
Branch Elimination via Multi-Variable
Condition Merging

William Kreahling

Outline of Presentation

� Background and tools.

� Introduce technique for multi-variable condition
merging.

� Rules for merging multiple variables.

� Describe framework for performing the analysis.

� Results & Conclusion.

General Compilation Process

preprocessed
source code

source
code file

preprocessor compiler
assembly
code file

assembler
machine
code file

linker
executable

file

library of
machine
code files

Front and Back Ends

� Front end

� takes high-level source code as input

� produces intermediate code as output

� Back end

� takes intermediate code as input

� produces assembly or machine code

Intermediate Language

Front end 1

Front end 2

Front end 3

Back end 1

Back end 2

Back end 3

Intermediate
language

Very Portable Optimizer (VPO)

� Research Compiler

� Very simple front end

� Translates source code into intermediate
language.

Register Transfer Lists

� “Generic assembly language”

� Used by many compilers including GCC.

� All transformations in VPO done at the RTL
level.

Example RTLs

� r[2] = r[4] -- move

� r[5] = r[6] + r[7] -- add add r5,r6,r7

� M[r[2] + 4] = r[3] -- store

� IC = r[2] ? r[3] -- comparison

Outline of Presentation

� Background and tools.

� Introduce technique for multi-variable
condition merging.

� Rules for merging multiple variables.

� Describe framework for performing the analysis.

� Results & Conclusion.

Motivation

� The execution of conditional branches is
expensive.

� Causes pipeline flushes.

� Inhibits other code improving transformations.

MEMIF ID EX WB

Compilation Process for Condition
Merging

test
input data

training
input data

profile
data

C source
program

profiling path
executable

first
compilation

first
compilation

condition merged
executable

second
compilation

Condition Merging
� Merging branches means replacing the execution

of two or more branches with the execution of a
single branch.

Tests Involving Multiple Variables

� How can conditions that test the results of
comparisons of multiple variables be merged?

Tests Involving Multiple Variables

� How can conditions that test the results of
comparisons of multiple variables be merged?

� Consider comparisons to zero.

� Consider the use of logical operations.

 v1==0 && v2==0 ↔ ??

Tests Involving Multiple Variables
(Equal to Zero)

 v1==0 && v2==0 ↔ (v1|v2)==0

Tests Involving Multiple Variables
(Equal to Zero)

 v1==0 && v2==0 ↔ (v1|v2)==0

Tests Involving Multiple Variables
(Equal to Zero)

Checking If Multiple Variables Are
Equal to Zero (cont.)

� n sets of compares and branches are replaced by
n-1 logical operations and 1 branch

 r[t]=r[1]|r[2];

 r[t]=r[t]|r[3];

 ...

 IC=(r[t]|r[n])?0;

 PC=IC!=0,<bypass target>;

Outline of Presentation

� Background and tools.

� Introduce technique for multi-variable condition
merging.

� Rules for merging multiple variables.

� Describe framework for performing the analysis.

� Results & Conclusion.

