelining" show the results if the timing analyzer

did not perform the loop iteration constraint analysis described in this chapter. The "+

Iter. Count" columns show that the timing predictions become much tighter when these

loop iterations constraints are taken into account. In particular, the lines printed in

boldface indicate the programs whose timing predictions became tighter as a result of

this additional analysis.

Among the programs listed in Table 6,Hes, Integ, Interp, LU, Sort andSymbenefit

from using this approach since they each contain one or more non-rectangular loops.

Interp showed a significant improvement in best case since the best case number of

iterations for a non-rectangular inner loop was 1, which was significantly lower than the

av erage number of iterations.If the timing analyzer did not use an average number of

inner loop iterations in worst case, then the number of loop iterations for the triangular

loops in Interp, Sort, and Symwould have been approximately double. The WCET of

these programs are nearly exact using the average number of iterations.The Integ

program had a higher best-case "+ Pipelining" ratio and a lower worst-case "+

Pipelining" ratio since there were other loops in this program that contributed more

significantly to the total execution time. The Sort and Symprograms did not have a

44

Table 12: Results After Adding Accurate Iteration Counts

Worst-Case Results

Obser ved + Pipelining + Pipelining + Iter. Count + Iter. Count
Cycles Cycles Ratio Cycles Ratio

Name

Des 149,706 172,509 1.152 172,509 1.152
Expint 58,217 1,293,290 22.215 1,293,290 22.215
Fresnel 47,749 48,887 1.024 48,887 1.024
Gaujac 786,786 790,116 1.004 790,116 1.004
Hes 55,834,609 130,574,296 2.339 56,739,136 1.016
Integ 22,538,082 30,023,163 1.332 22,553,163 1.001
Interp 25,469,403 50,701,362 1.991 25,478,409 1.000
LU 23,055,832 124,577,237 5.403 23,572,337 1.022
Matcnt 1,769,321 1,861,150 1.052 1,861,150 1.052
Matmul 4,444,911 4,448,212 1.001 4,448,212 1.001
Matsum 1,277,465 1,279,322 1.001 1,279,322 1.001
Sor t 7,672,281 251,603 1.988 7,672,292 1.000
Sprsin 28,339 28,664 1.011 28,664 1.011
Stats 1,016,048 1,016,128 1.000 1,016,128 1.000
Summidall 15,340 18,090 1.179 18,090 1.179
Summinmax 16,080 17,080 1.062 17,080 1.062
Sumnegpos 11,067 13,068 1.181 13,068 1.181
Sumoddeven 15,093 16,112 1.068 16,112 1.068
Sym 2,747,654 5,481,220 1.995 2,747,708 1.000
Av erage 7,734,420 19,347,974 2.631 7,882,403 2.157

Best-Case Results

Obser ved + Pipelining + Pipelining + Iter. Count + Iter. Count
Cycles Cycles Ratio Cycles Ratio

Name

Des 65,615 22,247 0.339 22,247 0.339
Expint 125 118 0.944 118 0.944
Fresnel 181 172 0.950 172 0.950
Gaujac 45,270 44,566 0.984 44,566 0.984
Hes 306,733 14,006 0.046 258,908 0.844
Integ 19,160,842 12,808,073 0.668 19,135,118 0.999
Interp 6,485,878 143,064 0.022 6,479,865 0.999
LU 12,883,939 284,011 0.022 637,365 0.049
Matcnt 1,549,095 1,548,798 1.000 1,548,798 1.000
Matmul 4,444,666 4,420,068 0.994 4,420,068 0.994
Matsum 1,257,239 1,167,140 0.923 1,167,140 0.923
Sor t 19,966 19,950 0.999 19,950 0.999
Sprsin 17,436 17,379 0.997 17,379 0.997
Stats 607,399 601,406 0.990 601,406 0.990
Summidall 15,340 8,072 0.526 8,072 0.526
Summinmax 13,080 13,062 0.999 13,062 0.999
Sumnegpos 9,067 9,049 0.998 9,049 0.998
Sumoddeven 94 63 0.670 63 0.670
Sym 160 160 1.000 160 1.000
Av erage 2,467,480 1,111,653 0.741 1,809,658 0.853

45

significant underestimation (i.e. "+ Pipelining" ratio) in best case.In the best case for

Sort the values were initially sorted and the sort function exited once the array has been

detected to be in ascending order. Likewise, theSymprogram terminates when it finds

the first pair of values that are not equal.

Hes and LU are unlike the other programs in that they contain some triply nested

loops. Insome loop nests the loop variables of the innermost and middle loops depend

on the outermost index variable. Inother loop nests the innermost loop variable depends

on the loop variable of the middle loop, which in turn depends on the loop variable of the

outer loop.GPAS correctly determines the exact number of loop iterations in all of these

cases and the results are more accurate WCET predictions compared to its "+

Pipelining" ratios. Whenthe timing analyzer computes the number of iterations of a

loop in a non-rectangular nest, it is sometimes necessary to round this number to an

integer. The programsHes, Integ andLU each contain two or more loops in which this

rounding causes slightly conservative predictions. For example, in the case ofLU, there

were two inner loops that were triply nested.When computing the number of iterations

of these loops, the rounding of iterations introduced a 1-2% overestimation in worst case

and a 1-3% underestimation in best case.Together these two loops comprised 89.8% of

the instructions executed in the program. Another reason for the conservative

predictions forLU is that when the number of iterations of nested loops is averaged, the

resulting execution time prediction times may be looser since each iteration may have a

different execution time. In worst case, for each iterationi until the last iteration, the

46

execution time ofi is greater than or equal to that ofi+1. Thus,the execution times for

successive iterations are monotonically decreasing or stay the same.Analogously, in

best case, the execution times are monotonically increasing or stay the same for

successive iterations.

4.5 Conclusions

This chapter has presented three different methods for bounding the number of iterations

of a loop. First, a method was described that determines the minimum and maximum

number of iterations of loops with multiple exits and also detects infeasible paths.For

instance, loops of the form in Figure 19(a) that can exit prematurely when some

condition becomes true are quite common and the bounded number of iterations of such

loops can be detected by the general algorithm presented in this chapter.

Second, a non-constant loop-invariant number of iterations is calculated when the

...

if (somecond)

...

}

...
for (i = 0; i < n; i++) {

}

for (i = 0; i < 100; i++) {

...

}

for (i = 0; i < 99; i++)
for (j = i+1; j < 100; j++) {

(a) Loop with Multiple Exits

(b) Loop with a Nonconstant
Loop-Invariant Number

of Iterations

(c) Inner Loop Whose Number of Iterations
Depends on an Outer Loop Counter Variable

break;

Figure 19: Common Forms of Loops

47

variables on which the number of iterations depends cannot change values inside of the

loop. Figure19(b) depicts an example of this common type of loop. The user can

specify the minimum and maximum values of these variables by placing assertions in the

source code or by interactively responding to prompts from the timing analyzer. These

assertions are more reliable than specifying the minimum and maximum number of loop

iterations directly since the user does not have to be aware of the code generation

strategies or optimizations performed by the compiler.

Finally, timing analysis support is given to tightly predict the execution time of non-

rectangular loops whose number of iterations is dependent on counter variables of outer

level loops. Theseloops, such as the one shown in Figure 19(c), appear frequently in

programs and can result in significant underestimations in best-case predictions and

overestimations in worst-case predictions. Using the methods of this chapter, it is

possible to more tightly predict loops when the initial value or limit of the control

variable in an inner loop depends on a control variable of an enclosing outer loop.

These methods have been successfully integrated in an existing compiler and an

associated timing analyzer that predicts the performance for optimized code on a

machine that exploits caching and pipelining. The result is tighter and more reliable

timing analysis predictions and less work for the user.

48

CHAPTER 5

BRANCH CONSTRAINT DETECTION AND EXPLOITATION

Even with perfect architectural modeling and a correct calculation of the number of loop

iterations, significant overestimations of WCET and underestimations of BCET can still

occur. The reasons for the loose timing predictions are due to dependences on data

values that can constrain the outcome of conditional branches and restrict the set of paths

that can be taken. Whilebranch constraint information has been used in the past by

some timing analyzers, it has typically been specified manually, which is both tedious

and error prone. This chapter describes how branch constraints can be automatically

detected by a compiler and exploited by a timing analyzer.

5.1 AutomaticDetection of Constraints

A branch constraint causes the outcome of a conditional branch to be known under

certain conditions. The compiler employs techniques to detect these constraints, which

are classified aseffect-basedanditeration-based.

5.1.1 DetectingEffect-Based Constraints

The compiler performs analysis to determine if the outcome of a conditional branch is

known at any giv en point in the control flow. First, the compiler calculates the set of

registers and variables upon which a branch (and its associated comparison) depends.

This set is calculated by expanding the effects of the comparison instruction associated

49

with the branch.For instance, consider the SPARC instructions represented as RTLs

(Register Transfer Lists) and the associated expanded comparison in Figure 20.A

comparison is expanded by searching backwards for assignments to registers in the

comparison until all registers are replaced or the beginning of a block with multiple

predecessors is encountered.Loop-invariant registers in the expression are expanded

from the preheader of the loop in which they are assigned values. Next, the compiler

determines the set of effects associated with assignments to registers and variables for

each basic block. Each branch is examined to see if it could be affected by the block.

Thus, the compiler can determine that a basic block updating the global variableg could

affect the result of the branch in Figure 20. Updates to the registersr[1] (%g1) or

r[8] (%o0) would have no effect.

A state is associated with each conditional branch, which can have one of three

values:unknown, fall-through, or jump. The compiler determines if a branch becomes

known by substituting the value assigned for the variable or register and evaluating the

expanded comparison. The compiler then issues a directive to the timing analyzer for

each branch placed in anunknown, fall-through, or jumpstate by an effect in the block.

r[8]=R[r[1]+LO[_g]]; /*ld [%g1+%lo(_g)],%o0 */
IC=r[8]?5; /* cmp %o0,5 */
PC=IC<0,L20; /* bl L20 */

r[1]=HI[_g]; /* sethi %hi(_g),%g1 */

IC=R[HI[_g]+LO[_g]]?5;

Expanded Comparison

Instructions in a Basic Block

Figure 20: Example of Expanding a Comparison

50

Thus, this analysis requiresO(B*C) complexity, whereB is the number of basic blocks

andC is the number of conditional branches.A more complete explanation for detecting

branch states has been described in previous work [46].

Consider the source code in Figure 21(a). The corresponding control flow that is

(1) 8
(2) 8→9
(3) 8→9→2→3→7
(4) 8→9→2→4→5→7
(5) 8→9→2→4→6→7

(d) Paths in Loop

(a) Source Code

for (i = 0; !quit &&

if (a[i] == 0)
quit = 1;

else if (odd) {
sumodd += a[i];
odd = 0;
}

else {
sumeven += a[i];
odd = 1;
}

sumodd = sumeven = 0;
odd = quit = 0;

i < 1000; i++)

sumodd=0; 1
sumeven=0;
odd=0; {4J}
quit=0; {8F}
i=0; {2U,9J}

{4F}{4J}

sumodd+=a[i];

odd==0

a[i]!=0 2

quit=1; {8J} 3

4

5

{2F}{2J}

odd=0; {4J}

sumeven+=a[i];6
odd=1; {4F}

i++; {2U,9U} 7

quit!=0 8

i<1000 9

(b) Control Flow

10

{8F}{8J}

{9F}
{9J}

(2) blk 1 makes blk 4 jump
(3) blk 1 makes blk 8 fall thru
(4) blk 1 makes blk 9 jump
(5) blk 3 makes blk 8 jump
(6) blk 5 makes blk 4 jump
(7) blk 6 makes blk 4 fall thru
(8) blk 7 nullifies blks 2,9

(c) Explicit Constraints

(1) blk 1 nullifies blk 2

Figure 21: Effects of Assignments on Branches

51

generated by the compiler is shown in Figure 21(b). While the control flow in the figure

is represented at the source code level, the analysis is performed by the compiler at the

machine instruction level after compiler optimizations are applied to provide more

accurate timing predictions. Note that some branches in Figure 21(b) have conditions

that are reversed from the code in Figure 21(a) to depict the branch conditions that are

evaluated at the machine instruction level. Only when the condition associated with a

branch in a block is evaluated to be true will the jump (J) occur. If the condition is not

true, then control will fall (F) into the next sequential block. The control flow also

shows the effect-based constraints, which are enclosed in curly braces and associated

with basic blocks or control-flow transitions. Figure21(c) describes the explicit branch

constraints that are automatically detected by the compiler and passed to a timing

analyzer. The initialization of i in block 1 (i=0;) puts the branch in block 2

(a[i]!=0) in an unknownstate (2U) and the branch in block 9 (i<1000) in a jump

state (9J). In addition, the assignments toodd in blocks 1 and 5 (odd=0;) and in block

6 (odd=1;) cause the branch in block 4 (odd==0) to jump (4J) and fall through(4F),

respectively. Likewise, the assignment toquit in blocks 1 (quit=0;) and 3

(quit=1;) cause the branch in block 8 (quit!=0) to fall through(8F) and jump (8J),

respectively. Finally, the increment ofi in block 7 (i++;) sets the states of the

branches in blocks 2 (a[i]!=0) and 9 (i<1000) to unknown(2U,9U) since they

depend on the value ofi.

Figure 21(b) also shows implicit branch constraints. When a branch has a given

outcome, then it will have the same outcome again unless the variables or registers being

compared are affected. Thus,a fall-through (F) or jump (J) transition from a branch will

implicitly cause that same branch to be in afall-through or jump state, respectively.

