
Using a Swap Instructionto Coalesce Loads and StoresApan Qasem, David Whalley, Xin Yuan, and Robert van EngelenDepartment of Computer Science, Florida State UniversityTallahassee, FL 32306-4530, U.S.A.e-mail: fqasem,whalley,xyuan,engeleng@cs.fsu.edu, phone: (850) 644-3506Abstract. A swap instruction, which exchanges a value in memory witha value of a register, is available on many architectures. The primaryapplication of a swap instruction has been for process synchronization.As an experiment we wished to see how often a swap instruction can beused to coalesce loads and stores to improve the performance of a varietyof applications. The results show that both the number of accesses to thememory system (data cache) and the number of executed instructionsare reduced.1 INTRODUCTIONAn instruction that exchanges a value in memory with a value in a registerhas been used on a variety of machines. The primary purpose for these swapinstructions is to provide an atomic operation for reading from and writingto memory, which has been used to construct mutual-exclusion mechanisms insoftware for process synchronization. In fact, there are other forms of hardwareinstructions that have been used to support mutual exclusion, which includethe classic test-and-set instruction. We thought it would be interesting to see ifa swap instruction could be exploited in a more conventional manner. In thispaper we show that a swap instruction can also be used by a low-level code-improving transformation to coalesce loads and stores into a single instruction,which results in a reduction of memory references and executed instructions.A swap instruction described in this paper exchanges a value in memory witha value in a register. This is illustrated in Fig. 1, which depicts a load instruction,a store instruction, and a swap instruction using an RTL (register transfer list)notation. Each assignment in an RTL represents an e�ect on the machine. Thelist of e�ects within a single RTL are accomplished in parallel. Thus, the swapinstruction is essentially a load and store accomplished in parallel.
(b) Store Instruction (c) Swap Instruction(a) Load Instruction

r[2] = M[x]; M[x] = r[2]; r[2] = M[x]; M[x] = r[2];Fig. 1. Contrasting the E�ects of Load, Store, and Swap Instructions

 d[j] = d[j-1]-dd[j];
for (j = n-1; j > 1; j--)

}
 = d[j-2]-dd[j-1];d[j-1]
 d[j] = -dd[j];d[j-1]
for (j = n-1; j > 1; j -= 2) {

(b) Loop after Unrolling(a) Original LoopFig. 2. Unrolling a Loop to Provide an Opportunity to Exploit a Swap Instruction2 OPPORTUNITIES FOR EXPLOITING A SWAPA swap instruction can potentially be exploited when a load is followed by a storeto the same memory address and the value stored is not computed using the valuethat was loaded. We investigated how often this situation occurs and we havefound many direct opportunities in a number of applications. The most commonsituation is when the values of two variables are exchanged. However, there arealso opportunities for exploiting a swap instruction after other code-improvingtransformations have been performed. It would appear in the code segment ofFig. 2(a) that there is no opportunity for exploiting a swap instruction. However,consider Fig. 2(b) which shows the loop unrolled by a factor of two. Now the valueloaded from d[j-1] in the �rst assignment statement in the loop is updated inthe second assignment statement and the value computed in the �rst assignmentis not used to compute the value stored in the second assignment.Sometimes apparent opportunities at the source code level for exploiting aswap instruction are not available after other code-improving transformationshave been applied. Many code-improving transformations either eliminate (e.g.register allocation) or move (e.g. loop-invariant code motion) memory references.Coalescing loads and stores into swap instructions should only be performed afterall other code-improving transformations that can a�ect the memory referenceshave been applied. Fig. 3(a) shows an exchange of values after the two values arecompared in an if statement. Fig. 3(b) shows a possible translation of this codesegment to machine instructions. Due to common subexpression elimination, theloads of x and y in the block following the branch have been deleted in Fig. 3(c).Thus, the swap instruction cannot be exploited within that block.
M[y] = r[1];
M[x] = r[2];

PC = IC <= 0, L5;
IC = r[1] ? r[2];
r[2] = M[y];
r[1] = M[x];

r[1] = M[x];
r[2] = M[y];

 y = t;
}

if (x > y) {
 t = x;
 x = y;