Merging Conditions Comparing
Multiple Variables to 0 or �1

v1== 0 && v2== 0 ↔ (v1| v2)==0

v1== 0 && v2==-1 ↔

Merging Conditions Comparing
Multiple Variables to 0 or �1

v1== 0 && v2== 0 ↔ (v1| v2)==0

v1== 0 && v2==-1 ↔ (v1|~v2)==0

Merging Conditions Comparing
Multiple Variables to 0 or �1

v1== 0 && v2== 0 ↔ (v1| v2)==0

v1== 0 && v2==-1 ↔ (v1|~v2)==0

v1 < 0 && v2 < 0 ↔

Merging Conditions Comparing
Multiple Variables to 0 or �1

v1== 0 && v2== 0 ↔ (v1| v2)==0

v1== 0 && v2==-1 ↔ (v1|~v2)==0

v1 < 0 && v2 < 0 ↔ (v1& v2)< 0

Merging Conditions Comparing
Multiple Variables to 0 or �1

v1== 0 && v2== 0 ↔ (v1| v2)==0

v1== 0 && v2==-1 ↔ (v1|~v2)==0

v1 < 0 && v2 < 0 ↔ (v1& v2)< 0

v1>= 0 && v2>= 0 ↔

Merging Conditions Comparing
Multiple Variables to 0 or �1

v1== 0 && v2== 0 ↔ (v1| v2)==0

v1== 0 && v2==-1 ↔ (v1|~v2)==0

v1 < 0 && v2 < 0 ↔ (v1& v2)< 0

v1>= 0 && v2>= 0 ↔ (v1| v2)>=0

Merging Conditions Comparing
Multiple Variables to 0 or �1

v1== 0 && v2== 0 ↔ (v1| v2)==0

v1== 0 && v2==-1 ↔ (v1|~v2)==0

v1 < 0 && v2 < 0 ↔ (v1& v2)< 0

v1>= 0 && v2>= 0 ↔ (v1| v2)>=0

v1 < 0 && v2>= 0 ↔

Merging Conditions Comparing
Multiple Variables to 0 or �1

v1== 0 && v2== 0 ↔ (v1| v2)==0

v1== 0 && v2==-1 ↔ (v1|~v2)==0

v1 < 0 && v2 < 0 ↔ (v1& v2)< 0

v1>= 0 && v2>= 0 ↔ (v1| v2)>=0

v1 < 0 && v2>= 0 ↔ (v1&~v2)< 0

Merging Conditions Comparing
Multiple Variables to 0 or �1

v1== 0 && v2== 0 ↔ (v1| v2)==0

v1== 0 && v2==-1 ↔ (v1|~v2)==0

v1 < 0 && v2 < 0 ↔ (v1& v2)< 0

v1>= 0 && v2>= 0 ↔ (v1| v2)>=0

v1 < 0 && v2>= 0 ↔ (v1&~v2)< 0

v1>= 0 && v2 < 0 ↔

Merging Conditions Comparing
Multiple Variables to 0 or �1

v1== 0 && v2== 0 ↔ (v1| v2)==0

v1== 0 && v2==-1 ↔ (v1|~v2)==0

v1 < 0 && v2 < 0 ↔ (v1& v2)< 0

v1>= 0 && v2>= 0 ↔ (v1| v2)>=0

v1 < 0 && v2>= 0 ↔ (v1&~v2)< 0

v1>= 0 && v2 < 0 ↔ (v1|~v2)>=0

Are Multiple Variables != to Zero?

� How can we detect if n variables are all not equal to
zero in a single branch?

Are Multiple Variables != to Zero?

� How can we detect if n variables are all not equal to
zero in a single branch?

� Are one or more bit positions in all of the variables set?

 (v1&v2)!=0 → v1!=0 && v2!=0

Are Multiple Variables != to Zero?

� How can we detect if n variables are all not equal to
zero in a single branch?

� Are one or more bit positions in all of the variables set?

 (v1&v2)!=0 → v1!=0 && v2!=0

� example:

 if (p1 && p2 && p1->val == p2->val)

Checking If Multiple Variables Are
Not Equal to Zero (cont.)

Checking If Multiple Variables Are
Not Equal to Multiple Constants

� How can we check if n variables are all not equal to n
constants in a single branch?

Checking If Multiple Variables Are Not
Equal to Multiple Constants (cont.)

� Is a bit position set in all of the variables and is the
same bit position clear in all of the constants?

(v1&v2)&~(c1|c2)!=0 → v1!=c1 && v2!=c2

� Say v1=6, v2=10, c1=9, and c2=5

� (01102 & 10102) & ~(10012 | 01012) =

 (00102)&~(11012) = (00102)&(00102) = 00102 != 0

Checking If Multiple Variables Are Not
Equal to Multiple Constants (cont.)

� Consider the case where the constants are all zero.

