
Branh Elimination via Multi-VariableCondition Merging.?William Kreahling1, David Whalley1, Mark Bailey2, Xin Yuan1, Gang-RyungUh3, and Robert van Engelen11 Florida State University, Tallahassee FL 32306, USA,fkreahlin, whalley, yuan, engeleng�s.fsu.edu2 Hamilton College, Clinton NY 13323, USA,mbailey�hamilton.edu3 Boise State University, Boise ID 83725, USA,uh�s.boisestate.eduAbstrat. Conditional branhes are expensive. Branhes require a sig-ni�ant perentage of exeution yles sine they our frequently andause pipeline ushes when mispredited. In addition, branhes result inforks in the ontrol ow, whih an prevent other ode-improving trans-formations from being applied. In this paper we desribe pro�le-basedtehniques for replaing the exeution of a set of two or more branheswith a single branh on a onventional salar proessor. First, we gatherpro�le information to detet the frequently exeuted paths in a program.Seond, we detet sets of onditions in frequently exeuted paths thatan be merged into a single ondition. Third, we estimate the bene�t ofmerging eah set of onditions. Finally, we restruture the ontrol ow tomerge the sets that are deemed bene�ial. The results show that eliminat-ing branhes by merging onditions an signi�antly redue the numberof onditional branhes performed in non-numerial appliations.1 IntrodutionConditional branhes our frequently in programs, partiularly in non-numerialappliations. Branhes are an impediment to improving performane sine theyonsume a signi�ant perentage of exeution yles, ause pipeline ushes whenmispredited, and an inhibit the appliation of other ode-improving transfor-mations. Tehniques to redue or eliminate the number of exeuted branhes inthe ontrol ow have the potential for signi�antly improving performane.Sometimes a set of onditions an be merged together. Consider Fig. 1(a),whih shows onditions being tested in basi bloks 1 and 3. The wider transi-tions between bloks shown in �gures in this paper represent the more frequentlyexeuted path, whih ours in Fig. 1 when onditions a and b are both satis-�ed. Figure 1(b) depits the two onditions being merged together. If the merged? This researh was supported in part by NSF grants CCR-9904943, EIA-0072043,CCR-0208892, CCR-0105422, and by DOE grant DEFG02-02ER25543.



2ondition is true, then the original onditions need not be tested. Note mergingonditions results in the elimination of both omparison and branh instru-tions. 4 The elimination of the fork in the ontrol ow between bloks 2 and 4may enable additional ode-improving transformations to be performed. If themerged ondition is not satis�ed, then the original onditions are tested. Figure1() shows that branhes an beome redundant after merging onditions. Inthis ase, ondition b must be false if (a && b) is false and (a) is true. Thus, thebranh in blok 3 an be replaed by an unonditional transition to blok 6. Weall this the breakeven path sine the same number of branhes will be exeuted.We only apply the ondition merging transformation when we estimate that thetotal instrutions exeuted will be dereased.
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Fig. 1. Merging Three ConditionsIn this paper we desribe tehniques to replae the exeution of a set of twoor more branhes with a single branh. The performane improvements wereobtained automatially by our ompiler on a onventional salar proessor.2 Related WorkThere are numerous tehniques that have been used to derease the numberof onditional branhes exeuted. Loop unrolling has long been used to redueexeution of the onditional branh assoiated with a loop termination on-dition[1℄. Loop unswithing moves a onditional branh with a loop-invariantondition before the loop and dupliates the loop in eah of the two destinations4 Bloks 2 and 3 in Fig. 1(a) ould have been represented as a single blok. Through-out the paper we represent basi bloks ontaining a ondition as having no otherinstrutions besides a omparison and a onditional branh so the examples may bemore easily illustrated.



