
Using De-optimization to Re-optimize Code

Stephen Hines, Prasad Kulkarni,
David Whalley

Computer Science Dept.
Florida State University

Tallahassee, FL 32306-4530
(hines, kulkarni, whalley)@cs.fsu.edu

Jack Davidson
Computer Science Dept.

University of Virginia
Charlottesville, VA 22904

jwd@virginia.edu

ABSTRACT
The nature of embedded systems development places a great
deal of importance on meeting strict requirements in areas
such as static code size, power consumption, and execution
time. In order to meet these requirements, embedded devel-
opers frequently generate and tune assembly code for appli-
cations by hand, despite the disadvantages of coding at a low
level. The phase ordering problem is a well-known problem
affecting the design of optimizing compilers. Hand-tuned
code is susceptible to an analogous problem to phase or-
dering due to the process of iterative refinement, but there
has been little research in mitigating its effect on the qual-
ity of the generated code. This paper presents an exten-
sion of the VISTA framework for investigating the effect
and potential benefit of performing de-optimization before
re-optimizing assembly code. The design and implementa-
tion of algorithms for de-optimization of both loop-invariant
code motion and register allocation, along with results of ex-
periments regarding de-optimization and re-optimization of
previously generated assembly code are also presented.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—compil-
ers, optimization; D.4.7 [Operating Systems]: Organiza-
tion and Design—real-time systems and embedded systems

General Terms
Algorithms, Experimentation, Performance

Keywords
Assembly Translation, De-optimization, Phase Ordering.

1. INTRODUCTION
The phase ordering problem is a long-standing problem in-

volved in the development of compilers and related tools [18].
Simply put, the phase ordering problem is that there exists

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’05, September 19–22, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-091-4/05/0009 ...$5.00.

no single sequence of optimization phases that will produce
optimal code for every function in every application on ev-
ery architecture. Different optimizations can enable or dis-
able further optimizations depending on the characteristics
of the function being compiled as well as the target architec-
ture [19]. These enabling or disabling factors can greatly im-
pact the design and implementation of optimizing compilers.
One of the most critical factors is register pressure. Many
optimization phases consume registers, leaving few registers
available for later transformations. Depending on the cho-
sen optimization phase order, later phases may be prohib-
ited from having any effect at all. Embedded systems are
more susceptible to the phase ordering problem since they
typically have non-orthogonal instruction sets and fewer reg-
isters, contributing to even greater register pressure.

One approach towards minimizing the effects of the phase
ordering problem is to produce a compiler with the ability
to apply phases repeatedly until no additional improvements
can be obtained. Very Portable Optimizer (VPO) attempts
to provide these exact features [1]. VISTA is an optimizing
compiler framework that incorporates VPO and employs it-
eration of optimization phase sequences and a genetic al-
gorithm search for effective phase sequences in an effort to
minimize the effects of the phase ordering problem [14].

With embedded software development, size and timing
constraints are both more important and more stringent
than they are in traditional software. This increased focus
forces a great deal of embedded applications development
to be done in assembly language, since the ability to hand-
tune code can produce smaller and faster executables than
using a high-level language with a good optimizing compiler.
While hand-tuning assembly code may appear to be an ad-
equate solution for the requirements of embedded software
development, it is still subject to a similar phase ordering
problem albeit in a slightly different manner. Rather than
an explicit phase ordering being applied to the function, the
programmer attempts to improve the code based on intu-
ition and educated decisions. These design decisions are
similar to phase ordering decisions made by an optimizing
compiler, so it is possible that a better solution exists even
with hand-tuned assembly code.

We propose using the facilities of VISTA to further tune
optimized assembly code. A translator is constructed to
convert assembly code to VISTA’s RTL input format. To
handle the phase ordering problem, we will apply the con-
cept of de-optimization. Prior optimizations that affect the
phase ordering problem can be undone in a safe manner,
so that different phase sequences can then be applied and

Figure 1: De-optimization and Re-optimization

tested. Both loop-invariant code motion and register alloca-
tion are de-optimized since they have considerable impact
on register pressure and thus the phase ordering problem.
Other optimizations are not selected because they either do
not have much phase ordering impact, or there is no way
to reconstruct the necessary information (dead assignment
elimination). After de-optimization, VISTA can retune the
code sequence using its genetic algorithm search for effec-
tive optimization sequences. Figure 1 shows the process of
re-optimizing assembly code with VISTA.

The remainder of this paper can be broken down as fol-
lows: Section 2 reviews some related work in the areas of as-
sembly translation and de-optimization. Section 3 discusses
the experimental setting employed to investigate the benefits
of de-optimization. We cover the process of assembly trans-
lation and the implementation of the ASM2RTL translator
suite in Section 4. Section 5 focuses on the actual design and
development of de-optimizations. We examine the results of
performing the experiments in Section 6. Finally, Section 7
presents our concluding remarks regarding the use of de-
optimizations for improving the re-optimization of code.

2. RELATED WORK
This section focuses on research areas that overlap in some

manner with this work. To the best of our knowledge, there
has been no other research in using de-optimizations to en-
hance the re-optimization of assembly code. However, there
has been related work in the fields of assembly translation
and de-optimization, particularly for facilitating reverse en-
gineering, legacy binary translation, link-time optimization,
and symbolic debugging of optimized code.

Binary translation is the process of converting an exe-
cutable program from one particular platform to a different
platform. Platform differences can include instruction set,
application binary interface (ABI) specifications, operating
system, and executable file format. The translation of bi-
nary programs has particular importance in the porting of
legacy software for which source code is unavailable. There
are a few key differences between binary translation and
the assembly translation tools discussed in this work. With
many binary translators, the stack layout remains constant
and thus arrays and structures cannot be accidentally placed
incorrectly. This limits the effectiveness of re-optimizations
since even scalar local variables would be unable to be ad-
justed. Our assembly translation tools work at the level of
assembly code and not binary executables.

