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Abstract. Conditional branches are expensive. Branches require a sig-
nificant percentage of execution cycles since they occur frequently and
cause pipeline flushes when mispredicted. In addition, branches result in
forks in the control flow, which can prevent other code-improving trans-
formations from being applied. In this paper we describe profile-based
techniques for replacing the execution of a set of two or more branches
with a single branch on a conventional scalar processor. First, we gather
profile information to detect the frequently executed paths in a program.
Second, we detect sets of conditions in frequently executed paths that
can be merged into a single condition. Third, we estimate the benefit of
merging each set of conditions. Finally, we restructure the control flow to
merge the sets that are deemed beneficial. The results show that eliminat-
ing branches by merging conditions can significantly reduce the number
of conditional branches performed in non-numerical applications.

1 Introduction

Conditional branches occur frequently in programs, particularly in non-numerical
applications. Branches are an impediment to improving performance since they
consume a significant percentage of execution cycles, cause pipeline flushes when
mispredicted, and can inhibit the application of other code-improving transfor-
mations. Techniques to reduce or eliminate the number of executed branches in
the control flow have the potential for significantly improving performance.
Sometimes a set of conditions can be merged together. Consider Fig. 1(a),
which shows conditions being tested in basic blocks 1 and 3. The wider transi-
tions between blocks shown in figures in this paper represent the more frequently
executed path, which occurs in Fig. 1 when conditions a and b are both satis-
fied. Figure 1(b) depicts the two conditions being merged together. If the merged
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condition is true, then the original conditions need not be tested. Note merging
conditions results in the elimination of both comparison and branch instruc-
tions. * The elimination of the fork in the control flow between blocks 2 and 4
may enable additional code-improving transformations to be performed. If the
merged condition is not satisfied, then the original conditions are tested. Figure
1(c) shows that branches can become redundant after merging conditions. In
this case, condition b must be false if (a && b) is false and (a) is true. Thus, the
branch in block 3 can be replaced by an unconditional transition to block 6. We
call this the breakeven path since the same number of branches will be executed.
We only apply the condition merging transformation when we estimate that the
total instructions executed will be decreased.
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Fig. 1. Merging Three Conditions

In this paper we describe techniques to replace the execution of a set of two
or more branches with a single branch. The performance improvements were
obtained automatically by our compiler on a conventional scalar processor.

2 Related Work

There are numerous techniques that have been used to decrease the number
of conditional branches executed. Loop unrolling has long been used to reduce
execution of the conditional branch associated with a loop termination con-
dition[1]. Loop unswitching moves a conditional branch with a loop-invariant
condition before the loop and duplicates the loop in each of the two destinations

* Blocks 2 and 3 in Fig. 1(a) could have been represented as a single block. Through-
out the paper we represent basic blocks containing a condition as having no other
instructions besides a comparison and a conditional branch so the examples may be
more easily illustrated.



of the branch[2]. Superoptimizers have been used to find a bounded sequence
of instructions that have the same effect as a conditional branch[3]. Conditional
branches have been avoided by using static analysis and code duplication[4, 5].
Conditional branches have been coalesced together into an indirect jump from a
jump table[6]. Sequences of branches have been reordered to allow the sequence
to be exited earlier, which reduces the number of branches executed[7, 8]. There
has been recent work on eliminating branches using ILP architectural features.
If conversion uses predicated execution to eliminate branches by squashing the
result of an instruction when a predicate is not satisfied[9]. Another technique
eliminates branches by performing if-conversion as if the machine supported
predicated execution, and then applies reverse-if conversion to return the code
to an acyclic control flow representation[10]. This technique shares some simi-
larities to ours, however our approach differs in several aspects, including that
we can merge conditions involving multiple variables. A technique called control
CPR (Critical Path Reduction) has been used to merge branches in frequent
paths by performing comparisons that set predicate bits in parallel and testing
multiple predicates in a single bypass branch[11,12]. Control CPR not only re-
duces the number of executed branches, but also enables other code-improving
transformations. Among the techniques mentioned, control CPR is the most
similar to the work that we describe in this paper, since both approaches merge
conditions by using path-based profile data. There are several difference in the
two approaches, including that our approach can be used on a conventional scalar
processor without any ILP architectural support.

3 Merging Conditions

We have developed techniques that merge conditions where either single variables
or multiple variables are compared to invariant values.

