Branch Elimination viaMulti-Variable
Condition Merging

William Kreahling

Outline of Presentation

Background and tools.

Introduce technique for multi-variable condition
merging.

Rules for merging multiple variables.

Describe framework for performing the analysis.

Results & Conclusion.

General Compilation Process

source e preprocessed : assembly
codefile Preprocessor source code compiler codefile
L assembler — ™ machine > linker S executable

code file file

library of

machine

codefiles

Front and Back Ends

* Front end

- takes high-level source code as input
— produces intermediate code as output

e Back end

— takes intermediate code as input
— produces assembly or machine code

Intermediate L anguage

Front end 1

Back end 1

Front end 2

Intermediate
language

e

Back end 2

Front end 3

Back end 3

Very Portable Optimizer (VPO)

e Research Compiler
* Very ssmple front end

 Trandates source code into intermediate
language.

Register Transfer Lists

e “Generic assembly language”
e Used by many compilersincluding GCC.

e All transformationsin VPO done at the RTL
levdl.

Example RTLS
- 1[2] =1[4] -- move
- 1[5] =r[6] + 1] 7] -- add add r5,r6,r7
- M[r[2] +4] =1[3] -- store

- 1C=1[2] ?1[3] -- comparison

Outline of Presentation

Background and tools.

Introduce technique for multi-variable
condition merging.

Rules for merging multiple variables.
Describe framework for performing the analysis.

Results & Conclusion.

Motivation

 The execution of conditional branchesis
expensive.

e Causes pipeline flushes.

* |nhibits other code improving transformations.

|- 1D EX MEM | WB

Compilation Process for Condition
Merging

C source
program

profile
data

first
compilation

H

executable

profiling path }

second
compilation

H

executable

ondition mergeﬂ< |

training
Input data

test
Input data

Condition Merging

* Merging branches means replacing the execution
of two or more branches with the execution of a
single branch.

Before After

1 c[élzga
cond a o

cond a

Tests Involving Multiple Variables

 How can conditions that test the results of
comparisons of multiple variables be merged?

Tests Involving Multiple Variables

 How can conditions that test the results of
comparisons of multiple variables be merged?

— Consider comparisons to zero.

— Consider the use of logical operations.

Tests Involving Multiple Variables
(Equal to Zero)

v1==0 && v2==0 « 7?77

Tests Involving Multiple Variables
(Equal to Zero)

v1==0 && v2==0 «» (Vv1|v2)==0

Tests Involving Multiple Variables
(Equal to Zero)

v1==0 && v2==0 ¢» (Vv1|Vv2)==

Before After
1
vl —0 {v1v2—0
LT I
2 5 2 1
vl—10
1 l RN
3 | 2 5
v —10

Checking If Multiple Variables Are
Equal to Zero (cont.)

* n sets of compares and branches are replaced by
n-1 logical operations and 1 branch

| C=(r[t]]r[n]) ?0;
PC=I C! =0, <bypass t ar get >;

Outline of Presentation

Background and tools.

Introduce technique for multi-variable condition
merging.

Rulesfor merging multiple variables.

Describe framework for performing the analysis.

Results & Conclusion.

Merging Conditions Comparing
Multiple Variablesto O or -1
vli== 0 && v2== 0 = (Vv1l] v2)==0
vli== 0 && v2==-1 ¢»

Merging Conditions Comparing
Multiple Variablesto O or -1
vli== 0 && v2== 0 & (Vv1l] v2)==0
vli== 0 && v2==-1 »(Vv1l]| ~v2)==0

Merging Conditions Comparing
Multiple Variablesto O or -1
vli== 0 && v2== 0 & (Vv1l] v2)==0
vli== 0 && v2==-1 ¢» (V1| ~v2)==0
vl < 0 && v2 < 0 »

Merging Conditions Comparing
Multiple Variablesto O or -1
vli== 0 && v2== 0 & (Vv1l] v2)==0
vli== 0 && v2==-1 ¢» (V1| ~v2)==0
vl <0 & v2 < 0 & (v1l& v2)< O