52

These implicit constraints are not explicitly passed to a timing analyzer since a timing

analyzer can create them when it is performing analysis on paths.

The source code in Figure 22(a) and corresponding control flow in Figure 22(b)

depict a situation where one conditional branch may be logically correlated with another

branch. Inother words, the direction taken by one conditional branch may indicate the

direction taken by another conditional branch.If block 2 (a[i]>=0) falls into block 3,

then the value ofa[i] is negative and block 5 (a[i]<=0) must jump to block 7 (5J).

1sumneg=0;

(a) Source Code

sumall=0;
sumpos=0;
i=0; {2U,7J}

if (a[i] < 0)
sumneg += a[i];

sumall += a[i];
if (a[i] > 0)

sumpos += a[i];
}

i++) {
for (i = 0; i < 1000;
sumpos = 0;
sumneg = sumall = 0;

2

3

4

5

6

7

{2F,5J}

{5F,2J}

{2J}

{5J}

a[i]>=0

sumneg+=a[i];

sumall+=a[i];

a[i]<=0

sumpos+=a[i];

i++; {2U,5U,7U}
i<1000

8

{7F}

(b) Control Flow

(1) 2→4→5→7
(2) 2→3→4→5→7
(3) 2→4→5→6→7
(4) 2→3→4→5→6→7

(d) Paths in Loop

{7J}

(3) blk 2 fall thru makes blk 5 jump
(4) blk 5 fall thru makes blk 2 jump
(5) block 7 nullifies blocks 2,5,7

(c) Explicit Constraints

(2) blk 1 makes blk 7 jump
(1) blk 1 nullifies blk 2

Figure 22: Logical Correlation between Branches

53

This is described by branch constraint 3 in Figure 22(c).Note that if block 2

(a[i]>=0) jumps to block 4, there is no guarantee that block 5 (a[i]<=0) will f all

through to block 6 since the value ofa[i] could have been zero. The compiler

evaluates each pair of branches in a function to determine if there is a logical correlation

between one branch and another. Thus, this analysis requiresO(C2) complexity, where

C is the number of conditional branches.Note that a branch is always logically

correlated with itself and these self correlations are implicit constraints. The exact

conditions when one branch is logically correlated with another have been described in

previous work [46].

5.1.2 DetectingIteration-Based Constraints

A basic induction variable is a variable or register that is incremented or decremented by

a constant value on each iteration of a loop [39]. Some branches compare a basic

induction variable to a constant. In these situations, the compiler can determine the

ranges of iterations in which such a branch will fall through or jump. The compiler

produces directives for a timing analyzer that indicate ranges of iterations for each of the

two outgoing edges of the block containing the branch. The manner in which this

information is derived was described in Section 4.1.3.

Consider the source code and corresponding control flow shown in Figures 23(a) and

23(b). Whilei can range from 0..999 as each path in the loop is entered, the number of

corresponding iterations in the loop will range from 1..1000.Thus, the compiler

associates ranges of iterations with transitions from blocks that compare basic induction

variables to constants.For instance, block 3 (i<=249) will only fall through to block 4

when the loop is performing the last 750 iterations ([251..1000]). Constraints5-8 in

54

1

2

3

4

5

6

7

8

(b) Control Flow

{2F}

{4F} [1..750]

{7F}

summid=0;

i==m

i<=249

i>=750

summid+=a[i];

sumall+=a[i];

i++; {3U,4U,7U}

{7J}

{3F,4J}

{3F} [251..1000]

{2J once}

[751..1000]

i=0; {3J,4F,7J}

sumall=0;

i<1000

{3J,4F}[1..250]

(c) Explicit Constraints

(1) 2−>6→7
(2) 2−>3→6→7
(3) 2−>3→4→6→7
(4) 2−>3→4→5→6→7

(d) Paths in Loop

(10) blk 7 nullifies blks 2,3,4,7

summid = sumall = 0;

i++) {
for (i = 0; i < 1000;

if (i != m &&

summid += a[i];
sumall += a[i];
}

(a) Source Code

(2) blk 1 makes blk 4 fall thru
(3) blk 2 will jump at most once

(1) blk 1 makes blks 3,7 jump

(4) blk 3 jump makes blk 4 fall thru

(6) blk 3 jump in iters [1..250]
(5) blk 3 fallthru in iters [251..1000]

(7) blk 4 fallthru in iters [1..750]
(8) blk 4 jump in iters [751..1000]
(9) blk 4 jump makes blk 3 fall thru

249<i && i<750)

Figure 23: Ranges of Iterations and Branch Outcomes

Figure 23(c) depict the range of iterations when various transitions in the loop can be

taken. An implicit iteration-based constraint is that the header of the loop (block 2 in

Figure 23(b)) can be executed in every loop iteration ([1..1000] for Figure 23).

Sometimes a basic induction variable is compared to a non-constant loop invariant value,

as shown in block 2 (i==m) of Figure 23(b). The value ofm is not known, but it is

invariant with respect to the loop.When the comparison of such a branch is an equality

test (== or !=), then the transition that occurs when the two values are equal can take

55

place at most once for each execution of the loop since the basic induction variable

changes by a constant value on each iteration. Constraint 3 in Figure 23(c) shows that

the compiler determines that block 2 will jump to block 6 at most once (2J once). The

analysis to detect iteration-based constraints requiresO(C) complexity, whereC is the

number of conditional branches, since each branch must be inspected once.

5.2 UsingConstraints in a Timing Analyzer

The analysis techniques described in the previous section to identify branch constraints

could be used by a variety of timing analyzers, which include those that use an integer

linear programming (ILP) solver. While an ILP approach can be simple, elegant, and

quite powerful, there are a few disadvantages. For instance, an ILP approach works best

when each basic block can be associated with a single time, which allows this time to be

expressed as a constraint associated with that block. Caching and pipelining change the

context in which a block could be executed and can often affect its associated execution

time. Whileapproaches have been suggested for addressing caching behavior [9], it is

still unclear how pipelining can be accurately modeled across multiple blocks.More

importantly, the time required for the analysis with an ILP approach has worst-case

exponential complexity. A program that required only a few seconds of timing analysis

using a more traditional approach [26] required minutes using an ILP approach [9].In

fact, ILP methods can be used to solve many compiler optimization problems, but are

infrequently used in production compilers due to potentially excessive compilation time.

Finally, when a timing constraint is violated, a user would like to know where the time is

being spent in the code associated with the constraints. The timing analysis approach

described in this dissertation not only produces WCET and BCET predictions for an

56

entire program, but also gives the WCET and BCET for each function, loop and path in

the program [27]. In contrast, an ILP approach only calculates a single WCET and

BCET prediction for the entire program. Thus, the author decided it would be

worthwhile to investigate how branch constraints could be exploited by a non-ILP based

timing analyzer.

The remainder of this section will describe the details of how the timing analyzer

makes use of the branch constraints to compute the WCET and BCET predictions for a

particular loop or function. In particular, constraints on paths are generated from the

branch constraints.For example, effect-based branch constraints can be used to

determine if a given path is infeasible, or that one path cannot follow some other path on

a subsequent iteration of the loop. Further constraints arise from analyzing which paths

can execute on the first iteration.Iteration-based branch constraints are used to

determine the range of iterations a particular path may be taken during the loop

execution. Oncethe path constraints have been calculated, they are used in the worst-

case and best-case loop analysis algorithms. The purpose of using these path constraints

is to tighten the execution time predictions.For instance, if the timing analyzer can

determine that the longest (shortest) path is infeasible or can only execute for a proper

subset of the loop’s iterations, then the WCET (BCET) bound will be tighter.

5.2.1 Overview for Generating Path Constraints

The timing analyzer uses branch constraints to calculate a minimum and maximum

number of iterations associated with each path during the execution of a loop.Table 13

depicts worst-case iteration information associated with each loop path described in

Figures 21(d), 22(d), and 23(d).Table 14 shows the analogous path iteration information

57

Table 13: Worst-Case Path Information for Figures 21(d), 22(d), and 23(d)

Total Path Path Possible Unique Min Max
Iters ID Type Iterations Iters Iters ItersLoop

Loop 1 exit [1001..1001] ∅ 0 1
in 2 exit [1001..1001] ∅ 0 1

Figure 3 cont [1000..1000] ∅ 0 1
21 4 cont [2..1000] ∅ 0 500

5 cont [1..1000] ∅ 0 500

1,001

Loop 1 both [1..1000] ∅ 0 1,000
in 2 both [1..1000] ∅ 0 1,000

Figure 3 both [1..1000] ∅ 0 1,000
22 4 N/A N/A N/A N/A N/A

1,000

Loop 1 both [1..1000] ∅ 0 1
in 2 cont [1..250] [1..250]−1 249 250

Figure 3 both [751..1000] [751..1000]−1 249 250
23 4 cont [251..750] [251..750]−1 499 500

1,000

for best case. The second and third example loops are not shown in Table 14 because

their best case iteration information is identical to their worst case information from

Table 13. The first loop example from Figure 21 does have a different number of

iterations for worst case and best case, and this results in a different set of possible

iterations and number of maximum iterations for each path.The total number of loop

iterations is automatically calculated using techniques described in the previous section

[31]. A path is a sequence of blocks in a loop connected by control-flow transitions.

Table 14: Best-Case Path Information for Figure 21(d)

Total Path Path Possible Unique Min Max
Iters Type ID Iterations Iters Iters ItersLoop

Loop exit 1 [2..2] ∅ 0 1
in exit 2 [2..2] ∅ 0 1

Figure cont 3 [1..1] ∅ 0 1
21 cont 4 [2..2] ∅ 0 1

cont 5 [1..1] ∅ 0 1

2

58

Each path starts with the loop header. Exit paths are terminated by a block with a

transition out of the loop.Continuepaths are terminated by a block with a transition to

the loop header. The "Path Type" column shows that a path may be classified in one of

four ways. Exit andcont represent that the path is an exit or continue path, respectively.

The word both means the path is both an exit and a continue path, andN/A means that

the path is infeasible. The "Possible Iterations" column indicates the range of possible

iterations for each path. The "Unique Iters" column represents the unique iterations

associated with each path. The final two columns show the minimum and maximum

number of times the path could be executed in the loop.

Figure 24 gives a high-level description of the algorithm used to calculate the

information given in the last five columns of Table 13 and 14.The next four sections

5.2.2 through 5.2.5 provide examples to illustrate how this information is calculated.

Except for the construction of the REACH_SELF table, the complexity of the algorithm

is O(P2), whereP is the number of paths in the loop. The author found that, in practice,

the construction of the REACH_SELF table was not time consuming since most paths in

a loop could either immediately follow themselves or could only exit the loop.

5.2.2 UsingEffect-Based Constraints

Effect-based constraints are associated with a block or a transition between blocks.For

each path in a loop the timing analyzer traverses the basic blocks and transitions between

blocks in the order in which the path would be executed. Whenan effect-based

constraint is encountered, it is added to a list of constraints for that path. If another

effect-based constraint is later encountered for that same branch, then the current

constraint is nullified.

59

/* remove infeasible paths*/
FOR each path P in the loop DO

Propagate effect-based constraints in P.
IF any transition in P is not feasible THEN

Remove P from the loop.

/* calculate CAN_FOLLOW table using effect-based constraints*/
FOR each path P in the loop DO

IF P is a continue path THEN
FOR each path Q in the loop DO

Propagate effect-based constraints
at end of P through Q.

IF any infeasible transition in Q THEN
CAN_FOLLOW[P][Q] = FALSE.

ELSE
CAN_FOLLOW[P][Q] = TRUE.

ELSE
FOR each path Q in the loop DO

CAN_FOLLOW[P][Q] = FALSE.

/* calculate REACH_SELF table using CAN_FOLLOW table */
FOR each path P in the loop DO

IF CANFOLLOW[P][P] THEN
REACH_SELF[P] = 1.

ELSIF P is not a continue path THEN
REACH_SELF[P] = 0.

ELSE
Recursively inspect the CAN_FOLLOW table
to determine the shortest number of paths
to be traversed before P can be reached.
Zero represents P cannot reach itself.

/* processonceconstraints*/
FOR each path P in the loop DO

IF a once constraint was found on
a transition in P THEN
P->once = TRUE.

ELSE
P->once = FALSE.

P->nonuniqiters = 0.
FOR each block B in P DO

IF B’s other outgoing transition has a
once constraint THEN
P->nonuniqiters += 1.

/* initialize possible iteration path information, whereN
represents the total loop iterations*/

FOR each path P in the loop DO
P->range = ∅ .
IF P is a continue path THEN

P->range = P->range ∪ [1..max(N-1,1)].
IF P is an exit path THEN

P->range = P->range ∪ [N..N].

Figure 24: Algorithm for Calculating Path Iteration Information in Tables 13,14
(continued on next page)

60

/* constrain possible iterations using iteration-based constraints*/
FOR each path P in the loop DO

Propagate iteration-based constraints in P.
P->range = P->range ∩

iteration range at end of P.
IF P->range = ∅ THEN

Remove P from the loop.

/* constrain iterations of each path that cannot reach itself*/
Construct a DAG D representing the execution

order of paths P where REACH_SELF[P] == 0.
FOR each non-leaf path P in D, where P is not

processed until all paths it can reach
are processed DO
S = first immediate successor of P.
P->range.low = S->range.low - 1.
P->range.high = S->range.high - 1.
FOR each remaining path S that is an

immediate successor of P in D DO
IF S->range.low - 1 < P->range.low THEN

P->range.low = S->range.low - 1.
IF S->range.high - 1 > P->range.high THEN

P->range.high = S->range.high - 1.