3.1 Merging into a Single Equivalent Condition

We use logical operations to efficiently merge conditions that compare multiple
variables to 0 or —1 into a single equivalent condition. Consider the flow graph
shown in Fig. 2(a). The frequent path checks if the two variables are equal
to zero. Figure 2(b) depicts the two conditions being merged together using a
bitwise OR operation. Only when both variables are equal to zero will the result
of the OR operation be zero. If the merged condition is not satisfied, then testing
the condition v2 == 0 is unnecessary since it cannot be true.

The number of instructions required to merge conditions involving multiple
variables is proportional to the number of different variables being compared.
Figure 3 shows the general code generation strategy we used for merging such
a set of conditions. r[1]...r[n] represent the registers containing the values of
n different variables. r[t] represents a register containing the temporary results.
When merging conditions comparing n multiple variables, n — 1 logical opera-
tions and a single branch replace 2n instructions (n pairs of comparisons and
branches).
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Fig. 3. Code Generated for the Merged
Fig. 2. Merging Conditions That Test If Condition That Checks If n Variables
Different Variables Are Equal to Zero Are Equal to Zero

The top portion of table 1 shows how sets of conditions comparing multiple
variables (vl...vn) to 0 and —1 can be merged into a single condition. The
first column shows the original conditions, the second column shows the condi-
tions after merging, and the third column shows the static percentage each rule
was applied, when merging sets involving multiple variables. Rule 1 has been
illustrated in Figures 2 and 3. Rule 2 uses the SPARC ORNOT instruction to
perform a bitwise NOT on an operand before performing a bitwise OR operation.
A word containing the value —1 has all of its bits set in a two’s complement rep-
resentation. Thus, if the operand was a —1, then the result of the bitwise NOT
would be 0 and at that point the first rule can be used. The merged condition
in rule 3 performs a bitwise AND operation on the variables. A negative value
in a two’s complement representation has its most significant bit set. Only if the
most significant bit is set in all of the variables will the most significant bit be
set in the result of the bitwise AND operation. If the most significant bit is set
in the result, then the result value will be negative. The merged condition in
rule 4 performs a bitwise OR operation on the variables. A nonnegative value in
a two’s complement representation has its most significant bit clear. Only if the
most significant bit is clear in all the variables will the most significant bit be
clear in the result of the bitwise OR operation. Rules 5 and 6 perform a bitwise
NOT on an operand, which flips the most significant bit along with the other
bits in the value. This allows < and >= tests to be merged together.

Notice that > 0 and <= 0 tests are not listed in the table. A > 0 test
would have to determine that both the most significant bit is clear and that
one or more of the other bits are set. These types of tests cannot be efficiently
performed using a single logical operation on a conventional scalar processor.

Additional opportunities for condition merging become available when sets
of conditions that cross loop boundaries are considered. It would appear that
in Fig. 4(a) there is no opportunity for merging conditions. However, Fig. 4(b)
depicts that after loop unrolling there are multiple branches that use the same
relational operator. Our compiler merges sets of conditions across loop iterations.
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Table 1. Rules for Merging Conditions Comparing Multiple Variables Into a Single
Equivalent Condition

Rule Original Conditions Merged Condition % Applied
1 [vl==0 &&.&& vn== 0 (vi |.] wvn) == 0 42.7%
2 [vi== 0 &&.&& vn == -1 (vi || ~vn) == 0 0.0%
3 vl < 0 &&.&&vn < 0 (vl &..& vn) < 0 0.0%
4 |vl>= 0 &&.&& vn>= 0 (vi || wvn) >= 0 4.5%
5 (vl < 0 &&.&& vn>= 0 (vl &..& ~vn) < 0 0.9%
6 [vi>=0 &&.&&vn < 0 (vl |.] “vn) >= -1 0.0%
7 vl # 0 &&.&& vn # 0| (vl &..& vn) #0] 18.2%
8 |vl # cl &&.&& vn # cn| (vl &.& wvn) & “(cl|..| cn)#0| 15.5%
9 |vl # cl &&.&& vn # cn| ~(vl |..| vn) & (cl |.|cn)#0| 16.4%
10 (vl < ¢l &&.&& vn < cn| (vl |.] vn) w< min (cl,., cn)| 1.8%

(a) Original Code (b) After Loop Unrolling
for (i=0; i < 10000; i++) for (i=0; i < 10000; i += 2){
if (alil < 0) if (alil < 0)
x; x;
if (ali+1] < 0)
x;
}

Fig. 4. Increasing Merging Opportunities by Unrolling Loops

3.2 Merging into a Sufficient Condition

Our compiler uses logical operations to efficiently merge conditions that compare
multiple variables into a single sufficient condition. In other words, the success
of the merged condition implies the success of the original conditions. However,
the failure of the merged condition does not imply the original conditions were
false.

