
Practical Way Halting by Speculatively Accessing Halt Tags

Daniel Moreau†, Alen Bardizbanyan†, Magnus Själander‡, David Whalley§, and Per Larsson-Edefors†
†Chalmers University of Technology, Gothenburg, Sweden

‡Uppsala University, Uppsala, Sweden
§Florida State University, Tallahassee, USA

nd.moreau@gmail.com, alenb@chalmers.se, magnus.sjalander@it.uu.se, whalley@cs.fsu.edu, perla@chalmers.se

Abstract—Conventional set-associative data cache accesses
waste energy since tag and data arrays of several ways are
simultaneously accessed to sustain pipeline speed. Different access
techniques to avoid activating all cache ways have been previously
proposed in an effort to reduce energy usage. However, a problem
that many of these access techniques have in common is that they
need to access different cache memory portions in a sequential
manner, which is difficult to support with standard synchronous
SRAM memory. We propose the speculative halt-tag access (SHA)
approach, which accesses low-order tag bits, i.e., the halt tag,
in the address generation stage instead of the SRAM access
stage to eliminate accesses to cache ways that cannot possibly
contain the data. The key feature of our SHA approach is that it
determines which tag and data arrays need to be accessed early
enough for conventional SRAMs to be used. We evaluate the
SHA approach using a 65-nm processor implementation running
MiBench benchmarks and find that it on average reduces data
access energy by 25.6%.

I. INTRODUCTION

Memory hierarchies have long been designed with per-
formance and cost as key metrics. In recent years, energy
efficiency has become more important as we aim to extend
the battery life of mobile computing devices, to provide a
competitive clock rate under present thermal constraints, and
to reduce the electricity used. It has been shown that the
level-one (L1) data cache (DC) is responsible for a significant
portion of a processor’s energy usage [1]. The dilemma when
reducing L1 DC energy, however, is that load accesses are
performance critical. Thus, the challenge which we address in
this paper is how to significantly improve the energy efficiency
of L1 DC accesses without degrading performance.

A data access in a conventional set-associative L1 DC
causes all ways to be accessed in parallel. This practice
achieves good performance but wastes energy as the sought
memory location can at most reside in one of the ways.
Several proposed techniques, e.g., way prediction [2], attempt
to reduce the energy by limiting the number of ways that are
accessed. However, the L1 DC is timing sensitive and any
increase in its critical path is likely to have a negative effect on
a CPU core’s clock rate and energy dissipation. Furthermore,
L1 DC timing issues can not easily be mitigated by increasing
the pipeline depth as the delay between loads and their use
would increase, which has a significant negative impact on
performance [3]. Thus, it is crucial that any technique that
attempts to improve the energy efficiency of the L1 DC does
not adversely affect its timing.

One proposed technique for reducing L1 DC energy is the
way-halting cache (WHC) which halts the L1 DC access to a
way at the point it is known that the way within a set cannot
possibly contain the data [4]. Here, the tags for the L1 DC are
split into two parts; a few low-order bits called the halt tag
and the remaining higher-order bits of the tag. The halt tags
are first compared with the low-order bits of the base address
tag and the L1 DC tag and data arrays are only accessed when
there is a halt-tag match. The key insight here is that the low-
order bits of the tag are the bits that are the ones most likely
to differ [5].

We have previously proposed the speculative tag access
(STA) technique to reduce L1 DC energy. Here, the L1 DC
tag arrays are accessed in the address generation stage when
the magnitude of the displacement field does not exceed half
the line size of the L1 DC [6]. In this paper, we propose to
combine the advantages of the WHC and our STA technique
to create a practical and energy-efficient implementation of
low complexity. We propose to use way-halt tag arrays, but
to access them in the address generation stage instead of the
SRAM access stage, as shown in Fig. 1. Thus, our speculative
halt-tag access (SHA) approach determines which L1 DC tag
and data arrays need to be accessed by the beginning of the
SRAM access stage, which relaxes the timing requirement
on the data access stage and enables a conventional SRAM
implementation to be used for the L1 DC. By accessing the
halt tags in the address generation stage, the SHA approach
enables the halt-tag array access and the halt-tag comparison
to be done during a whole clock cycle. Should the speculation
fail, the cache is accessed conventionally the next cycle with
no impact on performance.

