
Reducing Set-Associative L1 Data Cache Energy by
Early Load Data Dependence Detection (ELD3)

Alen Bardizbanyan†, Magnus Själander‡, David Whalley‡, and Per Larsson-Edefors†
†Chalmers University of Technology, Gothenburg, Sweden

‡Florida State University, Tallahassee, USA
alenb@chalmers.se, msjaelander@fsu.edu, whalley@cs.fsu.edu, perla@chalmers.se

Abstract—Fast set-associative level-one data caches (L1 DCs)
access all ways in parallel during load operations for reduced
access latency. This is required in order to resolve data depen-
dencies as early as possible in the pipeline, which otherwise would
suffer from stall cycles. A significant amount of energy is wasted
due to this fast access, since the data can only reside in one of
the ways. While it is possible to reduce L1 DC energy usage
by accessing the tag and data memories sequentially, thereby
activating only one data way on a tag match, this approach
significantly increases execution time due to an increased number
of stall cycles. We propose an early load data dependency
detection (ELD3) technique for in-order pipelines that can detect
if the load has a data dependency with a subsequent instruction
that will cause stall cycles. If there is no such dependency, then
the tag and data accesses for the load are sequentially performed
so that only the data way in which the data resides is accessed. If
there is a dependency, then the tag and data arrays are accessed
in parallel to avoid introducing additional stall cycles. For the
MiBench benchmark suite, the ELD3 technique enables about
49% of all load operations to access the L1 DC sequentially. In a
65-nm physical implementation using commercial SRAM blocks,
the proposed technique reduces L1 DC energy by 13%.

I. INTRODUCTION

Energy-efficient computing is of critical importance today
for mobile devices that run on batteries, for general-purpose
processors that are performance limited due to processors
hitting the power wall, and for data centers due to the rising
cost of electricity and environmental concerns. Thus, some
common computer design techniques need to be reexamined
in the context of a greater emphasis on energy efficiency.

A level-one data cache (L1 DC) can have a significant
effect on processor efficiency as it is accessed for every load
and store operation. An L1 DC is often designed with a set-
associative organization to lower its miss rate. These caches
access both the ways of the tag and data arrays in parallel for
loads in order to reduce the access latency so that a subsequent
instruction using the loaded value is not stalled. However,
a significant amount of energy is wasted since the desired
data item can reside in at most one of the ways. A more
energy-efficient method would be to access the tags first and
then only access the single data way for the corresponding
tag match. However, this method introduces stall cycles that
hamper performance. As we show in Sec. IV, the execution
time overhead of accessing tags and data sequentially is 8% on
average in an in-order pipeline. These extra cycles also cause
additional energy overhead due to more switching of the clock,
etc., which can severely reduce the efficiency of the method.

In this paper we propose ELD3, a technique that determines
if the load has data dependencies with the next few instructions
that will enter the pipeline. If no dependency is found, then the
tags and data are sequentially accessed with no performance
penalty. As we show in Sec. VI, this technique enables about
49% of the load operations to access a single way of data
and, thus, reduces the L1 DC energy usage by 13% at a low
execution time overhead of 0.6%.

II. RELATED WORK

It is common for caches at higher levels of the memory
hierarchy, e.g., level-two (L2) or level-three (L3), to access
their tag and data arrays sequentially to save energy [1]. This
approach is practical because memory accesses to the L2 and
L3 caches are relatively few compared to L1 cache accesses,
hence the execution time overhead is low. It has been shown
that a sequential access approach for load operations to the
L1 DC incurs an unacceptable performance penalty [2]. We
propose a technique to selectively access the L1 DC sequen-
tially for those load operations where we know beforehand
that the longer access time will not cause an additional stall
cycle, making sequential accesses to the L1 DC practical.

