
Bran
h Elimination via Multi-VariableCondition Merging.?William Kreahling1, David Whalley1, Mark Bailey2, Xin Yuan1, Gang-RyungUh3, and Robert van Engelen11 Florida State University, Tallahassee FL 32306, USA,fkreahlin, whalley, yuan, engeleng�
s.fsu.edu2 Hamilton College, Clinton NY 13323, USA,mbailey�hamilton.edu3 Boise State University, Boise ID 83725, USA,uh�
s.boisestate.eduAbstra
t. Conditional bran
hes are expensive. Bran
hes require a sig-ni�
ant per
entage of exe
ution
y
les sin
e they o

ur frequently and
ause pipeline
ushes when mispredi
ted. In addition, bran
hes result inforks in the
ontrol
ow, whi
h
an prevent other
ode-improving trans-formations from being applied. In this paper we des
ribe pro�le-basedte
hniques for repla
ing the exe
ution of a set of two or more bran
heswith a single bran
h on a
onventional s
alar pro
essor. First, we gatherpro�le information to dete
t the frequently exe
uted paths in a program.Se
ond, we dete
t sets of
onditions in frequently exe
uted paths that
an be merged into a single
ondition. Third, we estimate the bene�t ofmerging ea
h set of
onditions. Finally, we restru
ture the
ontrol
ow tomerge the sets that are deemed bene�
ial. The results show that eliminat-ing bran
hes by merging
onditions
an signi�
antly redu
e the numberof
onditional bran
hes performed in non-numeri
al appli
ations.1 Introdu
tionConditional bran
hes o

ur frequently in programs, parti
ularly in non-numeri
alappli
ations. Bran
hes are an impediment to improving performan
e sin
e they
onsume a signi�
ant per
entage of exe
ution
y
les,
ause pipeline
ushes whenmispredi
ted, and
an inhibit the appli
ation of other
ode-improving transfor-mations. Te
hniques to redu
e or eliminate the number of exe
uted bran
hes inthe
ontrol
ow have the potential for signi�
antly improving performan
e.Sometimes a set of
onditions
an be merged together. Consider Fig. 1(a),whi
h shows
onditions being tested in basi
 blo
ks 1 and 3. The wider transi-tions between blo
ks shown in �gures in this paper represent the more frequentlyexe
uted path, whi
h o

urs in Fig. 1 when
onditions a and b are both satis-�ed. Figure 1(b) depi
ts the two
onditions being merged together. If the merged? This resear
h was supported in part by NSF grants CCR-9904943, EIA-0072043,CCR-0208892, CCR-0105422, and by DOE grant DEFG02-02ER25543.

2
ondition is true, then the original
onditions need not be tested. Note merging
onditions results in the elimination of both
omparison and bran
h instru
-tions. 4 The elimination of the fork in the
ontrol
ow between blo
ks 2 and 4may enable additional
ode-improving transformations to be performed. If themerged
ondition is not satis�ed, then the original
onditions are tested. Figure1(
) shows that bran
hes
an be
ome redundant after merging
onditions. Inthis
ase,
ondition b must be false if (a && b) is false and (a) is true. Thus, thebran
h in blo
k 3
an be repla
ed by an un
onditional transition to blo
k 6. We
all this the breakeven path sin
e the same number of bran
hes will be exe
uted.We only apply the
ondition merging transformation when we estimate that thetotal instru
tions exe
uted will be de
reased.
T

2

cond a
1

T

T
F

4

cond b
3

(b) After (c) Improved

2 5

F
T

cond a
1

4

T

2

T
F

2

cond a
1

F

6

win path

1−>2−>3−>4
frequent path

6

5win path

6

5

cond b
&&cond a

F
cond b

3

F

cond b
&&cond a

T

4

4

2

F (original code)
lose paths

(a) Before

path
breakeven

path
lose

Fig. 1. Merging Three ConditionsIn this paper we des
ribe te
hniques to repla
e the exe
ution of a set of twoor more bran
hes with a single bran
h. The performan
e improvements wereobtained automati
ally by our
ompiler on a
onventional s
alar pro
essor.2 Related WorkThere are numerous te
hniques that have been used to de
rease the numberof
onditional bran
hes exe
uted. Loop unrolling has long been used to redu
eexe
ution of the
onditional bran
h asso
iated with a loop termination
on-dition[1℄. Loop unswit
hing moves a
onditional bran
h with a loop-invariant
ondition before the loop and dupli
ates the loop in ea
h of the two destinations4 Blo
ks 2 and 3 in Fig. 1(a)
ould have been represented as a single blo
k. Through-out the paper we represent basi
 blo
ks
ontaining a
ondition as having no otherinstru
tions besides a
omparison and a
onditional bran
h so the examples may bemore easily illustrated.