II. RELATED WORK

The way-halting cache (WHC) technique was proposed to
be performed in parallel with the decoding of the L1 DC index
field (see Fig. 2) so that a fully associative halt-tag check is
required [4]. Another technique just suggests to access the
L1 DC tag and data arrays after the partial tag comparison
(PTC) is completed [5]. However, there are several aspects
of these proposed techniques that may make them impractical
to implement. The WHC technique was evaluated by detailed
comparisons of the access time for a fully associative halt array
and an address decoder, but the study neglects to account for
potential wiring costs. To reduce word line lengths, memories
are often banked and the tag and data are stored in individual



ADDR-GEN SRAM-ACCESS

DTLB

TAG-0

TAG-N

DATA-0

DATA-N

A
G
UBase Address

Displacement

=

=

Format
Data

Way
Select

Forward
Data

Writeback

Execution
Units

Register
File

Other
Forwarding

DATA-FORMATTING

HALT-0

HALT-N

Base Address

=

=

Fig. 1. Three-stage load pipeline with speculative halt-tag arrays and N -way cache.

Displacement

01531

Sign Extension

ADD

32-bits32-bits

031

16

Line OffsetLine IndexTag

031

Base Address

Fig. 2. Data access address calculation.

memories. The fully associative halt-tag structure would have
to be either duplicated (i.e., incurring a higher energy and area
overhead) for each bank in both the tag and data memories
or the halt-tag hit signals would have to be routed across the
chip to the different banks and memories (i.e., incurring delay
penalties). Likewise, the PTC technique compares the partial
tags after the index is decoded and have the same issues as
WHC of applying the halt-tag hit signal to the sense amplifiers
across all banks and memories. Furthermore, conventional
SRAMs are synchronous for performance reasons and can
only be controlled at the start of the clock cycle. Both
approaches would require custom SRAM implementations,
which are costly and not readily available to the majority of
the semiconductor industry. Both approaches also assume page
coloring for which the operating system (OS) enforces that the
least significant bits (LSBs) of the virtual tags are the same
as the LSBs of the physical tags.

Shafiee et al. proposed to use partial tag comparison to
reduce energy dissipation in snoop-based chip multiproces-
sors [7]. For each snoop request, which requires a comparison
for all the tag ways in a cluster of processors, the LSBs of all
tag memories from different processors are checked. Only the
tag ways that generate a partial hit signal are further probed
for a full tag comparison, which reduces energy dissipation at
the expense of an extra cycle. Their technique utilizes partial
tag comparison in a very different context than our proposed
SHA approach.

We recently proposed the STA technique: L1 DC tag arrays
are accessed during the address generation stage and a single
L1 DC data array is accessed in the SRAM access stage if
the speculation succeeds and there is a hit in the cache [6].
While STA reduces the number of accessed data arrays, it
will always access all tag arrays in parallel. Thus, STA has no
effect on store energy, as stores always access a single data
array. The STA approach also requires a more complex design
than a conventional L1 DC. The data translation lookaside
buffer (DTLB) is accessed in both the address generation and
SRAM access stage, which gives rise to a more complex
floorplan, where the input signal to the DTLB has to be
routed from multiple locations on the chip. To make matters
worse, the input from the address generation stage is produced
by forwarding logic, which can lead to additional delay and
constrain the timing of the DTLB even further. With more
constrained timing, the DTLB could be on the critical path or
require stronger, more power-dissipating gates.