/* calculate unique iterations for each path*/
FOR each path P in the loop DO

P->uniqrange = P->range
FOR each path Q, where Q ≠ P DO

P->uniqrange = P->uniqrange − Q->range.

/* assign minimum number of iterations for each path*/
FOR each path P in the loop DO

P->miniter =
number of iterations in P->uniqrange.

P->miniter -= P->nonuniqiters.

/* assign maximum number of iterations for each path*/
FOR each path P in the loop DO

IF REACH_SELF[P] = 0 OR P->once THEN
P->maxiter = 1.

ELSE
P->maxiter =

number of iterations in P->range.
IF REACH_SELF[P] > 1 THEN

P->maxiter =
ceil(P->maxiter/REACH_SELF[P]).

/* assign each path to a set of paths*/
s = 0.
FOR each path P in the loop DO

IF P->range ∩ with existing set i THEN
P->set = i;

ELSE
P->set = ++s;

Figure 24: Algorithm for Calculating Path Iteration Information in Tables 13,14 (cont’d.)

61

Effect-based constraints can be used to detect infeasible paths. Figure 25 depicts the

constraints being propagated through path 4 in Figure 22(d).The transition from block 2

to block 3 causes the branch in block 5 to be placed in ajumpstate (5J). Thebranch in

block 5 is encountered with this constraint (5J) still in effect and the transition from

block 5 to block 6 in path 4 is deemed illegal. When such an infeasible path is

encountered, the timing analyzer removes the path to prevent any additional analysis

time to be spent on it.

The maximum number of iterations for a path can sometimes be constrained by

effect-based constraints.Consider paths 1 and 2 in Figure 21(d), which areexit paths

because they end with a transition to block 10 that is outside the loop.Constraint 5 in

Figure 21(c) indicates that when block 3 (quit=1;) in Figure 21(b) is executed, block

8 (quit!=0) will jump to block 10. When the timing analyzer detects that an effect-

based constraint can reach the end of the path without nullification, the timing analyzer

propagates the constraint through all the paths of the loop to see if it can reach the

branch identified in the constraint. Figure 26 illustrates that the constraint causing the

branch in block 8 tojump (8J) reaches the end of path 3 and that paths 2, 3, 4, and 5

cannot follow path 3 since they require a fall through from block 8 to block 9. Figure 27

shows that the constraint for branch 4 reaching the end of paths 4 and 5 from Figure 21

contains the opposite outcome of branch 4 in the same path.These constraints can reach

2 3 4 5 6 7

{2F,5J} {2F,5J}
{2F,5J} {2F,5J} {2F,5J}

{2F,5J}
invalid

Figure 25: Path 4 in Figure 22(d) Is Not Feasible

62

9 2 3 7
{8F} {8F,9J} {2F,8F,9J}

{8F} {8F,9J}
{2F,8J,9J}

{8J}{2F,8J,9J}

path 3: 8

paths 2,3,4,5: 8 9
invalid

•••

{8J}

Figure 26: Paths 2-5 Cannot Follow Path 3 in Figure 21(d)

{8F}
{8F} {8F,9J}

{8F,9J}
{2J,8F,9J}

{2J,8F,9J}
{2J,4F,8F,9J}

{2J,4J,8F,9J}
{2J,4J,8F,9J}

{4J,8F}path 4:

8 9 2 4 6 7

{8F}
{8F}

{8F,9J}
{8F,9J}

{2J,8F,9J}
{2J,8F,9J}

{2J,4J,8F,9J}
{2J,4F,8F,9J}

{2J,4F,8F,9J}
{4F,8F}path 5:

8 9 2 4 5 7

Figure 27: Paths 4 and 5 Cannot Immediately Follow the Same Path in Figure 21(d)

block 4 on the next iteration without being affected. Thiscauses these paths not to

follow themselves on the next loop iteration.

A Can Follow matrix is constructed by the timing analyzer that indicates for each

path the set of paths that can legally follow it on the next iteration. If a constraint from

one path can reach its associated branch in other paths without being nullified, then such

paths that have transitions that do not satisfy the constraint are marked as illegal in the

matrix. No paths are allowed to follow a path that only exits. Table 15 depicts the

matrix of paths that can legally follow each path in Figure 21(d).

After the Can Follow matrix is completed, it is examined to see if restrictions on the

number of iterations associated with each path can be applied.In general, the timing

analyzer examines the matrix for each path to determine the fewest number of other

63

Table 15: Can Follow Matrix for Figure 21

Current Paths That Can Immediately Follow
Path in
Loop 1 2 3 4 5

1 N N N N N
2 N N N N N
3 Y N N N N
4 N Y Y N Y
5 N Y Y Y N

paths required to be traversed before the current path can be executed again. If the

algorithm indicates that a path cannot reach itself, then the path will be assigned a

maximum of one iteration.Paths 1, 2, and 3 of Figure 21(d) are all assigned a maximum

number of one iteration because they cannot reach themselves after executing. If a path

cannot directly follow itself, but can eventually be reached again, then it cannot execute

on every iteration of the loop. If the algorithm indicates that theK iterations required to

be executed before acontinuepath can reach itself is greater than one, then it is assigned

a maximum number of iterations fromceil(R/K), whereR is the possible number of

iterations for the path.Paths 4 and 5 of Figure 21(d) can only execute again on the

second iteration after it last executed. Thus,paths 4 and 5 are assignedceil(999/2) and

ceil(1,000/2), respectively, or 500 maximum iterations.

5.2.3 UsingEffect-Based Constraints On Entering a Loop

The previous section discussed how branch constraints are used to create path constraints

within a loop. But there are further constraints that arise when the loop is entered that

affect which paths can initially execute. Thesteps taken by the timing analyzer related

to preheader constraints are as follows.

64

1. usedata-flow analysis to determine the initial constraints

2. determinethe first iteration on which each path in the loop can execute

3. updatethe range of possible iterations for the paths

4. updatethe minimum and maximum number of iterations of the loop

These steps are described in this section.

The timing analyzer uses data-flow analysis [39] to calculateins and outs for each

block in a function.The algorithm for accomplishing this is given in Figure 28. The

data-flow equations 10 through 15 that determine the ins and outs are based on truth

tables given in Table 16. The implementation uses six bit vectors for each block:

in.jump, in.fallthru, in.unknown, out.jump, out.fallthru and out.unknown. The jump,

FOR each function in the program DO
DO

change = FALSE
FOR each block in the function DO

in.j = NULL
in.f = NULL
in.u = NULL
IF the block has at least one predecessor (pred) THEN

in.j = pred.out.j
in.f = pred.out.f
in.u = pred.out.u
FOR each other predecessor block (pred) DO

in.j ∪ = pred.out.j
in.f ∪ = pred.out.f
in.u ∪ = pred.out.u ∪ (in.j ∩ pred.out.f) ∪

(in.f ∩ pred.out.j)

Initialize this.e, this.u and this.j based on the branch
constraints contained in this block.

out.j = this.j ∪ (in.j - this.f - this.u)
out.f = this.f ∪ (in.f - this.j - this.u)
out.u = this.u ∪ (in.u - this.j - this.f)
IF any in or out bit vector changed THEN

change = TRUE
WHILE change

Figure 28: Calculating Ins and Outs

65

(10)
B. in. j = ∩

p ∈ preds(B)

p. out. j

(11)
B. in. f = ∩

p ∈ preds(B)

p. out. f

(12)B. in. u = (B. in. j ∪ B. in. f) ′

(13)B. out. j = B. j ∪ (B. in. j − B. f − B. u)

(14)B. out. f = B. f ∪ (B. in. f − B. j − B. u)

(15)B. out. u = B. u ∪ (B. in. u − B. j − B. f)

fallthru and unknown bit vectors indicate which branches are made to jump, fall through

or become unknown, respectively, based on this block.For determining the ins and outs

of a block, exactly one of the three corresponding bit vectors must be set, since a branch

must be in either a jump, fall through or unknown state. Each block also contains bit

vectors indicating if it causes a branch to jump, fall through or become unknown.

However, the current block may have no effect on the branch in question, so it is possible

that the bit vectors representing the effect from the current block may all be zero.

The first part of Table 16 enumerates the cases to calculate the ins, based on the outs

of the predecessor blocks. As an illustration, consider line 7. Predecessor block p1

makes a branch unknown, and predecessor block p2 makes the same respective branch

jump. Thecombination of these effects is to make that branch unknown. Sincethe

66

Table 16: Truth Tables for Ins and Outs

INPUT 1 INPUT 2 RESULT
p1.j p1.f p1.u p2.j p2.f p2.u in.j in.f in.u

line

1 1 0 0 1 0 0 1 0 0
2 1 0 0 0 1 0 0 0 1
3 1 0 0 0 0 1 0 0 1

4 0 1 0 1 0 0 0 0 1
5 0 1 0 0 1 0 0 1 0
6 0 1 0 0 0 1 0 0 1

7 0 0 1 1 0 0 0 0 1
8 0 0 1 0 1 0 0 0 1
9 0 0 1 0 0 1 0 0 1

this.j this.f this.u in.j in.f in.u out.j out.f out.u

10 0 0 0 0 0 0 0 0 0
11 0 0 0 1 0 0 1 0 0
12 0 0 0 0 1 0 0 1 0
13 0 0 0 0 0 1 0 0 1

14 1 0 0 0 0 0 1 0 0
15 1 0 0 1 0 0 1 0 0
16 1 0 0 0 1 0 1 0 0
17 1 0 0 0 0 1 1 0 0

18 0 1 0 0 0 0 0 1 0
19 0 1 0 1 0 0 0 1 0
20 0 1 0 0 1 0 0 1 0
21 0 1 0 0 0 1 0 1 0

22 0 0 1 0 0 0 0 0 1
23 0 0 1 1 0 0 0 0 1
24 0 0 1 0 1 0 0 0 1
25 0 0 1 0 0 1 0 0 1

timing analyzer cannot assume which predecessor block will always precede the block in

question, it has to intersect the information from all the predecessors.The inner FOR-

loop in Figure 28 combines the effects from each predecessor block one at a time.

67

Equations 10 and 11 show that the current block’s ins for the jump (fall through)

branches are simply the intersection of the jump (fall through) bit vectors of the

predecessors’ outs. Equation 12 states that the ins for the unknown branches are the

complement of the union of the ins for the jump and fall through branches.For example,

if one predecessor out says that a certain branch will fall through, but another

predecessor out says the same branch will jump, then the in of the current block will

show that that branch is unknown due to the conflict between the predecessors.

The second part of Table 16 shows the cases that determine the outs, based on the

effects of the block in question combined with its ins. If the current block has no effect

on a branch, then the out bit vectors will be assigned the value of the ins. Otherwise, the

effect of this block will override the ins to determine the outs of this block.For example,

consider line 16 in Table 16. It depicts a situation where the block in question makes a

particular branch jump, while the effect of the ins is to make that jump fall through.In

this case, since this block has an effect, it overrides the ins, so the value of the out bit

vectors will represent that the branch will jump. The equations 13 through 15 to

compute the outs are straightforward and follow directly from the truth table.In Figure

28, the outs are calculated after the ins.However, the algorithm is a typical data-flow

calculation in which the ins and outs depend on each other, so the algorithm continues

until there is no change to the bit vectors.

After the ins and outs of every block are calculated, the timing analyzer uses the outs

of the preheader to see which paths can execute on the first iteration. The algorithm in

68

Figure 29 setsp.on_first to true (false) if it determines pathp can (cannot) execute

on the first iteration. The cases in whichp.on_first is false correspond to situations

where a branch in the path contradicts the information from the preheader outs.If a path

is found not able to execute on the first iteration as a result of this algorithm, then in

some cases it may be assigned fewer maximum iterations, and a more accurate timing

bound can be obtained. The preheader’s out constraints are propagated through each

path. Any path that does not obey the preheader constraints cannot execute on the first

iteration. For example, consider the loop in Figure 21.The application of the algorithm

in Figure 29 to the paths of this loop is depicted in Figure 30. This figure shows the

propagation of the preheader constraints to determine which paths can execute on the

first iteration. The solid arrows indicate transitions that occur between blocks inside the

loop, while dashed arrows indicate transitions to or from a block outside the loop.Block

1 is the preheader of the loop, and block 10 is the block to which the loop exits. The

value of odd is initialized to 0 in block 1, which is in the outs of the preheader of the

loop, so the associated branch constraint is{4J}. Thus, on the first iteration of the loop,

the branch in block 4 must be taken. Path 4 contains a transition from block 4 to block

5, which is a fall through situation, contradicting the preheader constraint. The timing

analyzer detects that path 4 cannot execute on the first iteration.

The algorithm in Figure 29 also detects if a loop exit transition in a path causes it to

be ineligible to execute on the first iteration.Consider exit paths 1 and 2 from the loop

in Figure 21.Path 1 consists only of block 8, so this block is considered the last block in

69

Initialize pre.j, pre.f and pre.u to be the union of the
respective bit vectors of all the header’s immediate predecessors.