3of the bran
h[2℄. Superoptimizers have been used to �nd a bounded sequen
eof instru
tions that have the same e�e
t as a
onditional bran
h[3℄. Conditionalbran
hes have been avoided by using stati
 analysis and
ode dupli
ation[4, 5℄.Conditional bran
hes have been
oales
ed together into an indire
t jump from ajump table[6℄. Sequen
es of bran
hes have been reordered to allow the sequen
eto be exited earlier, whi
h redu
es the number of bran
hes exe
uted[7, 8℄. Therehas been re
ent work on eliminating bran
hes using ILP ar
hite
tural features.If
onversion uses predi
ated exe
ution to eliminate bran
hes by squashing theresult of an instru
tion when a predi
ate is not satis�ed[9℄. Another te
hniqueeliminates bran
hes by performing if-
onversion as if the ma
hine supportedpredi
ated exe
ution, and then applies reverse-if
onversion to return the
odeto an a
y
li

ontrol
ow representation[10℄. This te
hnique shares some simi-larities to ours, however our approa
h di�ers in several aspe
ts, in
luding thatwe
an merge
onditions involving multiple variables. A te
hnique
alled
ontrolCPR (Criti
al Path Redu
tion) has been used to merge bran
hes in frequentpaths by performing
omparisons that set predi
ate bits in parallel and testingmultiple predi
ates in a single bypass bran
h[11, 12℄. Control CPR not only re-du
es the number of exe
uted bran
hes, but also enables other
ode-improvingtransformations. Among the te
hniques mentioned,
ontrol CPR is the mostsimilar to the work that we des
ribe in this paper, sin
e both approa
hes merge
onditions by using path-based pro�le data. There are several di�eren
e in thetwo approa
hes, in
luding that our approa
h
an be used on a
onventional s
alarpro
essor without any ILP ar
hite
tural support.3 Merging ConditionsWe have developed te
hniques that merge
onditions where either single variablesor multiple variables are
ompared to invariant values.3.1 Merging into a Single Equivalent ConditionWe use logi
al operations to eÆ
iently merge
onditions that
ompare multiplevariables to 0 or �1 into a single equivalent
ondition. Consider the
ow graphshown in Fig. 2(a). The frequent path
he
ks if the two variables are equalto zero. Figure 2(b) depi
ts the two
onditions being merged together using abitwise OR operation. Only when both variables are equal to zero will the resultof the OR operation be zero. If the merged
ondition is not satis�ed, then testingthe
ondition v2 == 0 is unne
essary sin
e it
annot be true.The number of instru
tions required to merge
onditions involving multiplevariables is proportional to the number of di�erent variables being
ompared.Figure 3 shows the general
ode generation strategy we used for merging su
ha set of
onditions. r[1℄ : : : r[n℄ represent the registers
ontaining the values ofn di�erent variables. r[t℄ represents a register
ontaining the temporary results.When merging
onditions
omparing n multiple variables, n � 1 logi
al opera-tions and a single bran
h repla
e 2n instru
tions (n pairs of
omparisons andbran
hes).