Tests to determine if a variable is not equal to zero occur frequently in pro-
grams. We can determine if two or more variables are guaranteed to be not equal
to zero by performing a bitwise AND operation on the variables and checking if
the result does not equal to zero, as shown in rule 7 of Table 1.

One may ask how often such conditions can be successfully merged in prac-
tice. Consider the code in Fig. 5(a), where two pointer variables, pl and p2, are
tested to see if they are both non-null. In most applications, a pointer variable
is only null in an exceptional case (e.g. end of a linked list). It is extremely likely
that two non-null pointer values will have one or more corresponding bits both
set due to address locality. Figure 5(b) shows code with a merged condition,
testing the pointers. Note that if the merged condition is not satisfied, then the
entire original set of branches still needs to be tested.



(a) Before (b) After
if (p1 !'= 0) if (pl & p2 !'= 0){
W3 w3
else y;
X; }elseq{
if (p2 !'= 0) if (p1 != 0)
V3 .
else if (p2 !'= 0)
Zz;
}

Fig. 5. Checking If Different Variables Are Not Equal to Zero

We are also able to merge conditions that check if multiple variables are all
not equal to a specified list of constants. One method we used is to check if
any bits set in all of the variables are always clear in all of the constants. Rule
8 of Table 1 depicts how this is accomplished, where cl...cn are constants. A
bitwise AND operation is performed on all of the variables to determine which
bits are set in all of these variables. The complement of the bitwise OR of the
constants is taken, which results in the bits being set that are clear in all of the
constants. Note that determining which bits in the constants are always clear is
determined at compile time. If any bits set in all of the variables are clear in all
of the constants, then it is known that all of the variables will not be equal to
all of the constants.

We are also able to merge conditions checking if multiple variables are less
than (or less than or equal to) constants. Rule 10 in Table 1 depicts how this
is accomplished, where cl...cn have to be positive constants and the v < in
the merged condition represents an unsigned less than comparison. If the result
of the bitwise OR on the variables is less than the minimum constant, then
the original conditions have to be satisfied. The unsigned less than operator
is necessary since one of the variables could be negative and the result of the
bitwise OR operation would be treated as a negative value if a signed less than
operator is used.

Our compiler merges conditions comparing multiple variables to values that
are not constants. Consider the original loop and unrolled loop shown in Fig.
6(a) and Fig. 6(b), respectively. It would appear there is no opportunity for
merging conditions. However, = is loop invariant. Thus, the bits that are set in
both a[i] and ai + 1] can be ANDed with ~z to determine if the array elements
are not equal to x, as shown in Fig. 6(c). The expression ~z is loop invariant
and the compiler will move it out of the loop when loop-invariant code motion is
performed. Likewise, the loads of the two array elements in the else case will be
eliminated after applying common subexpression elimination. Note we are also
able to merge conditions checking if multiple variables are not equal to multiple
loop invariant values.



(a) Original Code (c) After Condition Merging
for (i=0; i < 10000; i++) for (i=0; i < 10000; i += 2){
if (a[i] == x) if ((ali]l & ali+1]) & ~x)
num++; continue;
elseq{
(b) After Loop Unrolling if (ali] == %)
for (i=0; i < 10000; i += 2){ num++;
if (a[i] == x) if (a[i+1] == x)
num++; num++;
if (ali+1] == x) }
num++; }

}

Fig. 6. Merging Conditions That Check If Multiple Variables Are Not Equal to Loop-
Invariant Values

4 Applying the Transformation

After finding all of the sets of conditions that can be merged, the compiler
sorts these sets in the order of the highest estimated benefit first. There are two
reasons for merging the most beneficial sets first. (1) Merging may require the
generation of loop-invariant expressions that can be moved out of the loop after
applying loop-invariant code motion. This transformation requires the allocation
of registers for which there are only a limited number available on a target
machine. (2) Merging conditions changes the control flow within a function. If
two sets of conditions overlap in the paths of blocks that connect them, then
the estimated benefit is invalid after the first set is merged and the second set
of conditions will not be merged.

