THE FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

IMPROVING PROCESSOR EFFICIENCY BY STATICALLY PIPELINING INSTRUCTIONS

By

IAN FINLAYSON

A Dissertation submitted to the
Department of Computer Science
in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

Degree Awarded:
Summer Semester, 2012

Ian Finlayson defended this dissertation on June 20, 2012.

The members of the supervisory committee were:

David Whalley
Professor Co-Directing Dissertation

Gary Tyson
Professor Co-Directing Dissertation

Linda DeBrunner
University Representative

Xin Yuan
Committee Member

The Graduate School has verified and approved the above-named committee members,
and certifies that the dissertation has been approved in accordance with the university
requirements.

ii

For Ryan.

iii

ACKNOWLEDGMENTS

I would like to thank my advisors David Whalley and Gary Tyson for their guidance
on this work. Whether it was advice on implementing something tricky, interesting
discussions, or having me present the same slide for the tenth time, you have both made
me a much better computer scientist. Additionally I would like to thank Gang-Ryung Uh
who helped me immeasurably on this project.

I would also like to thank the other students I have had the pleasure of working with
over the past few years including Yuval Peress, Peter Gavin, Paul West, Julia Gould, and
Brandon Davis.

I would also like to thank my family members, Mom, Dad, Jill, Brie, Wayne and Laura.
Lastly I would like to thank my wife Caitie without whose support I never would have
finished.

iv

TABLE OF CONTENTS

Listof Tables e e vii
Listof Figures viii
Abstract e e X
1 Introduction 1
1.1 Motivation e e e e 1

1.2 Instruction Pipelining 0 L. 2

1.3 Contributionsand Impact 0. 3

1.4 DissertationOutline 4

2 Statically Pipelined Architecture 5
2.1 Micro-Architecture 5
211 OVerVIEW o i e e e e e e e e e e 5

212 InternalRegisters 8

213 Operation 9

2.2 Instruction Set Architecture 9
221 InstructionFields, 10

222 CompactEncoding o oL 13

223 Choosing Combinations 15

3 Compiling for a Statically Pipelined Architecture 20
31 Overview e e e e 20
32 EffectExpansion. L 21
33 CodeGeneration i e e e 22
3.4 Optimizations o 24
3.4.1 Traditional Optimizations 25

34.2 Loop Invariant Code Motion 26

3.43 Instruction Scheduling L. 32

35 Example 36

4 Evaluation 43
41 ExperimentalSetup 43
42 Results e e e 44
4.3 Processor Energy Estimation. 50

5 Related Work

5.1 Instruction Set Architectures. e

5.2 Micro-Architecture

53 Compilation
6 Future Work

6.1 Physical Implementation o L L L

6.2 Additional Refinements

6.3 Static Pipelining for High Performance

7 Conclusions
References

Biographical Sketch

vi

21
2.2
2.3
24
2.5
2.6
2.7
3.1
4.1
4.2

4.3

LIST OF TABLES

Internal Registers 8
64-Bit Encoded Values L oo 11
Opcodes e 12
Template Fields 14
Combinations Under Long Encoding I 16
Combinations Under Long Encoding II 17
Selected Templates 18
Example LoopResults 42
Benchmarks Used 43
SummaryofResults 50
Pipeline Component Relative Power 50

vii

1.1
2.1
2.2
23
24
3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
39
3.10
3.11
3.12
3.13
3.14
3.15

3.16

LIST OF FIGURES

Traditionally Pipelined vs. Statically Pipelined Instructions 3
Classical Five-Stage Pipeline 6
Datapath of a Statically Pipelined Processor 7
Transfer of Control Resolution 7
Long Encoding of a Statically Pipelined Instructions 10
Compilation Process 20
Effect Expansion Example 00 L. 21
Statically Pipelined Branch 22
Statically Pipelined Load from Local Variable 23
Statically Pipelined FunctionCall 23
Simple Data Flow Optimizations 25
Simple Loop Invariant Code Motion 26
Sequential Address Loop Invariant Code Motion Algorithm 27
Sequential Address Loop Invariant Code Motion Example 28
Register File Loop Invariant Code Motion AlgorithmI 29
Register File Loop Invariant Code Motion Algorithm Il 30
Register File Loop Invariant Code Motion Example 31
Data Dependence Graph 33
ScheduledCode 34
Cross Block Scheduling Algorithm 35
Source And Initial Code Example 37

viii

3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
4.1
4.2
4.3
44
4.5
4.6
4.7
4.8

49

Copy Propagation Example 37

Dead Assignment Elimination Example 38
Redundant Assignment Elimination Example 39
Loop Invariant Code Motion Example 39
Register Invariant Code MotionI 40
Register Invariant Code MotionIl 41
Sequential Address Invariant Code Motion Example 41
Scheduling Example 42
ExecutionCycles o 45
CodeSize e 45
Register FileReads 46
Register File Writes 47
Internal Register Writes 47
Internal Register Reads 48
Branch Predictions o 48
Branch Target Calculations 49
Estimated Energy Usage 51

ix

ABSTRACT

A new generation of mobile applications requires reduced power consumption without
sacrificing execution performance. A common approach for improving performance of
processors is instruction pipelining. The way pipelining is traditionally implemented,
however, is wasteful with regards to energy. This dissertation describes the design and
implementation of an innovative statically pipelined processor supported by an optimizing
compiler which responds to these conflicting demands. The central idea of the approach is
that the control during each cycle for each portion of the processor is explicitly represented
in each instruction. Thus the pipelining is in effect statically determined by the compiler.
Pipeline registers become architecturally visible enabling new opportunities for code
optimization as well as more efficient instruction flow through the pipeline. This approach
simplifies hardware requirements to support pipelining, but requires significant modi-
fications to existing compiler code generation techniques. The resulting design reduces
energy usage by simplifying hardware, avoiding unnecessary computations, and allowing
the compiler to perform optimizations that are not possible on traditional architectures.

CHAPTER 1

INTRODUCTION

This chapter discusses the motivation for this dissertation, describes some of the key
concepts involved, and gives an overview of the work. This chapter also lays out the
organization for the remainder of this dissertation.

1.1 Motivation

Power consumption has joined performance and cost as a primary design constraint in
the design of processors. For general-purpose processors the problem mostly manifests
itself in the form of heat dissipation which has become the limiting factor in increasing
clock rates and processor complexity. This problem has resulted in the leveling off of
single-threaded performance improvement in recent years. Processor designers are using
the additional transistors that Moore’s law continues to provide to add multiple cores
and larger caches instead. Unfortunately, taking advantage of multiple cores requires
programmers to rewrite applications in a parallel manner, which has yet to widely occur.
In order to increase single-threaded performance, the power problem must be addressed.

In the server computer domain, power is a problem as well. From 2000 to 2010, the
energy usage used by server computers more than tripled so that now, worldwide, between
1.1% and 1.5% of all electricity usage went to powering server computers [16]. In the United
States, this figure is between 1.7% and 2.2%. With the expansion of the cloud computing
paradigm, where more services are transferred to remote servers, this figure will likely
continue to increase in the future.

In embedded systems, power is arguably even more important. Because these products
are frequently powered by batteries, the energy usage affects battery life which is directly
related to the usefulness of the product. Moreover, portable devices such as cell phones are
being required to execute more sophisticated applications which increases the performance
requirements of these systems. The problem of designing embedded processors that have
low energy usage to relieve battery drain, while offering high performance is a daunting
one.

One approach to providing this high level of efficiency is the use of application-specific
integrated circuits (ASICs). ASICs are designed and optimized for a particular task which
makes them more efficient for that task than a general-purpose design. Unfortunately, the
design of ASICs is an expensive and time-consuming process. The increasing complexity of

many embedded applications has compounded this problem. Additionally, many mobile
devices, such as smart phones and tablets, are not simply fixed products, but rather
platforms for independent mobile applications. For these reasons, a general-purpose
processor with improved energy efficiency is desirable for the mobile market.

1.2 Instruction Pipelining

Many micro-architectural techniques to improve performance were developed when
efficiency was not as important. For instance, speculative execution is a direct trade-off
between power and execution. Embedded processors are typically less aggressive with
these micro-architectural techniques in order to save energy, but many others are assumed
to be efficient.

Perhaps the most common technique for improving performance of general-purpose
processors is instruction pipelining. This is generally considered very efficient when
speculation costs and scheduling complexity are minimized. Instruction pipelining breaks
instructions into stages and overlaps execution of multiple instructions. This approach
allows the time taken by each cycle of execution to be the time of the longest stage, rather
than the time needed for a complete instruction to execute. Instruction pipelining greatly
improves execution performance and is employed by almost every processor that needs
some degree of performance.

Unfortunately, the way instruction pipelining is implemented results in several ineffi-
ciencies with respect to energy usage. These inefficiencies include unnecessary accesses
to the register file when the values will come from forwarding, checking for forwarding
and hazards when they cannot possibly occur, latching values between pipeline registers
that are often not used and repeatedly calculating invariant values such as branch target
addresses. These inefficiencies stem from the fact that instruction pipelining is done
dynamically in hardware.

The goal of this work is to achieve the performance gains of instruction pipelining
while avoiding the energy inefficiencies discussed earlier. We do this by moving pipelining
from being done dynamically in hardware to being done statically in software. With static
pipelining, the pipeline is fully exposed to the compiler and the control for each portion of
the processor is explicitly represented in each instruction. When pipeline registers become
architecturally visible, the compiler can manage tasks like forwarding, branch prediction
and register access directly, greatly reducing the redundancy found in more conventional
designs, and providing new optimization capabilities to improve pipeline instruction and
data flow.

Figure 1.1 illustrates the basic idea of the static pipelining approach. With traditional
pipelining, instructions spend several cycles in the pipeline. For example, the load
instruction, which is indicated in Figure 1.1(a) requires one cycle for each stage and remains
in the pipeline from cycles four through seven, as shown in Figure 1.1(b). Each instruction
is fetched and decoded and information about the instruction flows through the pipeline,
via the pipeline registers, to control each portion of the processor that will take a specific
action during each cycle.

clock cycle clock cycle
2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

add IF RF EX MEM WB IF RF EX MEM | WB

store IF RF EX MEM WB IF RF EX [MEM| WB

load IF IF RF | EX |MEM wB

sub IF RF EX MEM WB IF RF EX MEM WB

or IF RF EX MEM WB IF RF EX MEM WB
(a) Traditional Insts (b) Traditional Pipelining (c) Static Pipelining

Figure 1.1: Traditionally Pipelined vs. Statically Pipelined Instructions

Figure 1.1(c) illustrates how a statically pipelined processor operates. Data still passes
through the processor in multiple cycles. But how each portion of the processor is
controlled during each cycle is explicitly represented in each instruction. Thus instructions
are encoded to simultaneously perform actions normally associated with separate pipeline
stages. For example, at cycle 5, all portions of the processor, are controlled by a single
instruction (depicted with the shaded box) that was fetched the previous cycle. In effect
the pipelining is determined statically by the compiler as opposed to dynamically by the
hardware.

There are several benefits to this approach. First, energy usage is reduced by avoiding
unnecessary and repetitive actions found in traditional pipelines. Secondly, static pipelin-
ing gives more control to the compiler which allows for more fine-grained optimizations for
both performance and power. Lastly, statically pipelined processors have simpler hardware
than traditional processors which should provide a lower production cost.

1.3 Contributions and Impact

The major contributions of this dissertation can be summarized as follows:

1. I have designed, implemented and evaluated a statically pipelined instruction set
architecture and micro-architecture. The architecture is unique in that it is designed
to expose instruction pipelining at the architectural level.

2. I have developed a compiler backend to generate optimized code for the static
pipeline. Because the static pipeline is very different from most target machines, the
compiler is very different both in terms of code generation and optimization. I apply
traditional optimizations at a new level and have developed several new compiler
optimizations including an advanced instruction scheduler.

3. IT'have designed a compact instruction encoding for statically pipelined instructions
in order to avoid an increase in code size.

4. Thave evaluated the architecture and compiler and have shown that static pipelining
can achieve the performance improvements of dynamic pipelining in a much more
energy-efficient manner.

This research has the potential to have a significant impact on forthcoming embedded
systems. While static pipelining requires major changes in the instruction set architecture

and thus the software, it has clear benefits in terms of energy savings. Many mobile devices
do not need to support binary legacy applications, and for these static pipelining may
provide a significant advantage.

1.4 Dissertation Outline

The remainder of this dissertation is organized as follows. Chapter 2 discusses the
design and implementation of a statically pipelined micro-architecture and instruction
set architecture. Chapter 3 describes the design and implementation of a compiler
targeting this architecture including code generation and optimization. Chapter 4 provides
an experimental evaluation of the performance, code size and energy usage for the
architecture and compiler. Chapter 5 provides an overview of related work in the area of
reducing energy usage in general purpose processors. Chapter 6 outlines potential areas for
further exploration. Finally Chapter 7 presents our conclusions regarding static pipelining.

CHAPTER 2

STATICALLY PIPELINED ARCHITECTURE

This chapter discusses the design of a statically pipelined architecture including both the
micro-architecture and the instruction set. The architecture discussed in this chapter is one
example of a statically pipelined machine; there are many other designs that are possible.
The design described in this chapter, however, is used to evaluate the concept of static
pipelining for the rest of this dissertation.

2.1 Micro-Architecture

This section describes the design of a statically pipelined micro-architecture. The micro-
architecture is designed to be similar to a classical five-stage pipeline in terms of available
hardware and operation. This was done to minimize the differences between the baseline
design and our design to evaluate static versus traditional dynamic pipelining.

2.1.1 Overview

Figure 2.1 depicts a classical five-stage pipeline. Instructions spend one cycle in each
stage of the pipeline which are separated by pipeline registers. Along with increasing
performance, pipelining introduces a few inefficiencies into a processor. First of all is the
need to latch information between pipeline stages. All of the possible control signals and
data values needed for an instruction are passed through the pipeline registers to the stage
that uses them. For many instructions, much of this information is not used. For example,
the program counter (PC) is typically passed from stage to stage for all instructions, but is
only used for branches.

Pipelining also introduces branch and data hazards. Branch hazards result from the
fact that, when fetching a branch instruction, we will not know for several cycles what
the next instruction will be. These hazards result in either stalls for every branch, or the
need for branch predictors and delays when branches are mis-predicted. Data hazards
are the result of values being needed before a previous instruction has written them back
to the register file. Data hazards result in the need for forwarding logic which leads to
unnecessary register file or pipeline register accesses. Experiments with SimpleScalar [1]
running the MiBench benchmark suite [11] indicate that 27.9% of register file reads are
unnecessary because the values will be replaced from forwarding. Additionally 11.1%

Hazard

1 Detectior
PC IF/RF RF[EX EX/MEM MEM/WB
Incr]]]

pr—)

PC

®e g

Inst

Cache

Registers
Data
BP Cache
BTB 1 e

Exten

Forwarding’

Logic

S 'x=;§
!

Figure 2.1: Classical Five-Stage Pipeline

of register file writes are not needed due to their only consumers getting the values
from forwarding instead. Additional inefficiencies found in traditional pipelines include
repeatedly calculating branch targets when they do not change, and adding an offset to a
register to form a memory address even when that offset is zero.

Figure 2.2 depicts one possible datapath of a statically pipelined processor. In order to
simplify the figure, the multiplexer in the lower right hand corner is shown as having three
purposes. It supplies the value written to the data cache on a store operation, the value
written to the register file and the value written to one of the copy registers. In actuality
there are three such multiplexers, allowing for different values to be used for each purpose.

The fetch portion of the processor is mostly unchanged from the conventional processor.
Instructions are still fetched from the instruction cache and branches are predicted by a
branch predictor.