FOR each path (p) in the loop DO
IF we already know the path cannot execute on

first iteration THEN
CONTINUE

FOR each block (b) in path p DO
p.on_first = TRUE
IF there is no branch in this block THEN

CONTINUE
IF all three bit vectors at bit b are zero THEN

CONTINUE
succ = number of immediate successor block that lies outside

the loop

/* if the preheader says this branch must jump*/
pre.j[b] THEN

IF this is not the last block in path THEN
IF number of next block in path == b + 1

p.on_first = FALSE
ELSE

IF succ == b + 1 THEN
p.on_first = FALSE

/* if the preheader says this branch must fall through*/
ELSIF pre.f[b] THEN

IF this is not last block in path THEN
IF number of next block in path != b + 1

p.on_first = FALSE
ELSE

IF succ != b + 1 THEN
p.on_first = FALSE

Figure 29: Which Paths Can Execute on First Iteration

the path. The timing analyzer determines the successor block to block 8 that is located

outside the loop, which is block 10. The exit transition from block 8 to block 10 is a

jump, however the preheader constraint is for the branch in block 8 to fall through (see

8F constraint shown for path 1 in Figure 30). This contradiction means that path 1

cannot execute on the first iteration.Path 2 has a similar situation. Its last block is block

9, and its successor that is located outside the loop is block 10.To exit the loop by

taking path 2 implies that the branch in block 9 must fall through, but the preheader

constraint says that it must jump (see9J constraint shown for path 2 in Figure 30).So

70

1

1

1

1

1

8 9 2 4 6

{4J,8F,9J}
{4J,8F,9J} {4J,8F,9J}

{4J,8F,9J}
{4J,8F,9J}

{4J,8F,9J}
{4J,8F,9J}

{2J,4J,8F,9J}
{2J,4J,8F,9J}

{2J,4J,8F,9J}
{2J,4F,8F,9J}

{2J,4F,8F,9J}

{4J,8F,9J}
{4J,8F,9J}

8

{4J,8F,9J}
{4J,8F,9J}

{4J,8F,9J}

9

{4J,8F,9J}
{4J,8F,9J}

2 4

{2J,4J,8F,9J}
{2J,4J,8F,9J}

5

invalid

8 9 2

{4J,8F,9J}
{4J,8F,9J} {4J,8F,9J}

{4J,8F,9J}
{4J,8F,9J}

{4J,8F,9J}
{4J,8F,9J}

3

{2F,4J,8F,9J}
{2F,4J,8J,9J}

{2F,4J,8J,9J}

7

{4J,8J}

{4J,8F,9J}
{4J,8F,9J} {4J,8F,9J}

{4J,8F,9J}

8 9

{4J,8F,9J}

8

{4J,8F,9J}
{4J,8F,9J} {4J,8F,9J}

7

7

{4F,8F}

path 1:

path 2:

path 3:

path 4:

path 5:

10

10

invalid

invalid

Figure 30: Propagating Preheader Constraints for Figure 21

the timing analyzer concludes that path 2 cannot execute on the first iteration as well.

For those paths that cannot execute on the first iteration, the next step is to determine

on which iteration it can first be taken. Table 17 shows a Path Distance matrix for the

example loop in Figure 21 that is derived from the Can Follow matrix given in Table 15.

The table entries containing∞ indicate that it is impossible for one path to reach the

other path. For paths that cannot execute on the first iteration, the timing analyzer

determines on which iteration it can execute as follows. LetP be the set of paths that

71

Table 17: Path Distance Matrix for Figure 21

Current How Many Iterations to Reach Path
Path in
Loop 1 2 3 4 5

1 ∞ ∞ ∞ ∞ ∞
2 ∞ ∞ ∞ ∞ ∞
3 1 ∞ ∞ ∞ ∞
4 2 1 1 2 1
5 2 1 1 1 2

can execute on the first iteration, and letQ be the set of paths that cannot.For each path

q in Q, the timing analyzer finds the shortest number of iterations to reachq from any

path inP. This shortest distance plus 1 represents the first iteration on which pathq can

execute. Continuingwith the example from Figure 21, path 4 belongs to the setQ. Path

5 is a path inP, and according to Table 17 the path distance from path 5 to path 4 is one

iteration. Sothe timing analyzer concludes that path 4 can first execute on the second

iteration, and the range of possible iterations becomes [2..1000].Similarly, the timing

analyzer determined that exit paths 1 and 2 could not execute on the first iteration.

However, the path distances from path 3 to path 1 and from path 5 to path 2 are both one

iteration as indicated in Table 17. Since both path 3 and path 5 can execute on the first

iteration, paths 1 and 2 can first execute on the second iteration of the loop.For best

case analysis, their ranges of possible iterations are adjusted to [2..2] as shown in Table

14. Their worst-case possible iterations are not updated since they had already been

determined to be [1001..1001] in Table 13.

The timing analyzer enforces a rule that if any exit path can execute on the first

72

iteration, then it must allow all exit paths to be chosen for the first iteration. The reason

for this rule is that in best case, the BCET is assumed to occur for the minimum number

of iterations. Consider a loop having two paths, where only path 1 can execute on the

first iteration, but path 2 is significantly shorter. Then the loop may take less time to

execute path 2 for two iterations than to execute path 1 for just one iteration. The author

believes that requiring the best-case loop analysis algorithm to repeatedly examine a

loop for varying numbers of iterations would be overly inefficient. Specifyingthe

minimum number of iterations before starting loop analysis makes the algorithm much

simpler and only slightly more conservative in this highly unlikely scenario. In the

above scenario, the timing analyzer will make the conservative assumption that path 2

can execute on the first iteration, and that the minimum number of iterations is still one.

If it turns out that no exit path can execute on the first iteration, then the timing

analyzer updates the number of iterations of the loop based on when the exit paths can

execute. Inthe example from Figure 21, both exit paths can only execute on the second

iteration, so the timing analyzer sets the minimum number of iterations to 2, even though

the compiler had previously determined, before this path analysis was performed, that

the minimum number of iterations would have been 1 [31].

The total number of iterations of the loop may also be updated in the case where the

user is prompted to enter information from which the timing analyzer computes the

number of iterations. If the user provides unrealistic values, then the number of

iterations based on the user’s information may be too small, and updating the number of

73

iterations would be appropriate. But the situation of having to updating the number of

iterations is quite rare, only occurring when the number of paths exceeds the original

number of loop iterations.

5.2.4 UsingIteration-Based Constraints

The maximum number of iterations can sometimes be constrained by analyzing

iteration-based constraints. The header block is assigned a range that spans all iterations

of the loop. This range is propagated through each path.When a transition is

encountered that has an iteration-based constraint, the range in the constraint is

intersected with the range in the current block in the path.Figure 31 illustrates how

iteration-based constraints are propagated through path 4 in Figure 23(d).The transition

from block 3 (i<=249) to block 4 results in the range [1..1000] being intersected with

[251..1000], which is the range specified in constraint 5 of Figure 23(c). The transition

from block 4 (i>=750) to block 5 results in the current range of [251..1000] being

intersected with [1..750]. Thus, path 4 can only possibly execute in iterations [251..750].

If a path can only be executed in a given range of iterations, then the maximum

iterations in which that path can execute cannot be greater than the number of iterations

2 3 4 5 6 7
[251..1000][1..1000] [251..750] [251..750] [251..750]

[1..1000] [1..1000] [251..1000] [251..750] [251..750] [251..750]

Figure 31: Iteration-Based Constraints Propagated Through Path 4 in Figure 23

74

in the range.A path with no possible iterations is infeasible and is removed from the list

of paths by the timing analyzer. Note that the range of a path that only exits is always

the last iteration of the loop, which is the case for paths 1 and 2 of Figure 21(d).

Likewise, if path A cannot reach itself and can only be immediately followed by a

different path B, which has a range [Bmin..Bmax], then path A’s range cannot span more

than [Bmin−1..Bmax−1]. For instance, Table 15 shows that path 3 of Figure 21(d)

always leads to path 1, which has an iteration range of [1001..1001].Thus, path 3’s

possible range of iterations is [1001−1..1001−1] or [1000..1000] for WCET analysis.

The minimum number of iterations of a path is calculated by simply subtracting the

possible range of iterations of all other paths in the loop from the possible range of

iterations for the current path.The result is the unique set of iterations for the current

path, which is the minimum number of times that the path has to execute. Thereis one

exception to this rule.Consider path 1 in Figure 23(d). Its maximum number of

iterations is one due to constraint 3 (2J once) in Figure 23(c). The timing analyzer does

not reduce the range of unique iterations of the other paths, but does indicate that one

iteration in these paths may not be unique.

5.2.5 Usingthe Constraints in Loop Analysis

The author decided to use the minimum and maximum iterations associated with each

loop path to obtain tighter loop predictions without restricting the order in which these

paths are evaluated. Therewere several reasons why this approach was used. First, the

approach supports paths that can execute at most once, but in any iteration. Consider

75

path 1 of the loop in Figure 23.This situation may occur frequently in numerical

applications. For instance, special conditions are often checked for the diagonal

elements of a matrix (diagonal systems). Second, the approach deals with paths that

have dependencies on other paths, such as paths 4 and 5 in Figure 21.Finally, the timing

analyzer often calculates an average WCET and BCET for a loop using an average

number of iterations when the number of iterations can vary depending on the value of a

outer loop counter variable [31]. Using this approach allows the calculation of a safe

av erage WCET (BCET) since the longest (shortest) paths are selected first in the

respective loop analysis algorithms.

In addition, the timing analyzer determines sets of paths, where the range of iterations

of the paths in one set do not overlap with other sets. Each path is assigned to a single

set of paths.The timing analyzer uses the maximum number of iterations that can be

executed by a set of paths, which is the number of iterations in the set’s range. Table 18

depicts an example with 4 paths and 2 sets. Each set of paths can only execute a

maximum of 50 iterations.If only the maximum iterations of each path was used, then

two paths from a single set could be selected and a significant overestimation may occur

Table 18: Example Illustrating Use of Path Sets

Possible Min Max
Iterations Iters ItersPath Set

1 [1..50] 0 50 1
2 [1..50] 0 50 1
3 [51..100] 0 50 2
4 [51..100] 0 50 2

76

when the paths in one set require many more cycles than the paths in the other set.This

approach has limitations.Consider if a fifth path existed in this example which could

execute in any iteration of the loop.All of the loop paths would be assigned to a single

set, which could result in an conservative timing prediction. Fortunately, inequality tests

(<, <=, >=, >) on loop induction variables do not occur frequently. The two subsections

that follow describe the worst-case and best-case loop analysis algorithms that employ

the path constraint information.

5.2.6 Worst Case Loop Analysis

Figure 32 shows how the WCET loop analysis algorithm uses the path constraint

information. LetN be the maximum number of iterations andP be the number of paths

in a loop. The DO-WHILE will process at most the minimum ofN or 2P total iterations

since the first misses and first hits in each path can miss or hit at most once,

respectively.6

The algorithm selects the longest path on each iteration of the loop from the set of

paths that can still possibly execute. In order to demonstrate the correctness of the

algorithm, one must show that no other path for a given iteration of the loop will produce

a longer worst-case time than that path selected by the algorithm.Descriptions of how

the caching categorizations and pipeline information are used in the loop analysis and

correctness arguments about selecting the longest path using these categorizations and

information have been given in previous work [25, 26]. Thus, it remains to be shown
6 If the number of paths within a loop exceeds a reasonable limit, then the loop control flow is partitioned to reduce the timing

analysis complexity [30].

77

/* calculate required and non-required path information*/
req_iters = 0.
FOR P = each path in the loop DO

P->req_iters = P->min_iters.
P->nonreq_iters = P->max_iters - P->min_iters.
req_iters += P->min_iters.

nonreq_iters = N - req_iters.

/* process all iterations of the loop*/
iters_handled = 0.
pipeline_info = NULL.
WHILE iters_handled < N DO

/* process iters while longest path has a first miss or first hit*/
DO

IF req_iters < N - iters_handled THEN
Find longest path P where

P->req_iters+P->nonreq_iters > 0 &&
P->set.maxiters > 0.

ELSE
Find longest path P where

P->req_iters > 0 &&
P->set.maxiters > 0.

Concatenate pipeline_info with the current
worst-case union of executable paths.

iters_handled += 1.
IF P->req_iters > 0 THEN

P->req_iters -= 1.
req_iters -= 1.

ELSE
P->nonreq_iters -= 1.
nonreq_iters -= 1.

P->set.maxiters -= 1.
WHILE encountered a first miss or first hit

AND iters_handled < N

/* Efficiently process iterations for the current longest path*/
IF iters_handled < N THEN

nonreq_iters_to_do =
min(nonreq_iters, P->nonreq_iters,

P->set.maxiters - P->req_iters).
iters_to_do = P->req_iters + nonreq_iters_to_do.
req_iters -= P->req_iters.
nonreq_iters -= nonreq_iters_to_do.
P->set.maxiters -= iters_to_do.
P->req_iters = 0.
P->nonreq_iters -= nonreq_iters_to_do.
Concatenate pipeline_info iters_to_do

times with current worst-case union.
iters_handled += iters_to_do.

Figure 32: WCET Loop Analysis Algorithm

that each time a path is selected, it is in fact chosen from the paths that can still possibly

execute given that the minimum and maximum number of iterations for each path and

78

set were accurately estimated.A path’s number of required iterations is its minimum

iterations to be performed. The non-required iterations of a path is the difference

between its maximum and minimum number of iterations.A path is initially chosen in

the IF-THEN-ELSE construct at the beginning of the DO-WHILE loop in Figure 32.If

the iterations remaining is greater than the required iterations left to be processed (sum

of each path’s minimum iterations not yet processed), then the path selected is chosen

from any path that has any iterations that can be performed. Otherwise, the iterations

remaining must be equal to the required loop iterations remaining and the path must be

selected only from paths that have remaining required iterations left. The code after the

DO-WHILE in the algorithm efficiently uses repeated instances of a path that has no first

misses or first hits and thus will remain the longest path since its worst-case behavior

cannot change. This code processes the remaining required iterations of the path and the

minimum of the remaining non-required iterations of the path, the set of paths to which

the path belongs, or the entire loop.Therefore, the paths that can still possibly execute is

accurate since a given path’s required iterations are always processed before its non-

required iterations and the number of non-required iterations to be processed for a path is

never allowed to exceed the number of non-required iterations remaining in the loop.