Many different techniques have been proposed to reduce
energy in set-associative L1 DCs. These techniques mainly try
to predict [2], [3] or retrieve [4] the way information before
the L1 DC access so that only a single way of the L1 DC is
accessed. The way-prediction techniques have a relatively high
performance penalty of several percent [2], [3] compared to
the proposed ELD3 technique. Retrieving the way information
requires a fully-associative search, with a speculative address
in the address generation stage [4], which has a high overhead.
In addition, the way information can only be retrieved if the
speculation succeeds and if there is a hit in the fully-associative
structure. As a result, the load operations that can benefit from
this approach will be close to the proposed ELD3 technique.
Speculative tag access allows many load operations to access
L1 DC sequentially by making the tag match speculatively in
an early stage of the pipeline [5].But this technique can only be
applied to virtually indexed physically tagged (VIPT) L1 DCs.

III. L1 DC LOAD PIPELINE

A 3-stage access is common for the L1 DC in contemporary
state-of-the-art in-order processors [1], [6], [7]. Fig. 1 shows
how an N -way set-associative L1 DC access is performed,
with respect to load operations that span three pipeline stages.
During the first stage, the virtual memory address is generated978-3-9815370-2-4/DATE14/ c©2014 EDAA



for the L1 DC by adding an offset to a base address. In the
second stage, the data translation lookaside buffer (DTLB), the
tag, and the data memories are accessed and the tag match
operation takes place. In the third stage, the way selection
is done as a result of the tag hit signal, the retrieved data is
formatted for halfword- and byte-level operations, and, finally,
the data is forwarded to the execution units. The described
memory access is for VIPT L1 DCs, which are commonly used
by virtue of the reduced latency resulting from the parallel
L1 DC and tag access that is inherent in a VIPT cache.

Fig. 1. L1 DC access that spans three pipeline stages.

While a VIPT cache reduces latency, ARM processors are
mainly based on physically-indexed physically-tagged (PIPT)
L1 DCs. For a PIPT organization, a very small DTLB structure
is typically accessed directly after the address generation unit
(AGU) in the address generation stage. This does not change
how the tag and data arrays are accessed in the SRAM-
ACCESS stage. Thus, the ELD3 technique that we propose
in Sec. V-B can be applied to both VIPT and PIPT L1 DCs.

IV. DATA DEPENDENCIES

The latency of a load instruction depends on the number
of pipeline stages needed to get the required data word from
the L1 DC; it is two cycles for the 3-stage L1 DC pipeline
described in Sec. III. When the load instruction reaches the end
of the third stage, the data can be forwarded to the upcoming
instruction. If there is a data dependency between a load
instruction and the first or second succeeding instruction, then
the pipeline of an in-order processor needs to stall two or one
cycles, respectively, until the data value can be forwarded to
the consuming instruction.

Fig. 2. L1 DC load access that spans four pipeline stages.

Fig. 2 shows an L1 DC pipeline in which the tag and
data memory accesses happen in two consecutive stages. In
this scheme, only one data way is accessed as determined
by the tag hit signal. However, the scheme has a serious
disadvantage: The sequential access increases the L1 DC
access latency to three cycles and, thus, introduces many extra
stall cycles compared to a 3-stage L1 DC access. There will
be an additional stall cycle if there is a data dependency with
any of the succeeding three instructions after the load.

Overall, across 20 MiBench benchmarks [8], about 50%
of the load instructions have a data dependency with one
of the upcoming three instructions. These are distributed as
19%, 12.8%, and 18.2% for the instruction in the next cycle,
two cycles later, and three cycles later, respectively. Fig. 3
shows the execution time increase for an in-order processor
(see Sec. VI) whose L1 DC access is increased from three to
four stages to facilitate sequential tag and data accesses. Since
data dependencies are so common, saving dynamic energy by
making all L1 DC accesses sequential instead of parallel is not
a feasible approach as it significantly degrades performance.

a
d
p

c
m

b
a
s
ic

m
a
th

b
it
c
o
u
n

t

b
lo

w
fi
s
h

c
rc

d
ijk

s
tr

a ff
t

g
s
m

is
p
e
ll

jp
e
g

la
m

e

p
a

tr
ic

ia

p
g
p

q
s
o
rt

ri
jn

d
a
e
l

rs
y
n
th

s
h
a

s
tr

in
g
s
e

a
rc

h

s
u
s
a
n

ti
ff

a
v
e
ra

g
e

E
x
e

c
u
ti
o
n
 t
im

e

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

Fig. 3. Execution time overhead when accessing tags and data sequentially.