One difference is that there is no longer any need for the branch target buffer (BTB).
This structure is used to store the targets of branches in conventional pipelines, avoiding
the need to wait for the target address of a branch to be calculated to begin fetching after
that branch is predicted to be taken.

The BTB is not needed in the static pipeline because the branch target is specified before
the actual transfer of control and conditional branches are known when fetched as this
information is indicated in the prior instruction. This is illustrated in Figure 2.3. The
NPC status register is used to control the multiplexer that selects what address to fetch
instructions from. When a transfer of control is performed in statically pipelined code, the
NPC bit is first set to indicate the target of the transfer, along with whether or not the transfer
is conditional. With this technique, there is no need to lookup the target from a branch
target buffer, or to access the branch predictor for any instructions other than conditional
branches.

There are more substantial differences in the processor after instructions are fetched.
There is no need for pipeline registers because statically pipelined processors do not need
to break instructions into multiple stages. In their place are a number of architecturally
visible internal registers. Unlike pipeline registers, these internal registers are explicitly

—-[Rs1]

2
Registers C
E

1
P1
CP2

Sign
—isE]
Extend

Figure 2.2: Datapath of a Statically Pipelined Processor

NPC
1 2 3 4
NPC = b TARG; TF [EX
.. Ic PC = ALUR ! RS2, NPC; IF | EX
SEQ target instruction IF | EX
RS2

Figure 2.3: Transfer of Control Resolution

Table 2.1: Internal Registers

Name | Meaning Name | Meaning
RS1 Register Source 1 ALUR | ALU Result
RS2 Register Source 2 TARG | Target Address

LV Load Value FPUR | FPU Result
SEQ Sequential Address || CP1 Copy 1
SE Sign Extend CP2 Copy 2

read and written by the instructions, and can hold their values across multiple cycles.

2.1.2 Internal Registers

There are ten internal registers in our static pipeline design. Table 2.1 shows the internal
registers names and meanings.

The RS1 and RS2 (register source) registers are used to hold values read from the register
file. The LV (load value) register is used to hold a value loaded from the data cache. The SEQ
(sequential address) register is used to hold the address of the next sequential instruction
at the time it is written. This register is used to store the target of a loop branch in order to
avoid calculating the target in the body of the loop. The SE (sign extend) register is used
to hold a sign-extended immediate value. The ALUR (ALU result) and TARG (target address)
registers are used to hold values calculated in the ALU. If the PC is used as an input to
the ALU (as in a PC-relative address computation), then the result is placed in the TARG
register, otherwise it is placed in the ALUR register. The FPUR (FPU result) register is used to
hold results calculated in the FPU, which is used for multi-cycle operations. The CP1 and
CP2 (copy) registers are used to hold values copied from one of the other internal registers.
These copy registers are used to avoid additional register file accesses.

Because these internal registers are part of the machine state, they must be saved and
restored with the register file upon context switches. Thus each register must be able to be
stored to, and loaded from, the data cache. Some registers have a direct path, while others
must be moved through a copy register or the register file. Since these internal registers
are small, and can be placed near the portion of the processor that accesses it, each internal
register is accessible at a lower energy cost than the centralized register file. Note that
while the pipeline registers are read and written every cycle, the internal registers are only
accessed when needed. Because these registers are exposed at the architectural level, a new
level of compiler optimizations can be exploited as we will demonstrate in Chapter 3.

All of the internal registers are caller save or scratch registers, except for SEQ, CP1 and
CP2. These are callee save because our optimizing compiler primarily uses these three
internal registers to perform aggressive loop optimizations. If a loop has a function call
in it, the compiler would disallow the use of these registers for this optimization were they
caller save, as the function call in the loop could possibly overwrite the register making it
effectively not loop invariant.

2.1.3 Operation

Hazards due to multi-cycle operations can easily be detected without special logic to
compare register numbers from instructions obtained from pipeline registers. If during a
given cycle the FPUR register is to be used as a source and the corresponding functional
unit has not completed a multi-cycle operation, then the current instruction is aborted and
the instruction will be reattempted on the next cycle. This process continues until the FPU
has completed the operation. Misses in the data cache can be handled in a similar fashion
during LV register reads.

A static pipeline can be viewed as a two-stage processor with the two stages being fetch
and everything after fetch. As discussed in the next sub-section, the statically pipelined
instructions are already partially decoded as compared to traditional instructions. Because
all datapath operations after fetch are performed in parallel, the clock frequency for a
static pipeline should able to be just as high as for a traditional pipeline. Therefore if the
number of instructions executed does not increase as compared to a traditional pipeline,
there should be no performance loss associated with static pipelining. In Chapter 3, we will
discuss compiler optimizations that attempt to keep the number of instructions executed
as low as, or lower than, those of traditional pipelines.

One benefit of static pipelining is that the branch penalty is reduced to one cycle. This
is because branches are resolved only one cycle after the following instruction is fetched.
Additionally, the architecture is given one cycle of notice that a transfer of control will take
place along with the target address and whether or not the transfer of control is conditional.
This information is placed into the NPC status register which allows us to only perform
branch prediction on conditional branches as well as removes the need for a branch target
buffer.

Because each portion of the datapath is explicitly controlled, there is less complexity
in the operation of the micro-architecture. The logic for checking for hazards is much
simpler, forwarding does not need to take place, and values are not implicitly copied
through pipeline registers each cycle. Due to these factors, statically pipelined hardware
should have decreased area, cost, and debugging time compared to equivalent traditionally
pipelined hardware.

2.2 Instruction Set Architecture

The instruction set architecture for a statically pipelined architecture is quite different
than one for a conventional processor. Each instruction consists of a set of effects, each of
which updates some portion of the processor. The effects that are allowed in each cycle
mostly correspond to what the baseline five-stage pipeline can do in one cycle, which
include one ALU or FPU operation, one memory operation, two register reads, one register
write and one sign extension. In addition, one copy can be made from an internal register
to one of the two copy registers and the next sequential instruction address can optionally
be saved in the SEQ register. Lastly, the NPC status register can be set to indicate an upcoming
branch operation.

Figure 2.4 shows a 64-bit instruction encoding for this instruction set architecture. 64-
bit instructions are not viable for use in embedded systems because the energy savings

f opcode ,ALU in 1, ALU in 2| mem, size , addr, st val regsrcl , regsrc?2 E
1 5 3 3 2 2 2 3 5 5 1
immediate . SE reg dest , regval| from :g P2

16 2 5 3 3 1 2

Figure 2.4: Long Encoding of a Statically Pipelined Instructions

of static pipelining would be offset by additional energy needed to store and fetch these
larger instructions. As such, only a subset of the instruction effects in this long encoding
can actually be specified in any 32-bit instruction. Efficiently encoding these instructions
will be discussed later in this chapter.

Table 2.2 gives the legal values and corresponding meanings of each field in the 64-
bit encoding. This defines the possible combinations for each type of instruction effect
throughout this work such as which internal registers can be used as input to the ALU,
register file write port and so on.

Several decisions here were made to keep the long encoding at 64 bits for practical
implementation reasons. The statically pipelined architecture uses the same register
conventions as the MIPS architecture where registers 28 and 30 are the global pointer and
frame pointer respectively. These registers are never used by the VPO MIPS compiler, so
we use them to indicate no read or no write for a few fields. Also, if the value of FPUR is
written into r [31], which is the return address, then the value PC + 1 is used instead. This
is used to implement saving the return address on a function call. FPUR is used because a
floating point value should never be placed in the return address register.

2.2.1 Instruction Fields

The solid lines in Figure 2.4 separate sections of the instruction that correspond to
different effects. The st, or status, bit is set to one for statically pipelined instructions to
distinguish them from MIPS instructions. The opcode, and ALU input fields are used for the
ALU operation. Table 2.3 provides a list of available opcodes along with their meanings.

The mem field specifies the memory operation out of load, store, unsigned load, or none.
The size, address and store value fields are also used for memory operations. The register
source fields are for specifying which registers should be read into the RS1 and RS2 internal
registers. To keep the encoding within 64 bits, we have no fields that specify whether RS1
and RS2 should be written. Instead, r[28] can’t be read into RS1 and r[30] can’t be read
into RS2 and those values specify that no value shall be read.

The immediate field is used to load immediate values into the SE register. The sign extend
field specifies how the immediates are written: either sign extended, placed in the lower
bits, placed in the upper bits, or not at all. Placing the immediate in the lower and upper
bits of the SE register is used to form 32-bit values including function addresses. The register
destination and register value fields are used to store values into the register file. A value of
zero for the register destination is used to indicate no register is to be written. Also if the
register destination is r[31], the return address register on MIPS, the value of PC + 1 is

10

Table 2.2: 64-Bit Encoded Values

Field \ Meaning

ST Status (0:MIPS) (1:Static)

opcode | See Table 2.3
ALUinl | (0:ALUR) (1:FPUR) (2:RS1) (3:RS2) (4:LV) (5:CP1) (6: CP2) (7:PC)
ALUin2 | (0:ALUR) (1:FPUR) (2:RS1) (3:RS2) (4:LV) (5: CP1) (6:SE) (7:0)

R/W (0O:nop) (1:store) (2:load) (3:unsigned load)

Size (0:byte) (1:half) (2:word) (3:double)

Addr (0:RS1) (1:CP1) (2:ALUR) (3:LV)

S Val (0:RS1) (1:RS2) (2:ALUR) (3:CP1) (4:SE) (5:LV) (6:SEQ) (7:CP2)

Reg Srcl | Register Number to load into RS1 (28 means don’t load any)
Reg Src2 | Register Number to load into RS2 (30 means don’t load any)
PTB1 The first bit of the PTB field, see below

Imm Val | 16-bit immediate value
SEW SE write (0: none) (1:sign extend) (2:replace LO) (3:replace HI)

Reg Dest | Register to Write to (30 means don’t write any)
Reg Val | Register Value (0:RS1) (1:RS2) (2:ALUR) (3:FPUR) (4:SE) (5:LV)
(6:CP1) (7:CP2)

From Copy From (0:RS1) (1:RS2) (2:ALUR) (3:FPUR) (4:SE) (5:LV)
(6:TARG) (7:None)
To Copy To (0:CP1) (1:CP2)

Low 2 bits of prepare branch (PTB) field - combined with P1 above:
PTB2 (0O:nop) (1:set SEQ, no branch) (2:Jump RS2) (3:JUMP SE) (4:Jump SEQ)
(5: Branch SEQ) (6: Jump TARG) (7:Branch TARG).

11

Table 2.3: Opcodes

Number | Opcode Meaning Number | Opcode Meaning
0 nop Nothing 16 sll Shift Left Logical
1 add Add 17 srl Shift Right Logical
2 addf Floating Add 18 sra Shift Right Arith
3 sub Subtract 19 slt Set Less Than
4 subf Floating Sub 20 sltu Unsigned St
5 mult Multiply 21 sltf Floating Slt
6 multf Floating Mul 22 beq Branch IF Equal
7 div Divide 23 bne Branch If Not Equal
8 divu Unsigned Div 24 itf Int to Float
9 divf Floating Div 25 itd Int to Double
10 mod Modulus 26 fti Float to Int
11 modu | Unsigned Mod 27 ftd Float to Double
12 and Lodical And 28 dti Double to Ine
13 or Logical Or 29 dtf Double to Float
14 XOr Logical Xor 30 neg Negate (unary)
15 not Not (unary) 31 negf | Floating Neg (unary)

written instead of the value specified by the register value field. The from and to fields are
used to specify copies into the copy registers. The from field specifies which internal register
to copy, or seven which specifies that no copy should be made. The to field indicates which
of the two copy registers is the target.

Lastly the PTB field indicates whether we should set the SEQ register to PC + 1 and
what value, if any to place in the NPC status register. It can be used for these two purposes
because we never store the address of a branch in the SEQ register as it is used to store the
address of the preheader of a loop - which cannot end in a conditional branch. The value in
the NPC status register is used to determine the target address of a branch that is predicted
taken - in lieu of a branch target buffer. If the next instruction contains a conditional branch
operation, the value target is only used if the branch is predicted taken, otherwise the next
PC is used unconditionally.

All of the effects specified in a single instruction are independent and are performed
in parallel. The values in the internal registers are read at the beginning of the cycle and
written at the end of the cycle. Note that except for the effects that solely read or write a
register file or data cache value, all of the effects operate solely on the internal registers. This
is analogous to how RISC architectures only allow load or store instructions to reference
memory locations.

In a traditional architecture, when reading a value from the register file, it is clear from
the opcode whether that value will be used as an integer or floating point value. This
allows the instructions to “double up” on the number of available registers by having
separate integer and floating-point register files. In a statically pipelined architecture,
however, a register is not read in the same instruction as the arithmetic operation that
uses it. Therefore to have both integer and floating point register files, we would need

12

one extra bit for each register field. To avoid this problem, we use a single register file to
hold both integer and floating point values. Another reason for traditional architectures to
use distinct register files is to simplify forwarding logic and hazard detection which is not
an issue for a statically pipelined architecture. While this may increase register pressure for
programs using both integer and floating point registers, we will show that static pipelining
is still able to significantly reduce the number of references to the centralized register file.

Another issue regarding the register file is how to handle double precision floating point
values. In traditional architectures, it is clear when a register is read if it will be used as a
single or double precision value. Double precision values typically are implemented with
even/odd register pairs where both registers together make up the value. Thus when a
double precision register is accessed, two are effectively accessed.

In the static pipeline, this is harder to achieve; at the time of reading a register, it is
not clear how future instructions will use it. To support double precision floating point
values, each register in the register file, and each internal register, is given a one bit tag
that indicates whether or not the value in that register is a double precision value. When a
register is read, the tag is checked. If it is set, then that register and the subsequent register
are read into the internal register indicated, and the tag is propagated. In this manner, we
are able to track which values are double precision throughout execution.

2.2.2 Compact Encoding

Including all possible instruction effect fields in an instruction would take 64 bit
instructions. Doubling the size of each instruction would have a very negative effect on
code size, as well as power consumption from the instruction cache which would negate
much of the benefit static pipelining aims to achieve. Therefore we developed a compact,
32-bit encoding for the instructions.

The encoding scheme is similar to that used by many VLIW processors. Each instruction
is capable of encoding a number of fields, with each field corresponding to one statically
pipelined effect. The first field is the template field which specifies how the remaining
fields should be interpreted. Note that some fields will specify more than one value in the
long encoding above. For example the field corresponding to a arithmetic operation must
specify the type of operation as well as the operands to use. The size of the template field
dictates how many combinations of fields the encoding supports. With a larger number
of combinations, there is more flexibility in scheduling, but the template field takes more
space and the decoding logic is more complicated. Frequently used effects, such as an ALU
operation should be present in more combinations than lesser used effects, such as copying
an internal register to a copy register. Each field is present in at least one combination, or
it would be impossible to use it.

The different fields are given in Table 2.4. The ALU field specifies an ALU operation
including the opcode, and each operand. The LOAD field specifies one memory load
operation including whether it is signed or unsigned, the size and the address to load from.
The STORE field specifies one memory store operation including the size, the address to
write to and which value to write. Memory operations were split into loads and stores
because loads are more common and take fewer bits to specify. This is because stores must
specify the internal register to be stored, while loads always load into LV. However, because

13

Table 2.4: Template Fields

Field Description Size
ALU Arithmetic Logic Operation 11
LOAD | Memory Load Operation 6
STORE | Memory Store Operation 9
REGW | Register File Write 8
RS1 Register File Read into RS1 5
RS2 Register File Read into RS2 5
COPY | Copy into CP1 or CP2 4
SIMM | Small Immediate Value 7
LIMM | Large Immediate Value 18
PTB Prepare to Branch 3

the micro-architecture is only capable of performing one memory operation at a time, no
template can contain both a LOAD and STORE field.