Existing systems that perform binary translation include
the Executable Editing Library (EEL) and the University
of Queensland Binary Translator (UQBT). EEL is a library
developed to facilitate the construction of tools that edit
executables such as binary translators and optimizers [15].
EEL has also been used to construct programs that instru-
ment executables for the purpose of gathering performance
data. UQBT is a binary translator developed at the Uni-
versity of Queensland that was designed to be easily retar-
geted [4]. Similar to the work described in this paper, UQBT
accepts SPARC and ARM input files among other formats.
UQBT features several backends generating various types
of output suitable for translation purposes, including Java
virtual machine language (JVML), C, object code and VPO
RTL. Although UQBT did have some success with smaller
programs using the RTL backend, the overall RTL target
required too much analysis information to be useful within
the UQBT framework. Annotations supplied statically to
our tools helps to alleviate some of the problems encoun-
tered by UQBT. Additionally, our translator can always fall
back on translations that maintain program semantics at re-
duced opportunity for improvement such as keeping all local
variables in the same initial order on the stack.

Link-time optimizations are closely related to the process
of binary translation, in that they both operate on a similar
amount of semantic content. Link-time optimizations focus
on interprocedural opportunities that were not able to be
addressed during the compilation of individual functions or
modules. Alto is a link-time optimizer targeting the Com-
paq Alpha that features optimizations such as register allo-
cation, inlining, instruction scheduling, and profile-directed
code layout [16]. In contrast, the de-optimization and re-
optimization components of VISTA are designed to work
with the function as a basic unit.

De-optimizations have been applied in several areas rang-
ing from the debugging of optimized code to the reverse en-
gineering of executables. Due to the use of optimizing com-
pilers and the development of complicated optimizations,
debuggers have a need for additional information to provide
proper interactive feedback when working with optimized
executables. Hennessy attempted to address the problem
of noncurrent variables when symbolically debugging opti-
mized executables [9]. These are variables that may not con-
tain their correct current value when walking through the
optimized executable, perhaps due to common subexpres-
sion elimination or dead assignment elimination. Hölzle,
Chambers and Ungar present another approach for debug-
ging optimized code using dynamic de-optimization [11].
Their system however was limited to only debug the SELF
object-oriented language and also requires the compiler to
instrument the executable with necessary de-optimization
information at various interrupt points within the program.

Reverse engineering is the technique of extracting high-
level source information from binary executable files. The
reconstruction of control flow graphs (CFGs) is a primary
step in the reverse engineering process, allowing input as-
sembly instructions to be better represented as the common
loop and test constructs seen in a high-level language. CFGs
for binary code tend to be more complicated than corre-
sponding CFGs for the initial high-level source code. This
increased complexity is only further exacerbated by opti-
mizations that modify control flow such as predication, spec-
ulation and instruction scheduling. Snavely, Debray and An-

drews have experimented with performing de-optimizations
on CFGs generated by reverse engineering Itanium executa-
bles [17]. Results indicate that de-optimizations allow for re-
ductions in both complexity and size of the generated CFGs.

3. EXPERIMENTAL SETTING
This section covers the details of the compiler framework,

benchmarks, and optimizations used for the evaluation of
de-optimizing and re-optimizing assembly code. All experi-
ments were carried out on an Intel StrongARM SA-110 pro-
cessor running Netwinder Linux.

3.1 VISTA Framework
The proposed modifications are added to the ARM port

of the VISTA (VPO Interactive System for Tuning Applica-
tions) framework [20, 14]. VISTA is an interactive compiler
that allows a knowledgeable programmer to finely tune the
optimization phase order performed on a given function. Re-
cent VISTA research prioritizes non-interactive automatic
tuning of code. VPO (Very Portable Optimizer) is used as
the backend to VISTA [2]. Code sequences are represented
in VPO as Register Transfer Lists (RTLs) to enhance the
portability of the compiler and its associated code-improving
transformations.

Using the VISTA GUI, a programmer can tailor the phase
sequence based on immediate performance feedback infor-
mation generated using EASE (Environment for Architec-
ture Study and Experimentation) [6]. EASE provides the
ability to instrument assembly files to collect both static
information (code size) and dynamic information (instruc-
tions executed, memory references). VISTA also provides
an intelligent search for good phase orderings through the
use of a genetic algorithm that allows the programmer to se-
lect which optimization phases are available, the maximum
number of phases to perform, as well as the fitness criteria to
be used for evaluating sequences. When selecting the fitness
criteria, the programmer can choose between optimizing for
code size, instructions executed, or a mixture of both. Opti-
mization phase sequences are then tested systematically by
the genetic algorithm to locate the most beneficial ordering
it can find based on the fitness criteria selected.

3.2 Benchmarks
Due to the proprietary nature of most embedded applica-

tions, it is a challenge to find hand-tuned assembly programs
that are representative of typical workloads. To the best of
our knowledge, there are no currently available embedded
benchmark suites written in assembly code. Rather than
devising a new set of hand-tuned assembly benchmarks for
embedded systems, an optimizing compiler could be used
instead with an existing high-level source code benchmark
suite. Although using actual hand-tuned assembly would
be better, the use of optimization techniques with a known
benchmark suite provides a legitimate framework for evalu-
ating the effects of de-optimization when re-optimizing code.

For our experiments, we chose the MiBench embedded
applications benchmark suite [8]. These applications are
representative of common programs used in embedded sys-
tems. The suite consists of programs from six categories.
Due to the long run-time of performing a thorough genetic
algorithm search, one benchmark from each category is se-
lected for evaluation as shown in Table 1. These are the
same benchmarks used in our prior studies [14, 12, 13].