Table 19 illustrates the worst-case loop analysis algorithm using the example loop

given in Figure 21. The iteration information pertaining to the five paths was given in

Table 13. None of the paths has any required iterations, so the number of non-required

iterations is the same as their number of maximum iterations available. Table 19 outlines

79

Table 19: Example for Worst-Case Loop Analysis

Iteration P 1 P 2 P 3 P 4 P 5 Longest Time

1 16 28 44 56 54 4 56

2 7 10 17 20 18 4 72

3-500 7 10 17 20 18 4 8040

501 7 10 17 18 5 8054

502-1000 7 10 17 18 5 15040

1001 7 10 2 15046

the progress of the loop analysis algorithm. It selects the longest path for each iteration.

Note that the iteration numbers in the first column are accounting for the iterations of the

loop, but not necessarily in the order in which they take place. To actually identify

which path is the longest on each sequential iteration would make the loop analysis

algorithm more complex, with little or no benefit in tightening the execution time bound.

However, the use of path sets is used to determine whether a particular path is eligible to

execute during a particular range of iterations, and this feature will also be illustrated

shortly. For the remainder of this illustration of the algorithm, and also for the

subsequent example for best case, the iterations will be referred to ordinally, but the

reader should note that these iteration numbers are only used for accounting all the loop

iterations and does imply the temporal order of paths actually taken.

Columns 2 through 6 in the table indicate the path execution times for a particular

iteration. All five paths are eligible to execute for the first iteration, and path 4 is the

longest, taking 56 cycles. Itturns out in this example that all the first misses encountered

during the first iteration, so that the instruction cache behavior does not change starting

80

with the second iteration.For the second iteration, all first misses are now treated as

hits. Onceagain path 4 is the longest path. Its execution time is 20 cycles, but starting

with the second iteration it is no longer necessary to fill the pipeline, so 16 (20−4) cycles

are added to the total time for the loop after two iterations.

Since there is no change in the instruction cache behavior during the second iteration,

the algorithm proceeds to the second phase where it efficiently replicates path 4 until it

has exhausted its 500 available iterations.For iteration 501 the algorithm returns to the

first phase, where the individual paths are re-evaluated. Atthis point path 4 is ineligible

for consideration since it has exhausted its iterations. The longest path available is path

5, whose execution time is 18 cycles, which includes the pipeline filling time that is not

included in the accumulation of the total time for the loop. So the algorithm adds 14

cycles to the loop’s execution time. Since there is no change to the cache behavior, path

5 is efficiently replicated starting at iteration 502, for its remaining 499 iterations.

For iteration 1001, which is the last iteration of the loop, the algorithm cannot

consider paths 4 or 5 because they hav eexhausted their number of iterations.Path 3

cannot be considered either, since the previous analysis determined that it is in the same

set of paths as paths 4 and 5 that share iterations [1..1000], and this set has exhausted all

1000 of its maximum iterations. So only paths 1 and 2 are in contention for the final

iteration and path 2 is the longer path. The total execution time for the loop is predicted

to be 15,046 cycles, which is exact. If the timing analyzer did not generate path

constraints, then path 4 would have been selected for 1000 iterations rather than 500, and

81

the loop’s WCET would have been overestimated by about 7%.

5.2.7 BestCase Loop Analysis

Figure 33 depicts the best-case loop analysis algorithm, which is for the most part

analogous to the worst-case algorithm described in the previous subsection. As a

preliminary step, the algorithm computes the number of required and non-required

iterations for each path, as was done in worst case. The rest of the algorithm consists of

two phases. Thefirst phase finds the shortest pathP for the first iteration.For the first

iteration only, the timing analyzer treats all first misses as misses and all first hits as hits

when analyzing the cache behavior of all the paths’ instructions.The major issue for

selecting the shortest pathP is determining which paths are eligible to be selected.If the

loop has at least one non-required iteration, thenP may be chosen from any of the

continue paths.However, if the loop has no non-required iterations, thenP may only be

selected from those continue paths that have required iterations.

The WHILE-DO loop in Figure 33 represents the second phase of the best-case

algorithm, which processes all the remaining iterations of the loop after the first.Note

that the timing analyzer treats a function as a loop with a single iteration, so its best case

analysis will only perform the first phase of this algorithm.In the second phase, all first

misses are treated as hits and all first hits are treated as misses. In other words, the

instruction cache behavior is assumed not to change during the lastn − 1 iterations. The

reason for the difference in how the worst-case and best-case loop analysis algorithms

are organized is described in the next section. The method of selecting the shortest path

82

/* calculate required and non-required path information*/
req_iters = 0.
FOR P = each path in the loop DO

P->req_iters = P->min_iters.
P->nonreq_iters = P->max_iters - P->min_iters.
req_iters += P->min_iters.

nonreq_iters = N - req_iters.
pipeline_info = NULL.

/* process the first iteration of the loop*/
first_miss_treatment = miss.
first_hit_treatment = hit.
IF req_iters < N THEN

Find shortest path P among the paths in which
P->req_iters + P->nonreq_iters > 0 && P->set.maxiters > 0.

ELSE
Find shortest path P among the paths in which

P->req_iters > 0 && P->set.maxiters > 0.
Concatenate pipeline_info with the current

best-case union of executable paths.
iters_handled = 1.
IF P->req_iters > 0 THEN

P->req_iters -= 1.
req_iters -= 1.

ELSE
P->nonreq_iters -= 1.
nonreq_iters -= 1.

P->set.maxiters -= 1.

/* process the remaining iterations */
WHILE iters_handled < N DO

first_miss_treatment = hit.
first_hit_treatment = miss.
IF req_iters < N THEN

Find shortest path P among the paths in which
P->req_iters + P->nonreq_iters > 0 && P->set.maxiters > 0.

ELSE
Find shortest path P among the paths in which

P->req_iters > 0 && P->set.maxiters > 0.
nonreq_iters_to_do = min (nonreq_iters, P->nonreq_iters,

P->set.maxiters - P->req_iters).
iters_to_do = P->req_iters + nonreq_iters_to_do.
req_iters -= P->req_iters.
nonreq_iters -= nonreq_iters_to_do.
P->req_iters = 0.
P->set.max_iters -= iters_to_do.
P->nonreq_iters -= nonreq_iters_to_do.
Concatenate pipeline_info with the current

best-case union of executable paths.
iters_handled += iters_to_do.

Figure 33: BCET Loop Analysis Algorithm

P is the same as in the first phase.OnceP is selected, it is necessary to calculate the

number of iterations to account for pathP, which is done in the same manner as in worst

83

case. Thetiming analyzer will useP for all of its required iterations, plus the minimum

of P’s non-required iterations,P’s set’s maximum iterations remaining and the remaining

non-required iterations of the loop.Since the method of selecting the shortest path for

the best-case algorithm is analogous to selecting the longest path in the worst-case

algorithm, the correctness argument for best case would also follow analogously from

the worst-case explanation given in the previous section.

Table 20 illustrates the best-case loop analysis algorithm, using the same example

loop (from Figure 21) that was described for worst case. This example’s best case

iteration information was given in Table 14. This loop only has two iterations instead of

1001 for worst case. The first phase of the algorithm selects the shortest path for the first

iteration. Theonly paths that are eligible for iteration 1 are paths 3 and 5, and path 3 is

shorter. The second phase of the algorithm examines the remaining iterations in the

loop, and in this case there is only iteration 2 to consider. For this iteration, only paths 1

and 2 are eligible.Path 4 is a continue path and its range of possible iterations is [2..2],

but this iteration is the last iteration of the loop.Path 4 cannot serve as a continue path,

and it is not an exit path either, so path 4 is not eligible to be chosen for the second

iteration. Amongpaths 1 and 2 for the second iteration, path 1 is the shorter path.Its

Table 20: Example for Best-Case Loop Analysis

Iteration P 1 P 2 P 3 P 4 P 5 Shor test Time

1 44 54 3 44

2 7 10 1 47

84

execution time of 7 cycles includes 4 cycles for pipeline filling, which is not used after

the first iteration. The best-case execution time for the loop is computed to be 47 cycles,

which is an exact prediction.

5.2.8 Reasonfor Different Algorithms

It is important to note that the worst-case and best-case loop analysis algorithms are

not perfectly analogous with respect to the effect of first misses [2]. Consider a loop

having three paths with information depicted in Table 21.Paths 1 and 2 each have a

distinct first miss instruction, while path 3 has no first misses. According to the worst-

case loop analysis algorithm, the timing analyzer selects path 1 for the first iteration,

path 2 for the second iteration, and path 3 for all other iterations.For this example, the

worst-case algorithm computes the WCET exactly for any number of loop iterations.

For best case, path 3 will be chosen for the first iteration.But starting with the

second iteration, all first misses will be treated as hits, so path 2 will be selected for all

iterations after the first.Thus, the timing analyzer will compute a BCET of 13 + 9*(n −

1) cycles for this loop, wheren is the minimum number of loop iterations.However, the

true BCET of this loop can be slightly greater. If the loop has just one iteration, the

Table 21: Information on Three Paths in Hypothetical Loop

How Path is Evaluated Path 1 Path 2 Path 3

Treat first misses as misses 19 18 13
Treat first misses as hits 10 9 13

85

timing analyzer correctly predicts that path 3 should be taken, and there is no

underestimation in the BCET. If the loop has two iterations, then path 3 should be taken

for both iterations, yielding 26 cycles for the loop. The timing analyzer would compute

22 cycles if there are two iterations, a BCET underestimation of four cycles. Onthe

other hand, if there are three or more iterations, the BCET is realized if the loop takes

path 2 for every iteration. In this case, the timing analyzer will underestimate the BCET

of the loop by five cycles, and this underestimation is due to the incorrect prediction of

which path had been chosen for the first iteration.In order to make an exact prediction

in best case, it becomes necessary to re-examine path choices for prior iterations.The

author believes that having to re-examine all combinations of path choices for prior

iterations to compute the BCET of a current iteration is overly inefficient, and thus the

slightly more conservative approach described in Figure 33 is used.

5.3 Results

The results of the test programs are shown in Table 22. This table shows the benefit of

automatically addressing branch constraints within the timing analyzer. The lines that

are printed in boldface indicate which timing predictions became tighter as a result of

this additional analysis. As in previous result tables, theObserved Cyclesrepresent the

cycles required for an execution with worst-case and best-case input data, as

appropriate.7 The last two columns indicate the results when the analysis includes the

7 The author modified the desired relative error of theExpintandGaujacprograms so they would not converge early in worst
case, which made it possible to obtain an accurate maximum iterations for a loop and worst-case input data for theObserved Cycles
in Table 22.

86

Table 22: Results After Adding Branch Constraint Analysis

Worst-Case Results

Obser ved + Iter. Count + Iter. Count + Br. Constr. + Br. Constr.
Cycles Cycles Ratio Cycles Ratio

Name

Des 149,706 172,509 1.152 167,165 1.117
Expint 58,217 1,293,290 22.215 58,289 1.001
Fresnel 47,749 48,887 1.024 47,783 1.001
Gaujac 786,786 790,116 1.004 787,134 1.000
Hes 55,834,609 56,739,136 1.016 56,739,136 1.016
Integ 22,538,082 22,553,163 1.001 22,553,163 1.001
Inter p 25,469,403 25,478,409 1.000 25,478,409 1.000
LU 23,055,832 23,572,337 1.022 23,444,562 1.017
Matcnt 1,769,321 1,861,150 1.052 1,861,150 1.052
Matmul 4,444,911 4,448,212 1.001 4,448,212 1.001
Matsum 1,277,465 1,279,322 1.001 1,279,322 1.001
Sor t 7,672,281 7,672,292 1.000 7,672,292 1.000
Sprsin 28,339 28,664 1.011 28,404 1.002
Stats 1,016,048 1,016,128 1.000 1,016,128 1.000
Summidall 15,340 18,090 1.179 15,341 1.000
Summinmax 16,080 17,080 1.062 16,080 1.000
Sumnegpos 11,067 13,068 1.181 11,068 1.000
Sumoddeven 15,093 16,112 1.068 15,102 1.001
Sym 2,747,654 2,747,708 1.000 2,747,708 1.000
Av erage 7,734,420 7,882,403 2.157 7,815,352 1.011

Best-Case Results

Obser ved + Iter. Count + Iter. Count + Br. Constr. + Br. Constr.
Cycles Cycles Ratio Cycles Ratio

Name

Des 65,615 22,247 0.339 57,920 0.883
Expint 125 118 0.944 118 0.944
Fresnel 181 172 0.950 172 0.950
Gaujac 45,270 44,566 0.984 45,127 0.997
Hes 306,733 258,908 0.844 258,908 0.844
Integ 19,160,842 19,135,118 0.999 19,135,118 0.999
Inter p 6,485,878 6,479,865 0.999 6,479,865 0.999
LU 12,883,939 637,365 0.049 11,847,472 0.920
Matcnt 1,549,095 1,548,798 1.000 1,548,798 1.000
Matmul 4,444,666 4,420,068 0.994 4,420,068 0.994
Matsum 1,257,239 1,167,140 0.923 1,167,140 0.923
Sor t 19,966 19,950 0.999 19,950 0.999
Sprsin 17,436 17,379 0.997 17,379 0.997
Stats 607,399 601,406 0.990 601,406 0.990
Summidall 15,340 8,072 0.526 15,312 0.998
Summinmax 13,080 13,062 0.999 13,062 0.999
Sumnegpos 9,067 9,049 0.998 9,049 0.998
Sumoddeven 94 63 0.670 94 1.000
Sym 160 160 1.000 160 1.000
Av erage 2,467,480 1,809,658 0.853 2,395,748 0.970

87

automatic detection and exploitation of branch constraints.