The REGW field specifies a register write operation which consists of which internal
register to write and which register in the register file to write to. The RS1 and RS2
fields specify register reads to each of these internal registers respectively. The COPY field
specifies one register copy including which internal register to write and which of the two
copy registers to write the value into.

The SIMM and LIMM fields specify reading and sign extending small and large
immediate values respectively. Small immediate values are seven bits in length, so this field
can store values from -64 to 63. Many immediate values in programs are small enough to
fit in this space, so it would be wasteful to use 16-bits to store them. The number of bits
for the small immediate was chosen as a trade-off between being large enough to represent
most smaller immediate values and small enough to save space. Large immediate values
are 16 bits of length. These are used for numbers in programs that won't fit in the seven-
bit small immediate as well as for constructing the addresses of functions and other global
values. The LIMM field is 18 bits because two bits are reserved for specifying whether the
value should be placed in the LO or HI portion or sign extended. The PTB field specifies
a prepare to branch operation which includes the value to assign to the NPC in preparation
for a transfer of control. This field also includes a bit for specifying whether the SEQ register
should have PC + 1 placed in it.

Each field can represent a no-op for its given operation in some way. This means that a
template does not have to match an instruction exactly, it just has to provide all of the fields
the instruction needs and possibly more. For example, an instruction with just one ALU
effect can be represented with any template that contains the ALU field, as the other fields
can be filled with no-ops.

Decoding these fields will require some logic in the micro-architecture. Depending on
the timing breakdown of the fetch and execute cycles, this logic can either be at the end of
fetch, the beginning of execute, or split between them. If necessary, then we can add a stage
for decoding instructions, which is discussed in more detail in Chapter 6. Note that, unlike
for the MIPS architecture, register file reads happen during the execute stage, so there is no

14

need for a decode stage to fetch registers. The need to decode the templates could possibly
decrease the clock rate, though in this dissertation we assume that it does not.

2.2.3 Choosing Combinations

There are many possible ways to combine these fields into a set of templates for
the encoding. In order to choose a good set of templates, we compiled and ran the
MiBench benchmark suite [11] with the wide, 64-bit instruction encoding to determine
which combinations of instruction effects were run.

Tables 2.5 and 2.6 show the most commonly generated instruction combinations. The
first column of this table shows the template fields used in the instruction. The second
column gives the size in bits. Note that if the size is larger than 32 bits, there is no
way to encode the instruction in 32 bits. Because we need space for the template field,
the size must be less than 32 to be encoded. The third column gives the percentage of
dynamic instructions that this instruction accounts for. Lastly, the fourth column shows
the cumulative percentage - the percentage of dynamic instructions accounted for by this
combination and all previous combinations.

These 74 instruction combinations shown make up over 95% of dynamic instruction
usage for the benchmarks studied. In total, there are 286 instruction combinations that are
ever used out of 576 possibilities. There are 576 possible combinations because there are six
field that can either be present or not be present, and two fields that have three possibilities:
the memory field can be a LOAD, a STORE, or not be present, and the immediate field can
be a SIMM, a LIMM, or not be present. This gives us 2° x 32 = 576. Despite these large
numbers of combinations, the top nine most popular combinations account for over half
of instructions executed. Furthermore, many of these combinations can be covered by a
single template. For example, ALU by itself is the most frequent instruction, but this can be
covered by any template which contains an ALU field. Because of this, we are able choose
a set of templates that covers most of the dynamic instructions.

To choose the templates we use, we went down the list in Tables 2.5 and 2.6 in order of
frequency of execution. For each instruction, if its size would allow it to fit in a template,
we first look through the templates we currently have selected. If it fits in one of them, then
we move on as this instruction is already covered. If not, we see if one of the templates can
be augmented to support the instruction while still being small enough. If not, we add the
instruction as a new template. By repeating this, we arrive at a set of templates that allows
the most frequent instructions to be encoded.

We performed this task with different numbers of templates and determined that 32
templates was best. 16 was too few to capture relatively common instructions while 64
did not provide many additional common instructions. Because 32 templates were chosen,
the template field takes up 5 bits, leaving 27 for the different fields. Table 2.7 shows the 32
templates chosen with this technique. With these templates, we are able to encode the 90
most commonly executed instructions that are able to fit in the 27 bits available (in addition
to many of the others). These 90 instructions together provide 90.4% of the overall dynamic
instructions, allowing the encoded instructions to capture most of the performance of the
long instruction encoding in half of the space.

15

Table 2.5: Combinations Under Long Encoding I

Field Size | Percentage | Cumulative
ALU; 11 14.885 14.885
ALU; RS1; 16 8.521 23.405
ALU; SIMM; 18 6.487 29.892
LOAD; 6 4.525 34.417
ALU; REGW; 19 4.064 38.482
ALU; REGW; SIMM; 26 3.837 42.318
ALU; REGW; RS1; 24 3.268 45.587
ALU; RS2; 16 3.123 48.710
REGW; 8 2.549 51.259
ALU; PTB; 14 2.473 53.732
ALU; RS1; SIMM; 23 1.982 55.714
LOAD; RS1; 11 1.662 57.376
ALU; REGW; PTB; 22 1.590 58.966
RS1; SIMM; 12 1.549 60.515
RS1; 5 1.493 62.008
STORE; REGW; RS1; 22 1.469 63.477
ALU; LOAD; SIMM; 24 1.362 64.839
ALU; REGW; RS1; SIMM; | 31 1.312 66.152
LOAD; REGW; 14 1.296 67.447
RS1; RS2; SIMM; 17 1.208 68.656
ALU; STORE; RS1; 25 1.203 69.859
ALU; LIMM; 29 1.184 71.043
RS2; 5 1.049 72.092
REGW; PTB; 11 1.015 73.107
REGW; RS1; 13 0.946 74.053
REGW; SIMM; 15 0.938 74.991
ALU; LOAD; RS1; 22 0.936 75.927
ALU; RS1; RS2; 21 0.908 76.834
ALU; PTB; SIMM; 21 0.890 77.724
ALU; LOAD; 17 0.871 78.595
ALU; RS1; COPY; 20 0.842 79.437
ALU; REGW; LIMM; 37 0.830 80.267
ALU; LOAD; REGW; 25 0.801 81.068
STORE; RS1; 14 0.771 81.839
ALU; RS1; PTB; 19 0.758 82.597
ALU; REGW; RS2; 24 0.709 83.306
ALU; LOAD; RS1; COPY; 26 0.689 83.995

16

Table 2.6: Combinations Under Long Encoding II

Field Size | Percentage | Cumulative
LOAD; REGW; RS1; 19 0.642 84.637
ALU; LOAD; RS1; SIMM; 29 0.638 85.275
ALU; RS2; SIMM; 23 0.575 85.850
SIMM; 7 0.511 86.360
LIMM; 18 0.489 86.849
LOAD; PTB; 9 0.488 87.337
NOOP; 0 0.477 87.814
ALU; REGW; RS1; PTB; 27 0.458 88.272
ALU; STORE; RS1; RS2; LIMM; 48 0.377 88.648
ALU; RS1; LIMM; 34 0.355 89.003
RS2; SIMM; 12 0.354 89.357
ALU; COPY; 15 0.305 89.662
ALU; STORE; SIMM; 27 0.296 89.958
COoprYy; 4 0.295 90.253
ALU; REGW; RS1; RS2; 29 0.285 90.538
ALU; LOAD; PTB; 20 0.279 90.818
ALU; STORE; RS1; SIMM; 32 0.271 91.089
REGW; LIMM; 26 0.264 91.353
ALU; REGW; RS1; LIMM; 42 0.264 91.618
RS1; LIMM; 23 0.251 91.869
ALU; RS1; RS2; SIMM; 28 0.240 92.109
ALU; REGW; PTB; SIMM; 29 0.238 92.347
ALU; STORE; RS1; RS2; SIMM; 37 0.216 92.562
STORE; 9 0.214 92.776
RS1; RS2; 10 0.213 92.989
ALU; LOAD; REGW; RS1; LIMM; | 48 0.207 93.196
ALU; RS2; LIMM; 34 0.205 93.401
LOAD; RS2; 11 0.199 93.600
ALU; LOAD; REGW; RS1; SIMM; | 37 0.195 93.795
LOAD; RS1; COPY; PTB; 18 0.180 93.975
REGW; RS1; SIMM; 20 0.163 94.139
LOAD; RS1; RS2; 16 0.147 94.286
ALU; STORE; RS1; LIMM; 43 0.147 94.432
ALU; RS1; COPY; PTB; 23 0.145 94.578
STORE; LIMM; 27 0.144 94.722
ALU; COPY; SIMM; 22 0.142 94.864
ALU; RS2; PTB; 19 0.141 95.005

17

Table 2.7: Selected Templates

Template Number

Fields

IO UT = WN — O

W W NDNDNDNDNMNDDNDNDNDNDNNR R R R R R R R Em 2O
R OOV OIS UkR WNPFR,ROWOVWOYIU PR WDNRO

ALU; REGW, SIMM;

ALU; REGW; RS1; PTB;

ALU; RS2; LOAD; RS1;

ALU; RS1; SIMM; COPY;
STORE; REGW; RS1; RS2;
ALU; LOAD; SIMM; PTB;
ALU; LOAD; REGW;

RS1; RS2; SIMM; REGW,;
ALU; STORE; RS1;

ALU; REGW; RS2; PTB;

ALU; LOAD; RS1; COPY;
LOAD; REGW; RS1; COPY; PTB;
ALU; RS2; SIMM; COPY;
ALU; STORE; SIMM,;

REGW, LIMM;

RS1; LIMM; PTB;

ALU; RS1; COPY; PTB;
STORE; LIMM,;

ALU; RS1; RS2; PTB;

ALU; LOAD; PTB; SIMM;
LOAD; LIMM; PTB;

STORE; RS2; RS1; COPY:; PTB;
LOAD; REGW, SIMM; RS1;
ALU; REGW;, RS2; PTB;
LOAD; REGW, RS1; RS2; PTB;
ALU; RS2; PTB; SIMM;
STORE; REGW,; SIMM,; PTB;
ALU; STORE; PTB; COPY;
RS2; LIMM; PTB;

RS1; RS2; SIMM; PTB; LOAD;
REGW, LOAD; SIMM; COPY;
STORE; RS2; SIMM; RS1;

18

In order to evaluate the architecture for different encoding schemes, the assembler,
simulator and other tools use the long instruction format exclusively. Programs are passed
through an encoder program which encodes the program into the 32 bit format using the
set of selected templates. If any instructions cannot be encoded, an error is reported. The
program is then decoded again with a decoder program. The output from this is then
compared to the original long encoding. If the two match, then the program can be encoded
into 32 bits without any loss of efficiency. As discussed in Chapter 3, the compiler also
makes use of the set of selected templates in order to schedule instructions correctly.

19

CHAPTER 3

COMPILING FOR A STATICALLY PIPELINED
ARCHITECTURE

This chapter discusses compilation issues relating to the static pipeline. We give an
overview of the compilation process including code generation and optimization issues.
For a statically pipelined architecture, the compiler is responsible for controlling each
part of the datapath for every cycle, so effective compilation optimizations are necessary
to achieve the performance and energy goals of static pipelining. Likewise, because the
instruction set architecture for a statically pipelined processor is quite different from that of
a RISC architecture, many compilation strategies and optimizations have to be reconsidered
when applied to a static pipeline. Lastly we give a detailed example of how our compiler
generates optimized code for the statically pipelined architecture.

3.1 Overview

Figure 3.1 shows the steps of our compilation process which is based on the VPO
compiler [3]. First, C code is input to the frontend. This consists of the LCC compiler
frontend [9] combined with a middleware process that converts LCC’s output format into the
Register Transfer List (RTL) format used by VPO. This format directly represents machine
instructions on the target architecture.

These RTLs are then input into the VPO MIPS backend. This compiler process performs
many compiler optimizations including control flow optimizations, loop invariant code

C Code MIPS RTLs
e Frontend > MIPS Backend

Optimized MIPS RTLs

Statically Pipelined RTLs

Statically Pipelined
—»| Effect Expander ' Backend

Assembly

Figure 3.1: Compilation Process

20

RS1 = r[51; ri5]
RS2 = r[6]; r[iel]
r(4] = r[51 + ri6]; r[5]r[6] Alyr = RS1 + RS2; RS1 RS2
r(4] = ALUR; ALUR
(a) MIPS RTL (b) Static Pipeline RTLs

Figure 3.2: Effect Expansion Example

motion, register allocation, and data flow optimizations. These optimizations are done
before converting the instructions to those for the statically pipelined architecture because
some of these optimizations are easier to apply at the higher MIPS instruction level.
Register allocation in particular is difficult to perform directly on statically pipelined
instructions due to the need to have either RS1 or RS2 available to load any registers.
Additionally this strategy allows us to concentrate on optimizations specific to the static
pipeline as all higher level optimizations are already performed.

A couple of changes were necessary to the MIPS compiler for this to work. First,
because our target machine has one register file for both integer and floating point values,
the register allocation of the MIPS compiler must reflect this. In the unmodified MIPS
architecture there are separate register files so, for example, r[6] and £ [6] are two distinct
registers. We modified the MIPS VPO port such that these refer to the same physical register
to match the static pipeline. This strategy avoids incorrect code being generated due to a
conflict between different values in the same register.

The second change that had to be performed is that the output of the compiler had to
be changed slightly. Normally, there are a number of meta-data lines that are processed
by the compiler and are not present in the output. This meta-information include lines
that signify a register being trashed by a function call or a register getting a value from a
function’s return, lines that give information on local and global variables being used, a line
indicating the register types being used and so on. Also some instructions generated for
function prologue and epilogues had to to be suppressed because they had to be done at
the time of final code generation by the statically pipelined backend. These changes make
the output of this compilation stage tenable for the second compilation pass that follows.

Next the instructions are broken down into statically pipelined instruction effects by
the effect expander. Lastly these instructions are fed into the statically pipelined compiler
backend, also based on VPO, which applies additional optimizations and produces final
assembly code. Each of these two processes will be discussed in detail.

3.2 Effect Expansion

The effect expander breaks the MIPS instructions into instruction effects that are legal
for the static pipeline. This process works by looking at each MIPS RTL and generating a
sequence of statically pipelined RTLs that perform the same computation.

Figure 3.2(a) depicts an example MIPS RTL. The fact that registers r [5] and r [6] are on
the end of the line signify that they are dead on that line - that is that that RTL is the last one

21

SE = JumpTo(L7);
TARG = PC + SE;
PC = r[4] ' 0, L7; RS1 = r[4];
SE = 0;
PC = RS1 ! SE, TARG (L7);
(a) MIPS RTL (b) Static Pipeline RTLs

Figure 3.3: Statically Pipelined Branch

to use those registers before they are overwritten. Figure 3.2(b) shows how this instruction
is expanded into multiple statically pipelined RTLs. First the source registers, r[5] and
r[6] have to be loaded into the internal registers RS1 and RS2 respectively. Next these are
added together and the result is placed into the ALUR register. Lastly, the ALUR internal
register is written back to r[4] in the register file. The effect expander also must produce
the dead register lists for each instruction. Dead register lists must take into account not
only the registers in the register file, but the internal registers as well.

This process works by matching the forms of the different types of RTLs that the VPO
MIPS backend produces. These RTLs include ALU operations, loads and stores, branches,
calls and returns, and type conversions. The patterns are parameterized so that they work
for as many cases of RTLs as possible. For example, the add instruction in Figure 3.2(a), is
matched to a pattern of r[dest] = r[op1l] op rlop2]. The patterns parameters (in bold)
are then used in the generated statically pipelined RTLs.

