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ABSTRACT
Code randomization is an effective defense against code reuse
attacks. It scrambles program code to prevent attackers
from locating useful functions or gadgets. The key to secure
code randomization is achieving high entropy. A practical
approach to boost entropy is on-demand live randomization
that works on running processes. However, enabling live
randomization is challenging in that it often requires manual
efforts to solve ambiguity in identifying function pointers.

In this paper, we propose Remix, an efficient and practical
live randomization system for both user processes and kernel
modules. Remix randomly shuffles basic blocks within their
respective functions. By doing so, it avoids the complex-
ity of migrating stale function pointers, and allows mixing
randomized and non-randomized code to strike a balance be-
tween performance and security. Remix randomizes a run-
ning process in two steps: it first randomly reorders its basic
blocks, and then comprehensively migrates live pointers to
basic blocks. Our experiments show that Remix can sig-
nificantly increase randomness with low performance over-
head on both CPU and I/O intensive benchmarks and kernel
modules, even at very short randomization intervals.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

Keywords
ASLR; Code Reuse Attack Defense; Live Randomization

1. INTRODUCTION
With the ubiquitous deployment of data execution preven-

tion (DEP) that can foil direct code injection [20, 21, 24],
code reuse attacks have become a popular attack method.
Instead of injecting foreign code, they reuse existing code to
bypass DEP. These attacks could reuse either whole func-
tions (e.g., return-to-libc or return-to-plt) or short code frag-
ments called gadgets (e.g., return-oriented programming [12,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CODASPY’16, March 09 - 11, 2016, New Orleans, LA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3935-3/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2857705.2857726

15, 45] or jump-oriented programming [11]). In a typical
scenario, the attacker first launches a code-reuse attack to
disable DEP by calling functions like mprotect, and then
injects the malicious code into the victim process for more
complex tasks. Control flow integrity (CFI) is an effective
defense against code reuse attacks [1]. CFI guarantees that
the runtime control flow follows the static control flow graph
(CFG). Consequently, the attacker cannot arbitrarily ma-
nipulate the control flow to reuse the existing code. How-
ever, CFI has not been widely adopted. Early CFI systems
have high performance overhead because CFI requires to
instrument every indirect branch instruction. Recent imple-
mentations improve the performance by sacrificing precise-
ness [55, 54] and, in some cases, security [23, 28].

Code randomization is another effective defense against
code reuse attacks. Unlike CFI, code randomization scram-
bles the reusable code by randomizing the code location,
the code layout, or the instruction encoding [7, 22, 30, 33,
42, 49]. Many code reuse attacks rely on the exact loca-
tions or contents of the victim process. Code randomization
causes these attacks to behave unpredictably. Most popular
operating systems support a simpler form of code random-
ization called address space layout randomization (ASLR),
in which (position-independent) executables are loaded at
random base addresses [3, 5, 37]. ASLR offers limited ran-
domness, especially on the 32-bit architectures [46]. More-
over, ASLR is particularly vulnerable to information leak at-
tacks – a single leaked code or data pointer can de-randomize
the whole process since every code section has a fixed off-
set to the base. To address this problem, fine-grained code
randomization techniques have been proposed, for example,
to rearrange functions [33], basic blocks [49], or instruc-
tions [30, 42]. A high entropy is the key to the security
of code randomization.

One effective boost to randomness is on-demand live ran-
domization. Live randomization works on a live, running
process. It can be applied many times at undetermined pe-
riods of time, making the process a moving target for the at-
tacker. Live randomization can eliminate the predictability
associated with the compile-time or load-time randomiza-
tion schemes. It can significantly improve the randomness
for 32-bit architectures, which many computers and embed-
ded devices still use. However, live randomization is chal-
lenging to implement correctly: when the code is changed, it
is necessary to update all the code and the data that depend
on the changed code to guarantee correctness. For example,
if a call instruction is moved to a different address, we
have to update every branch instruction that targets this
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instruction (or its preceding instructions), and search the
stack for the corresponding return address and update it to
the new one. Run-time changes to function entry points are
even harder to fix – it is non-trivial to locate all the affected
function pointers in the whole address space, including the
code, the data, the stacks, and the heap. In particular, a
linear search of the function address has false positives and
could take a prohibitively long time to complete. Function
addresses could also be stored by and in the OS kernel. For
example, a process can register a handler for each signal of
interest. The kernel saves this data in the kernel memory,
unreachable by the process. If the handler is moved, the ker-
nel must be notified with the updated address. To achieve
that, one has to intercept the system calls that register sig-
nal handlers and re-register the handlers when necessary.
Therefore, live randomization is challenging to implement.
An existing live-randomization system customizes the com-
piler to generate enough meta-data to facilitate its job [27].
However, it still has yet to overcome the aforementioned
challenges. For example, there is unsolvable ambiguity (e.g.,
pointers in unions or pointers stored as integers) in pointer
migration that requires developers’ manual effort.

