
Using De-optimization to Re-optimize Code

Stephen Hines
Ê
, Prasad Kulkarni

Ê
,

David Whalley
Ê
, Jack Davidson

Ë

Computer Science Dept.
Ê

Computer Science Dept.
Ë

Florida State University University of Virginia

September 20, 2005

Ê Introduction

• Phase Ordering Problem

– No sequence of optimization phases will produce optimal code for all
functions in all applications on all architectures

– Long standing problem for compiler writers
– Register pressure is a critical factor

• Embedded Systems Development

– Greater tolerance for longer, more complex compile processes
? Large number of devices produced → even small savings add up
? Tighter constraints (code size, power, real-time)
? Fewer registers and features than modern CPUs
? Hand-tuned assembly code can suffer from an analogous problem to

phase ordering

Using De-optimization to Re-optimize Code slide 1

u Reducing Phase Ordering Effects

• Methods to Diminish Problems with Phase Ordering

– Iteration of optimization phases (VPO)
– Test combinations of optimization phases for best sequence (VISTA)

• Problems with Current Methodology

– Current solutions work with higher-level languages (not assembly)
– Not able to take into account previously applied optimizations, due to

hand-tuning or another compiler (e.g. no spare registers for allocation)

Using De-optimization to Re-optimize Code slide 2

u Proposed Approach

• Translate assembly code back to intermediate languages for input to an
optimizer.

• Undo the effects of various optimization phases to allow for different
phase ordering decisions (De-optimization).

• Re-optimize the code using new phase orderings to improve performance.

Using De-optimization to Re-optimize Code slide 3

u Outline

Ê Introduction

Ë Related Work

Ì VISTA Framework

Í Assembly Translation

Î De-optimization

Ï Experimental Results

Ð Conclusions

Using De-optimization to Re-optimize Code slide 4

Ë Related Work

• Binary translation

– Executable Editing Library (EEL)
– University of Queensland Binary Translator (UQBT)

• Link-time optimizations – ALTO

• De-optimization

– Debugging optimized executables
– Reverse engineering

Using De-optimization to Re-optimize Code slide 5

Ì VISTA Framework

• VPO Interactive System for Tuning Applications

• Graphical viewer connected to VPO (Very Portable Optimizer) backend

• Interactive approach to tuning code (arbitrary phase orderings permitted,
along with hand modification of code)

• Transformations performed on RTLs (Register Transfer Lists) – machine-
independent representations of instruction semantics

• Automatic tuning of code via a genetic algorithm search for effective
phase sequences

Using De-optimization to Re-optimize Code slide 6

u Overview of Modified Framework

Using De-optimization to Re-optimize Code slide 7

Í Assembly Translation

• Converting optimized assembly code to VISTA intermediate language
(RTLs)

• Preserving semantics

– Information Loss – high-level languages have more semantic content
than low-level representations

– Local Variable Confusion – local stack variable start and end points,
as well as actual data types

– Maintaining Calling Conventions – recognizing function parameters
and return values

Using De-optimization to Re-optimize Code slide 8

u Implementation Strategy

• ASM2RTL – translate assembly code → VISTA RTL format

• Split into machine-dependent and machine-independent portions:

– Sun SPARC
– Texas Instruments TMS320c54x
– Intel StrongARM ← used for these experiments

• Translate each line individually and perform a pass to patch things up.

• VISTA reconstructs additional information from contextual clues.

• Simplify problems with memory consistency and calling conventions.

Using De-optimization to Re-optimize Code slide 9

u Memory Consistency

• VISTA reorganizes local variables during Fix Entry Exit

• Cannot allow splitting of arrays, structures or large data types → other
functions will not be able to interface with them

• Fixed by supplying translator with annotations regarding functions and
corresponding stack information for local structures and arrays

Using De-optimization to Re-optimize Code slide 10

u Following Calling Conventions

• VISTA can reconstruct some but not all information regarding registers
and stack locations used for special purposes (e.g. arguments, return
values):
– No mechanism for knowing how many registers are used as arguments

and thus need to be preserved across a call
– No distinguishing between stack local variables and arguments

• Knowing the number of parameters and return types of each function
(signature), we can recreate the proper environment.
• Variable length argument functions are pre-processed with a tool to

detect actual arguments used.
• Function pointers are handled conservatively.