3.3 Code Generation

In traditional architectures, branch instructions include both the comparison (if neces-
sary) along with the target of the transfer. In a statically pipelined architecture, however,
these are broken into separate instructions. This presents a code generation challenge for a
number of reasons.

Figure 3.3 shows how a typical conditional branch is broken into separate statically
pipelined instructions. With the MIPS RTL, the target of the branch is included in the
branch instruction itself. This is important for two reasons. First, the compiler must know
the target of each transfer of control in order to accurately represent the control flow of
the program. Secondly, the assembler must be able to replace the label with the correct
PC-relative offset.

In the statically pipelined instructions, the target address is calculated separately from
the transfer of control. In order for the compiler to know the target of each transfer of
control, the transfers are annotated with the target label. This is the (L7) on the last line
of Figure 3.3(b). The annotation is not used for executing the branch, it is just there for the
compiler’s sake.

In order for the assembler to be able to put in the correct offset, it has to do a little more
work. Because the offset must be the difference between the target of the transfer and the
point of the transfer, the assembler must find not only the label, but the point at which the
offset is added to the PC as well. In order to do this, it scans forward from the point in

22

SE = LOC[2];
RS1 = r[29];

rf{4] = R[r[29]+L0C[2]]; ALUR = RS1 + SE;
LV = R[ALUR|LOC[2]];
r(4] = LV;
(a) MIPS RTL (b) Static Pipeline RTLs

Figure 3.4: Statically Pipelined Load from Local Variable

SE = HI:GLO[4];
ST = SE;
(a) MIPS RTL (b) Static Pipeline RTLs

Figure 3.5: Statically Pipelined Function Call

which it sees the JumpTo macro until it sees an instruction that adds the PC and SE. This is
usually the very next instruction, but it could be farther down due to scheduling decisions.

Figure 3.4 shows how a load of a local variable is broken into separate statically
pipelined instructions. The compiler keeps track of the local variables (if any) to which
each memory address is associated. This tracking is done in order to disambiguate memory
references and to determine if memory references are indirect or not when possible. This
can be seen on the left side of the figure where we specify that the memory address for the
load is the stack pointer (r [29]) plus the local number two.

As in the case of conditional branches, this proves more challenging in the statically
pipelined architecture. The offset must be placed into the SE register before the actual
load takes place. Rather than try to scan backwards from each memory reference to
ascertain whether a local variable is associated with it, we add an annotation to the memory
operation in the statically pipelined code. This is the “|LOC[2]” in the 4th instruction in
Figure 3.4(b). This annotation is not used for actual computation, but for the compiler to
easily keep track of the local variable references.

In the MIPS architecture, function calls are accomplished with the jal (jump and link)
instruction. This instruction has six bits for the opcode and twenty-six bits for the function
address. In the static pipeline architecture, we have no instruction type that can fit such a
large address, so we must load the address in two parts.

Figure 3.5 shows how a call instruction is broken into statically pipelined instruction
effects. GLO[4] is defined previously in the code as being a reference to a function. ST stands
for stack and indicates the point of the function call. On the right, we see that the address
is formed in two instructions by a low and high half. The second instruction specifies that
the low portion of the function address is to replace the low portion of the SE register. The
bitwise or operator only describes what happens; no ALU operation actually takes place
with that instruction. This technique is also used for global data values and constants that
are too large to fit into the 16-bit immediate field.

23

Another effect that must occur during a function call is that the return address must be
placed in r [31] so that the function can properly return. When the compiler is generating
the final assembly code, it writes an instruction effect to save the value of PC + 1 into
r[31] for each call. During scheduling, the compiler also ensures that no register write
is scheduled at the same time as a function call because the architecture only supports
writing one register at a time.

Typically, once the code in Figure 3.5(b) is generated, it would be up to the linker to
place the correct values into the executable file. However, to avoid having to modify the
linker, we used a workaround solution for this study. What we did is create a table of
all the functions, globals and large constants in a MIPS assembly file. Instead of placing
the value of the constant in the instruction, we then place the index to the global table
entry corresponding to that constant. The compiler automatically inserts a MIPS 1a (load
address) instruction at the beginning of the main function that loads the address of the start
of the global table into a register. The global table file is linked in with the other assembly
files to produce an executable. Because the global table and the first instruction of main are
in MIPS assembly, the linker resolves that address correctly.

During simulation, the address of the global table is saved into a variable in the
simulator at the start of main. When instructions load a high or low value into the SE
register, the simulator then transparently loads the correct value from the correct entry in
the global table. These accesses of the global table do not affect the performance results
calculated by the simulator. In this way the correct values are loaded without having to
modify the linker or sacrifice the correctness of our results.

There were several other minor code generation issues that had to be addressed for
the static pipeline. For example, the VPO compiler often assumed that certain operations
took one instruction because that was the case for every other architecture. In particular,
the VPO compiler assumed that return instructions required one instruction so it inserted
some epilogue code before the last instruction of a function. Since that code was inserted
between the two instructions needed for a return in the static pipeline, it caused bugs until
this assumption was corrected. The VPO compiler also assumed in several instances that
a register move could be accomplished in one instruction which is also not the case for the
static pipeline. This illustrates another motivation for performing as many optimizations
as possible in the MIPS compilation stage: to avoid violating assumptions in as many
compilation processes as possible.

3.4 Optimizations

The statically pipelined compiler backend applies a number of optimizations to the
statically pipelined code. Some of these are traditional compiler optimizations that are able
to achieve new effects when applied to the lower level of statically pipelined architecture,
whereas others are optimizations that target this architecture specifically.

Note that the code that is input to the statically pipelined compiler backend has already
had some optimizations applied to it in the MIPS compiler backend phase. These include
register allocation, data flow optimizations, control flow optimizations and loop invariant
code motion. This means that virtually all of the optimizations we apply here are things that

24

SE = 1; SE = 1;

RS1 = r[2]; RS1 = r[2]; SE = 1;
ALUR = RS1 + SE; ALUR = RS1 + SE; RS1 = r[2];
r[z] = ALUR: r[2] = ALUR; 4
ri2] = r[2] + 1; ’ RS1 = r[2]; ALUR = RS1 + SE;
ri2] = r[2] + r[2]; Eg; - r{;}? RS2 = r[2]; ALUR = ALUR + ALUR;
=r H ’ - .
ALUR = RS1 + RS2 ALUR = ALUR + ALUR; F[2] = ALUR;
ri2] = ALUR; r[{2] = ALUR;
(a) MIPS Code (b) Original Static Pipeline Code (c) After Copy Propagation (d) After Dead Assignment Elimination

Figure 3.6: Simple Data Flow Optimizations

are specific to the statically pipelined architecture. As we will demonstrate, by providing
the compiler with a more detailed view of the hardware, we are able to optimize the code
in ways that were previously not possible.

3.4.1 Traditional Optimizations

The traditional optimizations that we apply consist of data flow optimizations such
as common sub-expression elimination, copy propagation, dead assignment elimination
and control flow optimizations such as branch chain removal, empty block removal, and
unreachable code removal. These optimizations did not need to be specifically written for
the statically pipelined architecture, but are able to achieve additional effects beyond what
they could at the RISC level.

Figure 3.6 demonstrates how traditional data flow optimizations can be employed for
the static pipeline. On the left is a sequence of traditional instructions that increment a
register and then double it. Figure 3.6(b) shows how these two instructions are expanded
into statically pipelined instruction effects.

Next we apply copy propagation. This is an optimization which takes into account
instruction effects that copy a source to a destination and creates equivalence classes among
state elements that have the same value. It then replaces uses of any member of the
equivalence class with the oldest member of the class with the same or cheaper access cost
where possible. Figure 3.6(c) shows the result of applying this optimization. In this case,
the only change is the second to last instruction. We replace the usage of RS1 and RS2 with
ALUR. This is done because ALUR is copied into r [2] and then into the registers RS1 and RS2,
creating the equivalency.

The copy propagation optimization is not useful on its own, but it is helpful in
that it enables other data flow optimizations, such dead assignment elimination. Dead
assignments are those that write a value into a register or a memory location that is never
used. The two reads of r[2] into RS1 and RS2 are now dead assignments as we no longer
reference those values. This causes the assignment r[2] = ALUR to become dead in turn as
that value is now never referenced. Figure 3.6(d) shows the result of removing these dead
assignments.

These two optimizations combine to remove a register write and two register reads.
Instead of having to pass the result of the first addition through the register file, we
directly reference the output register which is not possible with traditional architectures.

25

L1: SE = JumpTo(L1);
RS1 = r[4]; TARG = PC + SE;
SE = 1; RS2 = r[5];
ALUR = RS1 + SE; SE = 1;
L1: r(4] = ALUR; L1:
ri4] = ri4] + 1; RS1 = r[4];
PC = r[4] : r[5], L1; RS1 = rl4]; ALUR = RS1 + SE;
RS2 = r[5]; r[(4] = ALUR;
SE = JumpTo(L1);
TARG = PC + SE; RS1 = r[4];
PC = RS1 : RS2, TARG(L1); pc = RS1 : RS2, TARG(L1);
(a) MIPS Code (b) Original Static Pipeline Code (c) After Loop Invariant Code Motion

Figure 3.7: Simple Loop Invariant Code Motion

By providing the compiler with the ability to directly reference internal registers, we allow
it to apply these optimizations at a lower level and achieve new results.

The control flow optimizations are only useful when other optimizations enabled
them. For example if the data flow optimizations produced an empty block or a branch
chain by removing instructions, then they will be removed by the appropriate compiler
optimization. These optimizations are only useful in these cases, because they were already
successfully applied by the MIPS compiler.

3.4.2 Loop Invariant Code Motion

Loop Invariant Code Motion is an optimization in which instructions inside of a loop
are moved out of a loop when the results do not change across loop iterations. It is
beneficial because loops dominate the execution time of programs, so reducing the number
of instructions that are executed for each iteration improves performance and reduces
power consumption.

Like the traditional optimizations discussed above, the traditional loop invariant code
motion was able to optimize the code in ways that are impossible for traditional architec-
tures. This is due to the finer granularity of instructions. When a RISC-level instruction
instruction is broken into separate statically pipelined instruction effects, each effect that is
loop invariant can be moved outside of the loop even if the original instruction, as a whole,
is not loop invariant.

An example of this can be seen in Figure 3.7. On the left is a trivial loop in RTLs for the
MIPS architecture. The loop simply increments the value of r [4] until the value is equal to
r [5]. Neither of these MIPS instructions is loop invariant, so this loop cannot be improved
with loop invariant code motion.

Figure 3.7(b) shows how this loop is expanded into statically pipelined instructions.
This loop could be improved using copy propagation as described in the previous sec-
tion, but here we will only demonstrate the loop invariant code motion. The first four
instructions correspond to the addition and the last five correspond to the conditional

26

function move_out_sequential_address(loop) :
move_up = false

if loop has no preheader:
make a preheader block

for each block b in the loop:
if b branches to the loop header:
if b uses "TARG" in branch:
move_up = true
replace "TARG" with "SEQ" in branch

if move_up:
insert "SEQ = PC + 1" into preheader
done

Figure 3.8: Sequential Address Loop Invariant Code Motion Algorithm

branch. While neither set of instructions can be entirely moved out of the loop, some of
the individual instruction effects can be.

The value of the branch target is loop invariant, so the two instructions that calculate
it are moved out of the loop. Because branch targets are necessarily a part of branch
instructions in the MIPS architecture, it is not possible to move them out of loops - even
though the computation always results in the same target. With the statically pipelined
architecture, however, they can be moved out of loops with loop invariant code motion.

Likewise the value of r[5] is loop invariant, so the read of that register can be moved
out of the loop, as can the sign extension of the constant value one. In the MIPS architecture,
register reads and sign extensions cannot be moved out of the instructions that reference
them even if they are loop invariant. In the statically pipelined architecture they can.
Note that, due to scheduling, moving an instruction out of a loop may not affect the
performance of the code. It will, however, always have a beneficial effect on energy usage as
it causes less work to be done for each loop iteration. By providing the compiler with finer
grained control over what happens in each clock cycle, static pipelining allows for greater
application of loop invariant code motion than with traditional architectures.

In addition to simple loop invariant code motion providing new benefits for a statically
pipelined architecture, we have developed two additional loop invariant code motion
optimizations that directly target the static pipeline. In the first, depicted in Figure 3.8, we
hoist the calculation of the target address of the top of the loop. As discussed in Chapter 2,
the SEQ register is used for this purpose.

Figure 3.9 shows an example of this optimization. On the left is MIPS code for a loop that
calculates the sum of all numbers from one to r [4]. In the center is the statically pipelined
code after most other optimizations have been applied. Notice that the target address of
the loop is calculated with the two instructions SE = L6 and TARG = PC + SE.

27

L6:

RS2 = r[4] SEQ = PC + 1
RS1 = r[3] L6:
ALUR = RS1 + RS2 RS2 = r[4]
L6: ri3] = ALUR RS1 = r[3]
r(3] = ri3] + rl4] ¢ _ 4 ALUR = RS1 + RS2
ri4] = rf4l -1 ALUR = RS2 - SE r{3] = ALUR
PC = r[4] ! 0, L6 SE = L6 SE = 1
TARG = PC + SE ALUR = RS2 - SE
r[4] = ALUR r{4] = ALUR
PC = ALUR ! ©,TARG (L6) PC = ALUR ! 0, SEQ (L6)
(a) MIPS Code (b) Static Pipeline Code (c) After SEQ Loop Motion

Figure 3.9: Sequential Address Loop Invariant Code Motion Example

Figure 3.9(c) shows the code after applying this optimization. Rather than calculate
the target address in the loop, we simply store the address at the top of the loop in the
SEQ register, and reference SEQ rather than TARG in the loop. The instruction SEQ = PC + 1
does not actually cause an addition to occur. It simply instructs the architecture to place
that value (which is computed each cycle anyway) into the SEQ register.

This optimization is only attempted on innermost loops. This is because there is only
one SEQ register, so it is used where it will have the most impact. In order to accomplish
this optimization for a given loop, we first identify the preheader block of the loop. The
preheader is a basic block that is executed before the header of the loop. If there is no
preheader, we create one. For this optimization, the preheader must also be physically
before the header of the loop because the instruction to save the branch address in SEQ must
be immediately before the address itself. It would be possible to perform this optimization
using a basic block that is physically before the loop header, but wasn’t a preheader.
However this situation is very rare and would complicate the optimization.

Once a preheader has been found, we loop through each block in the loop and check if
it branches to the header. If so, we replace the use of TARG in the block’s branch with SEQ. If
we make that substitution anywhere in the loop, then we add the SEQ = PC + 1instruction
to the preheader of the loop. This optimization itself doesn’t remove the instructions
that calculate the branch address in TARG, it relies on dead assignment elimination to
perform that task. Another benefit of this optimization is that, if there is exactly one other
conditional branch in the loop, VPO can then hoist that target calculation out of the loop
using loop invariant code motion.

The second loop invariant code motion optimization targeting the static pipeline
attempts to move register file accesses out of loops. If a register is used inside of a loop,
we can move the usage of it out of the loop and replace the value with a copy register. The
algorithm for this optimization can be seen in Figures 3.10 and 3.11. The first figure is an
algorithm that either replaces the uses of a register value with a copy register, or checks if a
replacement can be done. The algorithm in the second figure makes use of this to perform
the optimization.