(a) Exchange of Values

Source Code Level of Values of x and y Common Subexpression Elimination

r[1] = M[x];
r[2] = M[y];
IC = r[1] ? r[2];
PC = IC <= 0, L5;
M[x] = r[2];
M[y] = r[1];

Exchange of Values Due to
(c) Loads Are Deleted in the

in x and y at the
(b) Loads are Initially

Performed in the ExchangeFig. 3. Example Depicting Load Instructions Being Deleted2

(a) Exchange of Values

Source Code Level
in x and y at the

t = x;
x = y;
y = t;

(b) Exchange of Values

Machine Code Level
in x and y at the

r[1] = M[x];
r[2] = M[y];
M[x] = r[2];
M[y] = r[1];

(c) After Coalescing the
Load and Store of x

M[x] = r[2]; r[2] = M[x];
M[y] = r[2];

r[2] = M[y];

Fig. 4. Example of Exchanging the Values of Two Variables3 A CODE-IMPROVING TRANSFORMATION TOEXPLOIT THE SWAP INSTRUCTIONFig. 4(a), shows an exchange of the values of two variables, x and y, at thesource code level. Fig. 4(b) shows similar code at the SPARC machine codelevel, which is represented in RTLs. The variable t has been allocated to registerr[1]. Register r[2] is used to hold the temporary value loaded from y and storedin x. At this point a swap could be used to coalesce the load and store of x orthe load and store of y. Fig. 4(c) shows the RTLs after coalescing the load andstore of x. One should note that r[1] is no longer used since its live range hasbeen renamed to r[2]. Due to the renaming of the register, the register pressureat this point in the program ow graph has been reduced by one. Reducing theregister pressure can sometimes enable other code-improving transformationsthat require an available register to be applied. Note that the decision to coalescethe load and store of x prevents the coalescing of the load and store of y.The transformation to coalesce a load and a store into a swap instruction wasaccomplished using an algorithm described in detail elsewhere [4]. The algorithm�nds a load followed by a store to the same address and coalesces the two memoryreferences together into a single swap instruction if a number conditions are met.Due to space constraints, we only present a few of the conditions.The instruction containing the �rst use of the register assigned by the loadhas to occur after the last reference to the register to be stored. For example,consider the example in Fig. 5(a). A use of r[a] appears before the last referenceto r[b] before the store instruction, which prevents the load and store frombeing coalesced. Fig. 5(b) shows that our compiler is able to reschedule theinstructions between the load and the store to meet this condition. Now theload can be moved immediately before the store, as shown in Fig. 5(c). Once theload and store are contiguous, the two instructions can be coalesced. Fig. 5(d)shows the code sequence after the load and store have been deleted, the swapinstruction has been inserted, and r[a] has been renamed to r[b].4 RESULTSTable 1 describes the numerous benchmarks and applications that we used toevaluate the impact of applying the code-improving transformation to coalesceloads and stores into a swap instruction. The code-improving transformation was3

r[a] = M[v];
...
... = ... r[b] ...;
... = ... r[a] ...;
...
M[v] = r[b];

... = ... r[a] ...;

...

r[a] = M[v];
M[v] = r[b];

...

... = ... r[b] ...;

(c) Load and Store
Can Now Be

Made Contiguous

...

... = ... r[b] ...;

...

... = ... r[b] ...;

(d) After Coalescing the

Renaming r[a] to r[b]
Load and Store and

r[b] = M[v]; M[v] = r[b];

r[a] = M[v];
...
... = ... r[a] ...;
... = ... r[b] ...;
...
M[v] = r[b];