Table 1: Tested MiBench Benchmarks

Category Program

Automotive/Industrial bitcount
Network dijkstra
Telecommunications fft
Consumer jpeg
Security sha
Office stringsearch

3.3 Optimization with GCC
It is necessary to run each program through an optimizing

compiler in order to test the proposed de-optimization strat-
egy. Each of the benchmark programs is optimized using the
ARM port of the GNU Compiler Collection’s C compiler ver-
sion 3.3 [7]. The unmodified GCC compiler provides a fair
baseline for evaluation. The command line used to compile
each of the C source files is as follows:
gcc -O2 -S -c -fno-optimize-sibling-calls \
-ffixed-lr -ffixed-fp filename.c
Level 2 optimization allows a fair comparison to hand-tuned
assembly since it does not invoke additional phases that will
contribute to increased space requirements such as loop un-
rolling. Translating from object code is possible, but adds
an additional complexity to the translation process.

The selected -f flags disable specific phases of the -O2
optimization process. Optimizing sibling calls is a trans-
formation that allows leaf or sibling functions to omit save
and restore instructions. Allowing GCC to perform these
optimizations makes translation more difficult. Addition-
ally VISTA will automatically re-perform this transforma-
tion both for the GCC baseline code as well as the exper-
imental code. The two -ffixed flags force GCC to disallow
the use of these special-purpose registers as general-purpose
registers. These flags are necessary to perform a fair com-
parison since VISTA currently does not support using either
the Frame Pointer or the Link Register in a different manner
than that for which they were originally intended.

4. ASSEMBLY TRANSLATION
The construction of a translator from native ARM assem-

bly to VISTA RTLs is necessary for studying the effects of
de-optimization and re-optimization. This translator is part
of a larger suite of ASM2RTL tools, a group of translators
in which each converts instructions from a given assembly
language to RTLs. The current version of ASM2RTL sup-
ports assembly instructions from the Sun Ultra SPARC III,
the Texas Instruments TMS320c54x and the Intel Stron-
gARM. Translation appears to be mostly straightforward,
but it does contain several potential pitfalls.

Almost every problem that can occur is due to the loss
of semantic content needed for correct interpretation. How-
ever, there are other potential problems, such as the lack of
support from the VPO compiler for a very context-specific
instruction (e.g. predicated return). If a compiler cannot
produce an instruction, it must be replaced by an equivalent
sequence that preserves all aspects of the current program
state. As a program progresses through various intermedi-
ate representations, each lower-level form carries less infor-
mation than preceding higher-level forms. Thus it becomes
increasingly difficult (if not impossible) to extract the entire
original program representation from a low-level form.

4.1 Local Variables
Local variables are those which are allocated on the run-

time stack. Modern ISAs support memory accesses of fixed-
size increments. The StrongARM supports memory access
sizes of 1 byte, 2 bytes, 4 bytes, and 8 bytes. Consequently,
data that is larger than these sizes can only be accessed by
breaking it into pieces that conform with these sizes. Ar-
rays and structures are typically larger than these fixed sizes
and are handled by moving the necessary pieces into and
out of registers using these standard instructions. From the
low-level assembly representation of a program, it is often
difficult to distinguish between accesses to scalar and array
data.

This inability to distinguish can be a problem when trans-
lating, since the VISTA RTL format (like most intermedi-
ate languages) handles local variables symbolically. Origi-
nal numeric offset information is lost during the translation,
allowing the stack ordering of local variables to change. Re-
ordering can cause the code to become incorrect, since local
variables larger than 4 bytes may be split apart and spread
out on the stack. This is especially true for local structures
where certain fields may be manipulated while others are
ignored. Calling a function using a pointer to such a split
structure causes other local variables to be incorrectly read
and written in memory, since the called function mistakenly
assumes a different structure layout. The same argument
holds for arrays, since they are merely a constrained struc-
ture where each field is of the same data type.

To protect against these types of translation errors, addi-
tional information concerning the locations and sizes of local
variables may be required. ASM2RTL can be supplied with
necessary annotations including the actual memory layout
of objects on the local stack. Fixing the structure informa-
tion when translating the function then relies on coalescing
known structure members into a single reference with addi-
tional offset information for each particular member.

4.2 Calling Conventions
Maintaining calling conventions is another important fac-

tor in properly translating assembly code to RTLs. It is
necessary to detect incoming register arguments, incoming
stack-placed arguments, outgoing register arguments, out-
going stack-placed arguments, as well as register return val-
ues in order to properly produce meta-information RTLs.
Various analyses could be miscalculated without this infor-
mation and necessary instructions could be eliminated.

Live register and variable analysis can be used to detect
some incoming parameters and outgoing parameters in a
function. To perform live register and variable analysis, the
entire CFG of the program needs to be constructed. Even
at this point, some of the information, such as the size of
incoming stack arguments, is still unreliable as it was lost
during compilation. Since performing such inter-procedural
analysis is time-consuming and may not even yield entirely
correct information in these cases, ASM2RTL was set up to
strictly perform line-by-line translation. Information about
parameters and return values for functions is supplied along
with the original input assembly file.

Simple text files are parsed by ASM2RTL for information
about function return types and incoming argument sizes in
32-bit words (the smallest unit of allocation for the Stron-
gARM). Function data is split into two files, one for glob-
ally accessible functions (library or system calls), and one for

application-specific functions. This data is then used during
the translation process to reconstruct the appropriate meta-
information RTLs. Knowing the return type of a function
allows ASM2RTL to generate appropriate RTLs for main-
taining this data as live when exiting the function, so that
an RTL setting the return value register is not inappropri-
ately deleted as a dead assignment. Local configuration files
can be created by either inspecting the assembly code and
interpreting the necessary information, or extracted from
the original high-level source code (if available). The global
function configuration file is easily created using library and
system call documentation. ASM2RTL is able to handle
variable length argument functions such as printf and func-
tion pointers using similar annotations.

4.3 Translation Tradeoffs
ASM2RTL adopts various strategies for coping with prob-

lems that can affect proper translation. The strategies we
have chosen for ASM2RTL are not without drawbacks. They
require the programmer to inspect the supplied input assem-
bly code and extract necessary information from it. There
is a tradeoff involved since it is possible to assume a worst
case scenario for each of the problems. In this way, no addi-
tional information is needed from the programmer, but code
improvability is sacrificed.