Our proposed SHA approach accesses the halt tags in the
address generation stage instead of the SRAM access stage.
Thus, SHA determines which L1 DC tag and data arrays
need to be accessed by the beginning of the SRAM access
stage, which enables a conventional SRAM implementation
to be used for the L1 DC. SHA should not impact the critical
path since the halt-tag arrays can be accessed in parallel with
the address generation. Since we propose to access the halt-
tag arrays before the DTLB is accessed, the DTLB is only
accessed during the SRAM access stage. Thus, the SHA halt-
tag arrays contain bits from the virtual address while the
complete physical tags are stored in the L1 DC tag arrays. To
avoid aliasing and synonyms we enforce the same restrictions
on the OS as used in PTC and WHC and, thus, the LSBs of
the virtual and physical tags are the same. While the SHA
approach does not decrease the size of the L1 DC tag storage,
it does simplify the design.

III. SPECULATIVE HALT-TAG ACCESS (SHA)
The speculative halt-tag access (SHA) technique is based on

the observation that there is a high probability that only the
cache-line offset of an address will change during address cal-
culation if the displacement is small [8]. When the magnitude
of the displacement is small we speculatively access the halt
tags in the address generation stage using the index of the base
address. The halt tags are then compared with the low-order
bits of the tag of the base address. The speculation succeeds
when the index and tag fields of the base address are the same
as the index and tag fields of the effective address, see Fig. 2.
If the speculation succeeds, then only those ways that have a
halt-tag match (i.e., the halt tag is equal to the low-order bits
of the tag) can possibly contain the sought memory location.
During the SRAM access stage, the tag and data arrays of only
those ways that had a halt-tag hit are enabled, see Fig. 1.

The halt-tag comparison is performed with the stored halt
tag and the base address, see Fig. 1, to eliminate the need
to calculate the effective address before performing the com-
parison. The validity of the halt-tag hit signals is assured by
detecting, in the address generation unit (AGU), if a carry
is propagated from the line offset to the line index. The
speculative halt-tag access is successful if no carry is detected
for a non-negative displacement. Conversely, the speculation
is successful if a carry out is detected for negative displace-
ments. Since it is readily available in conventional parallel
adders, extracting this information has negligible impact on
performance. The sign and bit-width of the displacement can



be detected in parallel with the sign extension of the immediate
field, which is commonly done to obtain a 32-bit offset. The
detection can be done by performing an AND (negative) and
OR (positive) on the higher order bits (all bits except for the
maximum bit-width of the displacement for which speculation
is to be attempted).

For large displacements, the line index and tag are likely to
change during the address calculation. Accessing the halt tags
would then cause an overhead as the speculation is likely to
fail. For large displacements the cache is therefore accessed
conventionally without a halt-tag access in the address gen-
eration stage, with all ways being accessed in the SRAM
access stage. In the event of a speculative access failure, the
cache is conventionally accessed the next cycle without any
performance penalty. Like in the STA technique, energy usage
is only reduced when there is a successful speculative halt-tag
access.

Accessing the halt tags speculatively in the address genera-
tion stage has the advantage that the access to the halt-tag array
and comparison of the halt tags can be done in parallel with the
address calculation. The resulting hit signals can then be used
to set the enable signal of the tag and data arrays of the ways
that have a halt-tag match. As the hit signal is available the
cycle before the tag and data arrays are accessed, conventional
SRAMs can be employed. The halt-tag array is of equal or
smaller size than a single tag array, see Sec. V. With the
proposed technique the access to the halt-tag array, comparison
of the halt tags, and routing of the signal to enable port of
the SRAMs can be done during a whole cycle. In contrast,
with previous halt-tag proposals, the access, comparison, and
routing are attempted in the same cycle as the SRAMs are
to be read, which severely constrains the timing and requires
custom SRAMs.

The stored halt tags are virtual to avoid the need to spec-
ulatively access the DTLB in the address generation stage.
To ensure correct behavior, all halt tags are invalidated on a
context switch. Because we guarantee that the LSBs of the
virtual and physical tag are identical and because the full
physical tag is accessed and compared for the ways with a
halt-tag hit, there are no issues with aliasing or synonyms.

Our approach incurs very little additional complexity to a
conventional CPU core design.

1) The size of the displacement has to be checked in a
stage, such as instruction decode, before the address
generation stage.

