Using a Swap Instruction
to Coalesce Loads and Stores

Apan Qasem, David Whalley, Xin Yuan, and Robert van Engelen

Department of Computer Science, Florida State University
Tallahassee, FL 32306-4530, U.S.A.
e-mail: {gasem,whalley,xyuan,engelen}@Qcs.fsu.edu, phone: (850) 644-3506

Abstract. A swap instruction, which exchanges a value in memory with
a value of a register, is available on many architectures. The primary
application of a swap instruction has been for process synchronization.
As an experiment we wished to see how often a swap instruction can be
used to coalesce loads and stores to improve the performance of a variety
of applications. The results show that both the number of accesses to the
memory system (data cache) and the number of executed instructions
are reduced.

1 INTRODUCTION

An instruction that exchanges a value in memory with a value in a register
has been used on a variety of machines. The primary purpose for these swap
instructions is to provide an atomic operation for reading from and writing
to memory, which has been used to construct mutual-exclusion mechanisms in
software for process synchronization. In fact, there are other forms of hardware
instructions that have been used to support mutual exclusion, which include
the classic test-and-set instruction. We thought it would be interesting to see if
a swap instruction could be exploited in a more conventional manner. In this
paper we show that a swap instruction can also be used by a low-level code-
improving transformation to coalesce loads and stores into a single instruction,
which results in a reduction of memory references and executed instructions.

A swap instruction described in this paper exchanges a value in memory with
a value in a register. This is illustrated in Fig. 1, which depicts a load instruction,
a store instruction, and a swap instruction using an RTL (register transfer list)
notation. Each assignment in an RTL represents an effect on the machine. The
list of effects within a single RTL are accomplished in parallel. Thus, the swap
instruction is essentially a load and store accomplished in parallel.

r[2] = MxJ; Mx] =r[2]; r{2] = Mx]; Mx] =r[2];
(a) Load Instruction (b) StoreInstruction (c) Swap Instruction

Fig. 1. Contrasting the Effects of Load, Store, and Swap Instructions

for (j =n-1; j >1;] -=2) {

for (j =n-1;j >1; j--) d[j] = d[j-1]-dd[j];
dfj] = d[j-1]-dd[j]; dfj-1] =d[j-2]-dd[j-1];
(a) Original Loop ! (b) Loop after Unrolling

Fig. 2. Unrolling a Loop to Provide an Opportunity to Exploit a Swap Instruction

2 OPPORTUNITIES FOR EXPLOITING A SWAP

A swap instruction can potentially be exploited when a load is followed by a store
to the same memory address and the value stored is not computed using the value
that was loaded. We investigated how often this situation occurs and we have
found many direct opportunities in a number of applications. The most common
situation is when the values of two variables are exchanged. However, there are
also opportunities for exploiting a swap instruction after other code-improving
transformations have been performed. It would appear in the code segment of
Fig. 2(a) that there is no opportunity for exploiting a swap instruction. However,
consider Fig. 2(b) which shows the loop unrolled by a factor of two. Now the value
loaded from d[j-1] in the first assignment statement in the loop is updated in
the second assignment statement and the value computed in the first assignment
is not used to compute the value stored in the second assignment.

Sometimes apparent opportunities at the source code level for exploiting a
swap instruction are not available after other code-improving transformations
have been applied. Many code-improving transformations either eliminate (e.g.
register allocation) or move (e.g. loop-invariant code motion) memory references.
Coalescing loads and stores into swap instructions should only be performed after
all other code-improving transformations that can affect the memory references
have been applied. Fig. 3(a) shows an exchange of values after the two values are
compared in an if statement. Fig. 3(b) shows a possible translation of this code
segment to machine instructions. Due to common subexpression elimination, the
loads of x and y in the block following the branch have been deleted in Fig. 3(c).
Thus, the swap instruction cannot be exploited within that block.

rf{1] = Mx];
r(2] = Myl rf1] = Mx];
. IC=r[1] ?r[2]; r[2] = Myl;
if (x>y) { PC = IC <= 0, L5; IC=r[1] ?r[2];
b (1 = Mxl; PC = IC <= 0, L5;
X:fi rf(2] = Myl; Mx] = r[2];
y==u Mx] =r[2]; Myl = r[1];
! Myl = r(1]; _
(a) Exchange of Values (b) Loadsare Initially (c) Loads Are Deleted in the
inxandy at the Performed in the Exchange Exchange of ValuesDueto
Source Code L evel of Valuesof x and y Common Subexpression Elimination