With the local variable layout problem, it can be assumed
that all stack elements belong to one large structure. In this
case none of the elements are replaceable or reorderable.
Doing this will inhibit any further optimizations concerning
these variables since arrays and structures are often ignored
by the majority of code improving transformations.

There are two requirements for guaranteeing consistency
without additional information for calling conventions. The
function can be assumed to be using its entire stack for
argument space, and thus the stack is not able to be reor-
ganized. This is merely the same requirement as for local
variables. Additionally, all argument registers and return
registers can be marked as live using the meta-information
RTLs in appropriate places. However, this can inhibit many
transformations from improving the code. One example of
this would be the inability to detect dead assignments to
argument or return registers.

5. DE-OPTIMIZATION
This section presents the motivation and implementation

details of performing de-optimization on previously opti-
mized assembly code. The de-optimization of both loop-
invariant code motion and register allocation is covered. Ad-
ditional tradeoffs and difficulties are also described.

5.1 Loop-invariant Code Motion
Loop-invariant code motion (LICM) focuses on moving in-

structions that do not change the program state out of loop
bodies. Instructions that are considered loop-invariant can
be moved to the loop preheader, a basic block that precedes
the loop header. In addition to attempting to move loop-
invariant assignments to loop preheaders, VPO and other
optimizing compilers attempt to place any loop-invariant
expressions or memory references into registers. These oper-
ations can then be performed cheaply in the loop preheader,
prior to executing the various iterations of the loop.

LICM requires the use of additional registers in order to
provide the greatest benefit. These registers are used to

for loop ∈ loops sorted outermost to innermost do1
perform loop invariant analysis() on loop2
for rtl ∈ loop→preheader→rtls sorted last to first do3

if rtl is invariant then4
for blk ∈ loop→blocks do5

for trtl ∈ blk→rtls do6
if trtl uses a register set by rtl then7

insert a copy of rtl before trtl8

update loop invariant analysis() data9

Figure 2: De-optimize LICM

RTLs Before De-Optimization
RTLs Comments

. . .

a1 +r[10]=R[L44] # Load LI global
a2 +r[6]=0 # Initialize loop ctr
a3 L11: # Label L11
a4 +r[2]=r[10]+(r[6]{2) # Calc array address
a5 +r[5]=r[5]+R[r[2]] # Add array value
a6 +r[6]=r[6]+1 # Loop ctr increment
a7 +c[0]=r[6]-79:0 # Set CC
a8 +PC=c[0]’0,L11 # Perform loop 80X

. . .

RTLs After De-Optimization
RTLs Comments

. . .

b1 +r[10]=R[L44] # Load LI global
b2 +r[6]=0 # Initialize loop ctr
b3 L11: # Label L11
b4 +r[10]=R[L44] # LI load (in loop)
b5 +r[2]=r[10]+(r[6]{2) # Calc array address
b6 +r[5]=r[5]+R[r[2]] # Add array value
b7 +r[6]=r[6]+1 # Loop ctr increment
b8 +c[0]=r[6]-79:0 # Set CC
b9 +PC=c[0]’0,L11 # Perform loop 80X

. . .

Figure 3: De-optimizing LICM

hold values such as loop-invariant variable loads or complex
arithmetic calculations that cannot be further simplified us-
ing traditional optimizations. Increased register pressure in-
hibits additional code-improving transformations from being
as beneficial as possible. Undoing LICM provides VISTA
with the possibility of applying additional code-improving
transformations before potentially re-applying LICM.

The algorithm for performing de-optimization of LICM is
shown in Figure 2. It attempts to place all loop-invariant
RTLs before RTLs where a register they set is used. The
algorithm operates on loops sorted from outermost to in-
nermost, moving invariant RTLs as far inward as possible in
the CFG.

The top of Figure 3 depicts a group of RTLs corresponding
to a loop that has had LICM performed on it. The load of
a global variable containing the starting address of an array
(Line a1) is a loop-invariant instruction that was moved out
of the loop. The loop (Lines a3-a8) is performed 80 times
using an induction variable set prior to beginning the loop
(Line a2). The loop-invariant register r[10] is used as part
of an address calculation with the loop counter r[6].

After de-optimizing LICM, the code shown in the bot-
tom portion of Figure 3 is obtained. Notice that the set
of register r[10] has been added before its use (Line b5).
Previously this set existed only in the loop preheader (Line

a1/b1). Notice that the set of r[6] in the preheader was
not able to be moved into the loop (Line a2/b2). This is be-
cause the register r[6] is not loop invariant, as evidenced
by its set within the loop (Line a6/b7).

5.2 Register Allocation and Assignment
Register allocation (ALLOC) is a code-improving trans-

formation that attempts to place local variable live ranges
into registers because memory accesses are more expensive
than register accesses. Moving local variable live ranges into
registers also enables additional code-improving transforma-
tions such as instruction selection and common subexpres-
sion elimination, which are more effective with register ex-
pressions. This process consumes available registers as any
conflicts with existing register live ranges must be avoided.

ALLOC is traditionally treated as a graph coloring prob-
lem, which is defined as finding the minimum number of
colors needed to color all vertices in a graph such that no
two connected vertices share the same color. Graph coloring
is NP-complete, and as such an optimal solution is computa-
tionally expensive. Thus approximation algorithms are used
instead. The application of graph coloring to ALLOC treats
registers as colors and live ranges as vertices. Live ranges
that overlap or conflict are connected by edges in the graph.

The graph used for performing ALLOC is called an inter-
ference graph. Since the number of registers available to the
compiler is finite, the entire graph may not be color-able.
It is also true that the allocation of non-scratch registers
can incur additional costs due to the necessity of saving and
restoring their values on function entry and exit. Critical
choices are made by the compiler as to which live ranges
should be allocated and which potentially should never be
allocated even if registers are available. Priority-based col-
oring is an approach that attempts to weight live ranges
according to various heuristics so that a good solution can
be obtained in a relatively short amount of time [3]. Similar
approaches have been adopted by both GCC and VPO.

