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Front and Back Ends

� Front end

� takes high-level source code as input

� produces intermediate code as output

� Back end

� takes intermediate code as input

� produces assembly or machine code
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Very Portable Optimizer (VPO)

� Research Compiler

� Very simple front end

� Translates source code into intermediate 
language.



Register Transfer Lists

� “Generic assembly language”

� Used by many compilers including GCC.

� All transformations in VPO done at the RTL 
level.



Example RTLs

� r[2] = r[4] -- move

� r[5] = r[6] + r[7] -- add            add r5,r6,r7

� M[r[2] + 4] = r[3] -- store

� IC = r[2 ] ? r[3] -- comparison
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Motivation

� The execution of conditional branches is 
expensive.

� Causes pipeline flushes.

� Inhibits other code improving transformations.
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Condition Merging
� Merging branches means replacing the execution 

of two or more branches  with the execution of a 
single branch.
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Tests Involving Multiple Variables

� How can conditions that test the results of 
comparisons of multiple variables be merged?

� Consider comparisons to zero.

� Consider the use of logical operations.



 v1==0 && v2==0 ↔   ??

Tests Involving Multiple Variables
(Equal to Zero)



 v1==0 && v2==0 ↔   (v1|v2)==0

Tests Involving Multiple Variables
(Equal to Zero)



 v1==0 && v2==0 ↔   (v1|v2)==0 

Tests Involving Multiple Variables 
(Equal to Zero)



 

Checking If Multiple Variables Are 
Equal to Zero (cont.)

� n sets of compares and branches are replaced by 
n-1 logical operations and 1 branch

    r[t]=r[1]|r[2];

    r[t]=r[t]|r[3];

    ...

    IC=(r[t]|r[n])?0;

    PC=IC!=0,<bypass target>;
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Are Multiple Variables != to Zero?

� How can we detect if n variables are all not equal to 
zero in a single branch?

� Are one or more bit positions in all of the variables set?

   (v1&v2)!=0 → v1!=0 && v2!=0

� example:

 if (p1 && p2 && p1->val == p2->val)



Checking If Multiple Variables Are 
Not Equal to Zero (cont.)



Checking If Multiple Variables Are 
Not Equal to Multiple Constants

� How can we check if n variables are all not equal to n  
constants in a single branch?



Checking If Multiple Variables Are Not 
Equal to Multiple Constants (cont.)

� Is a bit position set in all of the variables and is the 
same bit position clear in all of the constants?

(v1&v2)&~(c1|c2)!=0 → v1!=c1 && v2!=c2

� Say v1=6, v2=10, c1=9, and c2=5

�    (01102 & 10102) & ~(10012  | 01012) =

   (00102)&~(11012) = (00102)&(00102) = 00102  != 0



Checking If Multiple Variables Are Not 
Equal to Multiple Constants (cont.)

� Consider the case where the constants are all zero.

(v1&v2)&~(c1|c2)!=0 → v1!=c1 && v2!=c2

(v1&v2)&~(0|0)!=0

(v1&v2)&0xFFFFFFFF != 0

(v1&v2) != 0



Checking If Multiple Variables Are Not 
Equal to Multiple Constants (cont.)

� Is a bit position clear in all of the variables and is the 
same bit position set in all of the constants?

~(v1|v2)&(c1&c2)!=0 → v1!=c1 && v2!=c2

� Say v1=6, v2=10, c1=9, and c2=5

�    ~(01102 | 10102) & (10012  & 01012) =

   ~(11102)&(00012) = (00012)&(00012) = 00012  != 0
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Framework for Obtaining Path Profile 
Information

� Detect paths dynamically during a profile run.

� Paths do not cross loop boundaries.



Using the Path Profile Information

� Accumulate statistics and estimate the benefit  to 
merge each set.

� likelihood that the path will be taken given that the first 
branch is reached

� instructions executed if the dominant path is taken

� instructions executed if the dominant path is not taken

� Merge sets in the order of the most beneficial sets of 
branches first.



Using the Path Profile Information

� Rely on other optimizations to improve the modified 
code.

� loop-invariant code motion

� common subexpression elimination



Paths Across Loop Boundaries

� During profile run, detect a frequently executed 
path, that is followed by itself.

� Insert a new path into the data structure.

� The original path, with every block duplicated.

� Treated as a separate and distinct path.



Paths Across Loop Boundaries

Loop Frequently executed path Duplicate path



Choosing Which Branches to Merge

� Once we have detected all the paths, we examine 
them for mergeable branches and collect these 
into sets.

� Just because a set is valid, does not mean it would 
be beneficial to actually merge.

� Possible that the same sets of mergeable branches 
will have been detected by more than one of the 
rules.



Choices Driven by Estimates

� Have to estimate the benefit from merging a set 
of branches.

� Generalized formula:
((win path ratio *  saved instructions) -  
(lose path ratio *  added instructions) )*  
total execution when the path is reached.



Win/Lose/Breakeven Paths

� Once we have picked a set, we must duplicate 
code with the new merged branches and their 
targets.

� With many paths we will create a win path, a lose 
path, and a breakeven path.



Example Win/Lose/Breakeven Path

Reach block 6 (original 2) 



Example Win/Lose/Breakeven Path

Reach block 6 (original 2) (lose 3)



Example Win/Lose/Breakeven Path

Reach block 6 (original 2) (lose 3)
                                 (breakeven 2)
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Results



Conclusions

� Contributions

� Able to merge conditions involving multiple variables 
on a conventional scalar processor.

� Obtained benefits by merging conditions in paths that 
are not the most frequent.
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Current Research

� Reducing Branch costs using “ Implicit 
Comparisons” .

� Hardware modifications.

� New instructions to decouple the comparison 
definition from the actual comparison of values.