Like the SEQ optimization discussed previously, this optimization is only attempted for
innermost loops. It starts by checking if a preheader exists and, if not, creating one. It then

28

function replace_uses_of_reg(loop, block, reg,
cp_reg, replace_rsl, replace_rs2, check):

if block is null, block is not in loop, or we have seen this block:
return true

for each instruction i in block:
if i1 reads reg into RS1:
replace_rsl = true
else if i reads reg into RS2:
replace_rs2 = true

else if i reads another register into RS1:
replace_rsl = false

else if i reads another register into RS2:
replace_rs2 = false

else if i1 uses RS1 and replace_rsl:
if check and we cannot replace RS1 with cp_reg in i:
return false
else:
replace RS1 with cp_reg in i
else if i uses RS2 and replace_rs2:
if check and we cannot replace RS2 with cp_reg in i:
return false
else:
replace RS2 with cp_reg in i

if RS1 is not an output of block:
replace_rsl = false

if RS2 is not an output of block:
replace_rs2 = false

result = true
for each successor of block:
if not replace_uses_of_reg(loop, successor, reg,
cp_reg, replace_rsl, replace_rs2, check) :
result = false

return result
done

Figure 3.10: Register File Loop Invariant Code Motion Algorithm I

29

function move_out_register_reads(loop):
if loop has no preheader:
make a preheader block

if CP2 is not used in loop, and not an output of preheader:

cp_reg = CP2

else if CP1 is not used in loop, and not an output of preheader:
cp_reg = CP1

else:
return O

if RS1 is not an output of preheader:
rs_reg = RS1

else if RS2 is not an output of preheader:
rs_reg = RS2

else:
return 0

for each block b in the loop:
for each instruction i in b:
if 1 writes a register reg:
if reg is live exiting loop:
set reads of reg to -1
else:
mark reg as written
if 1 reads a register reg:
if reg has been written:
set reads of reg to -1
else:
if replace_uses_of_reg(loop, loop.header,
reg, cp_reg, false, false, true)
increment the reads of reg
else:
set reads of reg to -1

find the register reg that has the maximum reads
insert "rs_reg = reg" into preheader
insert "cp_reg = rs_reg" into preheader
replace_uses_of_reg(loop, loop.header, reg, cp_reg, false, false, false)
if reg is written in the loop:
replace reg with cp_reg in the write
done

Figure 3.11: Register File Loop Invariant Code Motion Algorithm II

30

RS1 = r[4];
L6: CP1 = RS1;
RS2 = r[4]; L6:
RS1 = r[3]; RS1 = r[31;
6 ALUR = RS1 + RS2: ALUR = RS1 + CP1;
) r(3]1 = ALUR; r(3] = ALUR;
rI31 = r(3] + rl4l; ¢ - 1, el
ri4] = rlal - 1; ALUR = RS2 - SE; ALUR = CP1 - SE;
PC = r[4] ! 0, L6; SE = L6; F - Lo
TARG = PC + SE; TARG = PC + SE;
r[4] = ALUR; CP1 = ALUR;
PC = ALUR ! 0, TARG(L6); PC = ALUR ! 0, TARG(L6);
(a) MIPS Code (b) Static Pipeline Code (c) After Register Loop Motion

Figure 3.12: Register File Loop Invariant Code Motion Example

checks if there is an available register source and copy register. To do this, the compiler
tirsts checks if either copy register is currently unused in the loop, and is not live exiting
the preheader block. Next it checks if either of the register source registers are live exiting
the preheader block. If there aren’t available registers, the optimization cannot be applied.

Next, the loop is analyzed for register usage. The compiler looks for registers that are
read, but are either never written (and thus loop invariant), or written only once, at the end
of the loop. If the register is written at the end of the loop, it cannot be live exiting the loop
because then the correct value must actually be in the register file and not a copy register. If
the loop has a function call in it, this optimization cannot be applied to any registers that are
caller save or scratch registers because the compiler must conservatively assume that they
are written in the called function. The compiler also tests each register to see if replacing its
usage with a copy register is feasible. Some usages of the register source registers cannot
be replaced with the copy registers. For example, RS2 can be used as the target of a jump,
but the copy registers cannot. From the set of registers that meet this criteria, the compiler
chooses the one that is read most frequently as it will provide the most benefit.

Once the compiler has chosen a register to move out of the loop, it inserts the two
instructions to copy the register’s value into the copy register in the preheader. Next it
replaces all the uses of the register value with the copy register. In order to do this, it keeps
track of whether or not RS1 or RS2 have the value of the register. The compiler scans each
block in the loop recursively. If it finds a read of the given register, it marks the appropriate
register source register as holding the register value. If it finds a use of a register source
register that is marked as holding the register value, the compiler replaces it with a use of
the copy register. If the compiler finds a read of a different register into RS1 or RS2, then
that register source register is marked as not holding the register value.

Figure 3.12 shows an example of this optimization. Parts (a) and (b) show the same
MIPS code as in the previous example, while part (c) shows the code after applying this
optimization. We have utilized the copy register to hold the value of r[4]. In order to do
this, we insert code before the loop to load the value of r[4] into RS1, and then copy this
value into the copy register CP1. All uses of the value of r[4] (used through either RS1 or
RS2 are then replaced with CP1. In this example, those uses are the add and subtract ALU

31

operations. We also replace the write of r[4] with a write of CP1 at the end of the loop.
This removes the register read instruction out of the loop. It also replaces one register file
write with an internal register write which uses less energy.

3.4.3 Instruction Scheduling

Because statically pipelined architectures achieve good performance by executing mul-
tiple pipeline effects in parallel, good instruction scheduling is vital. Our instruction
scheduler first schedules instructions locally in each basic block. To do this, the scheduler
starts by constructing a data dependence graph for the instructions in the block to represent
dependencies between instructions. Each instruction in the block corresponds to one node
in the data dependence graph. Edges represent different types of dependencies between
instructions.

There are true, or read after write (RAW) dependencies. There are also false depen-
dencies which are either write after read (WAR) or write after write (WAW) dependencies.
In addition to these data flow dependencies, we keep track of memory dependencies. A
memory store cannot be moved above a load or store of that same location. Because we
cannot always distinguish between different memory addresses, we must often assume
that memory instructions access the same locations. We are able to disambiguate between
memory references that use the same base register with different offsets, or different global
addresses.

Transfer of control dependencies must also be taken into account. An instruction cannot
be moved if it is a transfer of control, whether it’s a branch instruction at the end of the block
or a call instruction.

Figure 3.13 shows an example basic block along with a data dependence graph for that
block. The thicker, solid lines represent the true dependencies. For example, there is a true
dependence between instructions one and two because instruction one calculates the value
RS1 which is used in instruction two.

The thinner dashed lines represent the false dependence’s. For example, there is
an write after read (WAR) anti-dependence between instructions two and four because
instruction four writes the value RS1 which is used in instruction two. Also, there is a
write after write (WAW) output dependence between instructions six and nine since they
both write into the ALUR register.

There is one memory dependency between instructions two and five because we
cannot disambiguate the addresses and must assume that the store in instruction five
could overwrite the value loaded in instruction two. They are not shown in the diagram
for clarity, but there are also transfer of control dependencies between every instruction
and instruction eleven. This prevents the branch from moving up ahead of any other
instruction.

Once the data dependence graph is constructed, nodes are selected from it to be
scheduled. Choosing the nodes in the original order will always produce a correct
schedule, however it is not always the most efficient. It is more efficient to schedule longer
chains of instructions first as the longer chains form the critical path through the block.
Most instruction schedulers choose the longest chains by counting false dependencies
the same as true dependencies. However for the static pipeline, we have far more

32

1 RST = r[13];

2 LV = R[RS1];

3 FPUR = LV * CP1;
4 RST = r[11];

5 R[RS1] = FPUR;

6 ALUR = RS1 + CP1;
7 r[11] = ALUR;

8 RS1T = r[13];

9 ALUR = RS1 + CP1;
10 r[13] = ALUR;
11 PC = ALUR ! RS2, SEQ;

Figure 3.13: Data Dependence Graph

false dependencies than traditional architectures due to the use of internal registers for
prescribed purposes. Additionally, instruction schedulers for traditional architectures can
avoid false dependencies by renaming registers. With static pipelining, however, renaming
registers is much more difficult due to the restrictions placed upon the use of internal
registers.

To get around this problem, we attempt to ignore the false dependencies in choosing
the longest instruction chain. The scheduler looks at each node in the data dependence
graph and finds the one with no true dependencies that prevent it from being scheduled
with the longest chain of dependent instructions. We then pick that node to be scheduled
next and add any register it sets to a list of live registers. No node that writes one of the live
registers can be selected for scheduling. We also must recalculate any false dependencies
it has with unscheduled nodes that were originally before it, as these will change once the
selected node is scheduled first.

With this method, however, we can arrive at a situation where no nodes can be selected
for scheduling because they either have unmet dependencies, or would overwrite live
variables. When this happens, the scheduler forgoes attempting to schedule longest chains
tirst and simply schedules the instructions in the block in order. The scheduler is only able
to use the more advanced algorithm on approximately 28% of blocks, but since it improves
performance of those blocks, it was retained. A dynamic programming approach using
backtracking would be able to find a suitable schedule and attempt to schedule longest
chains first for all cases, however it would greatly increase compilation time.

33

RS1 = r[13];

LV = R[RS1]; RS1 = r[11];

FPUR = LV * CP1;

ALUR = RS1 + CP1; R[RS1] = FPUR; RS1=r[13];
ALUR = RS1+CP1; r{11] = ALUR;

PC = ALUR ! RS2, SEQ; r[13]=ALUR;

Figure 3.14: Scheduled Code

To schedule the nodes from the data dependency graph, we maintain a resource
reservation table. This structure is a two dimensional table where we construct our new
schedule. Each column represents one instruction type on the target machine, such as the
ALU operation, memory operation and so on. Each row represents one new instruction to
be scheduled together. Initially the resource reservation table is empty.

Each time we schedule a node, we start at the end of the table and scan backwards as
far as the dependencies will allow. Once we have reached a row in the table where one of
the elements has a dependency with the instruction we are scheduling we stop. We then
start scanning down the resource reservation table looking for an empty spot to put the
instruction. If the dependency that prevented us from going further in the table is an false
dependence or a transfer of control dependence, then we can start looking for a spot in the
row with the dependent instruction, otherwise we start in the next one.

As we scan down the resource reservation table, we look for a row that has an empty
slot in the column corresponding to the type of instruction that we are scheduling. We also
need to check if adding the instruction to that row will allow that row to be encoded with
one of the available templates. Once we find a suitable row in the resource reservation
table, we insert the instruction there and continue on to the next node. Once all nodes have
been scheduled into the resource reservation table, we replace the instructions in the block
with the scheduled ones in the resource reservation table. Figure 3.14 shows the code from
Figure 3.13 after scheduling has been completed.

After all of the blocks are initially scheduled, the compiler attempts to move instructions
from the top of each block into all of its predecessors. The algorithm for this cross block
scheduling optimization can be seen in Figures 3.15. This improves performance because
we only insert instruction effects into a predecessor block if it can be inserted into an existing
instruction. First, the block is examined to see if this is possible. If the block is the first block
of the function, the optimization is not attempted as it has no predecessors. Also if the block
has a predecessor that is more deeply nested in a loop, the optimization is not attempted
as it would increase energy usage to move instruction effects into a loop.

Once it has been determined that the block is a candidate for cross-block scheduling,
each instruction effect is considered in turn. If the effect is an instruction type that can cause
a run-time exception, or cause a stall it is not moved up since it may not be executed along
every code path leading to an exception or performance loss. These instructions include
floating point operations and memory accesses. Branches and sets of the SEQ register also
cannot be moved out of blocks as they must be in their original block for control flow to

34

function try_to_insert(e, b, insertions):
place = null
for each instruction i in b in reverse:
if e conflicts with any effect in i:
return place
if e conflicts with any effect to be inserted at i:
return place
if e can merge into i:
place = i
done

function cross_block_scheduling():
for each block b:
change = false
if b has no predecessors:
continue
if b has a predecessor that is more deeply nested than itself:
continue

for each instruction i:
for each instruction effect e:
if e is a long-running operation or branch:

continue

if e conflicts with any previous instructions in b:
continue

can_moveup = true

insertions = []

for each predecessor p of block b:
if e conflicts with an output of p:
can_moveup = false
break
insertion_point = try_to_insert(e, p, insertions)
if not insertion_point
can_moveup = false
break
else
add (e, insertion_point) into insertions

if can_moveup:
for (e, i) in insertions:
append effect e into instruction i
change = true
if change:
reschedule b
done

Figure 3.15: Cross Block Scheduling Algorithm

35

remain correct. The compiler also checks whether the instruction effect can be moved ahead
of all of the other effects in the block - that there is no dependency problem.

For each effect that meets these qualifications, the compiler looks at each predecessor
block. If the effect sets any register that is live exiting the predecessor block, the instruction
cannot be moved into it, and we move on to the next instruction effect. Next, the compiler
scans the predecessor blocks instructions looking to add in the given effect. If the effect can
be added to the instruction given the set of encoding templates, the instruction is marked as
being the point to append the effect. If an instruction has a dependency issue with the effect,
the process ends. If any instruction was marked as being the point to append the effect, the
effect is appended, otherwise the effort to move the instruction effect is abandoned.

If the instruction effect can be added into every predecessor block, then the changes
are committed, and we move on to the next instruction effect until done. If any effects were
able to be moved out, then the block is re-scheduled using the method described above. The
ability to schedule instruction effects across basic block boundaries significantly improves
performance and code size. Due to the way in which we expand instructions into pipeline
effects, basic blocks of statically pipelined code typically start with register file reads, and
sign extensions. Likewise they typically end with register file writes, memory operations
and branches. Also, until the cross-block scheduling is performed, it is rare to have internal
registers live exiting a basic block. For these reasons, there are often many opportunities
for the cross-block scheduling algorithm to compact the code.

3.5 Example

This section provides a complete example of the compilation process from source
code to assembly. The code produced at each stage is the actual code produced by the
compilation stage in question.

Figure 3.16(a) shows the C source code of a simple loop to add a value to every element
of an array. The first step in compiling this code for the static pipeline is to generate the
optimized MIPS code which can be seen in Figure 3.16(b). Here r [9] is used as a pointer to
the current element of the array, r [6] holds the value of the constant m, and r [5] has had
the value a + 400 loaded into it which is the last value of r[9] in the loop.

The next step is to expand the effects of the MIPS code into statically pipelined
instructions. The result of this step can be seen in Figure 3.16(c). Blank lines separate
instruction effects corresponding to different MIPS instructions. This increases the number
of instructions in the loop from five to nineteen.

Figure 3.17 shows the operation of the copy propagation optimization. On the left is
the code before the optimization, and on the right is the code after. This optimization is
applied three times in this loop. The first propagates the copy of LV into r[3] and then
into RS1. The use of RS1 is replaced with a use of LV in the sixth instruction of the loop.
Likewise copies of ALUR are propagated through registers in the register file and on into
source registers.