VPO typically receives RTL input from a frontend that
does not make choices as to which registers should be used.
Instead the RTLs refer to pseudo-registers which do not ac-
tually exist. Certain hardware registers are specified for
function call and return semantics. Register assignment
(ASSIGN) is the process by which pseudo-register references
are converted to actual hardware registers. ASSIGN is sim-
ilar to ALLOC in many ways, since conflicts of register live
ranges must be avoided. Pseudo-registers that cannot be
assigned must have appropriate spill code generated.

The undoing of ALLOC and ASSIGN will allow for fewer
registers to be used in various code sequences, freeing up a
greater number of registers for other transformations. It is
possible that the choices made during the initial run of AS-
SIGN require additional stores and loads to preserve scratch
registers around function calls. Changing the assignment
could alleviate the need for such spill code entirely.

In order to de-optimize ALLOC and ASSIGN, we con-
struct a register interference graph (RIG). The RIG is simi-
lar to the standard interference graph, except that nodes cor-
respond to register live ranges, and not variable live ranges.
The process of constructing a RIG analyzes basic blocks
first, then later connects corresponding incoming and out-
going register live ranges as sibling nodes in the graph.
Hardware-specified registers for argument usage and return
values cannot be replaced, and such nodes are appropri-

calculate live variable information1
calculate dead register information2
RIG = construct register interference graph()3
mark all nodes in RIG as not done4
for node ∈ RIG→nodes do5

if ¬node→done ∧ node→can replace then6
node→done = TRUE7
if node is an intrablock live range then8

node→pseudo = new pseudoregister()9

else10
node is an interblock live range11
node→local = new local variable()12
node→pseudo = new pseudoregister()13
update siblings (local/pseudo) and mark them done14

recalculate necessary analysis for pseudo-registers in VPO15
mark all nodes in RIG as not done16
for node ∈ RIG→nodes do17

if ¬node→done ∧ node→can replace then18
node→done = TRUE19
if node is an intrablock live range then20

for ref ∈ node→sets ∪ node→uses do21
replace ref with node→pseudo22

else23
node is an interblock live range24
for sib ∈ node ∪ node→sibs do25

for use ∈ sib→uses do26
load node→local in node→pseudo before use27
replace use with node→pseudo28

for set ∈ sib→sets do29
replace set with node→pseudo30
store node→pseudo in node→local after set31

re-perform register assignment() to assign all pseudo-registers32
perform instruction selection() to clean up code33

Figure 4: De-optimize ALLOC

ately marked during construction. Further details on the
construction and use of RIGs can be found in [10].

Figure 4 shows the algorithm employed for de-optimizing
ALLOC and ASSIGN. Nodes with no siblings are referred
to as intrablock live ranges, meaning that they do not span
basic block boundaries. Nodes with one or more siblings are
referred to as interblock live ranges. These nodes do span
basic block boundaries, and are the primary target.

In the first pass, each intrablock live range is assigned a
new pseudo-register, while each interblock live range is as-
signed a new pseudo-register as well as a new local variable of
appropriate type (Lines 5-14). The second pass actually per-
forms the de-optimization. Both intrablock and interblock
live ranges have register references replaced with their new
pseudo-registers. Additionally, interblock live ranges have
any set of their pseudo-register followed immediately by a
store of that pseudo-register to the new local variable mem-
ory location. Any use of an interblock pseudo-register must
first have that pseudo-register value loaded from the ap-
propriate local variable memory location. Finally, we re-
perform ASSIGN, such that the minimal number of hard-
ware registers are employed for function correctness.

Figures 5–8 depict an example showing the benefit of de-
optimizing ALLOC and ASSIGN. Figure 5 shows the orig-
inal optimized RTLs corresponding to a dequeue routine.
Horizontal lines show the basic block divisions, as viewed
by VISTA. This routine takes three arguments from regis-
ters r[0], r[1], and r[2], and saves them for later use.

RTLs Deads Comments
1 r[6]=R[L21];
2 r[12]=R[r[6]+0];
3 r[3]=R[L21+4];
4 c[0]=r[12]-0:0; # NULL ptr?
5 R[r[3]+0]=r[12]; r[3]
6 r[4]=r[1]; r[1] # Saving r[1]
7 r[3]=r[0]; r[0] # Saving r[0]
8 r[5]=r[2]; r[2] # Saving r[2]
9 r[0]=r[12];

10 PC=c[0]:0,L0001; c[0] # beqz L0001

11 r[2]=R[r[12]+0];
12 R[r[3]+0]=r[2]; r[2]r[3]
13 r[3]=R[r[12]+4];
14 R[r[4]+0]=r[3]; r[3]r[4]
15 r[2]=R[r[12]+8];
16 r[1]=R[r[12]+12]; r[12]
17 R[r[5]+0]=r[2]; r[2]r[5]
18 R[r[6]+0]=r[1]; r[1]r[6]
19 ST=free; =r[0]; # free(r[0])
20 r[2]=R[L21+8];
21 r[3]=R[r[2]+0];
22 r[3]=r[3]-1;
23 R[r[2]+0]=r[3]; r[2]r[3]
24 PC=RT; # Return

25 L0001: # Label
26 PC=RT; # Return

Figure 5: Dequeue prior to De-optimizing ALLOC

Figure 6 shows the code for the first basic block after de-
optimizing ALLOC and ASSIGN. Each register that is not
hardware-specific is remapped as a pseudo-register. Addi-
tional loads and stores of the newly added local variables
are represented with each particular RTL line using letter
suffixes with the appropriate line number. ASSIGN has not
been re-performed at this point in time.

Figure 7 shows the code after re-performing ASSIGN. This
code uses a minimal set of registers for all of the appropriate
operations. Many operations can reuse the same hardware
register (r[12]), since it is only needed for very short live
ranges. When live ranges overlap, additional registers are
selected. There is no possibility of exhausting the register
supply, since the original code was able to map completely to
hardware registers, and we have only shortened live ranges
by using temporary local variables with de-optimization.