4
(b) After(a) Before

v1 == 0

4

3
v2 == 0

2 5

F

F

6

T

T

6

2 5

1
v1 == 0

4

2

v1|v2==0

F
T

FT

1

Fig. 2. Merging Conditions That Test IfDi�erent Variables Are Equal to Zero
r[t℄ = r[1℄ | r[2℄;r[t℄ = r[t℄ | r[3℄;...IC = (r[t℄ | r[n℄) ? 0;PC = IC != 0, <off-tra
e target>;Fig. 3. Code Generated for the MergedCondition That Che
ks If n VariablesAre Equal to ZeroThe top portion of table 1 shows how sets of
onditions
omparing multiplevariables (v1 : : : vn) to 0 and �1
an be merged into a single
ondition. The�rst
olumn shows the original
onditions, the se
ond
olumn shows the
ondi-tions after merging, and the third
olumn shows the stati
 per
entage ea
h rulewas applied, when merging sets involving multiple variables. Rule 1 has beenillustrated in Figures 2 and 3. Rule 2 uses the SPARC ORNOT instru
tion toperform a bitwise NOT on an operand before performing a bitwise OR operation.A word
ontaining the value �1 has all of its bits set in a two's
omplement rep-resentation. Thus, if the operand was a �1, then the result of the bitwise NOTwould be 0 and at that point the �rst rule
an be used. The merged
onditionin rule 3 performs a bitwise AND operation on the variables. A negative valuein a two's
omplement representation has its most signi�
ant bit set. Only if themost signi�
ant bit is set in all of the variables will the most signi�
ant bit beset in the result of the bitwise AND operation. If the most signi�
ant bit is setin the result, then the result value will be negative. The merged
ondition inrule 4 performs a bitwise OR operation on the variables. A nonnegative value ina two's
omplement representation has its most signi�
ant bit
lear. Only if themost signi�
ant bit is
lear in all the variables will the most signi�
ant bit be
lear in the result of the bitwise OR operation. Rules 5 and 6 perform a bitwiseNOT on an operand, whi
h
ips the most signi�
ant bit along with the otherbits in the value. This allows < and >= tests to be merged together.Noti
e that > 0 and <= 0 tests are not listed in the table. A > 0 testwould have to determine that both the most signi�
ant bit is
lear and thatone or more of the other bits are set. These types of tests
annot be eÆ
ientlyperformed using a single logi
al operation on a
onventional s
alar pro
essor.Additional opportunities for
ondition merging be
ome available when setsof
onditions that
ross loop boundaries are
onsidered. It would appear thatin Fig. 4(a) there is no opportunity for merging
onditions. However, Fig. 4(b)depi
ts that after loop unrolling there are multiple bran
hes that use the samerelational operator. Our
ompiler merges sets of
onditions a
ross loop iterations.

5Table 1. Rules for Merging Conditions Comparing Multiple Variables Into a SingleEquivalent ConditionRule Original Conditions Merged Condition % Applied1 v1 == 0 &&..&& vn == 0 (v1 j::j vn) == 0 42.7%2 v1 == 0 &&..&& vn == -1 (v1 j::j �vn) == 0 0.0%3 v1 < 0 &&..&& vn < 0 (v1 &..& vn) < 0 0.0%4 v1 >= 0 &&..&& vn >= 0 (v1 j::j vn) >= 0 4.5%5 v1 < 0 &&..&& vn >= 0 (v1 &..& �vn) < 0 0.9%6 v1 >= 0 &&..&& vn < 0 (v1 j::j �vn) >= -1 0.0%7 v1 6= 0 &&..&& vn 6= 0 (v1 &::& vn) 6= 0 18.2%8 v1 6=
1 &&..&& vn 6=
n (v1 &::& vn) & �(
1 j::j
n) 6= 0 15.5%9 v1 6=
1 &&..&& vn 6=
n �(v1 j::j vn) & (
1 j::j
n) 6= 0 16.4%10 v1 <
1 &&..&& vn <
n (v1 j::j vn) u < min (
1 ; ::;
n) 1.8%(a) Original Code (b) After Loop Unrollingfor (i=0; i < 10000; i++) for (i=0; i < 10000; i += 2){if (a[i℄ < 0) if (a[i℄ < 0)x; x;if (a[i+1℄ < 0)x;}Fig. 4. In
reasing Merging Opportunities by Unrolling Loops3.2 Merging into a SuÆ
ient ConditionOur
ompiler uses logi
al operations to eÆ
iently merge
onditions that
omparemultiple variables into a single suÆ
ient
ondition. In other words, the su

essof the merged
ondition implies the su

ess of the original
onditions. However,the failure of the merged
ondition does not imply the original
onditions werefalse.Tests to determine if a variable is not equal to zero o

ur frequently in pro-grams. We
an determine if two or more variables are guaranteed to be not equalto zero by performing a bitwise AND operation on the variables and
he
king ifthe result does not equal to zero, as shown in rule 7 of Table 1.One may ask how often su
h
onditions
an be su

essfully merged in pra
-ti
e. Consider the
ode in Fig. 5(a), where two pointer variables, p1 and p2, aretested to see if they are both non-null. In most appli
ations, a pointer variableis only null in an ex
eptional
ase (e.g. end of a linked list). It is extremely likelythat two non-null pointer values will have one or more
orresponding bits bothset due to address lo
ality. Figure 5(b) shows
ode with a merged
ondition,testing the pointers. Note that if the merged
ondition is not satis�ed, then theentire original set of bran
hes still needs to be tested.