Several of the test programs exhibit branch constraints that have been described in

this chapter. The Sumoddeven, Sumnegpos, and Summidallprograms correspond to the

examples illustrated in Figures 21, 22, and 23, respectively. TheDesprogram contains a

loop in which the index variable is being compared to constants, giving rise to iteration-

based constraints.TheExpintprogram performs more computation when a loop variable

is equal to a loop-invariant value on a single loop iteration.Fr esneltakes different paths

on the odd and even steps in the evaluation of the series.Gaujacexecutes different paths

depending upon the specified iteration of a loop.TheLU program contains some nested

loops in which the the body of the inner loop may or may not be entered based on a

condition in the outer loop.The Sprsinprogram does not perform a computation for a

single column (the diagonal element) of each row of a matrix. TheSumminmaxprogram

determines the minimum and maximum of each corresponding pair of elements in two

vectors and these two tests are logically correlated.

The results show that exploiting value-dependent constraint information in a timing

analyzer can significantly tighten WCET and BCET predictions. The programsFr esnel

andSumoddevenexecute alternating paths in a loop depending upon a flag variable. One

of the alternating paths has a slightly longer WCET than the other path in both of these

programs. Thetiming analyzer was able to determine that longer path of each program

could only be executed for one half of the iterations, which reduced the overestimations.

In the case ofSumoddevenin best case, the compiler originally determined that the loop

88

had a minimum number of iterations of 1, but the timing analyzer was able to predict

that the loop was required to iterate twice, using the methods described in Section 5.2.3.

The result of this analysis was an exact BCET prediction.LU also showed a dramatic

tightening in its BCET prediction. There were three nested loops in which the timing

analyzer was able to exploit iteration-based constraints. The previous version of the

timing analyzer assumed that the inner loop in these three nests would always be avoided

along the best-case path of their respective surrounding loops. But in fact these loops

execute on all but one iteration of the surrounding loops.The Summinmaxand

Sumnegposprograms have logically correlated branches and the timing analyzer was

able to detect for each program that the longest path was infeasible due to this

correlation. Thecompiler detected iteration-based constraints for theGaujac and

Summidallprograms indicating that certain paths could only be executed in specific

iterations. Therewas little overestimation in the previous version of the timing analyzer

for Gaujacsince these iteration-based constraints were associated with paths that were

not in the most deeply nested loop of the program.However, Summidall’s iteration-

based constraints were for the most frequently executed portion of that program and a

significant overestimation of WCET was avoided. Inbest case, the timing analyzer was

able to determine that the loop’s shortest path inSummidallcould execute at most once,

and its second shortest path could execute for at most 250 of the 1,000 iterations.Even

the longest path was required to execute for at least 499 iterations. These iteration-based

constraints significantly tightenedSummidall’s BCET prediction. Finally, the compiler

89

detected an iteration-based constraint inSprsinandExpint that was associated with an

equality test between a loop variable and a value that was invariant for that loop.This

means that the loop could only execute a path associated with the equality transition

from the block containing the test for a single iteration of the loop.For Sprsinthis path

required a smaller WCET than when the loop variable was not equal to the loop-

invariant value. Thus,the overestimation by the previous version of the analyzer was

quite small and would decrease when applied to arrays with larger dimensions.

However, the opposite situation occurs inExpint, which has a higher WCET associated

with the path where the loop variable is equal to the loop-invariant value. Thus,

exploiting this branch constraint significantly reduces the WCET overestimation of

Expint.

The slight remaining WCET overestimations and BCET underestimations for several

of the programs in the current version of the timing analyzer were due to a few reasons.

First, theDesprogram in particular had several arrays in which the elements are hard-

coded in the data segment, and these array element values affect various comparisons.

These branch constraints were not detected in the compiler. Second, in worst case some

instructions conservatively categorized as misses actually hit in cache due to the order in

which paths were executed because of dependences on data values. Matcnthad about a

90,000 cycle (about 5%) overestimation in worst case due to this conservative

categorization. Similarly, in best case some instructions were conservatively classified

as hits even though they actually miss in cache.Hes had a 44,541 cycle (about 15%)

90

underestimation in best case for this reason.Third, there were some minor limitations to

the timing analysis that result in conservative predictions. For instance, the programs

Hes, Integ and LU had non-rectangular loop nests where the number of iterations is

rounded to an integer, and this effect was described in the previous chapter. Also, the

underestimation inLU was partially due to the fact that an iteration-based constraint was

not generated by the compiler for a condition containing a complex expression that

needed to be expanded. Finally, there were slightly conservative predictions that resulted

from instruction caching categorizations that change between loop levels and their

interaction with the pipeline analysis, affecting both WCET and BCET [26].In

particular, the 8% underestimation of the BCET ofSummatrix was due to this

interaction.

5.4 Conclusions

This chapter has described how branch constraints were automatically detected by a

compiler and exploited by a timing analyzer. This chapter described techniques to

efficiently detect constraints from effects causing the outcome of a branch to become

known and from ranges of iterations associated with branch outcomes. This constraint

information could be used by a variety of timing analyzers, including those that use an

ILP solver. These branch constraints were used in a non-ILP based timing analyzer to

constrain the minimum and maximum iterations associated with each path in a loop and

how these path constraints were used in WCET loop analysis. The results indicate that

detection and exploitation of branch constraints can significantly tighten WCET timing

91

predictions. Furthermore,the approaches used for detection and exploitation of branch

constraints were shown to be quite efficient and are fully automated, requiring no

interaction from the user.

92

CHAPTER 6

SUMMARY RESULTS

Table 23 summarizes all of the WCET and BCET ratios for the various levels of

analysis. TheNaive Ratio column refers to no analysis being performed.Each of the

remaining ratio columns shows the result of the analysis adding one feature to the

column to its left. The ratios in the rightmost column represent all of the analysis

described in this dissertation, taking into account instruction caching, pipelining, as well

as automatic iteration calculation and branch constraint analysis.The results show that,

on average, the WCET is predicted to within 1.1% of the observed worst-case time, and

the BCET is predicted to within 3.0% of the observed best-case time.

Table 24 shows the response time of the timing analysis environment. Allmodules in

the timing analysis environment have been compiled with optimizations. The first three

columns give the percentage share of the total analysis time divided among the compiler,

static cache simulator and the timing analyzer. In some rows of the table, the

percentages do not total 100% due to rounding. The last column gives the execution

time in seconds required for the timing analyzer to make the WCET and BCET

predictions. Thetimes were obtained by calculating for each program the average of the

elapsed times of ten executions of the timing analyzer on an UltraSPARC. These

response time measurements show that on average, the timing analysis takes only

93

Table 23: Estimated Ratios for Levels of Analysis

Worst-Case Results

Naive Cache Only + Pipelining + Iter. Count + Br. Constr.
Ratio Ratio Ratio Ratio Ratio

Name

Des 5.144 2.663 1.152 1.152 1.117
Expint 50.384 34.426 22.215 22.215 1.001
Fresnel 2.222 1.533 1.024 1.024 1.001
Gaujac 2.006 1.466 1.004 1.004 1.000
Hes 12.302 7.251 2.339 1.016 1.016
Integ 4.419 2.420 1.332 1.001 1.001
Inter p 4.208 2.966 1.991 1.000 1.000
LU 34.338 18.257 5.403 1.022 1.017
Matcnt 3.688 1.844 1.052 1.052 1.052
Matmul 4.977 2.108 1.001 1.001 1.001
Matsum 4.082 1.880 1.001 1.001 1.001
Sor t 10.546 4.982 1.988 1.000 1.000
Sprsin 6.644 2.711 1.011 1.011 1.002
Stats 3.118 1.823 1.000 1.000 1.000
Summidall 13.834 6.787 1.179 1.179 1.000
Summinmax 12.511 6.349 1.062 1.062 1.000
Sumnegpos 14.379 7.054 1.181 1.181 1.000
Sumoddeven 12.943 6.373 1.068 1.068 1.001
Sym 26.114 8.980 1.995 1.000 1.000
Av erage 11.993 6.414 2.631 2.157 1.011

Best-Case Results

Naive Cache Only + Pipelining + Iter. Count + Br. Constr.
Ratio Ratio Ratio Ratio Ratio

Name

Des 0.191 0.292 0.339 0.339 0.883
Expint 0.232 0.816 0.944 0.944 0.944
Fresnel 0.238 0.834 0.950 0.950 0.950
Gaujac 0.268 0.753 0.984 0.984 0.997
Hes 0.014 0.043 0.046 0.844 0.844
Integ 0.131 0.132 0.668 0.999 0.999
Inter p 0.007 0.018 0.022 0.999 0.999
LU 0.017 0.018 0.022 0.049 0.920
Matcnt 0.247 0.659 1.000 1.000 1.000
Matmul 0.322 0.399 0.994 0.994 0.994
Matsum 0.257 0.761 0.923 0.923 0.923
Sor t 0.481 0.495 0.999 0.999 0.999
Sprsin 0.419 0.900 0.997 0.997 0.997
Stats 0.300 0.687 0.990 0.990 0.990
Summidall 0.457 0.461 0.526 0.526 0.998
Summinmax 0.918 0.922 0.999 0.999 0.999
Sumnegpos 0.883 0.886 0.998 0.998 0.998
Sumoddeven 0.628 0.670 0.670 0.670 1.000
Sym 0.238 0.856 1.000 1.000 1.000
Av erage 0.329 0.558 0.741 0.853 0.970

94

Table 24: Response Time Measurements

Static Cache Timing Timing
Simulator Analyzer Analyzer

Compiler

Percent Percent Percent Seconds
Name

Des 32 5 63 1.35
Expint 38 4 58 .31
Fresnel 52 4 46 .22
Gaujac 11 1 88 3.08
Hes 81 1 18 .71
Integ 27 4 69 .15
Inter p 36 3 61 .33
LU 70 1 29 1.17
Matcnt 43 6 50 .16
Matmul 40 5 55 .21
Matsum 41 6 53 .15
Sor t 32 5 64 .28
Sprsin 44 5 51 .11
Stats 36 6 58 .36
Summidall 24 5 49 .06
Summinmax 59 5 36 .05
Sumnegpos 62 4 34 .04
Sumoddeven 60 4 37 .04
Sym 21 3 77 .21
Av erage 43 4 52 .47

slightly longer than compilation.However, there were a few anomalies. Theprograms

Hes and LU took proportionally longer to compile since their source files were over

1,000 lines long, mostly due to the initialization of array elements. The timing analysis

of Gaujac took significantly longer than the compilation since this program contains a

loop with twelve long paths with many floating-point instructions. In addition, the

timing analyzer examines each function instance separately, which adds to the response

time whenever a function is called from multiple sites. The programsDes and Stats

contain functions that are called from four or more sites.

The timing analyzer is now faster than the version that was used prior to the

constraint research described in this dissertation [1, 2]. The decrease in elapsed time for

the analysis was due to two reasons. First,the timing analyzer was modified to avoid

95

redundant analysis of a path when its caching behavior has not changed. Second, the

new approach does not analyze a path in a given iteration when the path was infeasible,

its maximum iterations had been exhausted, or only required iterations of other paths

were available. Thus,the timing analyzer implemented for this dissertation remains a

highly efficient tool.

96

CHAPTER 7

FUTURE WORK

There are additional aspects of using constraints in timing analysis that can be

investigated. Many branch constraints were not detected due to function calls separating

effects and the branches affected. Thesebranch constraints could be detected using

inter-procedural analysis.Similarly, inter-procedural analysis could also detect more

loop iteration constraints, in the case where one loop contains a call to a function and

another loop is in the called function. As was mentioned in Section 5.4, further branch

constraints could also be obtained from analyzing values assigned to global variables and

arrays.

Another goal is to make the tool more retargetable, so that if a user wishes to obtain

timing estimates on a different processor, all that would be necessary is a modification of

the input file to the timing analyzer (see Figure 1).At present, it is straightforward to

retarget the timing analyzer to a similar type machine, a single issue RISC with a direct-

mapped instruction cache.Retargeting to more varied machines, containing additional

hardware features such as a secondary cache, non-blocking caches, register windows,

multiple issue, etc. will require more work.

While the performance of the timing analyzer described in this dissertation was

compared to a simulator of the MicroSPARC I’s instruction cache and pipeline, it will

also be beneficial to compare the timing predictions against measurements obtained from

97

a logic analyzer running the test programs on a MicroSPARC I processor. A logic

analyzer inspects addresses sent on the bus to main memory. Unfortunately, it is difficult

to measure execution time using a logic analyzer on a modern machine because many

references to instructions and data are obtained from cache instead of main memory. It

is also difficult to obtain accurate timing measurements due to the complexity of virtual

memory and operating system overhead. Anotherdisadvantage with only using

execution time measurements is that capturing just the total execution time does not

verify the correctness of the timing analyzer. It is possible that a faulty implementation

for the timing analyzer could have an overestimation and an underestimation that cancel

each other out, resulting in what initially appears to be a tight bound on the execution

time.