In this paper, we propose Remix, an efficient, practical
live randomization system for both user processes and kernel
modules. Remix randomly shuffles the process’ basic blocks
within their respective functions to change the run-time code
layout (a basic block is a linear sequence of instructions that
has only one entry point and one exit point [50]. An exit
point is often a branch instruction, such as jmp or ret. It
could also be a non-branch instruction that falls through to
the next basic block.) That is, functions remain at their
original, expected locations, while basic blocks are moved
around but never cross the function boundaries. This de-
sign can significantly reduce the complexity of live random-
ization: first, there is no need to fix function pointers be-
cause function entry points are not moved. This avoids the
complicated pointer migration that may involve unresolv-
able ambiguity [27] (function addresses are still randomized
once at the load time by ASLR). Basic block addresses may
still appear in both the code and data sections (e.g., jump
tables). But these appearances are mostly limited to the
local scopes and thus are relatively easy to fix. Second, it is
straightforward to support partial randomization since each
change is confined to a local scope. For example, Remix can
be used to randomize selected kernel modules. Randomized
and non-randomized kernel modules can co-exist in a single
kernel in harmony. Third, compared to systems that globally
rearrange basic blocks [49], Remix maintains better locality.
Compilers make an effort to optimally lay out the code for
better performance. Global rearrangement of basic blocks
could potentially lead to poor locality and substantial per-
formance loss. Remix instead shuffles basic blocks locally.
It can also bundle closely-related basic blocks together (e.g.,
tight loops) to further reduce the performance overhead.
Simplicity and efficiency are two major advantages of Remix.
They make Remix an ideal technique to compose with other
defenses. For example, Remix should be used with ASLR so
that functions are randomized at least once (during program
startup). Other examples of compatible techniques include
defenses against JIT-ROP [47] or Blind-ROP [10] attacks [6,
19, 26] and function-level re-randomization [27]. Remix can
significantly increase the unpredictability of those systems
with on-demand, live randomization of basic blocks.

0x400d30: pushq %rbp
0x400d31: movq  %rsp, %rbp
......
0x400d44: jle   0x400d70
0x400d4a: nopl  8(%rax, %rax)
0x400d4f: leaq  0xd77e(%rip), %rdi
......
0x400d58: callq 0x400ae0
......
0x400d66: jmpq  0x400d7c
0x400d6b: nopl  8(%rax, %rax)
0x400d70: movl  $0, -4(%rbp)
0x400d77: nopl  8(%rax, %rax)
0x400d7c: movl  -4(%rbp), %eax
......
0x400d83: popq  %rbp
0x400d84: retq
0x400d85: nopl  8(%rax, %rax)

0x400d30: jmpq  0x400d5f
0x400d35: leaq  0xd798(%rip), %rdi
......
0x400d3e: callq 0x400ae0
......
0x400d4c: jmpq   0x400d56
0x400d51: nopl   8(%rax, %rax)
0x400d56: movl  -4(%rbp), %eax
......
0x400d5d: popq  %rbp
0x400d5e: retq

0x400d5f: pushq %rbp
0x400d60: movq  %rsp, %rbp
......
0x400d73: jle   0x400d7e
0x400d79: jmpq 0x400d35
0x400d7e: movl  $0, -4(%rbp)
0x400d85: jmpq 0x400d56
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Figure 1: An Example of Remix on x86-64

We have implemented a prototype of Remix for Linux
applications and FreeBSD kernel modules. Our prototype
uses a slightly modified LLVM compiler to reserve spaces
needed for basic block reordering (it can also support binary-
only programs by leveraging existing NOP instructions used
to align instructions, albeit with less gain in randomness.)
Our experiments with standard benchmarks and applica-
tions show that Remix can substantially improve the ran-
domness with a minor overhead (e.g., 2.8% average perfor-
mance overhead and 14.8% average increase in binary size
for SPEC CPU2006).