3of the branh[2℄. Superoptimizers have been used to �nd a bounded sequeneof instrutions that have the same e�et as a onditional branh[3℄. Conditionalbranhes have been avoided by using stati analysis and ode dupliation[4, 5℄.Conditional branhes have been oalesed together into an indiret jump from ajump table[6℄. Sequenes of branhes have been reordered to allow the sequeneto be exited earlier, whih redues the number of branhes exeuted[7, 8℄. Therehas been reent work on eliminating branhes using ILP arhitetural features.If onversion uses prediated exeution to eliminate branhes by squashing theresult of an instrution when a prediate is not satis�ed[9℄. Another tehniqueeliminates branhes by performing if-onversion as if the mahine supportedprediated exeution, and then applies reverse-if onversion to return the odeto an ayli ontrol ow representation[10℄. This tehnique shares some simi-larities to ours, however our approah di�ers in several aspets, inluding thatwe an merge onditions involving multiple variables. A tehnique alled ontrolCPR (Critial Path Redution) has been used to merge branhes in frequentpaths by performing omparisons that set prediate bits in parallel and testingmultiple prediates in a single bypass branh[11, 12℄. Control CPR not only re-dues the number of exeuted branhes, but also enables other ode-improvingtransformations. Among the tehniques mentioned, ontrol CPR is the mostsimilar to the work that we desribe in this paper, sine both approahes mergeonditions by using path-based pro�le data. There are several di�erene in thetwo approahes, inluding that our approah an be used on a onventional salarproessor without any ILP arhitetural support.3 Merging ConditionsWe have developed tehniques that merge onditions where either single variablesor multiple variables are ompared to invariant values.3.1 Merging into a Single Equivalent ConditionWe use logial operations to eÆiently merge onditions that ompare multiplevariables to 0 or �1 into a single equivalent ondition. Consider the ow graphshown in Fig. 2(a). The frequent path heks if the two variables are equalto zero. Figure 2(b) depits the two onditions being merged together using abitwise OR operation. Only when both variables are equal to zero will the resultof the OR operation be zero. If the merged ondition is not satis�ed, then testingthe ondition v2 == 0 is unneessary sine it annot be true.The number of instrutions required to merge onditions involving multiplevariables is proportional to the number of di�erent variables being ompared.Figure 3 shows the general ode generation strategy we used for merging suha set of onditions. r[1℄ : : : r[n℄ represent the registers ontaining the values ofn di�erent variables. r[t℄ represents a register ontaining the temporary results.When merging onditions omparing n multiple variables, n � 1 logial opera-tions and a single branh replae 2n instrutions (n pairs of omparisons andbranhes).
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Fig. 2. Merging Conditions That Test IfDi�erent Variables Are Equal to Zero
r[t℄ = r[1℄ | r[2℄;r[t℄ = r[t℄ | r[3℄;...IC = (r[t℄ | r[n℄) ? 0;PC = IC != 0, <off-trae target>;Fig. 3. Code Generated for the MergedCondition That Cheks If n VariablesAre Equal to ZeroThe top portion of table 1 shows how sets of onditions omparing multiplevariables (v1 : : : vn) to 0 and �1 an be merged into a single ondition. The�rst olumn shows the original onditions, the seond olumn shows the ondi-tions after merging, and the third olumn shows the stati perentage eah rulewas applied, when merging sets involving multiple variables. Rule 1 has beenillustrated in Figures 2 and 3. Rule 2 uses the SPARC ORNOT instrution toperform a bitwise NOT on an operand before performing a bitwise OR operation.A word ontaining the value �1 has all of its bits set in a two's omplement rep-resentation. Thus, if the operand was a �1, then the result of the bitwise NOTwould be 0 and at that point the �rst rule an be used. The merged onditionin rule 3 performs a bitwise AND operation on the variables. A negative valuein a two's omplement representation has its most signi�ant bit set. Only if themost signi�ant bit is set in all of the variables will the most signi�ant bit beset in the result of the bitwise AND operation. If the most signi�ant bit is setin the result, then the result value will be negative. The merged ondition inrule 4 performs a bitwise OR operation on the variables. A nonnegative value ina two's omplement representation has its most signi�ant bit lear. Only if themost signi�ant bit is lear in all the variables will the most signi�ant bit belear in the result of the bitwise OR operation. Rules 5 and 6 perform a bitwiseNOT on an operand, whih ips the most signi�ant bit along with the otherbits in the value. This allows < and >= tests to be merged together.Notie that > 0 and <= 0 tests are not listed in the table. A > 0 testwould have to determine that both the most signi�ant bit is lear and thatone or more of the other bits are set. These types of tests annot be eÆientlyperformed using a single logial operation on a onventional salar proessor.Additional opportunities for ondition merging beome available when setsof onditions that ross loop boundaries are onsidered. It would appear thatin Fig. 4(a) there is no opportunity for merging onditions. However, Fig. 4(b)depits that after loop unrolling there are multiple branhes that use the samerelational operator. Our ompiler merges sets of onditions aross loop iterations.