Merging Conditions Comparing
Multiple Variablesto O or -1
vli== 0 && v2== 0 &> (V1| v2)==
vli== 0 && v2==-1 ¢» (V1| ~v2)==
vl <0 & v2 < 0 & (v1l& v2)< O
vl>= 0 && v2>= 0

Merging Conditions Comparing
Multiple Variablesto O or -1
vli== 0 && v2== 0 &> (V1| v2)==
vli== 0 && v2==-1 ¢» (V1| ~v2)==
vl <0 & v2 < 0 & (v1l& v2)< O
vli>= 0 && v2>= 0 < (Vv1l] v2)>=0

Merging Conditions Comparing
Multiple Variablesto O or -1
vli== 0 && v2== 0 &> (V1| v2)==
vli== 0 && v2==-1 ¢» (V1| ~v2)==
vl <0 & v2 < 0 & (v1l& v2)< O
vli>= 0 && v2>= 0 < (Vv1l] v2)>=0
vl < 0 && v2>= 0 ¢

Merging Conditions Comparing
Multiple Variablesto O or -1
vli== 0 && v2== 0 > (V1] Vv2)==
vli== 0 && v2==-1 ¢» (V1| ~v2)==
vl <0 & v2 < 0 & (v1l& v2)< O
vli>= 0 && v2>= 0 < (Vv1l] v2)>=0
vl < 0 && v2>= 0 & (Vv1&vVv2)< 0

Merging Conditions Comparing
Multiple Variablesto O or -1

©c O O O O O

&& v2==

&& v2==-1
&& v2 < 0
&& v2>= 0
&& v2>= 0
&& v2 < 0

(vl v2)==

(vl ~v2) ==
»(v1l& v2)< 0
< (vl] v2)>=0
< (v1&v2)< 0

\

Merging Conditions Comparing
Multiple Variablesto O or -1

©c O O O O O

&& v2==

&& v2==-1
&& v2 < 0
&& v2>= 0
&& v2>= 0
&& v2 < 0

(vl v2)==

(vl ~v2) ==
»(v1l& v2)< 0
< (vl] v2)>=0
< (v1&v2)< 0
> (v1l]| ~v2)>=0

Are Multiple Variables = to Zero?

 How can we detect If n variables are all not equal to
zero In asingle branch?

Are Multiple Variables = to Zero?

 How can we detect If n variables are all not equal to
zero in asingle branch?

— Areone or more bit positions in all of the variables set?
(vi&v2)!=0 = v1! =0 && v2!=0

Are Multiple Variables = to Zero?

 How can we detect If n variables are all not equal to
zero in asingle branch?

— Areone or more bit positions in all of the variables set?
(vi&v2)!=0 = v1! =0 && v2!=0

- example:
1T (pl && p2 && pl->val == p2->val)

Checking If Multiple Variables Are
Not Equal to Zero (cont.)

Before After
1
vl =0 {v1& v2 =0
I TN
2 5 2 1
vl I=0
1 1 I\
3 | 2 L]
21=0
| D)
|7 l
| o i
v2]

Checking If Multiple Variables Are
Not Equal to Multiple Constants

 How can we check if n variables are all not equal to n
constants in a single branch?

Checking If Multiple Variables Are Not
Equal to Multiple Constants (cont.)

e [sahbit position set in all of the variables and is the
same bit position clear in all of the constants?

(vi&v2) &(cl|c2)!=0 = v1l=cl && v2!=c2

e Say v1=6, v2=10, c1=9, and c2=5
e (01102 & 10102) & ~(10012 | 01012) =
(00102)& ~(11012) = (00102)& (00102) = 00102 =0

Checking If Multiple Variables Are Not
Equal to Multiple Constants (cont.)

e Consider the case where the constants are all zero.

(vi&v2) &(cl|c2)!=0 = v1ll=cl && v2!=c2
(v1i&v?2) &~(0[0)! =0

(vi&v2) &OXFFFFFFFF '= 0

(vi&v2) =0

Checking If Multiple Variables Are Not
Equal to Multiple Constants (cont.)

e |[sabit position clear in all of the variables and is the
same bit position set in all of the constants?

~(vl|v2)&(cl&c2)!'=0 = v1!=cl && v2!=c2

e Say v1=6, v2=10, c1=9, and c2=5
e ~(01102]10102) & (10012 & 01012) =
~(11102)& (00012) = (00012)& (00012) = 00012 =0

Outline of Presentation

Background and tools.