(v1&v2)&~(c1|c2)!=0 → v1!=c1 && v2!=c2

(v1&v2)&~(0|0)!=0

(v1&v2)&0xFFFFFFFF != 0

(v1&v2) != 0

Checking If Multiple Variables Are Not
Equal to Multiple Constants (cont.)

� Is a bit position clear in all of the variables and is the
same bit position set in all of the constants?

~(v1|v2)&(c1&c2)!=0 → v1!=c1 && v2!=c2

� Say v1=6, v2=10, c1=9, and c2=5

� ~(01102 | 10102) & (10012 & 01012) =

 ~(11102)&(00012) = (00012)&(00012) = 00012 != 0

Outline of Presentation

� Background and tools.

� Introduce technique for multi-variable condition
merging.

� Rules for merging multiple variables.

� Describe framework for performing the
analysis.

� Results & Conclusion.

Framework for Obtaining Path Profile
Information

� Detect paths dynamically during a profile run.

� Paths do not cross loop boundaries.

Using the Path Profile Information

� Accumulate statistics and estimate the benefit to
merge each set.

� likelihood that the path will be taken given that the first
branch is reached

� instructions executed if the dominant path is taken

� instructions executed if the dominant path is not taken

� Merge sets in the order of the most beneficial sets of
branches first.

Using the Path Profile Information

� Rely on other optimizations to improve the modified
code.

� loop-invariant code motion

� common subexpression elimination

Paths Across Loop Boundaries

� During profile run, detect a frequently executed
path, that is followed by itself.

� Insert a new path into the data structure.

� The original path, with every block duplicated.

� Treated as a separate and distinct path.

Paths Across Loop Boundaries

Loop Frequently executed path Duplicate path

Choosing Which Branches to Merge

� Once we have detected all the paths, we examine
them for mergeable branches and collect these
into sets.

� Just because a set is valid, does not mean it would
be beneficial to actually merge.

� Possible that the same sets of mergeable branches
will have been detected by more than one of the
rules.

Choices Driven by Estimates

� Have to estimate the benefit from merging a set
of branches.

� Generalized formula:
((win path ratio * saved instructions) -
(lose path ratio * added instructions))*
total execution when the path is reached.

Win/Lose/Breakeven Paths

� Once we have picked a set, we must duplicate
code with the new merged branches and their
targets.

� With many paths we will create a win path, a lose
path, and a breakeven path.

Example Win/Lose/Breakeven Path

Reach block 6 (original 2)

Example Win/Lose/Breakeven Path

Reach block 6 (original 2) (lose 3)

Example Win/Lose/Breakeven Path

Reach block 6 (original 2) (lose 3)
 (breakeven 2)

Outline of Presentation

� Background and tools.

� Introduce technique for multi-variable condition
merging.

� Rules for merging multiple variables.

� Describe framework for performing the analysis.

� Results & Conclusion.

Results

Conclusions

� Contributions

� Able to merge conditions involving multiple variables
on a conventional scalar processor.

� Obtained benefits by merging conditions in paths that
are not the most frequent.

Conclusions

� Contributions

� Able to merge conditions involving multiple variables
on a conventional scalar processor.

� Obtained benefits by merging conditions in paths that
are not the most frequent.

Acknowledgments

� Dr. David Whalley

� Dr. Mark Bailey

� Dr. Xin Yuan

� Dr. Gang-Ryung Uh

� Dr. Robert van Engelen

Publications

� “Branch Elimination by Condition Merging” by
W. Kreahling et. al., in Software Practice and
Experience, 35(1), PP 51-74, January 2005.

� “Branch Elimination via Multi-Variable
Condition Merging” by W. Kreahling et. al., in
The Proceedings of the Euro-Par '03 Conference
on Parallel Processing, PP 261-270, August
2003.

Current Research

� Reducing Branch costs using “ Implicit
Comparisons” .

� Hardware modifications.

� New instructions to decouple the comparison
definition from the actual comparison of values.