Rather than focusing on the specific details of one machine, the author chose to use

an existing retargetable hardware simulator. Assumptions were built into the simulator

based on published documentation from the manufacturer. Howev er, many details about

the hardware were not specified, and the manufacturer’s technical staff were not

particularly forthcoming in responding to the author’s questions via telephone or

electronic mail. One advantage to using a simulator is that it is trivial to change certain

aspects of the hardware such as the cache configuration. This feature is especially

beneficial since the MicroSPARC I, designed in 1993, is becoming obsolete.Another

reason the simulator was used was to allow one to examine lower levels of detail, such as

pipeline stages of an individual instruction.With such fine-grain details, it is possible to

test and debug the timing analyzer using simulator output.

On many embedded machines the measurement of the execution time can take place

in the absence of virtual memory and operating system overhead. Somerecent

98

architectures support hardware performance counters that are automatically updated

during execution and introduce no additional overhead. Onesuch counter can keep track

of the number of machine cycles. Thus,in the future, the ideal testing environment

would be on an embedded machine with both a simulator and hardware performance

counters. Asimulator of the architecture can be used to validate the timing analyzer.

Next, hardware performance counters on an embedded machine can be used to validate

the simulator. Using both testing components, one can then be more confident that the

timing analyzer generates accurate WCET and BCET predictions for the actual machine.

99

CHAPTER 8

CONCLUSION

This dissertation has presented an extension to an earlier timing tool [1, 2] that now

bounds execution time based on automatically generated constraints about the program.

The two type of constraints are the calculation of the number of loop iterations discussed

in Chapter 4 and the constraints related to branch outcomes described in Chapter 5.

The compiler calculates the number of loop iterations for loops having a single exit or

multiple exits. In cases where this number of loop iterations depends on a non-constant

loop invariant expression, the user can enter the minimum and maximum values for each

variable in the expression interactively or through the use of assertions to bound the

number of loop iterations. If the number of loop iterations depends on an outer loop’s

index variable, then the timing analyzer formulates a summation expression to be

evaluated by an algebraic simplifier [47].

Constraints that can affect branch outcomes are automatically detected by the

compiler, and a set of branch constraints is associated with each basic block.The timing

analyzer propagates these branch constraints along each possible path of execution to

determine path constraints. The analysis of path constraints can determine if certain

paths are infeasible or if they can only execute on a certain set of iterations. These path

constraints are used in the worst-case and best-case loop analysis algorithms to more

tightly bound the execution time. For instance, a loop’s worst case (best case) time can

100

be more tightly predicted if is determined that the longest (shortest) path is infeasible.

The implementation of the timing analysis environment includes the four modules

depicted in Figure 1. The compiler, static cache simulator and the algebraic solver that

support the timing analysis were implemented by other researchers at FSU. The total

response time including the compilation, static cache simulation and timing analysis,

takes only a few seconds for the benchmark programs used in this dissertation.

The major contribution of this dissertation to timing analysis research is the nature in

which constraints are made known and used within the timing analyzer. In the past, such

constraints were manually entered by the user, which is quite tedious and error prone.

Using the techniques described in this dissertation, it has been shown that this process

can be automated. It is much more likely that a real-time programmer would use an

automated tool as opposed to an unautomated one to obtain timing predictions in order

to relieve the tedium and get a quicker response. The new version of the timing analyzer

bounds the WCET and BCET much more tightly than before.In addition, this analysis

can still be performed in a small amount of time.

101

APPENDIX

The following context-free grammar describes the syntax of the file that is created by the

compiler and used as input into the timing analyzer. The file contains information about

the control flow of the program and the branch constraints.The grammar follows the

following syntax conventions.

1. Thedefinition operator is "::=".

2. Nonterminalsare enclosed in angle brackets.

3. A superscript asterisk indicates that an expression may have zero or more instances.
A superscript plus indicates one or more instances.

4. Optionalexpressions are enclosed in square brackets.

5. Parentheses are used as grouping symbols.

6. A boldface token represents a terminal whose value is not specified.A token
appearing in the standard font is a terminal that appears verbatim in the information
file.

7. Concatenationimplies that the expressions appear in the specified order.

8. Thevertical bar (|) separates alternatives within an expression.

<Inf_file> ::= <Function>*

<Function> ::= func_identifier new_line <Func_name> new_line

<loop>* <block>*

<Func_name> ::= <letter> (<letter> | <digit> | _)*

<loop> ::= loop_identifier <loop_number> <nesting_level>

[<induction_var>] [<iteration_info>] [<user_provided>]

102

<min_iterations> <max_iterations> <lower_bound>

<upper_bound> <block_list>new_line

<loop_number> ::= <nonnegative_integer>

<nesting_level> ::= <nonnegative_integer>

<induction_var> ::= induction_var_identifier <register> <init_value_rtl>

<limit_rtl> <increment>

<init_value_rtl> ::= <rtl>

<limit_rtl> ::= <rtl>

<increment> ::= <integer>

<iteration_info> ::= iteration_info_identifier <iter_mode> <inner_initial>

<inner_limit> <relop> <inner_incr> <outer_number>

((c <outer_initial_value>) | (r | <outer_initial_rtl>))

((c <outer_limit_value) | (r <outer_limit_rtl>))

<outer_increment>

<iter_mode> ::= 0 | 1

<inner_initial> ::= <integer> | <rtl>

<inner_limit> ::= <integer> | <rtl>

<relop> ::= equal_id | not_equal_id | greater_id |

less_id| greater_or_equal_id| less_or_equal_id

<inner_incr> ::= <integer>

<outer_number> ::= <positive_integer>

103

<outer_initial_value> ::= <integer>

<outer_initial_rtl> ::= <rtl>

<outer_limit_value> ::= <integer>

<outer_limit_rtl> ::= <rtl>

<outer_increment> ::= <integer>

<user_provided> ::= user_provided_identifier (<integer> | <variable_name>)

[(+ | −) (<integer> | <variable_name>)]*

<min_iterations> ::= <positive_integer>

<max_iterations> ::= <positive_integer>

<lower_bound> ::= <nonnegative_integer> [s | m | u | n]

<upper_bound> ::= <nonnegative_integer> [s | m | u | n]

<block_list> ::= <integer_list>

<block> ::= <block_intro> <effects> <doms> <inst_list>

<block_intro> ::= block_identifier <block_number> lines <begin_line>

− <end_line> preds <pred_list> succs <succ_list>

new_line

<block_number> ::= <positive_integer>

<begin_line> ::= <positive_integer>

<end_line> ::= <positive_integer>

<pred_list> ::= <integer_list>

<succ_list> ::= <integer_list>

104

<effects> ::= [makes_unknown <integer_list>new_line]

[makes_fallthru <integer_list>new_line]

[makes_branch <integer_list>new_line]

[makes_unknown_if_not_fellthru <integer_list>new_line]

[makes_unknown_if_not_branched <integer_list>new_line]

[fallthru_causes_branch <integer_list>new_line]

[fallthru_causes_fallthru <integer_list>new_line]

[branch_causes_branch <integer_list>new_line]

[branch_causes_fallthru <integer_list>new_line]

[(<iters_range> | <iters_once>)new_line]

<iters_range> ::= iters_range <range> <range>

<range> ::= [<positive_integer> .. <positive_integer>]

<iters_once> ::= iters_once (R | L) (<positive_integer> |

non_guarantee_id| will_occur_id)

<doms> ::= doms <integer_list>new_line

<inst_list> ::= <instruction>*

<instruction> ::= <block_number> <opcode> <data_type>

<condition_code> <operand_info> <operand_info>

<operand_info>new_line

<opcode> ::= <nonnegative_integer>

<data_type> ::= <nonnegative_integer>

105

<condition_code> ::= <nonnegative_integer>

<operand_info> ::= <operand_addr> <operand_data_type> <operand>

<operand_addr> ::= <nonnegative_integer>

<operand_data_type> ::= <nonnegative_integer>

<operand> ::= ([<integer> | (<SPARC_register> [<SPARC_register>])])

<SPARC_register> ::= % (g | o | l | i | f) <nonnegative_integer>

<integer_list> ::= <positive_integer>+ list_terminator

<rtl> ::= <register> [(+ |−) <nonnegative_integer>]

<register> ::= r [<nonnegative_integer>]

106

REFERENCES

[1] C. A. Healy, Predicting Pipeline and Instruction Cache Performance,Masters
Thesis, Florida State University, Tallahassee, FL (1995).

[2] C. Healy, R. Arnold, F. Mueller, D. Whalley, and M. Harmon, “Bounding
Pipeline and Instruction Cache Performance,” IEEE Transactions on Computers
48(1) pp. 53-70 (January 1999).

[3] P. Puschner and C. Koza, “Calculating the Maximum Execution Time of Real-
Time Programs,”Real-Time Systems1(2) pp. 159-176 (September 1989).

[4] D. Niehaus, “Program Representation and Translation for Predictable Real-Time
Systems,”Proceedings of the Twelfth IEEE Real-Time Systems Symposium, pp.
53-63 (December 1991).

[5] C. Y. Park, “Predicting Program Execution Times by Analyzing Static and
Dynamic Program Paths,”Real-Time Systems5(1) pp. 31-61 (March 1993).

[6] M. G. Harmon, T. P. Baker, and D. B. Whalley, “A Retargetable Technique for
Predicting Execution Time,” Proceedings of the Thirteenth IEEE Real-Time
Systems Symposium, pp. 68-77 (December 1992).

[7] K. Narasimhan and K. D. Nilsen, “Portable Execution Time Analysis for RISC
Processors,”Proceedings of the ACM SIGPLAN Workshop on Language,
Compiler, and Tool Support for Real-Time Systems, (June 1994).

[8] Y. Hur, Y. H. Bae, S. S. Lim, S. K. Kim, B. D. Rhee, S. L. Min, C. Y. Park, H.
Shin, and C. S. Kim, “Worst Case Timing Analysis of RISC Processors 1995:
R3000/R3010 Case Study,” Proceedings of the Sixteenth IEEE Real-Time
Systems Symposium, pp. 308-321 (December 1995).

[9] Y. S. Li, S. Malik, and A. Wolfe, “Efficient Microarchitecture Modeling and Path
Analysis for Real-Time Software,” Proceedings of the Sixteenth IEEE Real-Time
Systems Symposium, pp. 298-307 (December 1995).

[10] R. T. White, F. Mueller, C. A. Healy, D. B. Whalley, and M. G. Harmon, “Timing
Analysis for Data Caches and Wrap-Around Fill Caches,” Real-Time Systems,
(accepted April 1999).

[11] G. Ottosson and M. Sjödin, “Worst Case Execution Time Analysis for Modern
Hardware Architectures,” ACM SIGPLAN Workshop on Language, Compiler, and
Tools for Real-Time Systems, pp. 47-55 (June 1997).

107

[12] H. Theiling and C. Ferdinand, “Combining Abstract Interpretation and ILP for
Microarchitecture Modeling and Program Path Analysis,” Proceedings of the
19th IEEE Real-Time Systems Symposium, pp. 144-153 (December 1998).

[13] C. Y. Park and A. C. Shaw, “Experiments with a Program Timing Tool Based on
a Source-Level Timing Schema,”Computer24(5) pp. 48-57 (May 1991).

[14] R. Chapman, A. Wellings, and A. Burns, “Integrated Program Proof and Worst
Case Timing Analysis of SPARK Ada,” Proceedings of the ACM SIGPLAN
Workshop on Language, Compiler, and Tool Support for Real-Time Systems,
(June 1994).

[15] Y. S. Li, S. Malik, and A. Wolfe, “Performance Estimation of Embedded
Software with Instruction Cache Modeling,” International Conference on
Computer-Aided Design, (November 1995).

[16] A. Ermedahl and J. Gustafsson, “Deriving Annotations for Tight Calculation of
Execution Time,” Proceedings of European Conference on Parallel Processing,
pp. 1298-1307 (August 1997).

[17] T. Lundqvist and P. Stenström, “Integrating Path and Timing Analysis using
Instruction-Level Simulation Techniques,” ACM SIGPLAN Workshop on
Languages, Compilers, and Tools for Embedded Systems, pp. 1-15 (June 1998).

[18] Y. Liu and G. Gomez, “Automatic Accurate Time-Bound Analysis for High-
Level Languages,”ACM SIGPLAN Workshop on Languages, Compilers, and
Tools for Embedded Systems, pp. 31-40 (June 1998).

[19] C. Ferdinand, Cache Behavior Prediction for Real-Time Systems,PhD
Dissertation, Universität des Saarlandes, Saarbrücken, Germany (September
1997).

[20] C. Ferdinand, F. Martin, and R. Wilhelm, “Applying Compiler Techniques to
Cache Behavior Prediction,” ACM SIGPLAN Workshop on Language, Compiler
and Tool Support for Real-Time Systems, pp. 37-46 (June 1997).

[21] F. Mueller, Static Cache Simulation and Its Applications,PhD Dissertation,
Florida State University, Tallahassee, FL (August 1994).

[22] M. E. Benitez and J. W. Davidson, “A Portable Global Optimizer and Linker,”
Proceedings of the SIGPLAN ’88 Symposium on Programming Language Design
and Implementation, pp. 329-338 (June 1988).

[23] F. Mueller and D. Whalley, “Efficient On-the-fly Analysis of Program Behavior
and Static Cache Simulation,” Static Analysis Symposium, pp. 101-115
(September 1994).

[24] F. Mueller and D. B. Whalley, “Fast Instruction Cache Analysis via Static Cache
Simulation,” Proceedings of the 28th Annual Simulation Symposium, pp.
105-114 (April 1995).