Figure 3.18 shows how dead assignments can be removed as a result of copy propaga-
tion. The lines in darker text on the left are now dead assignments. Because the use of the
registers calculated are no longer used, the instruction computing them are not needed. In

36

L9:

RS1 = r[9];
LV = R[RS11;
r[3] = LV;
for(i = 0; 1 < 100; i++) RS1 = r[3];
afi] +=m; RS2 = r[6];
(a) C Source Code ALUR = RS1 + RS2;
r[2] = ALUR;
RS1 = r[9];
RS2 = r[2];
R[RS1] = RS2;
L9:
r[3] = R[r[9]1]; SE = 4;
r[2] = r[3] + r[6]; RS1 = r[9];
RI[r[9]1] = r[2]; ALUR = RS1 + SE;
r[9] = r[9] + 4; r[9] = ALUR;
PC = r[9] ! r[5], L9;
SE = L9;
(b) MIPS Code TARG = PC + SE:
RS1 = r[9];
RS2 = r[5];

PC = RS1 ! RS2, TARG(L9);
(c) Expanded Statically Pipelined Code

Figure 3.16: Source And Initial Code Example

L9: L9:
RS1 = r[9]; RS1 = r[9];
LV = R[RS1]; LV = R[RS1];
ri3] = Lv; ri3] = Lv;
RS1 = r[3]; RS1 = r[3];
RS2 = r[6]: RS2 = r[6];
ALUR = RS1 + RS2; ALUR = LV + RS2;
r[2] = ALUR; r[2] = ALUR;
RS1 = r[9]; RS1 = r[9];
RS2 = r[2]; RS2 = r[2];
R[RS1] = RS2; R[RS1] = ALUR;
SE = 4; SE = 4;
RS1 = r[9]; RS1 = r[9];
ALUR = RS1 + SE; ALUR = RS1 + SE;
r[9] = ALUR; r[9] = ALUR;
SE = L9; SE = L9;
TARG = PC + SE; TARG = PC + SE;
RS1 = r[9]; RS1 = r[9];
RS2 = r[5]; RS2 = r[5];
PC = RS1 ! RS2, TARG(L9); PC = ALUR! RS2, TARG(L9);
(a) Before Copy Propagation (b) After Copy Propagation

Figure 3.17: Copy Propagation Example

37

L9: L9:

RS1 = r[9]; RS1 = r[9];

LV = R[RS1]; LV = R[RS1];

r[3] = LV;

RS1 = r[3];

RS2 = r[6]; RS2 = r[6];

ALUR = LV + RS2; ALUR = LV + RS2;

r[2] = ALUR;

RS1 = r[9]; RS1 = r[9];

RS2 = r[2];

R[RS1] = ALUR; R[RS1] = ALUR;

SE = 4; SE = 4;

RS1 = r[9]; RS1 = r[9];

ALUR = RS1 + SE; ALUR = RS1 + SE;

r[(9] = ALUR; r(9] = ALUR;

SE = L9; SE = L9;

TARG = PC + SE; TARG = PC + SE;

RS1 = r[9];

RS2 = r[5]; RS2 = r[5];

PC = ALUR ! RS2, TARG(L9); PC = ALUR ! RS2, TARG(L9);
(a) Before Dead Assignment Elimination (b) After Dead Assignment Elimination

Figure 3.18: Dead Assignment Elimination Example

the example, the reads into RS1 and RS2 are removed first which causes the two reads into
the register file to become dead.

The resulting code can be seen in 3.18(b). In addition to removing five instructions, we
have completely eliminated the use of two registers in the register file to hold intermediary
values. In a traditional pipeline, all data values circulate through the centralized register
file. This example demonstrates how static pipelining can avoid register file accesses by
giving the compiler access to internal registers.

Figure 3.19 shows the removal of redundant assignments. Because the MIPS code needs
to read a value from a register every time it needs it, it is common to repeatedly load the
same value. When generating statically pipelined code, however, the compiler can simply
retain a value in one of the internal registers. In Figure 3.19(a), the value of r[9] is read
into RS1 three times without the values changing between, so the compiler removes the last
two of them.

In VPO, copy propagation, dead assignment elimination and redundant assignment
elimination are all actually handled along with common sub-expression elimination, but
are separated here for clarity.

Figure 3.20 depicts how loop invariant code motion can move individual instruction
effects out of the loop. Because the branch target does not change, the two instructions
that calculate it can be moved out of the loop. Likewise, the constant value four does not
change, so it too can be moved out of the loop. This improves both performance and energy
usage. With traditional architectures, these computations are loop invariant, but can not
be moved out with compiler optimizations due to the fact that these computations cannot
be decoupled from the instructions that use them.

38

L9: L9:

RS1 = r[9]; RS1 = r[9];

LV = R[RS1]; LV = R[RS1];

RS2 = r[6]; RS2 = r[6];

ALUR = LV + RS2; ALUR = LV + RS2;
RS1 = r[9];

R[RS1] = ALUR; R[RS1] = ALUR;
SE = 4; SE = 4;

RS1 = r[9];

ALUR = RS1 + SE; ALUR = RS1 + SE;
r[9] = ALUR; r[91 = ALUR;

SE = LO; SE = L9;

TARG = PC + SE; TARG = PC + SE;
RS2 = r[5]; RS2 = r[5];

PC = ALUR ! RS2, TARG(L9); PC = ALUR ! RS2, TARG(L9);

(a) Before Redundant Assignment Removal (b) After Redundant Assignment Removal

Figure 3.19: Redundant Assignment Elimination Example

L9: SE = L9;
RS1 = r[9]; TARG = PC + SE;
LV = R[RS1]; SE = 4;
RS2 = r[6]; L9:
ALUR = LV + RS2; RS1 = r[9];
R[RS1] = ALUR; LV = R[RS1];
SE = 4; RS2 = r[6];
ALUR = RS1 + SE; ALUR = LV + RS2;
r[(9] = ALUR; R[RS1] = ALUR;
SE = L9; ALUR = RS1 + SE;
TARG = PC + SE; r[{9] = ALUR;
RS2 = r[5]; RS2 = r[5];
PC = ALUR ! RS2, TARG(L9); PC = ALUR ! RS2, TARG(L9);

(a) Before Code Motion (b) After Code Motion

Figure 3.20: Loop Invariant Code Motion Example

39

SE = L9;
SE = L9; TARG = PC + SE;
TARG = PC + SE; SE = 4;
SE = 4; RS1 = r[9];
LO: CP1 = RS1;
RS1 = r[9]; L9:
LV = R[RS1]; LV = R[CP1];
RS2 = r[6]; RS2 = r[6];
ALUR = LV + RS2; ALUR = LV + RS2;
R[RS1] = ALUR; R[CP1] = ALUR;
ALUR = RS1 + SE; ALUR = CP1 + SE;
r[9] = ALUR; CP1 = ALUR;
RS2 = r[5]; RS2 = r[5];
PC = ALUR ! RS2, TARG(L9); PC = ALUR ! RS2, TARG(L9);

(a) Before Register Code Motion (b) After Hoisting r[9]

Figure 3.21: Register Invariant Code Motion I

Figure 3.21 depicts the specialized loop invariant code motion pass targeting register
accesses can move further effects out of the loop. Recall that this optimization pulls register
reads out of loops and uses a copy register to store the value. Here the optimization is
performed on r [9]. The register is read into CP1, and its uses are replaced with CP1 as well.
Because r[9] is written at the end of the loop, that write is replaced with a write into CP1
instead.

Figure 3.22 shows a second application of the loop invariant code motion optimization
discussed above. Because we have a remaining copy register, and there are further register
reads in the loop, the optimization is applied again. Here it is applied on the register r [6].
It is hoisted out of the loop by assigning it to RS1 and then CP2. The use of the value is then
replaced by CP2. This optimization enables the standard loop optimization to then pull out
the read of r[5] due to the assignment of RS2 now being loop invariant. Between the two
applications of this transformation, the compiler is able to hoist three register reads and
one register write out of the loop which has a significant impact on the energy usage of this
loop kernel.

Figure 3.23 depicts the optimization pass that replaces the calculated branch target with
the value saved in SEQ at the top of the loop. The instruction that saves the next sequential
address at the start of the loop is inserted, and the loop branch is modified to jump to SEQ
instead of TARG. The two instructions that calculate the value of TARG are then eliminated
by the dead assignment elimination optimization.

Figure 3.24(a) shows the code thus far. The optimizations to this point have reduced the
original nineteen instructions in the loop to only six. Figure 3.24(b) shows the code after
scheduling is applied. This example also shows the branch being split into two instructions,
which happens right before scheduling. First the NPC status register is set to specify the
type and destination of the branch, and then the comparison is done. This is because,
as discussed in Chapter 2, branches must be specified ahead of time to avoid performing
branch predictions on every instruction. This transformation is done just before scheduling

40

SE = L9;

SE = L9; TARG = PC + SE;
TARG = PC + SE; SE = 4;
SE = 4; RS1 = r[9];
RS1 = r[9]; CP1 = RS1;
CP1 = RS1; RS1 = r[6];

LO: CP2 = RS1;
LV = M[CP1]; RS2 = r[5];
RS2 = r[6]; LO:
ALUR = LV + RS2; LV = M[CP1];
M[CP1] = ALUR; ALUR = LV + CP2;
ALUR = CP1 + SE; M[CP1] = ALUR;
CP1 = ALUR; ALUR = CP1 + SE;
RS2 = r[5]; CP1 = ALUR;
PC = ALUR ! RS2, TARG(L9); PC = ALUR ! RS2, TARG(L9);

(a) Before Hoisting r[6] and r[5] (b) After Hoisting r[6] and r[5]

Figure 3.22: Register Invariant Code Motion II

SE = 4;
SE = L9; ! .
TARG = PC + SE; RSL = ri9];

CP1 = RSI;
SE = 4 RS1 = r[6];
RS1 = r[9]; - '

CP2 = RSI;
CP1 = RS1;

RS2 = r[5];
RS1 = rl6l; SEQ = PC + 1;
CP2 = RS1; Lo: - !

ool LV = M[CP1];
- mMicPil; ALUR = LV + CP2;

M[CP1] = ALUR;

ALUR = CP1 + SE;

CP1 = ALUR;

PC = ALUR ! RS2, SEQ (L9);

ALUR = LV + CP2;

M[CP1] = ALUR;

ALUR = CP1 + SE;

CP1 = ALUR;

PC = ALUR ! RS2,TARG (L9);

(a) Before Using SEQ REgister

(b) After Using SEQ Register

Figure 3.23: Sequential Address Invariant Code Motion Example

41

SE = 4;

RS1 = r[9];
CP1 = RS1;
RS1 = r[6]; SE = 4; RS1 = r[9];
CP2 = RS1; CP1 = RS1; RS1 = r[6];
RS2 = r[5]; CP2 = RS1; RS2 = r[5]; SEQ = PC + 1;
SEQ = PC + 1; L9:
L9: ALUR = CP1 + SE; LV = M[CP1];
LV = M[CP1]; ALUR = LV + CP2; CP1 = ALUR; NPC = b SEQ(L9);
ALUR = LV + CP2; PC = ALUR ! RS2, NPC; M[CP1] = ALUR;

M[CP1] = ALUR;

ALUR = CP1 + SE; . .
CP1 = ALUR: (1) After Instruction Scheduling

PC = ALUR ! RS2, SEQ(L9);
(a) Before Scheduling

Figure 3.24: Scheduling Example

Table 3.1: Example Loop Results

Metric MIPS | Static Pipeline
Instructions 5 3
ALU Operations 5 3
Register Reads 8 0
Register Writes 3 0
Branch Calculations 1 0
Sign Extensions 2 0

so as to have the previous optimizations and analyses not have to know that branches are
done in multiple instructions.

The scheduler is able to compress the six instructions in the loop down to only three. In
this case it schedules the second write to ALUR before the first one. The ability to schedule
across false dependency boundaries enables the compiler to produce a better schedule.
The instructions before the loop are also shown scheduled, but in the actual code, they are
merged with existing instructions in the block before the loop.

Table 3.1 shows a comparison of the MIPS code for this example and the code produced
by the statically pipelined compiler. The code for the static pipeline improved upon the
performance of the MIPS code by reducing the number of instructions in the loop from
five to three. It also has eliminated all accesses to the register file inside the loop. Because
of the relatively high energy cost of register accesses, this should result in substantial energy
savings. The statically pipelined code also reduced the number of ALU operations by not
adding zero when calculating a memory address, and eliminated the branch calculations
and sign extensions.

42

CHAPTER 4

EVALUATION

This chapter presents an experimental evaluation of the statically pipelined architecture
described in this dissertation. First we discuss the experimental setup used for the
evaluation. Next we will present the results including those for performance, code size and
register accesses. Lastly we will estimate the energy savings achieved by static pipelining.

4.1 Experimental Setup

We use 15 benchmarks from the MiBench benchmark suite [11], which is geared es-
pecially for embedded applications. This benchmark suite includes the following different
categories: automotive, consumer, network, office, security and telecomm. The benchmarks used
are shown in Table 4.1. For our experiments we used at least two benchmarks from each
category.

We extended the GNU assembler to assemble statically pipelined instructions and
implemented a simulator based on the SimpleScalar suite [1]. In order to avoid having
to compile all of the standard C library and system code, we allow statically pipelined code
to call functions compiled for the MIPS. As described earlier, a status bit is used to indicate
whether it is a MIPS or statically pipelined instruction. After fetching an instruction, the
simulator checks this bit and handles the instruction accordingly. On a mode change, the
simulator will also drain the pipeline.

For all benchmarks, when compiled for the static pipeline, over 90% of the instructions
executed are statically pipelined ones, with the remaining MIPS instructions coming from

Table 4.1: Benchmarks Used

Category Benchmarks
automotive | bitcount, gsort, susan
consumer | jpeg, tiff

network dikstra, patricia
office ispell, stringsearch
security blowfish, rijndael, sha

telecom adpcm, CRC32, FFT

43

calls to standard library routines such as printf. All cycles and register accesses are
counted towards the results whether they come from the MIPS library code or the statically
pipelined code. Were all the library code compiled for the static pipeline as well, the results
would likely improve as we would not need to flush on a mode change, and also we would
have the energy saving benefits applied to more of the code.

For the MIPS baseline, the programs were compiled with the original VPO MIPS port
with all optimizations enabled and run through the same simulator, as it is also capable
of simulating MIPS code. We extended the simulator to include branch prediction with
a simple bimodal branch predictor with 256 two-bit saturating counters, and a 256-entry
branch target buffer. The branch target buffer is only used for MIPS code as it is not needed
for the static pipeline. The simulator was also extended to include level one data and
instruction caches. These caches were configured to have 256 lines of 32 bytes each and
are direct-mapped.

Each of the following graphs represent the ratio between static pipelining code to MIPS
code. This is done because the different benchmarks have drastically different running
times. So a ratio of 1.0 means that the value was the same for the MIPS and static pipeline.
A ratio less than 1.0 means that the static pipeline has reduced the value, while a ratio over
1.0 means that the static pipeline has increased the value.

Each bar represents a different simulation, with some benchmarks having several
simulations. For example the security benchmarks such as blowfish have an encode and
decode process. For the averages, the ratios are averaged rather than the raw numbers.
This is to weight each benchmark evenly rather than giving greater weight to those that
run longer. When a given benchmark had more than one simulation associated with it,
we averaged the figures for all of its simulations and then took that as the figure for that
benchmark. We did this averaging to avoid weighing benchmarks with multiple runs more
heavily.

4.2 Results

Figure 4.1 shows the simulation results for execution cycles. Many of the benchmarks in
MiBench are dominated by fairly tight loops. This means that the performance difference is
largely determined by how well the static pipeline compiler does on that one loop. That is
the primary reason for the relatively large deviation among benchmarks. For example, our
compiler does quite well with the main loops in FFT and the tiff color conversion programs
which leads to the substantial speedups. On the other hand, bitcount and adpcm has more
instructions in the main loop leading to execution time increases for those benchmarks. On
average, the statically pipelined code performed just slightly better than the MIPS code.

Figure 4.2 shows the compiled code size for the benchmarks. Some of the different
simulations under the same benchmark, such as susan, have the same code size because the
compiled code is the same while others, such as jpeg, have small differences due to having
different source files for each program. The static pipeline compiler produces nearly the
same code sizes as the MIPS compiler with an increase of 2.8% on average.