Reference to r[b]
Appears before a

(a) Use of r[a] (b) First Use of r[a]
Appears after the

Last Reference to r[b]Fig. 5. Scheduling Instructions to Exploit a SwapProgram Descriptionbandec constructs an LU decomposition of a sparse representation of a band diagonal matrixbubblesort sorts an integer array in ascending order using a bubble sortchebpc polynomial approximation from Chebyshev coe�cientselmhes reduces an N �N matrix to Hessenberg form�t fast fourier transformgaussj solves linear equations using Gauss-Jordan eliminationindexx cal. indices for the array such that the indices are in ascending orderludcmp performs LU decomposition of an N �N matrixmmid modi�ed midpoint methodpredic performs linear prediction of a set of data pointsrtsp �nds the root of a function using the false position methodselect returns the k smallest value in an arraythresh adjusts an image according to a threshold valuetranspose transposes a matrixtraverse binary tree traversal without a stacktsp traveling salesman problemTable 1. Test Programsimplemented in the vpo compiler [1]. Vpo is a compiler backend that is part ofthe zephyr system, which is supported by the National Compiler Infrastructureproject. The programs depicted in boldface were directly obtained from theNumerical Recipes in C text [3]. The code in many of these benchmarks areused as utilities in a variety of programs. Thus, coalescing loads and stores intoswaps can be performed on a diverse set of applications.Table 2 depicts the results that were obtained on the test programs for co-alescing loads and stores into swap instructions. We unrolled several loops inthese programs by an unroll factor of two to provide opportunities for coalescinga load and a store across the original iterations of the loop. In these cases, theNot Coalesced column includes the unrolling of these loops to provide a fair com-parison. The results show decreases in the number of instructions executed andmemory references performed for a wide variety of applications. The amount ofthe decrease varied depending on the execution frequency of the load and storeinstructions that were coalesced. As expected the use of a swap instruction didnot decrease the number of data cache misses.5 CONCLUSIONSIn this paper we have experimented with exploiting a swap instruction, whichexchanges the values between a register and a location in memory. While a4

Program Instructions Executed Memory References PerformedNot Coalesced Coalesced Decrease Not Coalesced Coalesced Decreasebandec 69,189 68,459 1.06% 18,054 17,324 4.04%bubblesort 2,439,005 2,376,705 2.55% 498,734 436,434 12.49%chebpc 7,531,984 7,029,990 6.66% 3,008,052 2,507,056 16.66%elmhes 18,527 18,044 2.61% 3,010 2,891 3.95%�t 4,176,112 4,148,112 0.67% 672,132 660,932 1.67%gaussj 27,143 26,756 1.43% 7,884 7,587 3.77%indexx 70,322 68,676 2.34% 17,132 15,981 6.72%ludcmp 10,521,952 10,439,152 0.79% 854,915 845,715 1.08%mmid 267,563 258,554 3.37% 88,622 79,613 10.17%predic 40,827 38,927 4.65% 13,894 11,994 13.67%rtsp 81,117 80,116 1.23% 66,184 65,183 1.51%select 19,939 19,434 2.53% 3,618 3,121 13.74%thresh 7,958,909 7,661,796 3.73% 1,523,554 1,226,594 19.49%transpose 42,883 37,933 11.54% 19,832 14,882 24.96%traverse 94,159 91,090 3.26% 98,311 96,265 2.08%tsp 64,294,814 63,950,122 0.54% 52,144,375 51,969,529 0.34%average 6,103,402 6,019,616 3.06% 3,689,893 3,622,568 8.52%Table 2. Resultsswap instruction has traditionally only been used for process synchronization,we wished to determine if a swap instruction could be used to coalesce loads andstores. Di�erent types of opportunities for exploiting the swap instruction wereshown to be available. A number of issues related to implementing the coalesc-ing transformations were described. The results show that this code-improvingtransformation could be applied on a variety of applications and benchmarksand reductions in the number of instructions executed and memory referencesperformed were observed.6 ACKNOWLEDGEMENTSThis research was supported in part by the National Science Foundation grantsEIA-9806525, CCR-9904943, CCR-0073482, and EIA-0072043.References1. M. E. Benitez and J. W. Davidson, \A Portable Global Optimizer and Linker,"Proceedings of the SIGPLAN'88 Symposium on Programming Language Design andImplementation, Atlanta, GA, pp. 329{338, June 1988.2. J.W. Davidson and S. Jinturkar, \Memory Access Coalescing: A Technique forEliminating Redundant Memory Accesses," Proceedings of the SIGPLAN'94 Sym-posium on Programming Language Design and Implementation, pp. 186{195, June1994.3. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, NumericalRecipes in C: The Art of Scienti�c Computing, Second Edition, Cambridge Uni-versity Press, New York, NY, 1996.4. A. Qasem, D. Whalley, X. Yuan, R. van Engelen, \Using a Swap Instruction to Co-alesce Loads and Stores," Technical Report TR-010501, Computer Science Dept.,Florida State University. 5