108

[25] R. Arnold, F. Mueller, D. Whalley, and M. Harmon, “Bounding Worst-Case
Instruction Cache Performance,” Proceedings of the Fifteenth IEEE Real-Time
Systems Symposium, pp. 172-181 (December 1994).

[26] C.A. Healy, D. B. Whalley, and M. G. Harmon, “Integrating the Timing Analysis
of Pipelining and Instruction Caching,” Proceedings of the Sixteenth IEEE Real-
Time Systems Symposium, pp. 288-297 (December 1995).

[27] L. Ko, N. Al-Yaqoubi, C. Healy, E. Ratliff, R. Arnold, D. Whalley, and M.
Harmon, “Timing Constraint Specification and Analysis,” Software Practice &
Experience, pp. 77-98 (January 1999).

[28] R. White, Bounding Worst-Case Data Cache Performance,PhD Dissertation,
Florida State University, Tallahassee, FL (April 1997).

[29] R. T. White, F. Mueller, C. A. Healy, D. B. Whalley, and M. G. Harmon, “Timing
Analysis for Data Caches and Set-Associative Caches,”Proceedings of the IEEE
Real-Time Technology and Applications Symposium, pp. 192-202 (June 1997).

[30] NaghamM. Al-Yaqoubi,Reducing Timing Analysis Complexity by Partitioning
Control Flow,Masters Project, Florida State University, Tallahassee, FL (1997).

[31] C. A. Healy, M. Sjodin, V. Rustagi, and D. B. Whalley, “Bounding Loop
Iterations for Timing Analysis,” Proceedings of the IEEE Real-Time Technology
and Applications Symposium, pp. 12-21 (June 1998).

[32] C. A. Healy and D. B. Whalley, “Tighter Timing Predictions by Automatic
Detection and Exploitation of Value-Dependent Constraints,” Proceedings of the
IEEE Real-Time Technology and Applications Symposium, pp. 79-88 (June
1999).

[33] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,Numerical
Recipes in C: The Art of Scientific Computing, Cambridge University Press, New
York, NY (1988).

[34] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,Numerical
Recipes in C: The Art of Scientific Computing, Second Edition,Cambridge
University Press, New York, NY (1992).

[35] J. W. Davidson and D. B. Whalley, “A Design Environment for Addressing
Architecture and Compiler Interactions,” Microprocessors and Microsystems
15(9) pp. 459-472 (November 1991).

[36] J. Hennessy and D. Patterson,Computer Architecture: A Quantitative Approach,
Second Edition,Morgan Kaufmann, San Francisco, CA (1996).

[37] M. Lam, “Software Pipelining: An Effective Scheduling Technique for VLIW
Machines,” Proceedings of the SIGPLAN ’88 Symposium on Programming
Language Design and Implementation, pp. 318-328 (June 1988).

[38] H. S. Stone,High-Performance Computer Architecture, Second Edition,Addison
Wesley, Reading, MA (1990).

109

[39] A. V. Aho, R. Sethi, and J. D. Ullman,Compilers Principles, Techniques, and
Tools,Addison-Wesley, Reading, MA (1986).

[40] L. Ko, C. Healy, E. Ratliff, R. Arnold, D. Whalley, and M. Harmon, “Supporting
the Specification and Analysis of Timing Constraints,” Proceedings of the IEEE
Real-Time Technology and Applications Symposium, pp. 170-178 (June 1996).

[41] R. Sakellariou, Symbolic Evaluation of Sums for Parallelising Compilers,
Wissenschaft & Technik Verlag, Proceedings of the 15th IMACS World Congress
on Scientific Computation, Modelling and Applied Mathematics (1997).

[42] R. Sakellariou,On the Quest for Perfect Load Balance in Loop-Based Parallel
Computations,PhD Dissertation, Department of Computer Science, University of
Manchester, Manchester, England (October 1996).

[43] R. van Engelen, L. Wolters, and G. Cats, “Ctadel: A Generator of Multi-Platform
High Performance Codes for PDE-based Scientific Applications,” Proceedings of
the 10th ACM International Conference on Supercomputing, pp. 86-93 (May
1996).

[44] R. van Engelen, L. Wolters, and G. Cats, “Tomorrow’s Weather Forecast:
Automatic Code Generation for Atmospheric Modeling,” IEEE Journal of
Computational Science and Engineering4(3) pp. 22-31 (September 1997).

[45] M. J. Wolfe, High Performance Compilers for Parallel Computers, Addison-
Wesley, Redwood City, CA (1996).

[46] F. Mueller and D. B. Whalley, “Av oiding Conditional Branches by Code
Replication,” Proceedings of the SIGPLAN ’95 Conference on Programming
Language Design and Implementation, pp. 56-66 (June 1995).

[47] C. A. Healy, R. van Engelen, and D. B. Whalley, “A General Approach for Tight
Timing Predictions of Non-Rectangular Loops,” WIP Proceedings of the IEEE
Real-Time Technology and Applications Symposium, pp. 11-14 (June 1999).

110

BIOGRAPHICAL SKETCH

Christopher Andrew Healy was born in Danbury, Connecticut in 1971. He earned the

Bachelor of Science degree in mathematics from Florida State University in 1993 and

the Master of Science degree in computer science from F.S.U. in 1995. During his six

years in the graduate program, he was a part-time teaching assistant for four years and a

research assistant for two. Startingin fall 1999, he will be employed as an assistant

professor of computer science at Furman University.

111

ACKNOWLEDGEMENTS

I wish to thank my major professor, Dr. David Whalley, for his patience, guidance and

support during my research, and for making the needed changes to the compiler to

support the latest implementation of the timing analyzer. I am also grateful for Dr. van

Engelen’s assistance in integrating his Ctadel environment with the timing analyzer. He

implemented the algebraic solver used by the timing analyzer to compute summations

representing the number of iterations of non-rectangular loops.I also thank Dr. Lacher,

Dr. Baker, Dr. van Engelen, Dr. Gallivan and Dr. Bellenot for the helpful suggestions

they had during the writing of the prospectus and this dissertation.The timing analyzer

described in this dissertation is an extension of an earlier tool created by Robert Arnold,

which bounded instruction cache performance. Frank Mueller implemented the static

cache simulator that provides necessary information to the timing analyzer. Viresh

Rustagi and Mikael Sjödin also provided valuable assistance on calculating loop

iterations for the timing analysis environment. Theresearch upon which this dissertation

is based was supported in part by the Office of Naval Research under contract number

N00014-94-1-0006 and the National Science Foundation under grant number

EIA-9806525.

iii

TABLE OF CONTENTS

Page

List of Tables ...vi

List of Figures... viii

Abstract ...x

1 INTRODUCTION ...1

2 RELATED WORK ..3

3 FRAMEWORK FOR THE RESEARCH... 6

4 OBTAINING TIGHT BOUNDS OF LOOP ITERATIONS 15

4.1 BoundingIterations for Loops with Multiple Exits............................... 16

4.1.1 BranchesAffecting the Number of Loop Iterations...................... 16

4.1.2 WhenEach Iteration Branch Changes Direction.......................... 20

4.1.3 WhenEach Iteration Branch Can Be Reached............................. 23

4.1.4 DeterminingMinimum and Maximum Iterations......................... 24

4.1.5 IterationBranches Using Equality Operators............................... 28

4.2 Non-ConstantLoop-Invariant Number of Iterations.............................. 29

4.3 BoundingIterations for Non-Rectangular Loops.................................. 33

4.3.1 Formulating the Number of Iterations.. 34

4.3.2 Implementation... 39

4.4 Results.. 44

4.5 Conclusions.. 47

5 BRANCH CONSTRAINT DETECTION AND EXPLOITATION 49

5.1 AutomaticDetection of Constraints... 49

iv

5.1.1 DetectingEffect-Based Constraints.. 49

5.1.2 DetectingIteration-Based Constraints.. 54

5.2 UsingConstraints in a Timing Analyzer.. 56

5.2.1 Overview for Generating Path Constraints................................... 57

5.2.2 UsingEffect-Based Constraints.. 59

5.2.3 UsingEffect-Based Constraints On Entering a Loop64

5.2.4 UsingIteration-Based Constraints.. 74

5.2.5 Usingthe Constraints in Loop Analysis....................................... 75

5.2.6 Worst Case Loop Analysis.. 77

5.2.7 BestCase Loop Analysis.. 82

5.2.8 Reasonfor Different Algorithms .. 85

5.3 Results.. 86

5.4 Conclusions.. 91

6 SUMMARY RESULTS ...93

7 FUTURE WORK ..97

8 CONCLUSION ...100

Appendix ...102

References ...107

Biographical Sketch ..111

v

LIST OF TABLES

TABLE NUMBER AND DESCRIPTION PA GE

1. Work Accomplished for Timing Analyzer.. 7

2. Definitionsof Worst-Case Instruction Categories ... 8

3. Definitionsof Best-Case Instruction Categories ... 8

4. Test Programs.. 10

5. Resultsfor Cache-Only Analysis.. 12

6. ResultsAfter Adding Pipeline Analysis.. 13

7. InformationCalculated for Each Iteration Branch.. 22

8. Derived Information for Each Iteration Branch in Figure 2.................................. 22

9. Rulesfor Assigning Iteration Values to an Incoming Edge.................................. 26

10. ExpandingInitial and Limit Values of Innermost Loop in Figure 16.................. 42

11. ExpandingInitial and Limit Values of Innermost Loop in Figure 17.................. 42

12. ResultsAfter Adding Accurate Iteration Counts... 45

13. Worst-Case Path Information for Figures 21(d), 22(d), and 23(d)....................... 58

14. Best-CasePath Information for Figure 21(d)... 58

vi

15. CanFollow Matrix for Figure 21... 64

16. Truth Tables for Ins and Outs... 67

17. Path Distance Matrix for Figure 21.. 72

18. ExampleIllustrating Use of Path Sets.. 76

19. Examplefor Worst-Case Loop Analysis.. 80

20. Examplefor Best-Case Loop Analysis.. 84

21. Informationon Three Paths in Hypothetical Loop... 85

22. ResultsAfter Adding Branch Constraint Analysis.. 87

23. EstimatedRatios for Levels of Analysis.. 94

24. ResponseTime Measurements... 95

vii

LIST OF FIGURES

FIGURE NUMBER AND DESCRIPTION PA GE

1. Overview of the Timing Analysis Environment .. 6

2. ExampleLoop with Multiple Exits... 18

3. Findingthe Set of Iteration Branches for a Loop.. 19

4. PrecedenceRelationship between Iteration Branches in Figure 2........................ 20

5. Two Loops Requiring Special Checks.. 23

6. DAG of Branches with Ranges of Iterations... 24

7. NotationUsed in Rules for Assigning Iteration Values ..25

8. DAG of I teration Branches with Minimum and Maximum Iterations.................. 27

9. Examplesof Loops with Iteration Branches Using Equality Operators............... 28

10. Loopwith a Non-constant Loop-Invariant Number of Iterations......................... 31

11. Rectangularversus Non-Rectangular Loop Nest... 33

12. Deriving the Total Number of Iterations for Two Loop Nests............................. 36

13. ALoop Nest Containing a Non-unit Stride.. 37

14. APartially Zero-Trip Loop .. 38

viii

15. Deriving the Number of Iterations for the Loop Nest in Figure 14..................... 40

16. InnermostLoop Detected Zero-Trip Free by the Timing Analyzer..................... 42

17. InnermostLoop Nest Detected Zero-Trip Free by GPAS 42

18. Algorithmfor Selecting a Solution Method for Summations.............................. 43

19. CommonForms of Loops... 47

20. Exampleof Expanding a Comparison.. 50

21. Effects of Assignments on Branches.. 51

22. LogicalCorrelation between Branches.. 53

23. Rangesof Iterations and Branch Outcomes... 55

24. Algorithmfor Calculating Path Iteration Information in Tables 13,14................ 60

25. Path 4 in Figure 22(d) Is Not Feasible... 62

26. Paths 2-5 Cannot Follow Path 3 in Figure 21(d).. 63

27. Paths 4 and 5 Cannot Immediately Follow the Same Path in Figure 21(d).......... 63

28. CalculatingIns and Outs.. 65

29. WhichPaths Can Execute on First Iteration.. 70

30. Propagating Preheader Constraints for Figure 21.. 71

31. Iteration-BasedConstraints Propagated Through Path 4 in Figure 23................. 74

32. WCETLoop Analysis Algorithm.. 78

33. BCETLoop Analysis Algorithm.. 83

ix

ABSTRACT

Predicting the worst-case execution time (WCET) and best-case execution time (BCET)

of a real-time program is a challenging task.Though much progress has been made in

obtaining tighter timing predictions by using techniques that model the architectural

features of a machine, significant overestimations of WCET and underestimations of

BCET can still occur. It is essential to accurately calculate the number of loop iterations

for all loops in order to tightly bound the program’s execution time since most of a

typical program’s execution takes place inside of loops. In addition, dependences on data

values can constrain the outcome of conditional branches and the corresponding set of

paths that can be taken in a program.This dissertation describes how timing analysis can

be improved when these two types of constraints are addressed. First, the minimum and

maximum number of iterations are automatically calculated.Loops with multiple exit

conditions or a varying number of iterations are also addressed. Second, constraints on

branches are automatically detected during compilation. These branch constraints are

then used to determine how many times each path in a loop or function can be taken.

Finally, this iteration and branch constraint information is automatically utilized to obtain

tighter bounds on the execution time. Not only does the timing analysis provide

significantly tighter WCET and BCET predictions, the analysis response time is typically

faster as well.

x