Figure 4.3 shows the simulation results for register file reads. Because the static pipeline
is able to use values in internal registers directly, it is often able to bypass the centralized

44

Benchmark

Figure 4.1: Execution Cycles

1.4

1 1 1 1 1
o - @ © < o o
— o o o o

$919AD uoinoexg

1.2

1.1

1.15

1.05 -

SuoIoNJISU| 1Bl

Benchmark

Figure 4.2: Code Size
45

0.95 |-
0.9
0.85

045 T
04 |- —
8 0.35 -
[
(5}
o
<@
i 0.3 i
5]
@
(o))
(0]
o 0.25 4
0.2 —
0.15 o Py —
% %o, s, o o 00, 75757 7, Y 9. %, S0 %, %, %, %, 5 0%, %, AN ’°)~O’$’ T
Q2 % W 0 Qo K S % U I N T, T, g o % %, 0 0 ", "y o
o 19% ‘@O \OO Oéo G,)O Y ‘96$ 6@, QO’,Q > % ‘S\@Q /@6 /‘p/} SKOQKQ /bo /’7.0,”0% /)Ls 2 \9@
% "On, O, Z Q Ve
00,50% ”o,@ % % 2 % %Oo /)OOQOOO?OOO, CARS
% % % e
Benchmark

Figure 4.3: Register File Reads

register file as discussed in Chapter 3. For this reason, we are able to remove nearly 70%
of the register file reads. For the MIPS baseline pipeline, we only count register file reads
when the instruction actually references the register file.

Figure 4.4 shows the simulation results for register file writes. Like register reads,
the compiler is able to remove a substantial number of these accesses, around 63% on
average. As in the example in Section 3.5, some loops had nearly all of the register accesses
removed such as rijndael and CRC32. Because the register file is a fairly large structure that
is frequently accessed, these register access reductions should result in substantial energy
savings.

Figure 4.5 shows the simulation results for internal writes. For the MIPS programs,
these internal accesses are the number of accesses to the pipeline registers. Because there
are four such registers, and they are read and written every cycle, this figure is simply the
number of cycles multiplied by four. For the static pipeline, the internal accesses refer to
the internal registers. Because the static pipelining code explicitly instructs the architecture
when to access an internal register, we are able to remove a great deal of these accesses, over
60% on average. Also note that the MIPS pipeline registers each hold many different values,
and so are significantly larger than the internal registers of a static pipeline.

Figure 4.6 shows the simulation results for internal reads. It should be noted that reads
of the statically pipelined internal registers or the MIPS pipeline registers do not actually
use any energy. They are each single registers, so there is no logic needed to index them,
as there is for the register file reads. They are just included here for completeness.

46

Benchmark

Figure 4.4: Register File Writes

0.6

02 |

1 1
< «
o IS

0.55

05 |
0.45
0.35 |
0.25 |-
0.15 |
0.1

S8l 9|l Jelsibay

0.5

1 1 1 1 1 1 1 1 1
oo} O < [aV] < o0} o < Al (a2}
¥ 3 ¥ ¥ 5 @ o a o g
o o o o o o o o

sal JeisiBay [eulsiu

Benchmark
Figure 4.5: Internal Register Writes

47

Benchmark
Figure 4.6: Internal Register Reads

0.56

Benchmark

Figure 4.7: Branch Predictions
48

I
N
[}

04

I
L
[}

0.54
0.52 -
0.48 |-
0.46 -
0.44
0.42
0.38

0.3

0.25
0.15
0.1

speay Jajsibay [eusaiu)| suonoIpald youeig

0.05 |

12 T

o 08| -

c

Ke]

5

3

3 06 i

(@]

3

(=2

3

F o4 -
0.2 -

Benchmark

Figure 4.8: Branch Target Calculations

Figure 4.7 shows the simulation results for branch predictions. Recall from Chapter 2
that the static pipeline specifies when a conditional branch will occur one cycle ahead of
time. This eliminates the need to predict branches except when the instruction actually
is a conditional branch. This results in a substantial decrease in the number of branch
prediction buffer accesses, over 86% on average.

Figure 4.8 shows the simulation results for branch target calculations. Because the static
pipeline has the ability to avoid calculating branch targets for innermost loops by saving the
next sequential address at the top of the loop, and by hoisting other branch target address
calculations out of loops as invariant, we are able to reduce the number of branch target
calculations substantially at over 40%. Notice that some benchmarks, such as the tiff color
conversion benchmarks or sha, have had nearly all of the branch calculations removed by
the compiler. This is due to the fact that the kernel loops have no branch target calculations
in them any longer.

Table 4.2 summarizes the average results from the graphs above. As can be seen, we
have significantly reduced the number of register file accesses, internal register accesses,
branch predictions, and branch target address calculations. At the same time, we have
slightly decreased the number of execution cycles, with a small increase to code size.

49

Table 4.2: Summary of Results

Metric Average Static Pipeline to MIPS Ratio
Execution Cycles 0.999
Code Size 1.028
Register Reads 0.301
Register Writes 0.369
Internal Reads 0.474
Internal Writes 0.403
Branch Predictions 0.135
Target Calculations 0.590

Table 4.3: Pipeline Component Relative Power

Component Relative Access Power
Level 1 Caches 1.66
Branch Prediction Buffer 0.74
Branch Target Buffer 297
Register File Access 1.00
Arithmetic Logic Unit 411
Floating Point Unit 12.60
Internal Register Writes 0.10

4.3 Processor Energy Estimation

This section presents an estimation of the processor energy savings achieved by the
static pipelining approach. This estimate uses the simulated counts of events such as
register file accesses, branch predictions and ALU operations along with estimations of
how much power is consumed by each event.

The SRAMs within the pipeline have been modelled using CACTI[30]. Other com-
ponents have been synthesized for a 65nm process, then simulated at the netlist level to
determine average case activation power. We have normalized the power per component to
a 32-entry dual-ported register file read, because the power per component are dependent
on process technology and other implementation dependent issues. The ratios between
component power are also somewhat dependent on process technology, however these
differences should not have a qualitative impact on the final estimates. The resulting
total energy estimate is a linear combination of the number of activations and the power
attributions per component. The relative power per activation we attribute to each
component is given in Table 4.3.

Figure 4.9 shows the results of this analysis. On average, static pipelining reduces
processor energy usage by 45%. This savings comes primarily from the reduced register
file accesses, branch prediction table accesses and the fact that we do not need a BTB.
Of course these results are also affected by the relative running time of the benchmark

50

08 T

0.6 - i

Energy Usage
o
(6)]
T
1

04 - -
0.3 e
0.2
G 9 S S, B, R U G U G U s, Sp. S Op Or 7 G S5, b, B0 0 Co)
%y, %0 %, %05, %5, 00, s aﬁ%@;/@%é?o@"s/,o ° ’)%’)%% %0, %, % B0 e,
D e P 2o . S O %y S % %o b5 %5000 S 2 o, T, %0 U,
7 N 0 00, 0%, 0, e, % 8, O R S T
00/6 3 o@,. % % % QOO /)oo OOO’OOO’ AR
% % % e
Benchmark

Figure 4.9: Estimated Energy Usage

as that has a direct effect on instruction cache usage and static power consumption. This
estimation does not take into account certain other areas of energy savings such as simpler
hazard detection logic or the fact that MIPS pipeline registers are much larger than the
static pipeline’s internal registers.

While this is only an estimation, it was done conservatively and suggests significant
energy savings. As discussed in Chapter 6, we intend to more accurately estimate energy
benefits by doing full pipeline netlist simulations for both the MIPS and static pipelines.

51

CHAPTER 5

RELATED WORK

There has been much research focused on reducing power consumption in general purpose
processors. First we will discuss instruction set architectures that reduce hardware
complexity. Second we will present micro-architectural strategies for reducing energy
usage. Lastly we will examine compilation and encoding techniques for improving energy
efficiency.

5.1 Instruction Set Architectures

Instruction set architectures have a great impact on the performance and energy
efficiency of the underlying micro-architecture. Many ISAs have been proposed over the
years that have focused on improving performance, or energy-efficiency. This section will
describe some of these ISAs.

Computers in the late 1960s and 1970s used complex instructions that were imple-
mented in terms of low-level instructions. These are called CISC instructions and micro-
instructions respectively. Reduced instruction set computers (RISCs) [22] were inspired
by micro-instructions in that the instructions were simple and took a small, predictable
amount of time to execute. RISC computers were also simpler to implement and took
advantage of pipelining to increase performance.

Very Long Instruction Word (VLIW) architectures [8] were designed to provide in-
struction level parallelism with simpler hardware. Rather than relying on hardware to
tigure out which instructions could be executed in parallel, VLIW architectures specify this
information explicitly. Explicitly Parallel Instruction Computing (EPIC) [26] architectures
were developed as an extension to VLIW that gave the compiler even more control over
execution. Transport Triggered Architectures (TTAs) [6] are similar to VLIW architectures,
except that they allow values to be explicitly passed between the ports of functional units.
This removes the necessity of routing all values through large, multi-ported register files.
By removing many register reads and writes, and decreasing the number of register ports,
TTAs save energy while still allowing high performance as in VLIW.

No Instruction Set Computer (NISC) architectures [23] have no fixed instruction set that
bridges the gap between software and the micro-architecture. Instead the compiler gener-
ates control signals directly. This allows for hardware/software co-design and improved
performance. Coarse-Grained Reconfigurable Architectures (CGRAs) [20] consist of a grid

52

of functional units and register files. Programs are mapped onto the grid by the compiler,
which has a great deal of flexibility in scheduling. The FlexCore processor [31] also exposes
datapath elements at the architectural level. The design features a flexible datapath with
an instruction decoder that is reconfigured dynamically at runtime.

These architectures rely on multiple functional units and large register files to improve
performance at the expense of a significant increase in code size. In contrast, static
pipelining focuses on improving energy usage without adversely affecting performance
or code size.

Several instruction set architectures have focused on providing both 32-bit and 16-bit
instructions in order to reduce code size and fetch energy. Examples of such architectures
are Arm/Thumb [10] and MIPS16 [15]. With these architectures, there is a trade-off
between the small code size of the 16-bit instructions and the high performance of the 32-bit
instructions. The task of choosing between them falls to the compiler.

One important axis for comparison between instruction set architectures (ISAs) is the
amount of details that are encoded in the instructions. ISAs that provide more information
have more complications in the compiler, but fewer in the micro-architecture. Less
complexity in the micro-architecture implies more energy efficiency. On the other hand,
more information in the instruction set often increases code size and the energy needed to
fetch instructions. Static pipelining is able to provide detailed instructions that allow for
simpler hardware without significantly increasing the code size.

5.2 Micro-Architecture

There has been much research that attempts to decrease power consumption through
micro-architectural modifications. In most architectures, the primary way of communi-
cating information between instructions is through the register file, creating an energy
bottleneck in this structure. Because of this, many of the techniques we will examine focus
on the register file.

Tseng and Asanovic [32] present several ways to reduce the power consumption of
register files. Precise read control checks to see whether the register file operands are needed
for the instruction before reading them. Bypass RO avoids actually reading register zero, and
just passes a literal zero to the next pipeline stage. Read Caching is based on the observation
that subsequent instructions will often read the same registers. When a register is read,
they cache the value. If it is read the next cycle, they read the small register instead of
the large register file. Bypass Skip, avoids reading operands from the register file when the
result would come from forwarding anyway. Park et. al. [21] build on Tseng’s work on
bypass skip. In this work, they modify a compiler to schedule instructions in such a way as
to make more values come from forwarding. By doing this, they aim to avoid even more
register reads. Static pipelining can remove these register file accesses without the need for
special hardware logic which negates some of the benefit.

Zyuban and Kogge [35] argue that the register file is a serious energy bottleneck and
that the way to alleviate this is to split the register file into multiple ones. In order to do
this, they dispatch instructions to clusters based on which registers it references. These

53

clusters each have their own register file with a subset of the total registers. This will cut
down the size of each register file and also the number of ports.

Kalambur and Irwin [14] make the case for using a CISC-style memory-register ad-
dressing mode for an embedded architecture. The idea is to use instructions that read a
register and a memory location and write to a register to cut down on register file power
consumption. Additionally it will result in smaller code size which will reduce power
dissipation in the instruction cache as well. However, this technique will decrease the
frequency at which the processor can run.

Sami et. al. [24] present a way to save register file power by exploiting the fact that
forwarding leads to useless reads and writes. They identify these wasteful reads and writes
statically in the compiler and set bits in the instructions to signify that these accesses should
not be done. They target VLIW architectures where register file power is an even greater
concern than in traditional processors due to the increased number of register ports. Static
pipelining achieves this benefit without the need to check if a register file access has been
disabled.

Sassone et. al. [25] present a technique to improve processor efficiency by optimizing
sequences of instructions called strands. A strand is a set of instructions that has some
number of inputs and only one output. The key idea here is that if a strand is treated as
one instruction, then the intermediate results do not need to be written to the register file.
They modify a compiler to identify strands, schedule them together and tag them. When
a strand is fetched, it is placed in a strand accumulation buffer until the whole strand is
there. They then dispatch it as a single instruction where it is executed on a multi-cycle
ALU which cycles its outputs back to its inputs.

Scott et. al. [27] present details of the Motorola MA@Core architecture. They use 16-bit
instructions on a 32-bit datapath. The ISA is a load-store architecture which also includes
predication and special doze, wait and stop instructions to facilitate power management.

Yang and Orailoglu [34] present a technique to eliminate the wastefulness of accessing
the branch predictor every cycle. They do this by statically calculating the length of each
basic block in order to know which instructions need branch prediction. When the branch
predictor is not needed, they don’t access the it and also put the tables in a drowsy mode
and wake them up before being needed. This technique does require a counter to keep
track of the position within a block, which uses some energy:.

Davidson and Whalley [7] present a technique for reducing the cost of branches by
decoupling the calculation of branch targets from the branch operations. The branch
addresses are stored in special branch registers. This reduces branch stalls because the
branch address is calculated before the actual transfer of control. Also, because branch
targets are almost always constant, these calculations can be moved out of loops. Static
pipelining implements a similar concept, but at a lower level instruction set.

Mathew et. al. [19] developed a processor to perform perception algorithms with low
power consumption. Their design aims to be a middle ground between an application-
specific and general-purpose processor This is done by allowing the compiler more control
over movement of data, clock gating and looping. The compiler also controls the use of a
scratch-pad memory in lieu of a cache.

Canal et. al. [4] have presented a technique for reducing power consumption in many
parts of a pipeline. The technique is based on the observation that, while most datapaths

54

are capable of dealing with 32 or more bits at a time, frequently most of these are not
significant. For calculations such as additions, they only operate on the significant bytes.
For reading values, they store the number of significant bytes along with each value to
reduce the number of bytes accessed.

Hiraki et. al. [13] present a pipeline design that reduces energy by keeping a loop
buffer of decoded instructions. When encountering a special begin loop instruction, the
processor begins to fill the buffer with decoded instructions while doing the first iteration
and sets a loop counter to the number of loop iterations. Subsequent iterations need not
be fetched from the instruction cache or decoded until the counter runs out at which point
the processor begins fetching normally again.

Shimada et. al. [29] present an alternative to dynamic voltage scaling. The reason
for pipelining is to increase the clock, but employing pipelining, and then reducing the
clock is counterproductive. They propose a pipeline where stages are unified when the
frequency is decreased. This reduces power by gating pipeline registers and also reduces
branch penalties. The pipeline stages are combined by simply passing the control signals
between stages instead of through the latched pipeline registers.

Most of these micro-architectural techniques aim to reduce energy usage by removing
energy waste in some portion of the pipeline. Static pipelining achieves most of these
results, and more, by allowing the compiler to explicitly instruct the actions of the hardware
at a low level. This has the benefit that the micro-architecture doesn’t need special logic to
look for energy saving opportunities, which uses energy in itself.