6 (a) Before (b) Afterif (p1 != 0) if (p1 & p2 != 0){w; w;else y;x; }else{if (p2 != 0) if (p1 != 0)y; ...else if (p2 != 0)z; ...}Fig. 5. Che
king If Di�erent Variables Are Not Equal to ZeroWe are also able to merge
onditions that
he
k if multiple variables are allnot equal to a spe
i�ed list of
onstants. One method we used is to
he
k ifany bits set in all of the variables are always
lear in all of the
onstants. Rule8 of Table 1 depi
ts how this is a

omplished, where
1 : : :
n are
onstants. Abitwise AND operation is performed on all of the variables to determine whi
hbits are set in all of these variables. The
omplement of the bitwise OR of the
onstants is taken, whi
h results in the bits being set that are
lear in all of the
onstants. Note that determining whi
h bits in the
onstants are always
lear isdetermined at
ompile time. If any bits set in all of the variables are
lear in allof the
onstants, then it is known that all of the variables will not be equal toall of the
onstants.We are also able to merge
onditions
he
king if multiple variables are lessthan (or less than or equal to)
onstants. Rule 10 in Table 1 depi
ts how thisis a

omplished, where
1 : : :
n have to be positive
onstants and the u < inthe merged
ondition represents an unsigned less than
omparison. If the resultof the bitwise OR on the variables is less than the minimum
onstant, thenthe original
onditions have to be satis�ed. The unsigned less than operatoris ne
essary sin
e one of the variables
ould be negative and the result of thebitwise OR operation would be treated as a negative value if a signed less thanoperator is used.Our
ompiler merges
onditions
omparing multiple variables to values thatare not
onstants. Consider the original loop and unrolled loop shown in Fig.6(a) and Fig. 6(b), respe
tively. It would appear there is no opportunity formerging
onditions. However, x is loop invariant. Thus, the bits that are set inboth a[i℄ and a[i+1℄
an be ANDed with �x to determine if the array elementsare not equal to x, as shown in Fig. 6(
). The expression �x is loop invariantand the
ompiler will move it out of the loop when loop-invariant
ode motion isperformed. Likewise, the loads of the two array elements in the else
ase will beeliminated after applying
ommon subexpression elimination. Note we are alsoable to merge
onditions
he
king if multiple variables are not equal to multipleloop invariant values.

7(a) Original Code (
) After Condition Mergingfor (i=0; i < 10000; i++) for (i=0; i < 10000; i += 2)fif (a[i℄ == x) if ((a[i℄ & a[i+1℄) & ~x)num++;
ontinue;else{(b) After Loop Unrolling if (a[i℄ == x)for (i=0; i < 10000; i += 2){ num++;if (a[i℄ == x) if (a[i+1℄ == x)num++; num++;if (a[i+1℄ == x) }num++; }}Fig. 6. Merging Conditions That Che
k If Multiple Variables Are Not Equal to Loop-Invariant Values4 Applying the TransformationAfter �nding all of the sets of
onditions that
an be merged, the
ompilersorts these sets in the order of the highest estimated bene�t �rst. There are tworeasons for merging the most bene�
ial sets �rst. (1) Merging may require thegeneration of loop-invariant expressions that
an be moved out of the loop afterapplying loop-invariant
ode motion. This transformation requires the allo
ationof registers for whi
h there are only a limited number available on a targetma
hine. (2) Merging
onditions
hanges the
ontrol
ow within a fun
tion. Iftwo sets of
onditions overlap in the paths of blo
ks that
onne
t them, thenthe estimated bene�t is invalid after the �rst set is merged and the se
ond setof
onditions will not be merged.After merging sets of
onditions, we apply a number of
ode-improving trans-formations in an attempt to improve the modi�ed
ontrol
ow. For instan
e,Fig. 1(
) shows that merging
onditions simpli�es the
ontrol
ow in the winand breakeven paths. Our general strategy was to generate the
ontrol
ow ina simple manner and rely on other
ode-improving transformations to improvethe
ode. For instan
e, the
ode shown in Fig. 6(
)
an be improved by applyingloop-invariant
ode motion and
ommon subexpression elimination.5 ResultsCondition merging on multiple variables redu
ed the average number of bran
hesexe
uted by 11.54% and redu
ed the total number of instru
tions exe
uted byan average of 3.93%. Figure 7 displays the results of
ondition merging whenthe te
hniques that merged
onditions involving single variables were
ombinedwith the te
hniques involving multiple variable
onditions. All the ben
hmarkswere run on the UltraSPARC II. When merging multiple variable
onditions,the bran
hes exe
uted were redu
ed by an average of 11.54%. For spa
e
on-siderations the te
hniques that merge single variable
onditions are not shown