The rest of the paper is organized as the following. We
first present the design and implementation of Remix in Sec-
tion 2 and Section 3, respectively. The evaluation results
are given in Section 4, followed by a discussion of potential
improvements to Remix in Section 5. Finally, we compare
Remix to the state-of-the-art in Section 6 and conclude the
paper in Section 7.

2. DESIGN

2.1 Overview
Remix aims at increasing randomness for protected pro-

cesses through live randomization of basic blocks while keep-
ing function entry points unmoved. Figure 1 shows an exam-
ple of applying Remix to a simple 64-bit x86 (x86-64) func-
tion. After Remix, the basic blocks have been reordered.
Any gadgets discovered before Remix immediately become
obsolete, and their execution likely will cause exceptions like
illegal opcode or general protection error. Even though it is
conceptually straightforward, reordering basic blocks faces
a number of challenges:
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First, the function might not have enough space to ac-
commodate the reordered basic blocks. For example, some
basic blocks end with a short jump instruction that takes a
single byte of offset. Their targets could be moved by Remix
beyond the reach of one byte. It is thus necessary to sub-
stitute the short jump with a long jump, which takes four
bytes for the offset. In addition, some basic blocks do not
end with a branch instruction. They instead fall through to
the next basic block. The movl $0, -4(%rbp) instruction in
Figure 1 (at address 0x400d70, before Remix) is such an ex-
ample. The instruction at 0x400d7c starts a new basic block
because the instruction at 0x400d66 jumps to it, making it
an entry point. Remix has to add a new jump instruction
to connect the fall-through basic blocks. To accommodate
reordered basic blocks, we modify the compiler to emit a
five-byte NOP instruction after each basic block. This pro-
vides enough space to insert a long jump (also five bytes) for
each basic block. This errs on the safe side – there is always
enough space to accommodate the reordered basic blocks.
Remix can also support binary-only programs without re-
compilation by leveraging the existing NOP instructions in
functions.

Second, when a basic block or its succeeding blocks are
moved to other positions, it is necessary to fix their exit
points to maintain the correct control flow: if the exit in-
struction is a direct branch, we only need to update its offset
to the new address of its successors (a basic block has two
successors if it is a conditional branch.) For example, the
jle instruction (Figure 1) has two branches. When it is
moved, Remix adds a direct jmp instruction (at 0x400d79

after Remix) because the original branch falls through to
the movl instruction at 0x400d70. If the exit instruction is
an indirect branch, Remix analyzes its structure and handles
it accordingly. For example, indirect calls can be left alone
because function entry points are not moved by Remix. In-
direct jumps are more complicated with several possibilities
(Section 2.3.2). They are in fact related to the third chal-
lenge, how to migrate basic block pointers.

Third, there exist pointers to basic blocks in the process’
code and data sections. For example, the stack consists of
local variables and return addresses. A return address points
to the instruction after the originating call instruction (the
return site). If a call instruction is moved by Remix, we have
to substitute the original return address on the stack with
the new one. In addition, the compiler generates jump ta-
bles to speed up switch/case-like structures. A jump table
contains basic block pointers to handle its cases. It has to
be patched when basic blocks are moved. Jump tables have
several possible structures. Remix must handle all those
different cases. The kernel has its own set of basic block
pointers that have to be converted to maintain the correct
control flow. In the rest of this section, we present in detail
how Remix solves these problems.

2.2 Basic Block Reordering
Remix shuffles basic blocks within their respective func-

tions to increase run-time randomness. Algorithm 1 gives a
high-level overview of this process. Specifically, Remix first
parses the code into basic blocks, and generates a random
ordering of these basic blocks to guide the process. Remix
then lays out the basic blocks according to that ordering,
and saves the mapping between their old and new positions
in a table (m). This table is used to convert basic block

Algorithm 1 Basic Block Reordering

1: for each function f do
2: s = GenerateRandomOrder(f);
3: m = LayoutBasicBlocks(s);

4: for each instruction i do
5: if i ∈ DirectCall then
6: FixDispS(i, m);
7: else if i ∈ DirectJump then
8: FixDispS(i, m);
9: addr = CalcPrevTarget(i);

10: FixDispD(i, m, addr);
11: else if i ∈ IndirectJump then
12: if IsJumpTable(i) then
13: AddToJumpTableList(jt, i);
14: end if
15: end if

16: if i ∈ PC-RelativeInsn then
17: FixDispS(i, m);
18: end if
19: end for

20: ConvertBasicBlockPointers (m, jt);
21: end for

pointers. Note that the first instruction of a function (i.e.,
the function entry point) is replaced by a direct jump to the
first basic block. As shown in Figure 1, Remix does not ter-
minate a basic block with a call instruction. We choose this
design for two reasons: first, Remix keeps functions at their
original locations. Call instructions thus do not require com-
plicated handling. Second, by design, a call instruction falls
through to the next instruction. An extra jump must be in-
serted after the call instruction if the fall-through instruction
is moved by Remix. Many applications use a large number
of call instructions. This would substantially increase the
binary size and reduce the performance.