5.3 Compilation

There has been much research on encoding and compilation techniques for embedded
systems, most of which have been aimed at reducing code size. This is an important
goal because it reduces the size of program memory and has a positive impact on energy
due to reduced demand on the instruction cache, though energy may also be consumed
decompressing the instructions. There has also been some work, however, on compiler
and encoding techniques aimed specifically at reducing energy usage. We discuss some of
these techniques in this section.

Cheng and Tyson [5] present a way to encode instructions efficiently. It uses a
programmable decoder to encode an application-specific, 16-bit instruction set for a
general-purpose processor. This work profiles instructions used in an application in order
to devise the specific instruction set to use. This approach allows for higher code-density
and less power consumption without sacrificing performance.

Hines et. al. [12] present a technique for reducing program size, power consumption
and execution time by storing commonly used instructions in an instruction register file.
They allow instructions to reference multiple entries in the instruction register file. They
modified a compiler so that it can use heuristics and a greedy algorithm to pack instructions
into the IRF.

Woo et. al. [33] present a method for encoding instructions so as to reduce fetch power
consumption by minimizing the hamming distance (the number of bits that differ) between
successive instructions. First they rename registers so that the register fields have minimum

55

switching. Next they set unused portions of instructions to match the bits of adjacent
instructions. Lastly they encode the opcodes in such a way as to minimize switching
between successive opcodes.

Lee et. al. [17] present another work that focuses on decreasing the fetch power by
minimizing the switching between successive instructions. However this one focuses on
rearranging instructions rather than re-encoding them. They modify a VLIW compiler
in order to schedule instructions to minimize the hamming distance between subsequent
instructions. They modify the scheduler to rearrange effects in instructions (horizontal)
and instructions within a sequence (vertical).

Ayala et. al. [2] present a way to reduce register file power consumption by having the
compiler power down sections of the register file that are not needed. If the compiler sees
a set of registers is inactive for a period of time, it can put them into a drowsy state which
uses less power, but retains the values. This is accomplished with a new instruction that
specifies which registers should be drowsy.

56

CHAPTER 6

FUTURE WORK

This chapter describes some potential avenues for future exploration on the topic of static
pipelining. We discuss the goal of building a physical implementation of a statically
pipelined processor, a few further optimizations and refinements that could be imple-
mented for the architecture and compiler, as well as applying the idea of static pipelining
to higher performance architectures.

6.1 Physical Implementation

As discussed in Chapter Four, our current estimates on energy savings are only
estimates. While our results were estimated conservatively, and are still significant, it
would increase the strength of this work to have more accurate results. Our current
estimates are based on counting the number of times different events happen in the micro-
architecture and estimating the energy costs of each event. This method does not allow us
to take into account other areas of energy savings such as the fact that we no longer need to
do forwarding and that hazard detection is much simpler. In order to evaluate the energy
saved from these sources, we plan to construct a physical implementation using a hardware
design language such as Verilog or VHDL.

A physical implementation would also answer the question, as discussed in Section
2.2 of whether or not the decoding of instructions should be done as part of either the
fetch or execute stages, and how much, if any, it would reduce the clock rate. Having
a physical implementation would also allow us to measure the area and timing of the
processor accurately.

6.2 Additional Refinements

The software pipelining compiler optimization could be applied to further improve the
performance of statically pipelined code. This optimization is a technique used to exploit
instruction-level parallelism in loops [28]. Loops whose iterations operate on independent
values, typically in arrays, provide opportunities for increased parallelism. Software
pipelining overlaps the execution of multiple iterations and schedules instructions in order
to allow the micro-architecture to take advantage of this parallelism. Software pipelining
would have little benefit for the baseline MIPS, except when long latency operations, such

57

as multiply and divide, are used. However, for a statically pipelined machine, software
pipelining could be applied in order to schedule innermost loops more efficiently. Software
pipelining, however, can also have a negative effect on code size.

In the statically pipelined architecture, we encode instructions in order to attain
reasonable code size, however this does have a negative impact on performance. In
order to compromise these conflicting requirements, we could allow both 32-bit and 64-
bit instructions in different situations. Like the Thumb2 instruction set that is a part of the
ARM architecture [18], we would use the 64-bit instructions in inner-most loops, where
performance is paramount, and the 32-bit instructions elsewhere to retain most of the code
size benefits of the smaller instructions.

6.3 Static Pipelining for High Performance

The last area of future work is the possibility of applying the concept of static pipelining
to higher performance processors. These machines have less of an emphasis on power
consumption, so the decreased energy usage of static pipelining may not be quite as
important. However, the limiting factor for increasing the clock rate for current high
performance processors is the heat density of the chip. The simplified datapath of statically
pipelined processor, along with reduced switching in registers may help to ameliorate this
problem.

The design of a high performance, statically pipelined processor would likely include
more internal registers, along with more functional units. This would mean that the
instructions would have additional different types of effects, possibly leading to an issue
with code size, though larger code sizes are generally less of an issue with general purpose
processors than with embedded ones.

58

CHAPTER 7

CONCLUSIONS

Mobile computers such as smart phones and tablets are booming in popularity, and will
likely supplant traditional desktop and laptop computers as the primary way in which most
people use computers. Due to this change, the already important problem of decreasing
power consumption in embedded processors has become vital. Additionally, more and
more complex applications are being written for these platforms which require a greater
degree of performance.

Instruction pipelining is a great technique for increasing the performance of micro-
processors. As we have shown, however, traditional dynamic pipelining of instructions
at run-time can be quite wasteful with regards to energy usage. This is primarily caused
by unnecessary register file accesses, repeatedly calculating invariant values in loops along
with the overhead of maintaining the pipeline state.

This dissertation has introduced an alternative way to implement instruction pipelin-
ing, statically at compile-time. We have designed a statically pipelined micro-architecture
and instruction set. The instruction set architecture is different than most existing architec-
tures in that it exposes the details of the micro-architecture to the compiler. We have also
shown how these additional details can be efficiently encoded in 32-bits.

This dissertation next discussed the problem of compiling for the statically pipelined
architecture. We showed how the compiler produces code by breaking traditional in-
structions into their individual pipeline stages. Due to the differences between the
statically pipelined architecture and more traditional architectures, several code generation
problems had to be addressed in this effort.

We then discussed how conventional compiler optimizations can be applied to statically
pipelined code. Because the instruction set gives the compiler more access to the internal
workings of the processor, these optimizations can achieve affects that are not possible for
traditional architectures. We then discussed several optimizations targeting the statically
pipelined architecture specifically including loop invariant code motion optimizations and
instruction scheduling.

We then performed an experimental evaluation of static pipelining by compiling and
simulating 15 MiBench benchmarks for the dynamically pipelined MIPS architecture
and our statically pipelined architecture. We demonstrated that static pipelining can
match and even exceed the performance of dynamic pipelining, significantly reduce the
number of register file accesses, branch predictions and branch target calculations, and not

59

significantly increase code size. We then performed a conservative estimation of the energy
savings of static pipelining that indicate static pipelining would reduce energy usage by
45%. These results are conservative given the limitations of our energy model and should
improve with more complete evaluation.

Dynamically pipelined, RISC architectures were developed in the 1980s at a time when
power consumption was not as important as it is today. The general-purpose embedded
processors powering today’s mobile devices are based on largely this same architecture. We
have shown that dynamic pipelining has a number of inefficiencies that can be alleviated
by moving the pipelining decisions from being done dynamically in hardware to statically
in software. The biggest challenge in doing so is developing a compiler that can perform
efficient code generation for such a target. This dissertation shows that a compiler can
indeed manage lower level tasks like forwarding, branch prediction and register accesses
more efficiently than hardware can. By re-examining the boundary between hardware and
software, we can build more efficient processors for the mobile age.

60

REFERENCES

[1] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An Infrastructure for Computer
System Modeling. Computer, 35(2):59-67, 2002.

[2] J.L. Ayala, M. Lopez-Vallejo, A. Veidenbaum, and C.A. Lopez. Energy aware register
file implementation through instruction predecode. 2003.

[3] M.E. Benitez and J.W. Davidson. A Portable Global Optimizer and Linker. ACM
SIGPLAN Notices, 23(7):329-338, 1988.

[4] R. Canal, A. Gonzdlez, and J.E. Smith. Very low power pipelines using significance
compression. In Proceedings of the 33rd annual ACM/IEEE international symposium on
Microarchitecture, page 190. ACM, 2000.

[5] AC Cheng and GS Tyson. An energy efficient instruction set synthesis framework for
low power embedded system designs. IEEE Transactions on Computers, 54(6):698-713,
2005.

[6] H. Corporaal and M. Arnold. Using transport triggered architectures for embedded
p g p 88
processor design. Integrated Computer-Aided Engineering, 5(1):19-38, 1998.

[7] J.W. Davidson and D.B. Whalley. Reducing the cost of branches by using registers.
In Proceedings of the 17th annual international symposium on Computer Architecture, page
191. ACM, 1990.

[8] J.A. Fisher. Very long instruction word architectures and the ELI-512. In Proceedings of
the 10th annual international symposium on Computer architecture, pages 140-150. ACM,
1983.

[9] C.W. Fraser. A retargetable compiler for ansi c. ACM Sigplan Notices, 26(10):29-43,
1991.

[10] L. Goudge and S. Segars. Thumb: reducing the cost of 32-bit RISC performance in
portable and consumer applications. In Compcon’96. Technologies for the Information
Superhighway’Digest of Papers, pages 176-181. IEEE, 2002.

[11] M.R. Guthaus, J.S. Ringenberg, D. Ernst, TM. Austin, T. Mudge, and R.B. Brown.
MiBench: A Free, Commercially Representative Embedded Benchmark Suite. In
Workload Characterization, 2001. WWC-4. 2001 IEEE International Workshop on, pages 3—
14. IEEE, 2002.

61

[12] S.Hines,]. Green, G. Tyson, and D. Whalley. Improving program efficiency by packing
instructions into registers. In Proceedings of the 32nd annual international symposium on
Computer Architecture, pages 260-271. IEEE Computer Society, 2005.

[13] M. Hiraki, R. Bajwa, H. Kojima, D. Gorny, K. Nitta, A. Shridhar, K. Sasaki, and K. Seki.
Stage-skip pipeline: A low power processor architecture using a decoded instruction
buffer. In Proceedings of the 1996 international symposium on Low power electronics and
design, pages 353-358. IEEE Press, 1996.

[14] Atul Kalambur and Mary Jane Irwin. An extended addressing mode for low power.
In ISLPED '97: Proceedings of the 1997 international symposium on Low power electronics
and design, pages 208-213, New York, NY, USA, 1997. ACM.

[15] KD Kissell. MIPS16: High-density MIPS for the Embedded Market. In Salon des
solutions informatiques temps réel, pages 559-571, 1997.

[16] J.G. Koomey. Growth in data center electricity use 2005 to 2010. Retrieved October,
9:2011, 2011.

[17] Chingren Lee, Jenq Kuen Lee, Tingting Hwang, and Shi-Chun Tsai. ~Compiler
optimization on vliw instruction scheduling for low power. ACM Trans. Des. Autom.
Electron. Syst., 8(2):252-268, 2003.

[18] ARM Ltd. Arm thumb-2 core technology. http://infocenter.arm.com /help/index.jsp?topic=
Jcom.arm.doc.dui0471c /CHDFEDDB.html, June 2012.

[19] B. Mathew, A. Davis, and M. Parker. A low power architecture for embedded
perception. In Proceedings of the 2004 international conference on Compilers, architecture,
and synthesis for embedded systems, pages 46-56. ACM, 2004.

[20] H. Park, K. Fan, M. Kudlur, and S. Mahlke. Modulo graph embedding: mapping
applications onto coarse-grained reconfigurable architectures. In Proceedings of the
2006 international conference on Compilers, architecture and synthesis for embedded systems,
pages 136-146. ACM, 2006.

[21] S. Park, A. Shrivastava, N. Dutt, A. Nicolau, Y. Paek, and E. Earlie. Bypass aware
instruction scheduling for register file power reduction. In Proceedings of the 2006
ACM SIGPLAN/SIGBED conference on Language, compilers, and tool support for embedded
systems, page 181. ACM, 2006.

[22] D.A. Patterson. Reduced instruction set computers. Communications of the ACM,
28(1):8-21, 1985.

[23] Mehrdad Reshadi, Bita Gorjiara, and Daniel Gajski. Utilizing horizontal and vertical
parallelism with a no-instruction-set compiler for custom datapaths. In ICCD
'05: Proceedings of the 2005 International Conference on Computer Design, pages 69-76,
Washington, DC, USA, 2005. IEEE Computer Society.

62

[24] M. Sami, D. Sciuto, C. Silvano, V. Zaccaria, R. Zafalon, and D.E. e Informazione. Low-
power data forwarding for VLIW embedded architectures. IEEE transactions on very
large scale integration (VLSI) systems, 10(5):614—622, 2002.

[25] P.G. Sassone, D.S. Wills, and G.H. Loh. Static strands: safely collapsing dependence
chains for increasing embedded power efficiency. In Proceedings of the 2005 ACM
SIGPLAN/SIGBED conference on Languages, compilers, and tools for embedded systems,
pages 127-136. ACM, 2005.

[26] M.S. Schlansker and B.R. Rau. EPIC: Explicitly parallel instruction computing.
Computer, 33(2):37-45, 2000.

[27] J. Scott, L.H. Lee, J. Arends, and B. Moyer. Designing the Low-Power MaA¢CORE
TM Architecture. In Power Driven Microarchitecture Workshop, pages 145-150. Citeseer,
1998.

[28] A.AR. Sethi and J. Ullman. Compilers: Principles Techniques and Tools. Addision
Wesley Longman, 2000.

[29] H. Shimada, H. Ando, and T. Shimada. Pipeline stage unification: a low-energy
consumption technique for future mobile processors. In Proceedings of the 2003
international symposium on Low power electronics and design, pages 326-329. ACM, 2003.

[30] P.Shivakumar and N.P. Jouppi. Cacti 3.0: An integrated cache timing, power, and area
model. Technical report, Technical Report 2001/2, Compaq Computer Corporation,
2001.

[31] M. Thuresson, M. Sjidlander, M. Bjork, L. Svensson, P. Larsson-Edefors, and
P. Stenstrom. Flexcore: Utilizing exposed datapath control for efficient computing.
Journal of Signal Processing Systems, 57(1):5-19, 2009.

[32] J. H. Tseng and K. Asanovic. Energy-efficient register access. In SBCCI "00: Proceedings
of the 13th symposium on Integrated circuits and systems design, page 377, Washington,
DC, USA, 2000. IEEE Computer Society.

[33] S. Woo, J. Yoon, and J. Kim. Low-power instruction encoding techniques. In SOC
Design Conference. Citeseer, 2001.

[34] Chengmo Yang and Alex Orailoglu. Power efficient branch prediction through early
identification of branch addresses. In CASES '06: Proceedings of the 2006 international
conference on Compilers, architecture and synthesis for embedded systems, pages 169-178,
New York, NY, USA, 2006. ACM.

[35] V. Zyuban and P. Kogge. Split register file architectures for inherently lower power
microprocessors. In Proc. Power-Driven Microarchitecture Workshop, pages 32-37.

63

BIOGRAPHICAL SKETCH

Ian Finlayson

Ian Finlayson was born October 26, 1984 in St. Petersburg, Florida. He attended Winthrop
University, graduating in the Spring of 2003 with a Bachelor of Science Degree in Computer
Science. He then attended Florida State University where he worked under the advisement
of Professors David Whalley and Gary Tyson. lan completed his Doctor of Philosophy
degree in Computer Science in the Summer of 2012. He is currently employed by the
University of Mary Washington in Fredericksburg, Virgina where he resides with his wife,
Caitie and his son, Ryan. His main areas of interest are compilers, computer architecture
and programming languages.

64