8here but are dis
ussed, in detail, in a te
hni
al report[13℄. The average numberof bran
hes exe
uted when using both te
hniques was redu
ed by 15.81% whilethe average number of instru
tions exe
uted was redu
ed by 5.74%. Exe
utiontime was redu
ed an average of 3.43%. While most of the redu
tion was dire
tlydue to fewer exe
uted
omparisons and bran
hes, o

asionally the
ompiler wasable to apply
ode-improving transformations on the modi�ed
ontrol
ow toobtain additional improvements. Sort had unusually large bene�ts sin
e most ofthe exe
ution was spent in tight loops where
onditions
ould be merged. Theexe
ution time for a few of the ben
hmarks got worse after the
ondition merg-ing te
hniques were applied. The in
rease in exe
ution time
ould be
aused byseveral fa
tors that
ould in
lude ina

urate performan
e estimates due to sub-sequent optimizations and unforeseen e�e
ts due to multiple issue, instru
tion
a
hing and bran
h predi
tion.

co
mp
re
ss go

ij
pe
g li

m8
8k
si
m

pe
rl

vo
rt
ex

ct
ag
s dd

de
ro
ff

di
ff

gr
ep le

x

nr
of
f od

ot
he
ll
o pr se

d

so
rt tb

l tr

un
iq

ya
cc

av
er
ag
e

30

40

50

60

70

80

90

100

110

Branches Executed Instructions Executed Execution Time

P
e
r
c
e
n
t
a
g
e

Fig. 7. E�e
t on Bran
hes, Instru
tions, and Exe
ution Time on the UltraSPARC IIApplying all the te
hniques resulted in a 6.99% in
rease in stati

ode sizeafter
ondition merging. This stati
 in
rease
ompares favorably with the 5.74%de
rease in instru
tions exe
uted. The
ode size would have in
reased more ifwe had not required that the paths we inspe
ted
omprise at least 0.1% of thetotal instru
tions exe
uted.On many ma
hines there is a pipeline stall asso
iated with every takenbran
h. Merging
onditions resulted in an average 27.90% redu
tion in the num-ber of taken bran
hes for the test programs. This redu
tion was due in partto de
reasing the number of exe
uted bran
hes. The transformation also makesbran
hes within the win path more likely to fall through sin
e the sequen
e ofblo
ks representing ea
h frequent path is now
ontiguous in memory. Overall,

9the average number of
ontrol transfers (taken bran
hes, un
onditional jumps,
alls, returns, and indire
t jumps) was redu
ed by 20.18%.6 Future WorkOne area to explore is the use of more aggressive analysis to dete
t when spe
ula-tively exe
uted loads would not introdu
e ex
eptions. We
onservatively mergedsets of
onditions that required loads to be spe
ulatively exe
uted only when itwas obvious that these loads would not introdu
e new ex
eptions. By perform-ing more aggressive analysis, we should be able to dete
t more sets of
onditionsto be merged. This will be parti
ularly useful for merging
onditions that
rossloop boundaries.Past studies on
ontrol CPR have not investigated the impa
t on bran
hpredi
tion[11, 12℄. A more thorough investigation of the e�e
t
ondition merginghas on bran
h mispredi
tion is needed to dis
over the reasons why additionalmispredi
tions sometimes o

ur. It may be possible to perform additional opti-mizations that may redu
e the number of mispredi
tions.We also found that the merging of one set of
onditions may inhibit themerging of another set. Code is dupli
ated and the paths within a fun
tion aremodi�ed when
onditions are merged. This
ode dupli
ation invalidates the pathpro�le data on whi
h
ondition merging is based. Thus, merging a set of
ondi-tions is not
urrently allowed whenever the
ontrol
ow
hanged in the subpathsasso
iated with the set of
onditions to be merged. With
areful analysis it maybe possible to infer new path frequen
y measurements for these dupli
ated paths.7 Con
lusionsIn this paper we des
ribed a te
hnique to perform
ondition merging on a
on-ventional s
alar pro
essor. We repla
ed the exe
ution of two or more bran
heswith a single bran
h by merging
onditions. Path pro�le information is gatheredto determine the frequen
y that paths are exe
uted in the program. Sets of
on-ditions that
an be merged are dete
ted and the bene�t of merging ea
h set isestimated. The
ontrol
ow is then restru
tured to merge the sets of
onditionsdeemed bene�
ial. The results show that signi�
ant redu
tions
an be a
hievedin the number of bran
hes performed for non-numeri
al appli
ations. In addi-tion, we showed bene�ts in the number of instru
tions exe
uted, and exe
utiontime.There
ontributions presented in this paper are twofold. First, we were ableto merge
onditions
omparing multiple variables to
onstants or invariant valuesthrough innovative use of instru
tions on a
onventional s
alar pro
essor. Se
ond,we have shown that these te
hniques may still provide bene�ts even when thewin path is not the most frequently exe
uted. In these
ases it may be possibleto generate and merge
onditions along a breakeven path.