Figure 8 shows the RTLs after performing further opti-
mizations including dead code elimination, strength reduc-
tion, instruction selection, register allocation, dead variable
elimination, common subexpression elimination, and fix en-
try exit. All de-optimization added local variable references
are eliminated. Other optimization phases now have addi-
tional opportunities to improve the code layout, resulting
in the removal of two register move operations that were
previously used to save incoming arguments (Lines 6,8).

5.3 Difficulties with De-optimization
De-optimization of optimized code is complicated by the

same problems with calling conventions that affected as-
sembly translation. Incoming register arguments, outgoing
return values, local array/structure layouts and hardware-
specific registers can all limit the effectiveness of the pro-

RTLs Deads Comments
1a r[32]=R[L21]; # r[6] → r[32]
1b R[r[13]+ dequeue 0]=r[32]; r[32] # Store pseudo r[32]
2a r[32]=R[r[13]+ dequeue 0]; # Load pseudo r[32]
2b r[33]=R[r[32]+0]; r[32] # Perform actual op
2c R[r[13]+ dequeue 1]=r[33]; r[33] # Store pseudo r[33]
3 r[34]=R[L21+4]; # Intrablock live range

Use pseudo r[34]
4a r[33]=R[r[13]+ dequeue 1];
4b c[0]=r[33]-0:0; r[33] # c[0] not replaceable
5a r[33]=R[r[13]+ dequeue 1];
5b R[r[34]+0]=r[33]; r[33]r[34] # Intrablock r[34] dies
6a r[35]=r[1]; r[1] # Incoming argument r[1]
6b R[r[13]+ dequeue 2]=r[35]; r[35] # is not replaceable
7a r[36]=r[0]; r[0] # Incoming argument r[0]
7b R[r[13]+ dequeue 3]=r[36]; r[36] # is not replaceable
8a r[37]=r[2]; r[2] # Incoming argument r[2]
8b R[r[13]+ dequeue 4]=r[37]; r[37] # is not replaceable
9a r[33]=R[r[13]+ dequeue 1]; # r[0] is outgoing
9b r[0]=r[33]; r[33] # argument to free()
10 PC=c[0]:0,L0001; c[0] # Branch uses only c[0]

. . . # so no replacements

Figure 6: Dequeue after De-optimization of ALLOC

RTLs Deads Comments
1a r[12]=R[L21]; # r[12] is first non-arg
1b R[r[13]+ dequeue 0]=r[12]; r[12] # scratch register
2a r[12]=R[r[13]+ dequeue 0]; # Note use of r[12] to
2b r[12]=R[r[12]+0]; # combine 2 distinct live
2c R[r[13]+ dequeue 1]=r[12]; r[12] # ranges in these lines
3 r[12]=R[L21+4];

4a r[3]=R[r[13]+ dequeue 1]; # First appearance of
4b c[0]=r[3]-0:0; r[3] # r[3] since there are

currently 2 live ranges
5a r[3]=R[r[13]+ dequeue 1];
5b R[r[12]+0]=r[3]; r[3]r[12]
6a r[12]=r[1]; r[1] # Save argument r[1]
6b R[r[13]+ dequeue 2]=r[12]; r[12]
7a r[12]=r[0]; r[0] # Save argument r[0]
7b R[r[13]+ dequeue 3]=r[12]; r[12]
8a r[12]=r[2]; r[2] # Save argument r[2]
8b R[r[13]+ dequeue 4]=r[12]; r[12]
9a r[12]=R[r[13]+ dequeue 1];
9b r[0]=r[12]; r[12]
10 PC=c[0]:0,L0001; c[0] # Live regs leaving block

. . . # are r[0] and r[13] (SP)

Figure 7: Dequeue after Re-performing ASSIGN

posed de-optimizations. However, such restrictions are nec-
essary to retain inter-operability between function modules.

Additionally, the ARM uses PC-relative 12-bit offsets for
global address references. These de-optimization algorithms
expand code, causing some of these references to fall out of
reach of their original symbolic targets. This results in the
assembler not being able to generate appropriate instruc-
tions when the offset is out of reach. In order to prevent
such expansion problems during the re-optimization process,
code containing out of reach symbolic offsets caused VISTA
to reject the corresponding phase ordering. The resulting
code would be eliminated as a poor solution in any case.

6. RESULTS
This section presents the results of running experiments

comparing de-optimization and re-optimization strategies
with previously tuned code. First, the GCC-optimized code
for each benchmark is translated to the RTL format and
both static and dynamic counts are collected as baseline

measures after performing a simple compilation pass with
VISTA. This pass includes performing instruction selection
and predication during the fix entry exit phase. The GCC-
optimized baseline code can potentially obtain a slight ben-
efit, since VISTA may detect additional sequences that are
able to be predicated, as well as other instruction sequences
that can be combined into fewer RTLs. Each benchmark
program is instrumented during compilation using the EASE
framework to obtain both static code size and dynamic in-
struction execution counts. Similar measures were obtained
in previous studies for selecting phase sequences [5, 14].