5Table 1. Rules for Merging Conditions Comparing Multiple Variables Into a SingleEquivalent ConditionRule Original Conditions Merged Condition % Applied1 v1 == 0 &&..&& vn == 0 (v1 j::j vn) == 0 42.7%2 v1 == 0 &&..&& vn == -1 (v1 j::j �vn) == 0 0.0%3 v1 < 0 &&..&& vn < 0 (v1 &..& vn) < 0 0.0%4 v1 >= 0 &&..&& vn >= 0 (v1 j::j vn) >= 0 4.5%5 v1 < 0 &&..&& vn >= 0 (v1 &..& �vn) < 0 0.9%6 v1 >= 0 &&..&& vn < 0 (v1 j::j �vn) >= -1 0.0%7 v1 6= 0 &&..&& vn 6= 0 (v1 &::& vn) 6= 0 18.2%8 v1 6= 1 &&..&& vn 6= n (v1 &::& vn) & �(1 j::j n) 6= 0 15.5%9 v1 6= 1 &&..&& vn 6= n �(v1 j::j vn) & (1 j::j n) 6= 0 16.4%10 v1 < 1 &&..&& vn < n (v1 j::j vn) u < min (1 ; ::; n) 1.8%(a) Original Code (b) After Loop Unrollingfor (i=0; i < 10000; i++) for (i=0; i < 10000; i += 2){if (a[i℄ < 0) if (a[i℄ < 0)x; x;if (a[i+1℄ < 0)x;}Fig. 4. Inreasing Merging Opportunities by Unrolling Loops3.2 Merging into a SuÆient ConditionOur ompiler uses logial operations to eÆiently merge onditions that omparemultiple variables into a single suÆient ondition. In other words, the suessof the merged ondition implies the suess of the original onditions. However,the failure of the merged ondition does not imply the original onditions werefalse.Tests to determine if a variable is not equal to zero our frequently in pro-grams. We an determine if two or more variables are guaranteed to be not equalto zero by performing a bitwise AND operation on the variables and heking ifthe result does not equal to zero, as shown in rule 7 of Table 1.One may ask how often suh onditions an be suessfully merged in pra-tie. Consider the ode in Fig. 5(a), where two pointer variables, p1 and p2, aretested to see if they are both non-null. In most appliations, a pointer variableis only null in an exeptional ase (e.g. end of a linked list). It is extremely likelythat two non-null pointer values will have one or more orresponding bits bothset due to address loality. Figure 5(b) shows ode with a merged ondition,testing the pointers. Note that if the merged ondition is not satis�ed, then theentire original set of branhes still needs to be tested.