Fig. 3. Example Depicting Load Instructions Being Deleted

r[1] = Mx];
to=x r[2] = Myl; ri2] = Myl;
X =y, Mx] =r[2]; Mx] =r[2]; r[2] = Mx];
y =t; Myl = r[1]; Myl =r[2];
(a) Exchange of Values (b) Exchange of Values (c) After Coalescing the
inxandy at the inxandy at the Load and Store of x
Sour ce Code L evel Machine Code L evel

Fig. 4. Example of Exchanging the Values of Two Variables

3 A CODE-IMPROVING TRANSFORMATION TO
EXPLOIT THE SWAP INSTRUCTION

Fig. 4(a), shows an exchange of the values of two variables, x and y, at the
source code level. Fig. 4(b) shows similar code at the SPARC machine code
level, which is represented in RTLs. The variable t has been allocated to register
r[1]. Register r[2] is used to hold the temporary value loaded from y and stored
in x. At this point a swap could be used to coalesce the load and store of x or
the load and store of y. Fig. 4(c) shows the RTLs after coalescing the load and
store of x. One should note that r[1] is no longer used since its live range has
been renamed to r[2]. Due to the renaming of the register, the register pressure
at this point in the program flow graph has been reduced by one. Reducing the
register pressure can sometimes enable other code-improving transformations
that require an available register to be applied. Note that the decision to coalesce
the load and store of x prevents the coalescing of the load and store of y.

The transformation to coalesce a load and a store into a swap instruction was
accomplished using an algorithm described in detail elsewhere [4]. The algorithm
finds aload followed by a store to the same address and coalesces the two memory
references together into a single swap instruction if a number conditions are met.
Due to space constraints, we only present a few of the conditions.

The instruction containing the first use of the register assigned by the load
has to occur after the last reference to the register to be stored. For example,
consider the example in Fig. 5(a). A use of r[a] appears before the last reference
to r[b] before the store instruction, which prevents the load and store from
being coalesced. Fig. 5(b) shows that our compiler is able to reschedule the
instructions between the load and the store to meet this condition. Now the
load can be moved immediately before the store, as shown in Fig. 5(c). Once the
load and store are contiguous, the two instructions can be coalesced. Fig. 5(d)
shows the code sequence after the load and store have been deleted, the swap
instruction has been inserted, and r[a] has been renamed to r[b].

4 RESULTS

Table 1 describes the numerous benchmarks and applications that we used to
evaluate the impact of applying the code-improving transformation to coalesce
loads and stores into a swap instruction. The code-improving transformation was

rla] = Mv]; rfa] = Mv];
T i 1) I B
= r[a] = r[b] ...;| r[a] = Mv]; ..o = ..o r[b] L
= r[b] = rfa] ...;| Mv] =r[b]; r[b] = Mv]l; Mv] =r[b];
N Y Sl e = oo r[b]l oL
Mv] = r[b]; Mv] = r[b];
(a) Useof r[a] (b) First Useof r[a] (c) Load and Store (d) After Coalescing the
Appearsbeforea Appears after the Can Now Be Load and Store and
Referencetor[b] Last Referencetor[b] Made Contiguous Renamingr[a] tor[b]

Fig. 5. Scheduling Instructions to Exploit a Swap

Program Description

bandec |[constructs an LU decomposition of a sparse representation of a band diagonal matrix
bubblesort|sorts an integer array in ascending order using a bubble sort

chebpc |polynomial approximation from Chebyshev coefficients

elmhes reduces an N x N matrix to Hessenberg form

fft fast fourier transform

gaussj solves linear equations using Gauss-Jordan elimination

indexx cal. indices for the array such that the indices are in ascending order

ludecmp |performs LU decomposition of an N X N matrix

mmid modified midpoint method

predic performs linear prediction of a set of data points

rtflsp finds the root of a function using the false position method
select returns the k& smallest value in an array

thresh adjusts an image according to a threshold value

transpose |transposes a matrix
traverse binary tree traversal without a stack
tsp traveling salesman problem

Table 1. Test Programs

implemented in the wpo compiler [1]. Vpo is a compiler backend that is part of
the zephyr system, which is supported by the National Compiler Infrastructure
project. The programs depicted in boldface were directly obtained from the
Numerical Recipes in C text [3]. The code in many of these benchmarks are
used as utilities in a variety of programs. Thus, coalescing loads and stores into
swaps can be performed on a diverse set of applications.