Using De-optimization to Re-optimize Code slide 11

u Translation Tradeoffs

• Could assume worst case scenarios and not require annotations

– Stack layout → one large array/structure that is unable to be split
? Most optimizations ignore arrays/structures since they are difficult

to manipulate while guaranteeing correctness.
? Decreases chance that re-optimization will be beneficial

– All argument registers and all stack locations may be parameters.
? Stack variables are already unable to be adjusted (as above).
? Optimizations such as Dead Assignment Elimination will be less

effective since we will have undetectable dead registers.

• Luckily, a simple code inspection is usually all that is needed to extract
the necessary information.

Using De-optimization to Re-optimize Code slide 12

Î De-optimization

• Undo the effects of previous transformations on the code.

• Enable VISTA to reapply those phases in a potentially different order.

• Focus on optimizations that are likely to affect register pressure:

– Loop-invariant Code Motion

– Register Allocation

Using De-optimization to Re-optimize Code slide 13

u Loop-invariant Code Motion

• Attempts to decrease unnecessary computations by moving RTLs that
are not loop-dependent to the loop preheader

• Loops are handled from most deeply nested to least deeply nested

• For an RTL/instruction to be considered loop-invariant:

À All source operands must be loop-invariant
Á Must dominate all loop exits
Â No set register can be set by another RTL in the loop
Ã No set register can be used prior to being set by this RTL

Using De-optimization to Re-optimize Code slide 14

u De-optimizing LICM

foreach loop ∈ loops sorted outermost to innermost do1

perform loop invariant analysis() on loop2

foreach rtl ∈ loop→preheader sorted last to first do3

if rtl is invariant then4

foreach blk ∈ loop→blocks do5

foreach trtl ∈ blk do6

if trtl uses a register set by rtl then7

insert a copy of rtl before trtl8

update loop invariant analysis() data9

Using De-optimization to Re-optimize Code slide 15

u Performing the De-optimization

Comments RTLs Before

. . .

Load LI global +r[10]=R[L44]
Init loop ctr +r[6]=0
Label L11 L11:

Calc array address +r[2]=r[10]+(r[6]{2)
Add array value +r[5]=r[5]+R[r[2]]
Loop ctr increment +r[6]=r[6]+1
Set CC +c[0]=r[6]-79:0
Perform loop 80X +PC=c[0]’0,L11

. . .

Using De-optimization to Re-optimize Code slide 16

u Performing the De-optimization

Comments RTLs Before RTLs After

.

Load LI global +r[10]=R[L44] +r[10]=R[L44]
Init loop ctr +r[6]=0 +r[6]=0
Label L11 L11: L11:
Load LI global +r[10]=R[L44]
Calc array address +r[2]=r[10]+(r[6]{2) +r[2]=r[10]+(r[6]{2)
Add array value +r[5]=r[5]+R[r[2]] +r[5]=r[5]+R[r[2]]
Loop ctr increment +r[6]=r[6]+1 +r[6]=r[6]+1
Set CC +c[0]=r[6]-79:0 +c[0]=r[6]-79:0
Perform loop 80X +PC=c[0]’0,L11 +PC=c[0]’0,L11

.

Using De-optimization to Re-optimize Code slide 16

u Register Allocation

• Attempts to place local variables live ranges into registers → save on
memory access overhead costs

• Traditionally treated as a graph coloring problem, which is NP-complete

• Register allocation algorithms work with interference graphs

– Vertices ← variable live ranges
– Edges ← connect live ranges that overlap or conflict
– Colors ← available registers

• Priority-based coloring weights live ranges according to various
heuristics to find a good solution if graph cannot be completely colored

Using De-optimization to Re-optimize Code slide 17

u De-optimizing Register Allocation

• Construct a register interference graph (RIG)