V. EARLY LOAD DATA DEPENDENCY DETECTION TO
ENABLE SEQUENTIAL ACCESS

As explained in the previous section, parallel L1 DC tag and
data access for load operations is essential to avoid stall cycles.
However, this parallel access leads to a waste of energy in the
event the load operation does not have a data dependency that
causes a stall cycle.

Now assume that the data dependency information is known
at the time of the load operation. It would then be possible
to reduce the load energy for set-associative L1 DCs without
inflicting any performance penalties. If there is a data depen-
dency, the tag and data arrays can be conventionally accessed
in parallel. If there is no data dependency, an extra pipeline
stage can be used to sequentially perform the tag and data
array accesses over two consecutive cycles. The tag hit signal
can then be used to activate only one data way.

A. Dynamic Data Dependency Detection
To implement the concept above, the data dependency

information must be available before the end of the address
generation stage in order to mask the chip select signals
of the data SRAM blocks. To reduce instruction decoding
complexity, instruction sets are usually designed in such a
way that the position of destination and source registers in
the instruction word is always fixed. As a result, it seems that
it would be possible for an in-order pipeline to compare the
destination register of the load instruction with the instructions
that enter the pipeline after the load instruction. However, this
straightforward solution is not likely to be feasible.

Processors commonly have at least one instruction decode
stage in which the instruction word is available for decoding
and operations such as register file read. While the load
instruction is in the address generation stage, the upcoming in-
struction word will be available in the instruction decode stage.
This means that it is possible to check the data dependency



Fig. 4. Dynamic data dependency detection and its problems.

between a load and the instruction that immediately follows it.
But checking the dependency between the load and the second
and third upcoming instructions is not as straightforward. The
second instruction following the load will be two stages behind
the address generation stage and, thus, the instruction word
might be available in the final part in this stage. As shown in
Fig. 4, implementing a comparison with the instruction word
in this stage is likely to either increase the critical path delay
or constrain the paths in which the instruction word becomes
available, leading to a significantly higher power dissipation
for every instruction fetch. The third instruction after the load
will likely not even be available when the load instruction is
in the address generation stage.

B. Table-Based Data Dependency Detection
We propose a practical approach that provides early de-

tection of a dependency on a load for most of the executed
load instructions. We introduce an extra bit associated with
each instruction word in the L1 instruction cache (IC) to
indicate if the instruction is a load operation and if there is
a dependence with one of the following three instructions.
When a load operation is committed, a check is performed
to identify if there is a dependency between the load and the
subsequent three instructions. If a dependency is detected, then
the corresponding bit is set to indicate that the tag and data
ways are to be accessed in parallel to avoid an additional stall
cycle. If no dependency is detected, then the corresponding
bit is cleared and the next time the load operation is executed
the tag and data SRAMs will be accessed in sequence across
two consecutive stages. As long as the cache line with the
load instruction is not evicted from the L1 IC, the bit will
provide useful information regarding the data dependency and
can be used for selecting either a parallel or sequential L1 DC
access. When a cache line is evicted from the L1 IC the data
dependency information might be incorrect. But the processor
will still behave correctly even if the dependency information
is incorrect, since in-order pipelines inherently have data
dependency checks. Hence, if a load instruction is treated as it
has no dependency when in fact it has, then it will only cause
an additional stall cycle. Cache line evictions rarely happen
and the dependency information if incorrect is updated after
the first execution of a new load operation. The performance
impact of the additional stall cycles caused due to incorrect
dependency information is therefore insignificant. In addition,
not having to set the data dependency bits to a specific state on
a cache line eviction simplifies the implementation as access
to all bits for a whole cache line is not required.

The extra bits could be directly included in the data SRAMs
of the L1 IC. This solution presents a very low overhead
in terms of bits, since the technique entails adding only one

extra bit per word in the SRAM. However, this solution will
complicate the design of the L1 IC, since the data dependency
bits need to be updated independently of the instruction
word. A more practical approach is to access a separate data
dependency bit (DDB) memory in the address generation
stage, decoupled from the instruction cache entirely. Moreover,
since the operation of an instruction is already detected before
the address generation stage, the DDB memory will only be
accessed if there is a load operation. In contrast, if the bits are
stored in the data SRAMs of the L1 IC, then all instructions
will unnecessarily read out the extra bits.