Reordering basic blocks changes their positions. Some in-
structions need to be updated to maintain the original con-
trol flow. They consist of instructions that have a program-
counter (PC) relative operand (e.g., the various branch in-
structions). Most of them have a constant displacement
that can be adjusted to offset the position changes made by
Remix. We need to consider two types of position changes
– the instruction itself and the destination of the instruc-
tion. We use two functions, FixDispS and FixDispD, in
Algorithm 1 to handle these two cases, respectively. The
majority of the instructions to be patched are branch in-
structions, i.e., indirect/direct calls and jumps (line 5-15 in
Algorithm 1):

• Indirect Call: an indirect call invokes a function indi-
rectly through a function pointer. Function pointers re-
main valid because Remix does not move function entry
points. As such, indirect calls can be left unchanged.

• Direct Call: a direct call targets the function at a certain
displacement to itself. Even though the function stays at
its position in the memory, the call instruction could have
been moved to a different place. Accordingly, direct calls
should be fixed with the FixDispS function.

• Direct Jump: a direct jump often targets another basic
block. Both the source and the destination instructions
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might change the positions. To fix a direct jump, Remix
first adjusts the instruction’s displacement to offset the
source instruction movement with FixDispS. It then cal-
culates the original target and adjusts the displacement
to offset the target instruction movement. In addition, a
conditional jump has two branches, one for the true con-
dition and the other for the false condition. One of the
branches is a fall-through to the next instruction. Remix
handles this case by treating the fall-through as an im-
plicit jump to the next basic block. The same approach
is applied if a basic block falls through to the next one
without a branch instruction (e.g., BB3 in Figure 1).

• Indirect Jump: indirect jumps are more complicated to
handle than the other branch instructions. They can tar-
get both functions and basic blocks. The former does not
need any changes, but the latter can involve several differ-
ent cases that must be handled by Remix. We elaborate
these cases in Section 2.3.2.

• PC-relative Addressing Mode: in addition to branch
instructions, we also need to patch instructions with the
PC-relative addressing mode, which are often used by the
compiler to generate position-independent code. A pro-
gram must be compiled as a position-independent exe-
cutable (PIE) to benefit from ASLR (on Linux). A PIE
program can run at any location in the address space. To
achieve that, it calculates the run-time addresses of its
code and data relative to the current program counter.
The newer x86-64 architecture natively supports the PC-
relative addressing mode. For example, instruction lea

0x200000(%rip), %rbp adds 0x20,0000 to the current pro-
gram counter and saves it to the rbp register. The older
x86-32 architecture has no native support for this address-
ing mode. Instead, the compiler uses a simple built-in
function to retrieve the return address from the stack,
which has been pushed to the stack earlier by the caller.
Accordingly, this function returns the address of the re-
turn site (i.e., PC+5). To ensure correctness, Remix needs
to update these instructions and functions. Fortunately,
the compiler uses this mode (almost) exclusively to cal-
culate the run-time function and data addresses, both of
which are not changed by Remix. Only the PC-relative in-
structions and functions (on the x86-32 architecture) may
have been moved. This can be easily compensated with
FixDispS.

When updating instructions, the new displacement might
grow larger than what can fit in the original instruction. For
example, x86-64 has two formats of relative jumps – short
jumps with a one-byte displacement and long jumps with
a four-byte displacement (x86-32 also supports short jumps
with a two-byte displacement.) It is rather easy to over-
flow short jumps especially in large functions. One feasible
solution is to restrict the moving distances of short jumps
within the one-byte limit. However, this could quickly be-
come over-complicated if several short jumps are close to
each other. We might end up with several basic blocks un-
changed or only moved by a short distance. Remix instead
configures the compiler to always generate the equivalent
long jumps with four-byte displacements. This is also the
case for call instructions which have either a two-byte or a
four-byte displacement.