• Replace register live ranges from RIG depending on their span

– Intrablock live ranges just get remapped to pseudo-registers
– Interblock live ranges get remapped to pseudo-registers as well as a

new local variable for storage

• Insert stores of new local variables after sets of these registers

• Insert loads of new local variables before uses of these registers

Using De-optimization to Re-optimize Code slide 18

u Prior to De-optimization

RTLs Deads # RTLs Deads
1 r[6]=R[L21]; 14 R[r[4]+0]=r[3]; r[3]r[4]
2 r[12]=R[r[6]+0]; 15 r[2]=R[r[12]+8];
3 r[3]=R[L21+4]; 16 r[1]=R[r[12]+12]; r[12]
4 c[0]=r[12]-0:0; 17 R[r[5]+0]=r[2]; r[2]r[5]
5 R[r[3]+0]=r[12]; r[3] 18 R[r[6]+0]=r[1]; r[1]r[6]
6 r[4]=r[1]; r[1] 19 ST=free; =r[0];
7 r[3]=r[0]; r[0] 20 r[2]=R[L21+8];
8 r[5]=r[2]; r[2] 21 r[3]=R[r[2]+0];
9 r[0]=r[12]; 22 r[3]=r[3]-1;
10 PC=c[0]:0,L0001; c[0] 23 R[r[2]+0]=r[3]; r[2]r[3]
11 r[2]=R[r[12]+0]; 24 PC=RT;
12 R[r[3]+0]=r[2]; r[2]r[3] 25 L0001:
13 r[3]=R[r[12]+4]; 26 PC=RT;

Using De-optimization to Re-optimize Code slide 19

u After De-optimizing Register Allocation

RTLs Deads Comments
1a r[32]=R[L21]; # r[6] → r[32]
1b R[r[13]+ dequeue 0]=r[32]; r[32] # Store pseudo r[32]
2a r[32]=R[r[13]+ dequeue 0]; # Load pseudo r[32]
2b r[33]=R[r[32]+0]; r[32] # Perform actual op
2c R[r[13]+ dequeue 1]=r[33]; r[33] # Store pseudo r[33]
3 r[34]=R[L21+4]; # Intrablock live range

Use pseudo r[34]
4a r[33]=R[r[13]+ dequeue 1];
4b c[0]=r[33]-0:0; r[33] # c[0] not replaceable
5a r[33]=R[r[13]+ dequeue 1];
5b R[r[34]+0]=r[33]; r[33]r[34] # Intrablock r[34] dies
6a r[35]=r[1]; r[1] # Incoming argument r[1]
6b R[r[13]+ dequeue 2]=r[35]; r[35] # is not replaceable
7a r[36]=r[0]; r[0] # Incoming argument r[0]
7b R[r[13]+ dequeue 3]=r[36]; r[36] # is not replaceable
8a r[37]=r[2]; r[2] # Incoming argument r[2]
8b R[r[13]+ dequeue 4]=r[37]; r[37] # is not replaceable
9a r[33]=R[r[13]+ dequeue 1]; # r[0] is outgoing
9b r[0]=r[33]; r[33] # argument to free()
10 PC=c[0]:0,L0001; c[0] # Branch uses only c[0]

. . . # so no replacements

Using De-optimization to Re-optimize Code slide 20

u After Register Re-assignment

RTLs Deads Comments
1a r[12]=R[L21]; # r[12] is first non-arg
1b R[r[13]+ dequeue 0]=r[12]; r[12] # scratch register
2a r[12]=R[r[13]+ dequeue 0]; # Note use of r[12] to
2b r[12]=R[r[12]+0]; # combine 2 distinct live
2c R[r[13]+ dequeue 1]=r[12]; r[12] # ranges in these lines
3 r[12]=R[L21+4];
4a r[3]=R[r[13]+ dequeue 1]; # First appearance of
4b c[0]=r[3]-0:0; r[3] # r[3] since there are

currently 2 live ranges
5a r[3]=R[r[13]+ dequeue 1];
5b R[r[12]+0]=r[3]; r[3]r[12]
6a r[12]=r[1]; r[1] # Save argument r[1]
6b R[r[13]+ dequeue 2]=r[12]; r[12]
7a r[12]=r[0]; r[0] # Save argument r[0]
7b R[r[13]+ dequeue 3]=r[12]; r[12]
8a r[12]=r[2]; r[2] # Save argument r[2]
8b R[r[13]+ dequeue 4]=r[12]; r[12]
9a r[12]=R[r[13]+ dequeue 1];
9b r[0]=r[12]; r[12]
10 PC=c[0]:0,L0001; c[0] # Live regs leaving block

. . . # are r[0] and r[13] (SP)