Table 2 depicts the results that were obtained on the test programs for co-
alescing loads and stores into swap instructions. We unrolled several loops in
these programs by an unroll factor of two to provide opportunities for coalescing
a load and a store across the original iterations of the loop. In these cases, the
Not Coalesced column includes the unrolling of these loops to provide a fair com-
parison. The results show decreases in the number of instructions executed and
memory references performed for a wide variety of applications. The amount of
the decrease varied depending on the execution frequency of the load and store
instructions that were coalesced. As expected the use of a swap instruction did
not decrease the number of data cache misses.

5 CONCLUSIONS

In this paper we have experimented with exploiting a swap instruction, which
exchanges the values between a register and a location in memory. While a

Program Instructions Executed Memory References Performed
Not Coalesced| Coalesced|Decrease||Not Coalesced| Coalesced|Decrease
bandec 69,189 68,459] 1.06% 18,054 17,324 4.04%
bubblesort 2,439,005| 2,376,705 2.55% 498,734 436,434| 12.49%
chebpc 7,531,984 7,029,990 6.66% 3,008,052| 2,507,056| 16.66%
elmhes 18,527 18,044 2.61% 3,010 2,891 3.95%
fFt 4,176,112| 4,148,112 0.67% 672,132 660,932| 1.67%
gaussj 27,143 26,756 1.43% 7,884 7,587| 3.77%
indexx 70,322 68,676 2.34% 17,132 15,981 6.72%
ludcmp 10,521,952(10,439,152 0.79% 854,915 845,715 1.08%
mmid 267,563 258,554| 3.37% 88,622 79,613 10.17%
predic 40,827 38,927| 4.65% 13,894 11,994| 13.67%
rtflsp 81,117 80,116 1.23% 66,184 65,183| 1.51%
select 19,939 19,434 2.53% 3,618 3,121 13.74%
thresh 7,958,909| 7,661,796 3.73% 1,523,554| 1,226,594 19.49%
transpose 42,883 37,933 11.54% 19,832 14,882| 24.96%
traverse 94,159 91,090| 3.26% 98,311 96,265 2.08%
tsp 64,294,814|63,950,122 0.54% 52,144,375|51,969,529 0.34%
average 6,103,402| 6,019,616] 3.06% 3,689,893| 3,622,568] 8.52%

Table 2. Results

swap instruction has traditionally only been used for process synchronization,
we wished to determine if a swap instruction could be used to coalesce loads and
stores. Different types of opportunities for exploiting the swap instruction were
shown to be available. A number of issues related to implementing the coalesc-
ing transformations were described. The results show that this code-improving
transformation could be applied on a variety of applications and benchmarks
and reductions in the number of instructions executed and memory references
performed were observed.

6 ACKNOWLEDGEMENTS

This research was supported in part by the National Science Foundation grants
EIA-9806525, CCR-9904943, CCR-0073482, and EIA-0072043.

References

1. M. E. Benitez and J. W. Davidson, “A Portable Global Optimizer and Linker,”
Proceedings of the SIGPLAN’88 Symposium on Programming Language Design and
Implementation, Atlanta, GA, pp. 329-338, June 1988.

2. J.W. Davidson and S. Jinturkar, “Memory Access Coalescing: A Technique for
Eliminating Redundant Memory Accesses,” Proceedings of the SIGPLAN’94 Sym-
postum on Programming Language Design and Implementation, pp. 186195, June
1994.

3. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical
Recipes in C: The Art of Scientific Computing, Second Edition, Cambridge Uni-
versity Press, New York, NY, 1996.

4. A. Qasem, D. Whalley, X. Yuan, R. van Engelen, “Using a Swap Instruction to Co-
alesce Loads and Stores,” Technical Report TR-010501, Computer Science Dept.,
Florida State University.