6 (a) Before (b) Afterif (p1 != 0) if (p1 & p2 != 0){w; w;else y;x; }else{if (p2 != 0) if (p1 != 0)y; ...else if (p2 != 0)z; ...}Fig. 5. Cheking If Di�erent Variables Are Not Equal to ZeroWe are also able to merge onditions that hek if multiple variables are allnot equal to a spei�ed list of onstants. One method we used is to hek ifany bits set in all of the variables are always lear in all of the onstants. Rule8 of Table 1 depits how this is aomplished, where 1 : : : n are onstants. Abitwise AND operation is performed on all of the variables to determine whihbits are set in all of these variables. The omplement of the bitwise OR of theonstants is taken, whih results in the bits being set that are lear in all of theonstants. Note that determining whih bits in the onstants are always lear isdetermined at ompile time. If any bits set in all of the variables are lear in allof the onstants, then it is known that all of the variables will not be equal toall of the onstants.We are also able to merge onditions heking if multiple variables are lessthan (or less than or equal to) onstants. Rule 10 in Table 1 depits how thisis aomplished, where 1 : : : n have to be positive onstants and the u < inthe merged ondition represents an unsigned less than omparison. If the resultof the bitwise OR on the variables is less than the minimum onstant, thenthe original onditions have to be satis�ed. The unsigned less than operatoris neessary sine one of the variables ould be negative and the result of thebitwise OR operation would be treated as a negative value if a signed less thanoperator is used.Our ompiler merges onditions omparing multiple variables to values thatare not onstants. Consider the original loop and unrolled loop shown in Fig.6(a) and Fig. 6(b), respetively. It would appear there is no opportunity formerging onditions. However, x is loop invariant. Thus, the bits that are set inboth a[i℄ and a[i+1℄ an be ANDed with �x to determine if the array elementsare not equal to x, as shown in Fig. 6(). The expression �x is loop invariantand the ompiler will move it out of the loop when loop-invariant ode motion isperformed. Likewise, the loads of the two array elements in the else ase will beeliminated after applying ommon subexpression elimination. Note we are alsoable to merge onditions heking if multiple variables are not equal to multipleloop invariant values.



7(a) Original Code () After Condition Mergingfor (i=0; i < 10000; i++) for (i=0; i < 10000; i += 2)fif (a[i℄ == x) if ((a[i℄ & a[i+1℄) & ~x)num++; ontinue;else{(b) After Loop Unrolling if (a[i℄ == x)for (i=0; i < 10000; i += 2){ num++;if (a[i℄ == x) if (a[i+1℄ == x)num++; num++;if (a[i+1℄ == x) }num++; }}Fig. 6. Merging Conditions That Chek If Multiple Variables Are Not Equal to Loop-Invariant Values4 Applying the TransformationAfter �nding all of the sets of onditions that an be merged, the ompilersorts these sets in the order of the highest estimated bene�t �rst. There are tworeasons for merging the most bene�ial sets �rst. (1) Merging may require thegeneration of loop-invariant expressions that an be moved out of the loop afterapplying loop-invariant ode motion. This transformation requires the alloationof registers for whih there are only a limited number available on a targetmahine. (2) Merging onditions hanges the ontrol ow within a funtion. Iftwo sets of onditions overlap in the paths of bloks that onnet them, thenthe estimated bene�t is invalid after the �rst set is merged and the seond setof onditions will not be merged.After merging sets of onditions, we apply a number of ode-improving trans-formations in an attempt to improve the modi�ed ontrol ow. For instane,Fig. 1() shows that merging onditions simpli�es the ontrol ow in the winand breakeven paths. Our general strategy was to generate the ontrol ow ina simple manner and rely on other ode-improving transformations to improvethe ode. For instane, the ode shown in Fig. 6() an be improved by applyingloop-invariant ode motion and ommon subexpression elimination.5 ResultsCondition merging on multiple variables redued the average number of branhesexeuted by 11.54% and redued the total number of instrutions exeuted byan average of 3.93%. Figure 7 displays the results of ondition merging whenthe tehniques that merged onditions involving single variables were ombinedwith the tehniques involving multiple variable onditions. All the benhmarkswere run on the UltraSPARC II. When merging multiple variable onditions,the branhes exeuted were redued by an average of 11.54%. For spae on-siderations the tehniques that merge single variable onditions are not shown



8here but are disussed, in detail, in a tehnial report[13℄. The average numberof branhes exeuted when using both tehniques was redued by 15.81% whilethe average number of instrutions exeuted was redued by 5.74%. Exeutiontime was redued an average of 3.43%. While most of the redution was diretlydue to fewer exeuted omparisons and branhes, oasionally the ompiler wasable to apply ode-improving transformations on the modi�ed ontrol ow toobtain additional improvements. Sort had unusually large bene�ts sine most ofthe exeution was spent in tight loops where onditions ould be merged. Theexeution time for a few of the benhmarks got worse after the ondition merg-ing tehniques were applied. The inrease in exeution time ould be aused byseveral fators that ould inlude inaurate performane estimates due to sub-sequent optimizations and unforeseen e�ets due to multiple issue, instrutionahing and branh predition.