2) The halt-tag array has to be added to the address
generation stage and enabled only if the displacement
was determined to be small.

3) The resulting halt-tag hit signals have to be routed to
the enable inputs of the tag and data arrays, and disable
them if the displacement was determined to be small
and there is no halt-tag match.

No other modifications are required. In particular the only
modification to the L1 DC is the halt-tag hit signals that need
to be included for driving the enable signals of the SRAMs.

IV. EVALUATION METHOD

To accurately evaluate the data access energy, we implement
16kB 4-way data and instruction caches in the context of
a 5-stage in-order processor. The RTL implementation of
the pipeline is synthesized using the Synopsys Design Com-
piler [9] based on a commercial 65-nm 1.2-V CMOS low-
power process technology, with standard cells and mixed-VT

SRAM macros. The physical implementation is performed
using Cadence Encounter [10]. The final placed and routed
processor implementation meets a timing constraint of 2.5 ns
(400 MHz), assuming the worst-case process corner, a supply
voltage of 1.1 V, and 125 ◦C. To validate pipeline and cache
functionality, the netlist of this physical implementation is
verified using the EEMBC benchmark suite [11].

Power analysis is performed using Synopsys PrimeTime
PX [12] on the physical implementation and its RC-extracted
netlist. Based on the nominal process corner, 1.2 V, and 25 ◦C,
power values are retrieved for different components at a clock
rate of 400 MHz. For each component, the energy per cycle
is obtained as the average power dissipation multiplied by the
clock period. Since this evaluation is based on a low-power
process technology, the leakage energy is negligible; 0.75 pJ
in static energy is dissipated per 2.5-ns cycle.

In order to perform energy evaluations we use Sim-
pleScalar [13] and a selection of MiBench benchmarks [14].
The simulator is modified to simulate the 5-stage in-order
processor described above. A bimodal branch predictor with
128 entries is used. The access time for the memory hierarchy
is 1, 12 and 120 cycles for L1 caches, L2 caches and main
memory respectively. In total we use 20 MiBench benchmarks
distributed across six categories; Automotive, Consumer, Net-
work, Office, Security and Telecom. The benchmarks are
compiled with GCC using the large data set option. The final
energy values are calculated by combining the energy per cycle
results with activities tracked by SimpleScalar while running
MiBench until completion.

The L1 DC consists of four 1024x32b-mux8 4kB SRAM
macros for the data arrays. For our 32B cache line size and
4kB page size, the tag bit-width is 20 bits. Considering the
additional valid bit, four tag arrays together represent 84
bits, which means that the four 128x32b-mux4 512B SRAM
macros used for the tags are not fully utilized. The halt tags
are assumed to be no larger than 8 bits. Four halt tags can
then be stored in a single 128x32b-mux4 512B SRAM macro.

We use the same energy evaluation methodology as in
our earlier STA work [6]. We consider the energy dissipated
internal to the SRAM blocks as well as energy dissipated
by logic transitions on any of the SRAM block’s peripheral
address, data in, and mask pins. As for the output, energy is
dissipated when driving the output load. The energy values for
accessing the different structures of the L1 DC are shown in
Table I.

The energy estimations include peripheral circuits in ad-
dition to the tag and data arrays. All estimations of these
peripheral units are done pessimistically, i.e., all combinatorial



TABLE I
L1 DC COMPONENT ENERGY

Component Energy (pJ)
Read Halt 19.1
Write Halt 17.7
Read Tag 19.1
Write Tag 17.6
Read Data 26.5
Write Data 27.2
DTLB 17.5
Peripheral 18.8
Arbiter 2.0

nodes are assumed to switch on each load and store operation.
The peripheral units include the replacement unit (LRU), the
cache controller, and the remaining multiplexers. Additionally,
an arbiter is used to grant access to either the instruction or
data cache to access lower levels in the memory hierarchy.
We use a 16-entry fully associative DTLB, once again with
the same pessimistic assumption for the combinatorial nodes.