The data dependency information is tracked by mainly using
the logic of the conventional data dependency checks of an
in-order pipeline. If the pipeline is stalled due to a data
dependency, then the instruction causing the stall is marked
with a bit that is passed through the pipeline together with that
instruction. In addition, the bit read from the DDB memory
for load operations is also kept with the load instruction
throughout the pipeline. When the load instruction is to be
committed, the two bits are compared and if they differ, then
the DDB memory is updated.

Fig. 5. The data dependency bit (DDB) memory access in the address
generation stage.

Fig. 5 shows the proposed technique as part of the address
generation stage. The bitwidth of the DDB memory is equal
to the number of ways in the L1 IC. The height of the DDB
memory is equal to the number of sets in one L1 IC way
times the number of instruction words per cache line. The final
multiplexer is a very small structure; it selects the correct bit,
since for a given set and line index, the dependency bits from
each way are read. Since the hit-way information is available
at the beginning of the address generation stage, the critical
path after the DDB memory read is going through the data-to-
output path of the multiplexer, which is usually much faster
than the select-to-output path due to less fanout. In addition,
the bitwidth of the memory is much smaller compared to one
data way of the L1 IC, which makes it faster.

VI. RESULTS

We use extracted energy estimates from a placed and routed
RTL description of a 5-stage in-order processor including
16kB 4-way set-associative instruction and data caches [9]
with 32B line size [5]. Although the implemented pipeline
is simpler than the pipeline evaluated in this work, the energy
for accessing the L1 DC is representative. The RTL imple-
mentation is synthesized in Synopsys Design Compiler using a
commercial 65-nm low-power process technology with multi-
VT standard cells and SRAM blocks. The layout work is done
in Cadence Encounter. Energy is extracted using Synopsys
PrimeTime PX on the RC-extracted netlist.



Table I shows the energy for different components of
the L1 DC. The load and store operations include energy
dissipated in the L1 DC peripheral circuits. The store energy
is substantially smaller than the load energy due to store
operations accessing only one data way. The energy for a 4-
way data read is 106 pJ. When a load operation accesses the
L1 DC sequentially, the energy of reading data from three
ways is avoided, which results in a reduction of 79.5 pJ.
For each load operation the overhead of accessing the DDB
memory is also evaluated. In addition, the energy overhead
of updating the DDB memory is also included in the final
energy estimation. The leakage power is negligible due to the
low-power process technology.

TABLE I
4-WAY SET ASSOCIATIVE L1 DC ENERGY (PJ)

Component Energy Component Energy
L1 DC load 182.1 L1 DC 4-way tag read 57.3
L1 DC store 103.3 L1 DC 4-way data read 106.0
DDB memory read 8.6 DDB memory write 8.9

We use 20 benchmarks from six different categories of the
MiBench benchmark suite [8]. The benchmarks are compiled
using the gcc compiler with the -O2 optimization flag. We use
the SimpleScalar simulator with the PISA instruction set [10]
to model a 7-stage in-order processor with a 3-stage L1 DC
pipeline. The L1 instruction and data caches are configured to
be 16kB and 4-way set-associative. The simulator calculates
the activities (loads, stores, cycles etc.) for the MiBench
benchmark suite until completion. The final energy values are
then calculated from these activities and the extracted energy
of the various components of the L1 DC.

a
d
p
c
m

b
a
s
ic

m
a
th

b
it
c
o
u
n
t

b
lo

w
fi
s
h

c
rc

d
ijk

s
tr

a ff
t

g
s
m

is
p
e
ll

jp
e
g

la
m

e

p
a
tr

ic
ia

p
g
p

q
s
o
rt

ri
jn

d
a
e
l

rs
y
n
th

s
h
a

s
tr

in
g
s
e
a
rc

h

s
u
s
a
n

ti
ff

a
v
e
ra

g
e

S
e
q
u
e
n
ti
a
l 
L
1
 D

C
 a

c
c
e
s
s
e
s
 (

lo
a
d
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 6. Load operations that access only one L1 DC data way using ELD3.