Introduce technique for multi-variable condition
merging.

Rules for merging multiple variables.

Describe framework for performing the
analysis.

Results & Conclusion.

Framework for Obtaining Path Profile

Information
e Detect paths dynamically during a profile run.

» Paths do not cross loop boundaries.

1

-ipf—

-ipf—

Using the Path Profile Information

e Accumulate statistics and estimate the benefit to
merge each set.

- likelihood that the path will be taken given that the first
branch is reached

— Instructions executed if the dominant path is taken
— Instructions executed If the dominant path is not taken

 Merge setsin the order of the most beneficial sets of
branches first.

Using the Path Profile Information

e Rely on other optimizations to improve the modified
code.

- loop-Invariant code motion

— common subexpression elimination

Paths Across Loop Boundaries

e During profile run, detect a frequently executed
path, that isfollowed by itself.

* |nsert anew path into the data structure.

- Theoriginal path, with every block duplicated.
- Treated as a separate and distinct path.

Paths Across Loop Boundaries

L oop Frequently executed path Duplicate path

1 2 2
¥ 3 3
% 5 5
4113 2
¥ 3
) S
6

Choosing Which Branchesto Merge

* Once we have detected all the paths, we examine
them for mergeable branches and collect these
Into sets.

e Just because aset isvalid, does not mean it would
be beneficial to actually merge.

* Possible that the same sets of mergeable branches
will have been detected by more than one of the
rules.

Choices Driven by Estimates

 Haveto estimate the benefit from merging a set
of branches.

* Generalized formula:
((win path ratio * saved instructions) -
(lose path ratio * added instructions))*
total execution when the path is reached.

Win/Lose/Breakeven Paths

* Once we have picked a set, we must duplicate
code with the new merged branches and their
targets.

* With many paths we will create awin path, alose
path, and a breakeven path.

Example Win/Lose/Breakeven Path

1
T\ F
2 5
!

3

T\ F
4 6

original path Reach block 6 (original 2)

Example Win/Lose/Breakeven Path

1 && 3
B ;
e
4 i 2 50|
wmpathi 13 i
T
| 4 6 ||
' Reach block 6 (original 2) (lose 3)
lose path /

original path

Example Win/Lose/Breakeven Path

' Reach block 6 (original 2) (lose 3)

'''''' lose path/ (breakeven 2)
original path

1 && 3 1 && 3
-"'l"T":idF_ ------------------- : lT F
o2 i) | o2 [0]
. T B e N
l : lT F : l lT WF
4 5] 2 5 || 4 2 5
N I
-----------] ; e
win path | 3 . win path 6 | lose path
i i |
! |
4T \F : .
i | realkeven path
i 4 b |
i |
| |
i |

Outline of Presentation

Background and tools.

Introduce technique for multi-variable condition
merging.

Rules for merging multiple variables.

Describe framework for performing the analysis.

Results & Conclusion.

Results

[] Instructions Executed [l Branches Executed [] Execution Time

[= [

=N

Conclusions

e Contributions

— Able to merge conditions involving multiple variables
on a conventional scalar processor.

— Obtained benefits by merging conditions in paths that
are not the most frequent.

Conclusions

e Contributions

— Able to merge conditions involving multiple variables
on a conventional scalar processor.

— Obtained benefits by merging conditions in paths that
are not the most frequent.

Acknowledgments

Dr. David Whalley
Dr. Mark Bailey

Dr. Xin Yuan

Dr. Gang-Ryung Uh

Dr. Robert van Engelen

Publications

e “Branch Elimination by Condition Merging” by
W. Kreahling et. al., in Software Practice and
Experience, 35(1), PP 51-74, January 2005.

e “Branch Elimination via Multi-Variable
Condition Merging” by W. Kreahling et. a., in
The Proceedings of the Euro-Par '03 Conference
on Parallel Processing, PP 261-270, August
2003.

Current Research

e Reducing Branch costs using “Implicit
Comparisons’.

e Hardware modifications.

 New instructions to decouple the comparison
definition from the actual comparison of values.