We estimate the total L1 DC energy by identifying the set
of use cases in which the cache can be accessed and then for
each case we determine the accessed cache structures and their
energy dissipation. The relative frequency of the different use
cases can then be used to calculate the relative energy usage.

Table II shows the accessed components for the identified
L1 DC use cases. The BL and BS use cases represent loads
and stores, respectively, of a baseline L1 DC. As depicted in
the table, the baseline case only accesses three tag arrays. This
optimization can be performed if all tags are read in parallel, as
all four tags fit in a total of three 32-bit memories. The STA0
and STA1 use cases represent an L1 DC cache where the tags
are speculatively accessed. STA0 represents the case when the
access is successful and only a single data array is accessed,
while STA1 represents a failed access and all tag arrays need
to be accessed a second time. The STA technique only works
for loads and is used in combination with the BS use case.

The remaining use cases in Table II represent our proposed
approach. SHA0 (load) and SHA1 (store) represent the case
where the halt arrays are not accessed (the displacement
is too large). As depicted in the table, four tag arrays are
accessed in our approach. This is necessary to be able to
disable individual tag accesses as decided by the hits in the
halt-tag array. SHA2:X (highlighted in gray) represents a
successful speculative load where X represents the number of
matching halt tags. SHA3 represents a failed speculative load,
which in terms of accessed structures and energy dissipation
is equal to a successful access where all four halt tags match,
both of which are rare events as shown in Sec. V. SHA4:X
(highlighted in gray) represents a successful speculative store
where X represents the number of matching halt tags. SHA5
represents a failed speculative store.

The use cases in Table II assume that the access hits in the
cache. In case of a cache miss, additional energy is dissipated
as determined by Table III. The energy of a cache miss
depends on if the cache line is dirty and needs to be written
back (WB). The baseline/STA cases (B-NoWB and B-WB)
do not require a halt tag to be written, which is required for
the SHA cases (H-NoWB and H-WB).

TABLE II
COMPONENTS ACCESSED FOR EACH CASE

Case Read Halt Read Tag Read Data Write Data DTLB Peripheral Energy (pJ)
BL - 3 4 0 1 1 182.1
BS - 3 0 1 1 1 103.3
STA0 - 3 1 0 1 1 102.6
STA1 - 6 4 0 1 1 239.4
SHA0 0 4 4 0 1 1 201.2
SHA1 0 4 0 1 1 1 122.4
SHA2:0 1 0 0 0 1 1 37.9
SHA2:1 1 1 1 0 1 1 83.5
SHA2:2 1 2 2 0 1 1 129.1
SHA2:3 1 3 3 0 1 1 174.7
SHA2:4 1 4 4 0 1 1 220.3
SHA3 1 4 4 0 1 1 220.3
SHA4:0 1 0 0 0 1 1 37.9
SHA4:1 1 1 0 1 1 1 84.2
SHA4:2 1 2 0 1 1 1 103.3
SHA4:3 1 3 0 1 1 1 122.4
SHA4:4 1 4 0 1 1 1 141.5
SHA5 1 4 0 1 1 1 141.5

TABLE III
COMPONENTS ACCESSED ON MISS EVENTS

Case Write Halt Write Tag Read Data Write Data Peripheral Arbiter Energy (pJ)
B-NoWB - 1 0 8 8 8 251.2
B-WB - 1 8 8 16 16 479.1
H-NoWB 1 1 0 8 8 8 268.9
H-WB 1 1 8 8 16 16 496.8

V. RESULTS

The speculative and halt components of the SHA technique
are orthogonal in the sense that the speculation success ratio
does not affect the choice of halt-tag width. With that in mind,
we start by evaluating halt-tag widths. In Fig. 3 the simulation
results using bit-widths between two and eight are shown. Our
evaluation is limited by only having access to a 32-bit wide
SRAM macro for the halt array. Energy benefits due to smaller
halt tags are therefore not shown in the figure. From the results
we can see that a larger bit-width consistently produces better
results. The rationale for this trend is that a wider halt tag
enables an increasing number of tag and data array halts as
a larger halt tag is less likely to match. As can be seen, the
benefit of a halt tag larger than six bits is diminishing. With
an SRAM macro adapted to the halt tag size, the energy cost
of accessing the halt array would be reduced and the best case
would likely be a five or six bit wide halt tag. However, since
we are unable to adapt the size, we choose to proceed with
eight bits to fully utilize the available SRAM macro.