10 We believe that
ondition merging may be useful in other settings. Conditionmerging may be a very good �t for run-time optimization systems, whi
h op-timize frequently exe
uted paths during the exe
ution of a program. Conditionmerging may also be useful for low power embedded systems pro
essors wherear
hite
tural support for ILP is not available.Referen
es1. Dongarra, J.J., Hinds, A.R.: Unrolling loops in FORTRAN. Software, Pra
ti
eand Experien
e 9 (1979) 219{2262. Allen, F.E., Co
ke, J.: A
atalogue of optimizing transformations. In Rustin, R.,ed.: Design and Optimization of Compilers. Prenti
e-Hall, Englewood Cli�s, NJ,USA (1971) 1{30. Transformations.3. Granlund, T., Kenner, R.: Eliminating bran
hes using a superoptimiser and theGNU C
ompiler. In Fraser, C.W., ed.: Pro
eedings of the SIGPLAN '92 Confer-en
e on Programming Language Design and Implementation, San Fran
is
o, CA,ACM Press (1992) 341{3524. Mueller, F., Whalley, D.B.: Avoiding
onditional bran
hes by
ode repli
ation. In:Pro
eedings of the SIGPLAN '95 Conferen
e on Programming Language Designand Implementation, La Jolla, CA, ACM Press (1995) 56{665. Bod��k, R., Gupta, R., So�a, M.L.: Interpro
edural
onditional bran
h elimination.In: Pro
eedings of the SIGPLAN '97 Conferen
e on Programming Language Designand Implementation. Volume 32, 5 of ACM SIGPLAN Noti
es., New York, ACMPress (1997) 146{1586. Uh, G.R., Whalley, D.B.: Coales
ing
onditional bran
hes into eÆ
ient indire
tjumps. In: Pro
eedings of the International Stati
 Analysis Symposium. (1997)315{3297. Yang, M., Uh, G.R., Whalley, D.B.: Improving performan
e by bran
h reordering.In: Pro
eedings of the SIGPLAN '98 Conferen
e on Programming Language Designand Implementation, Montreal, Canada, ACM Press (1998) 130{1418. Yang, M., Uh, G.R., Whalley, D.B.: EÆ
ient and e�e
tive bran
h reordering usingpro�le data. Volume 24. (2002) 667{6979. Hennessy, J., Patterson, D.: Computer Ar
hite
ture: A Quantitative Approa
h.Se
ond edn. Morgan Kaufmann Publishers In
., San Fran
is
o, CA (1996)10. Warter, N.J., Mahlke, S.A., Hwu, W.M.W., Rau, B.R.: Reverse If-Conversion. In:Pro
eedings of the Conferen
e on Programming Language Design and Implemen-tation. (1993) 290{29911. S
hlansker, M., Kathail, V.: Criti
al path redu
tion for s
alar programs. In:Pro
eedings of the 28th Annual International Symposium on Mi
roar
hite
ture,Ann Arbor, Mi
higan, IEEE Computer So
iety TC-MICRO and ACM SIGMICRO,IEEE Computer So
iety Press (1995) 57{6912. S
hlansker, M., Mahlke, S., Johnson, R.: Control CPR: A bran
h height redu
tionoptimization for EPIC ar
hite
tures. In: Pro
eedings of the SIGPLAN '99 Con-feren
e on Programming Language Design and Implementation, Atlanta, Georgia,ACM Press (1999) 155{16813. Kreahling, W., Whalley, D.W., Bailey, M., Yuan, X., Uh, G.R., van Engelen, R.:Bran
h elimination by
ondition merging. Te
hni
al report, Florida State Univer-sity (2003) URL: http://websrv.
s.fsu.edu/resear
h/reports/TR-030201.ps.