Using De-optimization to Re-optimize Code slide 21

u After Re-optimization

RTLs Deads # RTLs Deads
1 r[5]=R[L21]; 14 R[r[1]]=r[12]; r[1]r[12]
2 r[4]=R[r[5]]; 15 r[12]=R[r[4]+8];
3 r[12]=R[L21+4]; 16 r[1]=R[r[4]+12]; r[4]
4 c[0]=r[4]:0; 17 R[r[2]]=r[12]; r[2]r[12]
5 R[r[12]]=r[4]; r[12] 18 R[r[5]]=r[1]; r[1]r[5]
6 r[4]=r[1] 19 ST=free; =r[0];
7 r[8]=r[0]; r[0] 20 r[12]=R[L21+8];
8 r[5]=r[2] 21 r[1]=R[r[12]];
9 r[0]=r[4]; 22 r[1]=r[1]-1;
10 PC=c[0]:0,L0001; c[0] 23 R[r[12]]=r[1]; r[1]r[12]
11 r[12]=R[r[4]]; 24 PC=RT;
12 R[r[8]]=r[12]; r[8]r[12] 25 L0001:
13 r[12]=R[r[4]+4]; 26 PC=RT;

Using De-optimization to Re-optimize Code slide 22

Ï Experimental Results

• Hand-tuned assembly code is usually proprietary, so we will focus on
optimized C code from a different compiler:

– O2 optimized benchmarks with GCC 3.3 for the ARM
– MiBench: bitcount, dijkstra, fft, jpeg, sha, stringsearch

• Evaluate benefit of re-optimization using VISTA’s genetic algorithm
search against de-optimization plus re-optimization

• Fitness criteria tested include static code size, dynamic instruction count
and a 50%/50% mix

Using De-optimization to Re-optimize Code slide 23

u Benefit of De-optimization

Opt. for Space Opt. for Speed Opt. for Both

Benchmark
Compiler

static dynamic static dynamic static dynamic
Strategy

count count count count count count
average

Re-opt 2.32 % 0.00 % 2.32 % 0.00 % 2.32 % 0.00 % 1.16 %
bitcount

De-opt 2.32 % 0.00 % 2.32 % 0.00 % 2.32 % 0.00 % 1.16 %

Re-opt 1.30 % 2.70 % 1.30 % 2.70 % 1.30 % 2.70 % 2.00 %
dijkstra

De-opt 2.16 % 2.73 % 3.03 % 2.73 % 3.03 % 2.73 % 2.88 %

Re-opt 0.19 % 0.00 % 0.19 % 0.00 % 0.19 % 0.00 % 0.09 %
fft

De-opt 0.19 % 0.35 % 0.19 % 0.00 % 0.19 % 0.00 % 0.09 %

Re-opt 4.30 % 10.61 % 4.30 % 10.61 % 4.30 % 10.61 % 7.46 %
jpeg

De-opt 5.20 % 10.53 % 4.30 % 10.61 % 4.30 % 10.61 % 7.46 %

Re-opt 5.99 % 4.39 % 3.89 % 6.27 % 5.99 % 4.39 % 5.19 %
sha

De-opt 5.99 % 4.39 % 3.89 % 6.27 % 5.99 % 4.39 % 5.19 %

Re-opt 0.92 % 0.09 % 0.92 % 0.09 % 0.92 % 0.09 % 0.51 %
stringsearch

De-opt 3.23 % 0.09 % 3.23 % 0.09 % 3.23 % 0.09 % 1.66 %

Re-opt 2.50 % 2.97 % 2.15 % 3.28 % 2.50 % 2.97 % 2.73 %
average

De-opt 3.18 % 3.01 % 2.83 % 3.28 % 3.18 % 2.97 % 3.07 %

Using De-optimization to Re-optimize Code slide 24

Ð Conclusions & Future Work

• Embedded applications have rigid constraints regarding code size, power
consumption and/or execution time.
• De-optimization can be used to roll back some existing phase orderings

from other compilers/hand tuning.
• Improvements can be achieved when combining de-optimization with a

compiler framework that can evaluate multiple phase orderings using a
genetic algorithm search.
• Further de-optimizations can be developed for phases that impact register

pressure, including common subexpression elimination.
• ASM2RTL + de-optimizations may also prove beneficial when working

with actual hand-tuned assembly code.

Using De-optimization to Re-optimize Code slide 25

u The End

Thank you!

Questions ???

See us for a demo of VISTA!

Using De-optimization to Re-optimize Code slide 26