L
1
 D

C
 E

n
e
rg

y

0.7

0.75

0.8

0.85

STA 2halt 3halt 4halt 5halt 6halt 7halt 8halt

Fig. 3. Energy for different halt-tag widths.

Just like in the original STA technique, more energy is saved
if the speculation ratio is kept high, as this enables more ways
to be halted. Speculation failures for the STA technique are
very costly as the tags have to be accessed a second time. A
major concern for STA is therefore to minimize the number of



failed speculations. An SHA failure only incurs an overhead
of the halt-tag array access, which is one third1 of the energy
overhead of STA. An SHA failure is therefore significantly
less costly than an STA failure. Hence, we need to identify the
new offset range for which speculations should be attempted
under SHA. The L1 DC used in this study has a line size
of 32B with a line offset of five bits. While it is possible to
speculate on offsets exceeding the line offset using an OR-
based approach [6], [8] this would necessitate additional logic
on the critical path. The OR-based index and tag would have
to be compared with the effective address computed by the
AGU, which puts this comparison in series with the AGU.
Since one of the primary goals of the SHA approach is a
practical implementation, we decided to dismiss the OR-based
method reassured by simulation results showing very limited
energy gains. In the original STA paper, a positive offset limit
of four bits was found to be best while increasing it to five
bits increased the speculation failures too much. However, in
Table IV we can see that for the SHA approach, using the
full line offset is the best design point. For negative offsets,
the original STA implementation already used the full line
offset and for reasons already discussed we decided against
increasing this.

TABLE IV
ENERGY FOR 4-BIT AND 5-BIT SPECULATION LIMITS (NORMALIZED TO

L1 DC ACCESS ENERGY)
Offset Miss energy Store energy Load energy
4 bits 0.01332 0.18909 0.55426
5 bits 0.01332 0.18828 0.54250

An analysis of the frequency of SHA events is shown in
Fig. 4 where we can see that the majority of all L1 DC
accesses are SHA2&4:X accesses (successful speculative ac-
cesses) shown in gray. Most prevalent of these are SHA2:1
and SHA4:1 (load and store respectively) where three tag
and data arrays or three tag arrays are halted, respectively.
Approximately 38% are SHA0 and SHA1 accesses, shown in
black, that fall outside of our speculation window, i.e., the
displacement is too large. 5% are SHA3 and SHA5 accesses,
shown in white, which are speculation failures that in addition
to a normal cache access also waste energy in the halt-tag
array. Note, however, that no performance penalty is incurred
on speculation failures. Around 0.5% of all memory accesses
are SHA2:0 and SHA4:0 accesses, which correspond to the
majority of the cache misses in the benchmarks; the rest
fall into either SHA2:1 or SHA4:1. Even less prevalent are
SHA2:2-4 and SHA4:2-4 accesses, which constitute less than
0.15% of all accesses. In Fig. 5 we can see that if we
neglect the accesses exceeding our speculation offsets, the
SHA approach achieves a halt ratio (ratio of accessed L1 DC
ways) of almost 0.25 for all benchmarks, which corresponds
to the case where only one way is activated.

The SHA approach results in considerable energy savings
as shown in Fig. 6. Across all benchmarks we have an energy

1Adapting the SRAM macro width to the halt-tag width would further lower
this overhead.