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Fig. 7. E�et on Branhes, Instrutions, and Exeution Time on the UltraSPARC IIApplying all the tehniques resulted in a 6.99% inrease in stati ode sizeafter ondition merging. This stati inrease ompares favorably with the 5.74%derease in instrutions exeuted. The ode size would have inreased more ifwe had not required that the paths we inspeted omprise at least 0.1% of thetotal instrutions exeuted.On many mahines there is a pipeline stall assoiated with every takenbranh. Merging onditions resulted in an average 27.90% redution in the num-ber of taken branhes for the test programs. This redution was due in partto dereasing the number of exeuted branhes. The transformation also makesbranhes within the win path more likely to fall through sine the sequene ofbloks representing eah frequent path is now ontiguous in memory. Overall,



9the average number of ontrol transfers (taken branhes, unonditional jumps,alls, returns, and indiret jumps) was redued by 20.18%.6 Future WorkOne area to explore is the use of more aggressive analysis to detet when speula-tively exeuted loads would not introdue exeptions. We onservatively mergedsets of onditions that required loads to be speulatively exeuted only when itwas obvious that these loads would not introdue new exeptions. By perform-ing more aggressive analysis, we should be able to detet more sets of onditionsto be merged. This will be partiularly useful for merging onditions that rossloop boundaries.Past studies on ontrol CPR have not investigated the impat on branhpredition[11, 12℄. A more thorough investigation of the e�et ondition merginghas on branh mispredition is needed to disover the reasons why additionalmispreditions sometimes our. It may be possible to perform additional opti-mizations that may redue the number of mispreditions.We also found that the merging of one set of onditions may inhibit themerging of another set. Code is dupliated and the paths within a funtion aremodi�ed when onditions are merged. This ode dupliation invalidates the pathpro�le data on whih ondition merging is based. Thus, merging a set of ondi-tions is not urrently allowed whenever the ontrol ow hanged in the subpathsassoiated with the set of onditions to be merged. With areful analysis it maybe possible to infer new path frequeny measurements for these dupliated paths.7 ConlusionsIn this paper we desribed a tehnique to perform ondition merging on a on-ventional salar proessor. We replaed the exeution of two or more branheswith a single branh by merging onditions. Path pro�le information is gatheredto determine the frequeny that paths are exeuted in the program. Sets of on-ditions that an be merged are deteted and the bene�t of merging eah set isestimated. The ontrol ow is then restrutured to merge the sets of onditionsdeemed bene�ial. The results show that signi�ant redutions an be ahievedin the number of branhes performed for non-numerial appliations. In addi-tion, we showed bene�ts in the number of instrutions exeuted, and exeutiontime.There ontributions presented in this paper are twofold. First, we were ableto merge onditions omparing multiple variables to onstants or invariant valuesthrough innovative use of instrutions on a onventional salar proessor. Seond,we have shown that these tehniques may still provide bene�ts even when thewin path is not the most frequently exeuted. In these ases it may be possibleto generate and merge onditions along a breakeven path.
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