After merging sets of conditions, we apply a number of code-improving trans-
formations in an attempt to improve the modified control flow. For instance,
Fig. 1(c) shows that merging conditions simplifies the control flow in the win
and breakeven paths. Our general strategy was to generate the control flow in
a simple manner and rely on other code-improving transformations to improve
the code. For instance, the code shown in Fig. 6(c) can be improved by applying
loop-invariant code motion and common subexpression elimination.

5 Results

Condition merging on multiple variables reduced the average number of branches
executed by 11.54% and reduced the total number of instructions executed by
an average of 3.93%. Figure 7 displays the results of condition merging when
the techniques that merged conditions involving single variables were combined
with the techniques involving multiple variable conditions. All the benchmarks
were run on the UltraSPARC II. When merging multiple variable conditions,
the branches executed were reduced by an average of 11.54%. For space con-
siderations the techniques that merge single variable conditions are not shown



here but are discussed, in detail, in a technical report[13]. The average number
of branches executed when using both techniques was reduced by 15.81% while
the average number of instructions executed was reduced by 5.74%. Execution
time was reduced an average of 3.43%. While most of the reduction was directly
due to fewer executed comparisons and branches, occasionally the compiler was
able to apply code-improving transformations on the modified control flow to
obtain additional improvements. Sort had unusually large benefits since most of
the execution was spent in tight loops where conditions could be merged. The
execution time for a few of the benchmarks got worse after the condition merg-
ing techniques were applied. The increase in execution time could be caused by
several factors that could include inaccurate performance estimates due to sub-
sequent optimizations and unforeseen effects due to multiple issue, instruction
caching and branch prediction.
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Fig. 7. Effect on Branches, Instructions, and Execution Time on the UltraSPARC II

Applying all the techniques resulted in a 6.99% increase in static code size
after condition merging. This static increase compares favorably with the 5.74%
decrease in instructions executed. The code size would have increased more if
we had not required that the paths we inspected comprise at least 0.1% of the
total instructions executed.

On many machines there is a pipeline stall associated with every taken
branch. Merging conditions resulted in an average 27.90% reduction in the num-
ber of taken branches for the test programs. This reduction was due in part
to decreasing the number of executed branches. The transformation also makes
branches within the win path more likely to fall through since the sequence of
blocks representing each frequent path is now contiguous in memory. Overall,



the average number of control transfers (taken branches, unconditional jumps,
calls, returns, and indirect jumps) was reduced by 20.18%.

6 Future Work

One area to explore is the use of more aggressive analysis to detect when specula-
tively executed loads would not introduce exceptions. We conservatively merged
sets of conditions that required loads to be speculatively executed only when it
was obvious that these loads would not introduce new exceptions. By perform-
ing more aggressive analysis, we should be able to detect more sets of conditions
to be merged. This will be particularly useful for merging conditions that cross
loop boundaries.

Past studies on control CPR have not investigated the impact on branch
prediction[11,12]. A more thorough investigation of the effect condition merging
has on branch misprediction is needed to discover the reasons why additional
mispredictions sometimes occur. It may be possible to perform additional opti-
mizations that may reduce the number of mispredictions.

We also found that the merging of one set of conditions may inhibit the
merging of another set. Code is duplicated and the paths within a function are
modified when conditions are merged. This code duplication invalidates the path
profile data on which condition merging is based. Thus, merging a set of condi-
tions is not currently allowed whenever the control flow changed in the subpaths
associated with the set of conditions to be merged. With careful analysis it may
be possible to infer new path frequency measurements for these duplicated paths.

7 Conclusions

In this paper we described a technique to perform condition merging on a con-
ventional scalar processor. We replaced the execution of two or more branches
with a single branch by merging conditions. Path profile information is gathered
to determine the frequency that paths are executed in the program. Sets of con-
ditions that can be merged are detected and the benefit of merging each set is
estimated. The control flow is then restructured to merge the sets of conditions
deemed beneficial. The results show that significant reductions can be achieved
in the number of branches performed for non-numerical applications. In addi-
tion, we showed benefits in the number of instructions executed, and execution
time.

There contributions presented in this paper are twofold. First, we were able
to merge conditions comparing multiple variables to constants or invariant values
through innovative use of instructions on a conventional scalar processor. Second,
we have shown that these techniques may still provide benefits even when the
win path is not the most frequently executed. In these cases it may be possible
to generate and merge conditions along a breakeven path.
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We believe that condition merging may be useful in other settings. Condition
merging may be a very good fit for run-time optimization systems, which op-
timize frequently executed paths during the execution of a program. Condition
merging may also be useful for low power embedded systems processors where
architectural support for ILP is not available.
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