Zero ways One way Two ways Three ways Four ways

H
a

lt
 d

is
tr

ib
u

ti
o

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0047 0.0003

SHA2&4:X SHA3&5 SHA0&1

Fig. 4. Distribution of halt accesses where X denotes Zero-Four ways on
the x-axis.

b
a

s
ic

m
a

th

b
it
c
o

u
n

t

q
s
o

rt

s
u

s
a

n

jp
e

g

la
m

e

ti
ff

d
ijk

s
tr

a

p
a

tr
ic

ia

is
p

e
ll

rs
y
n

th

s
tr

in
g

s
e

a
rc

h

b
lo

w
fi
s
h

p
g

p

ri
jn

d
a

e
l

s
h

a

a
d

p
c
m

c
rc

3
2 ff
t

g
s
m

a
v
e

ra
g

e

H
a
lt
 r

a
te

0

0.05

0.1

0.15

0.2

0.25

0.3

Loads Stores

Fig. 5. Halt rates for a halt bit-width of seven bits.

saving of at least 9% with some benchmarks showing energy
savings of almost 50%. The average energy saved is 25.6%
compared to the baseline and 7.1% compared to the STA
technique2. In Fig. 7 we compare the SHA approach to the
baseline cache and the STA technique. The majority of the
savings comes from loads where SHA saves 24.5% energy
normalized to the baseline cache, which is 6% better than STA.
Energy savings for stores are more modest at 1.2% compared
to both the baseline and STA. The SHA approach requires
the halt tag to be updated on a miss, which results in higher
miss energy than the baseline and STA. However, misses are
infrequent in MiBench so this only has a minor impact on the
results. In relative numbers, the SHA approach saves 31% of
the load energy and 6% store energy compared to the baseline
with a slight energy penalty of 5% on misses.

In order to quantify how the speculative nature of SHA
affected the energy result we decided to replicate the WHC
technique [4]. In contrast to the original WHC evaluation,
energy numbers from placed and routed implementations are
used instead of CACTI [15]. Several simplifying assumptions
had to be used in our replica implementation: 1) We do
not have access to the same custom SRAM memories so
we replace these with standard SRAM macros in our energy
analysis. 2) The original paper uses a cache size of 8kB but we

2In contrast to the original STA paper, we are using GCC as compiler. This
impacts the speculation statistics and, thus, makes our STA energy reduction
slightly smaller than in the original paper.



scale our implementation up to 16kB. 3) Because of limited
SRAM sizes we are unable to customize the tag array size
causing our WHC replica to suffer the same energy overhead
as our SHA approach. 4) A fully associative 128-entry memory
was implemented in 65-nm standard cell logic to estimate the
halt tags used in the WHC implementation. 5) We do not
consider any timing constraints that this design might entail.
Simulations put the halt cache at approximately 36% energy
saved compared to our baseline cache, only 11% above our
SHA approach. As stated previously, we believe the SHA
approach has a number of advantages over WHC that makes
it much more practical to implement.

b
a

s
ic

m
a

th

b
it
c
o

u
n

t

q
s
o

rt

s
u

s
a

n

jp
e

g

la
m

e

ti
ff

d
ijk

s
tr

a

p
a

tr
ic

ia

is
p

e
ll

rs
y
n

th

s
tr

in
g

s
e

a
rc

h

b
lo

w
fi
s
h

p
g

p

ri
jn

d
a

e
l

s
h

a

a
d

p
c
m

c
rc

3
2 ff
t

g
s
m

a
v
e

ra
g

e

L
1
 D

C
 e

n
e
rg

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Miss−energy Store−energy Load−energy

Fig. 6. Total SHA miss, store and load energy.

L1 DC Energy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Baseline

STA

SHA

Miss−energy Store−energy Load−energy

Fig. 7. Average energy distribution for baseline, STA and SHA caches.

As mentioned in Sec. IV, our implementation of SHA
suffers from an energy overhead in the tag arrays, which
only utilize 75% of the capacity of the SRAM memories.
This has a negative impact on our results and in order to
quantify this effect, we decided to scale the energy values
on the tag arrays to reflect the utilization. Furthermore, we
observed that beyond six halt bits only moderate energy gains
were achieved. If the halt tag size is reduced to six, the bit-
width drops to 75%. By using CACTI to study memory size
scaling trends, we estimate this bit-width reduction to scale
down the read and write energy by 19%. Simulations put the
scaled SHA approach at 33% energy saved on average, which
is an additional improvement of 7.4%.