Table 2 shows the results of running the experiments for
the StrongARM architecture. Each of the six tested bench-
marks (bitcount, dijkstra, fft, jpeg, sha, and stringsearch) is
presented individually. The field labeled Compiler Strat-
egy denotes whether just the genetic algorithm search is
performed (Pure Re-opt) or if de-optimization phases
are enabled prior to executing the genetic algorithm search
(De-opt + Re-opt). When de-optimization is not bene-

RTLs Deads Comments
1 r[5]=R[L21];
2 r[4]=R[r[5]];
3 r[12]=R[L21+4];
4 c[0]=r[4]:0;
5 R[r[12]]=r[4]; r[12]
6 # RTL r[4]=r[1] now unnecessary
7 r[8]=r[0]; r[0]
8 # RTL r[5]=r[2] now unnecessary
9 r[0]=r[4];
10 PC=c[0]:0,L0001; c[0]

11 r[12]=R[r[4]];
12 R[r[8]]=r[12]; r[8]r[12]
13 r[12]=R[r[4]+4];
14 R[r[1]]=r[12]; r[1]r[12] # r[1] live until here now
15 r[12]=R[r[4]+8];
16 r[1]=R[r[4]+12]; r[4]
17 R[r[2]]=r[12]; r[2]r[12] # r[2] live until here now
18 R[r[5]]=r[1]; r[1]r[5]
19 ST=free; =r[0];
20 r[12]=R[L21+8];
21 r[1]=R[r[12]];
22 r[1]=r[1]-1;
23 R[r[12]]=r[1]; r[1]r[12]
24 PC=RT;

25 L0001:
26 PC=RT;

Figure 8: Dequeue after Additional Optimizations

ficial, we use the result of performing re-optimization only.
Measurements are taken using three different fitness crite-
ria for VISTA’s genetic algorithm search for effective phase
sequences, varying the weight of potential tradeoffs such as
code size and dynamic instruction count. The test criteria
for these experiments includes optimizing for static code size
(Optimize for Space), optimizing for dynamic instruc-
tion count (Optimize for Speed), and optimizing for a
combination of the two, weighting each equally (Optimize
for Both). The initial translated RTLs from the GCC-
optimized code are used as a baseline measure to which all
tested configurations for de-optimization and genetic algo-
rithm searching can be compared. Results are calculated
by comparing experimental static and dynamic instruction
counts to the initial static and dynamic instruction counts
for the GCC-optimized code for each benchmark. Improve-
ments are expressed in the table as percentages.

Results show that performing de-optimizations before re-
optimizing allows for some potential benefits. In both the di-
jkstra and stringsearch benchmarks, de-optimizing provides
benefits for each of the three fitness criteria tested. De-
optimizations are also beneficial when optimizing for space
for both the fft and jpeg benchmarks. In the cases of bit-
count and sha, de-optimizing provides no additional benefit
over pure re-optimization.

Overall results show that by performing re-optimizations
alone, VISTA is successful in decreasing static code size by
an average of 2.50% and dynamic instructions by an av-
erage of 3.28% across all benchmarks when compared to
the original GCC-optimized code. De-optimizing before re-
optimizing yields even greater success in decreasing static
code size with an average of 3.18%, winning against pure re-
optimization in 4 out of 6 cases. Optimizing for speed with

de-optimization provides no additional benefit over pure re-
optimization. In all cases, re-optimization with or without
de-optimization yields improvements to the original GCC-
optimized code. A closer look shows that no primary or
secondary fitness measure performs worse than the baseline
GCC-optimized code for an entire benchmark although some
functions did experience small decreases later canceled out
by results from improved functions.

One confusing aspect of Table 2 is the comparison of dy-
namic counts for the fft benchmark when looking at code
that is de-optimized. For the mixed static/dynamic and dy-
namic search criteria, there are no additional improvements,
yet the static search results in a slight improvement in dy-
namic instruction count (0.35%). Other portions of the table
exhibit similar results. This is explainable by the inherent
randomness of evolutionary algorithms, particularly, the ge-
netic algorithm search that VISTA employs in creating and
evaluating different phase orderings. In each particular such
case, the better sequences for a particular fitness criteria are
just not uncovered during the search process.

7. CONCLUSIONS AND FUTURE WORK
Embedded systems development is dominated by require-

ments which can include rigid constraints on code size, power
consumption, and time. It is common for applications to be
written in assembly and hand-tuned to meet these expec-
tations. Yet, just as traditional optimizing compilers are
subject to the phase ordering problem, hand-tuned assem-
bly code can experience an analogous problem depending on
programmer choices during the tuning process. The undo-
ing of prior optimizations, or de-optimization of assembly
code is one potential method of alleviating the negative ef-

Table 2: Effect of De-optimization on Static and Dynamic Instruction Count

Optimize for Space Optimize for Speed Optimize for Both
Benchmark

Compiler
static dynamic static dynamic static dynamic

Strategy
count count count count count count

average

Pure Re-opt 2.32 % 0.00 % 2.32 % 0.00 % 2.32 % 0.00 % 1.16 %
bitcount

De-opt + Re-opt 2.32 % 0.00 % 2.32 % 0.00 % 2.32 % 0.00 % 1.16 %
Pure Re-opt 1.30 % 2.70 % 1.30 % 2.70 % 1.30 % 2.70 % 2.00 %

dijkstra
De-opt + Re-opt 2.16 % 2.73 % 3.03 % 2.73 % 3.03 % 2.73 % 2.88 %
Pure Re-opt 0.19 % 0.00 % 0.19 % 0.00 % 0.19 % 0.00 % 0.09 %

fft
De-opt + Re-opt 0.19 % 0.35 % 0.19 % 0.00 % 0.19 % 0.00 % 0.09 %
Pure Re-opt 4.30 % 10.61 % 4.30 % 10.61 % 4.30 % 10.61 % 7.46 %

jpeg
De-opt + Re-opt 5.20 % 10.53 % 4.30 % 10.61 % 4.30 % 10.61 % 7.46 %
Pure Re-opt 5.99 % 4.39 % 3.89 % 6.27 % 5.99 % 4.39 % 5.19 %

sha
De-opt + Re-opt 5.99 % 4.39 % 3.89 % 6.27 % 5.99 % 4.39 % 5.19 %
Pure Re-opt 0.92 % 0.09 % 0.92 % 0.09 % 0.92 % 0.09 % 0.51 %

stringsearch
De-opt + Re-opt 3.23 % 0.09 % 3.23 % 0.09 % 3.23 % 0.09 % 1.66 %

Pure Re-opt 2.50 % 2.97 % 2.15 % 3.28 % 2.50 % 2.97 % 2.73 %
average

De-opt + Re-opt 3.18 % 3.01 % 2.83 % 3.28 % 3.18 % 2.97 % 3.07 %

fects of the phase ordering problem in such cases. In this
paper, we presented an extension of VISTA for performing
de-optimization and re-optimization of tuned assembly code.