Fig. 6 shows how many load operations that sequentially
access the L1 DC due to the ELD3 technique and, thus, activate
only one data way. On average, 49.4% of the load operations
sequential access the L1 DC.

Fig. 7 shows the L1 DC energy dissipation for both stores
and loads. The ELD3 technique on average reduces the energy
by about 13%. The energy reduction for loads has a strong
correlation with the ratio of loads accessing a single L1 DC
way of data. The energy for stores is unaffected. Note that
for dijkstra and pgp, the energy dissipation increased slightly
(1.8% and 0.9%, respectively) due to the overhead of checking
the DDB memory outweighing the small ratio of loads that
access only a single L1 DC way of data.

a
d
p
c
m

b
a
s
ic

m
a
th

b
it
c
o
u
n
t

b
lo

w
fi
s
h

c
rc

d
ijk

s
tr

a ff
t

g
s
m

is
p
e
ll

jp
e
g

la
m

e

p
a
tr

ic
ia

p
g
p

q
s
o
rt

ri
jn

d
a
e
l

rs
y
n
th

s
h
a

s
tr

in
g
s
e
a
rc

h

s
u
s
a
n

ti
ff

a
v
e
ra

g
e

L
1
 D

C
 E

n
e
rg

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Store Energy Load Energy

Fig. 7. L1 DC energy dissipation.

On average, 0.5% of the loads cause a stall cycle due to
incorrect dependency information read from the DDB memory.
In addition, 3.4% of loads cause a stall cycle due to a structural
hazard in which a load that is sequentially accessed in the L1
DC is immediately followed by a load where the tags and
data need to be accessed in parallel. This results in an 0.6%
execution time increase.

VII. CONCLUSION

In this paper we show that early load data dependency
detection (ELD3) is an effective technique for reducing L1 DC
energy dissipation with a very slight performance degradation.
The DDB memory is accessed in the address generation
pipeline stage only when a load instruction is detected during
instruction decode. The ELD3 technique can also be poten-
tially used in combination with other approaches for making
L1 DC accesses more energy efficient.

ACKNOWLEDGMENT

This research was supported in part by the the Swedish Re-
search Council grant 2009-4566 and the US National Science
Foundation grants CNS-0964413 and CNS-0915926.

REFERENCES

[1] D. Williamson, ARM Cortex A8: A High Performance Processor for
Low Power Applications, ARM.

[2] M. D. Powell, A. Agarwal, T. N. Vijaykumar, B. Falsafi, and K. Roy,
“Reducing set-associative cache energy via way-prediction and selective
direct-mapping,” in Proc. ACM/IEEE MICRO, Dec. 2001, pp. 54–65.

[3] K. Inoue, T. Ishihara, and K. Murakami, “Way-predicting set-associative
cache for high performance and low energy consumption,” in Proc. IEEE
ISLPED, Aug. 1999, pp. 273–275.

[4] D. Nicolaescu, B. Salamat, A. Veidenbaum, and M. Valero, “Fast
speculative address generation and way caching for reducing L1 data
cache energy,” in Proc. IEEE ICCD, Oct. 2006, pp. 101–107.

[5] A. Bardizbanyan, M. Själander, D. Whalley, and P. Larsson-Edefors,
“Speculative tag access for reduced energy dissipation in set-associative
L1 data caches,” in Proc. IEEE ICCD, Oct. 2013, pp. 302–308.

[6] T. R. Halfhill, “ARM’s midsize multiprocessor,” Microprocessor, Oct.
2009.

[7] MIPS R© 1004KTM Coherent Processing System Datasheet, MIPS Tech-
nologies, Jul. 2009.

[8] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “MiBench: A free, commercially representative embedded
benchmark suite,” in Proc. Int. Workshop on Workload Characterization,
Dec. 2001, pp. 3–14.

[9] V. Saljooghi, A. Bardizbanyan, M. Själander, and P. Larsson-Edefors,
“Configurable RTL model for level-1 caches,” in Proc. IEEE NORCHIP,
Nov. 2012.

[10] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An infrastructure for
computer system modeling,” Computer, vol. 35, no. 2, pp. 59–67, Feb.
2002.