VI. CONCLUSION

We have proposed a practical way-halting approach that
can reduce the energy dissipated in set-associative caches
implemented with standard synchronous SRAM memory. Our
approach enables the processor to speculatively access a halt
tag in the address generation stage instead of the SRAM access
stage to eliminate accesses to cache ways that cannot possibly
be a hit without causing any execution time penalties. The
approach gives an average energy saving of 25.6% compared
to an optimized baseline cache. We estimate that significantly
larger energy savings are achievable with more narrow (yet
standard) halt and tag SRAM macros, which are better adapted
to the bit-widths in question.

ACKNOWLEDGMENT

This research was supported in part by the Swedish Re-
search Council grant 2009-4566 and the US National Science
Foundation grants CNS-0964413, DUE-1241525, and CCF-
1533846.

REFERENCES

[1] W. J. Dally, J. Balfour, D. Black-Shaffer, J. Chen, R. C. Harting,
V. Parikh, J. Park, and D. Sheffield, “Efficient embedded computing,”
IEEE Computer, vol. 41, no. 7, pp. 27–32, Jul. 2008.

[2] K. Inoue, T. Ishihara, and K. Murakami, “Way-predicting set-associative
cache for high performance and low energy consumption,” in Proc. Int.
Symp. on Low Power Electronics and Design, Aug. 1999, pp. 273–275.

[3] A. Bardizbanyan, M. Själander, D. Whalley, and P. Larsson-Edefors,
“Reducing set-associative L1 data cache energy by early load data
dependence detection (ELD3),” in Proc. Conf. on Design, Automation
and Test in Europe, Mar. 2014.

[4] C. Zhang, F. Vahid, J. Yang, and W. Najjar, “A way-halting cache for
low-energy high-performance systems,” ACM Trans. on Architecture and
Code Optimization, vol. 2, no. 1, pp. 34–54, Mar. 2005.

[5] R. Min, Z. Xu, Y. Hu, and W.-b. Jone, “Partial tag comparison: A new
technology for power-efficient set-associative cache designs,” in Proc.
Int. Conf. on VLSI Design, Jan. 2004, pp. 183–188.

[6] A. Bardizbanyan, M. Själander, D. Whalley, and P. Larsson-Edefors,
“Speculative tag access for reduced energy dissipation in set-associative
L1 data caches,” in Proc. IEEE Int. Conf. Computer Design, Oct. 2013,
pp. 302–308.

[7] A. Shafiee, N. Shahidi, and A. Baniasadi, “Using partial tag comparison
in low-power snoop-based chip multiprocessors,” in Proc. Annual Int.
Symp. Computer Architecture, 2012, pp. 211–221.

[8] T. Austin, D. Pnevmatikatos, and G. Sohi, “Streamlining data cache ac-
cess with fast address calculation,” in Proc. Annual Int. Symp. Computer
Architecture, Jun. 1995, pp. 369–380.

[9] Design Compiler R©, v. 2010.03, Synopsys, Inc., Mar. 2010.
[10] Encounter R© Digital Implementation (EDI), v. 10.1.2, Cadence Design

Systems, Inc., Jul. 2011.
[11] Embedded Microprocessor Benchmark Consortium. [Online]. Available:

http://www.eembc.org
[12] PrimeTime R© PX, v. 2011.06, Synopsys, Inc., Jun. 2011.
[13] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An infrastructure for

computer system modeling,” Computer, vol. 35, no. 2, pp. 59–67, Feb.
2002.

[14] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “MiBench: A free, commercially representative embedded
benchmark suite,” in Proc. Int. Workshop on Workload Characterization,
Dec. 2001, pp. 3–14.

[15] S. Wilton and N. Jouppi, “CACTI: An enhanced cache access and cycle
time model,” IEEE J. Solid State Circuits, vol. 31, no. 5, pp. 677–688,
May 1996.

http://www.eembc.org