De-optimizations that reduce register pressure, such as
loop-invariant code motion and register allocation were eval-
uated, since registers are typically a limited resource in em-
bedded systems. Results showed that de-optimization could
be very beneficial in the re-optimization process, although
it can potentially be detrimental as well. Overall, we have
shown that de-optimization can provide an additional op-
portunity for reordering optimization phases that may have
already been performed on previously generated assembly
code. It is possible to extend the de-optimization process
with a greater variety of optimizations to undo. Common
subexpression elimination is another phase that increases
register pressure, so de-optimizations developed for it may
prove beneficial as well.

De-optimization and re-optimization of GCC-optimized
code using the genetic algorithm search features of VISTA
provided decreases in static code size on average of 3.18%
and decreases in dynamic instruction count on average of
3.28% when compiling for each individually. Hand-tuned
assembly benchmarks can be further examined using this
framework to evaluate the effectiveness of de-optimization
and re-optimization. In the embedded devices arena, more
complex and longer optimization processes are acceptable
since a large number of units are typically produced and code
requirements may be more stringent than with traditional
software. The development of tools such as the ASM2RTL
translator suite and VISTA with de-optimization opens up
new possibilities for the further optimization of code, par-
ticularly for hand-tuned assembly and legacy applications.

8. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their constructive

comments and suggestions. This research was supported in
part by NSF grants EIA-0072043, CCR-020889, and CCR-
0312493.

9. REFERENCES
[1] M. E. Benitez and J. W. Davidson. A portable global

optimizer and linker. In Proceedings of the SIGPLAN

’88 conference on Programming Language Design and
Implementation, pages 329–338. ACM Press, 1988.

[2] M. E. Benitez and J. W. Davidson. Target-specific
global code improvement: Principles and applications.
Technical Report CS-94-42, 4, 1994.

[3] F. C. Chow and J. L. Hennessey. Register allocation
by priority-based coloring. In Proceedings of the
SIGPLAN ’84 Symposium on Compiler Construction,
pages 222–232, June 1984.

[4] C. Cifuentes, M. Van Emmerik, B. T. Lewis, and
N. Ramsey. Experience in the design, implementation
and use of a retargetable static binary translation
framework. Technical Report TR-2002-105, Sun
Microsystems Laboratories, January 2002.

[5] K. D. Cooper, P. J. Schielke, and D. Subramanian.
Optimizing for reduced code space using genetic
algorithms. In Proceedings of the ACM SIGPLAN
1999 workshop on Languages, compilers, and tools for
embedded systems, pages 1–9. ACM Press, 1999.

[6] J. W. Davidson and D. B. Whalley. A design
environment for addressing architecture and compiler
interactions. Microprocessors and Microsystems,
15(9):459–472, November 1991.

[7] Free Software Foundation. GNU compiler collection
3.3. http://gcc.gnu.org/, 2004.

[8] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M.
Austin, T. Mudge, and R. B. Brown. MiBench: A
free, commercially representative embedded
benchmark suite. IEEE 4th Annual Workshop on
Workload Characterization, December 2001.

[9] J. Hennessy. Symbolic debugging of optimized code.
ACM Transactions on Programming Languages and
Systems, 4(3):323–344, July 1982.

[10] S. Hines. Using de-optimization to re-optimize code.
Master’s thesis, Florida State University, Tallahassee,
Florida, April 2004.

[11] U. Hölzle, C. Chambers, and D. Ungar. Debugging
optimized code with dynamic deoptimization. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation,
June 1992.

[12] P. Kulkarni, S. Hines, J. Hiser, D. Whalley,
J. Davidson, and D. Jones. Fast searches for effective
optimization phase sequences. In Proceedings of the
ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 171–182,
2004.

[13] P. Kulkarni, S. Hines, D. Whalley, J. Hiser,
J. Davidson, and D. Jones. Fast and efficient searches
for effective optimization phase sequences.
Transactions on Architecture and Code Optimization,
pages 165–198, June 2005.

[14] P. Kulkarni, W. Zhao, H. Moon, K. Cho, D. Whalley,
J. Davidson, M. Bailey, Y. Paek, and K. Gallivan.
Finding effective optimization phase sequences. In
Proceedings of the ACM SIGPLAN Conference on
Languages, Compilers, and Tools for Embedded
Systems, pages 12–23, 2003.

[15] J. Larus and E. Schnarr. EEL: Machine-independent
executable editing. In Proceedings of the ACM
SIGPLAN Conference on Programming Language
Design and Implementation, 1995.

[16] R. Muth, S. Debray, S. Watterson, and K. De
Bosschere. ALTO: A link-time optimizer for the
Compaq Alpha. Software - Practice and Experience,
31:67–101, January 2001.

[17] N. Snavely, S. Debray, and G. Andrews. Unscheduling,
unpredication, unspeculation: Reverse engineering
Itanium executables. In Proceedings of the 2003
Working Conference on Reverse Engineering, pages
4–13, November 2003.

[18] S. R. Vegdahl. Phase coupling and constant
generation in an optimizing microcode compiler. In
Proceedings of the fifteenth annual workshop on
microprogramming, pages 125–133, 1982.

[19] D. L. Whitfield and M. L. Soffa. An approach for
exploring code improving transformations. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 19(6):1053–1084, 1997.

[20] W. Zhao, B. Cai, D. Whalley, M. W. Bailey, R. van
Engelen, X. Yuan, J. D. Hiser, J. W. Davidson,
K. Gallivan, and D. L. Jones. VISTA: A system for
interactive code improvement. In Proceedings of the
joint conference on Languages, Compilers, and Tools
for Embedded Systems, pages 155–164. ACM Press,
2002.