Figure 1 gives an example of applying Remix to a short
x86-64 function. After Remix, four basic blocks are moved to

new positions. Branch and PC-relative instructions, includ-
ing jle, callq, jmpq and leaq, are updated to maintain the
control flow. Moreover, two jmpq instructions (0x400d79 and
0x400d85, after Remix) are inserted for the fall-through of
basic blocks. Another jmpq instruction (0x400d30) is placed
at the function entry point targeting the first basic block.

2.3 Basic Block Pointer Conversion
User-space programs built by compilers often do not need

or have direct access to basic blocks. Accordingly, most
programs have no explicit pointers to basic blocks. How-
ever, the compiler might spontaneously create such pointers
when compiling the source code. For example, a return ad-
dress on the stack points to the instruction following the
corresponding call instruction. Besides, the compiler often
uses jump tables to speed up the switch/case statements.
After Remix reorders basic blocks, these pointers become
invalid and thus have to be updated. In the rest of this
section, we discuss these cases in detail.

2.3.1 Return Address Conversion
A call instruction automatically pushes its return address

to the stack so that the callee can continue the execution
from there upon return. The return address points to the
instruction following the call instruction, i.e., the return site.
When Remix performs live randomization of the process,
the stack has already contained return addresses. If these
addresses are not subsequently updated, the process will re-
turn to wrong locations, eventually causing exceptions such
as illegal opcode or segmentation fault.

To convert return addresses, we traverse the whole stack
(starting at the top of the stack in register rsp), and search
for and update every address that points to a valid return
site. With this condition, the chance of a stack variable
being accidentally treated as a return address is very slim.
In addition, return address conversion is straightforward and
deterministic if the program maintains stack frame pointers.
A stack frame is a continuous block of memory on the stack
that keeps data for an active function. If frame pointers are
maintained, each frame contains a pointer to the previous
frame, and the return address is stored at a known location
in the frame. Therefore, we can traverse stack frames and
update all and only return addresses. By default, modern
compilers like gcc do not generate code to maintain frame
pointers in an optimized compilation.

2.3.2 Indirect Jump Related Conversion
Indirect jumps are used by the compiler and standard li-

braries for a number of purposes. They can target either
functions or basic blocks. No change is needed for the for-
mer, but the latter requires us to update the associated basic
block pointers.

Function Pointers: the compiler uses indirect jumps (to
functions) mostly to support shared libraries, C++ vtable,
and tail/sibling calls. For example, the compiler generates
the PLT and GOT tables for calls to external functions in
a shared library [35]. The library is loaded at a random ad-
dress unknown until the program runs. At the run-time, the
linker resolves the address of each called external function
and saves it in a GOT entry. A PLT entry is an executable
trampoline that represents the actual function. It essentially
is an indirect jump to the function address saved in its as-
sociated GOT entry. The PLT table is placed in a special
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(A) jmpq    *0x480000(,%rax,8)

(B) jmpq    *0x8(%rax,%rcx,8)

(C) movslq  (%r9,%rbp,4),%rcx
    add     %r9,%rcx
    jmpq    *%rcx

Figure 2: Jump Table Examples

section. Remix leaves this section unchanged. Tail/sibling
call optimization is also interesting. The compiler normally
allocates a new stack frame for each function call. How-
ever, there are cases where the callee can safely share the
caller’s stack frame. Such a call is dubbed the tail call or
the sibling call, depending on the location of the call in-
struction. A typical example of the tail call is tail-recursive
functions [52], but compilers like gcc support the broader
definition of tail/sibling call. They can identify these cases
and reuse the callers’ stack frames. If the callee is a function
pointer, the compiler generates an indirect jump (instead of
an indirect call) in order to reuse the stack frame. Remix
does not need to change indirect jumps introduced by tail/si-
bling call optimization.

Saved Context: indirect jump is also used by the stan-
dard C library to restore saved context. For example, the
setjmp and sigsetjmp functions save their calling context
to a jump buffer, while the longjmp and siglongjmp func-
tions restore the context saved by setjmp and sigsetjmp,
respectively. Both functions use an indirect jump to con-
tinue the execution at the saved instruction pointer. After
reordering basic blocks, Remix needs to update all the jump
buffers. The most efficient solution is hooking the functions
that save the context and record the locations of the jump
buffers. Note that the saved registers in the jump buffer
are encoded by glibc in a special format (PTR MANGLE).
The alternative approach to search the whole address space
for jump buffers incurs unnecessary performance overhead
as these functions are seldom used.

Jump Tables: jump tables are often generated by the
compiler to speed up switch/case statements. If some cases
are continuous, the compiler stores their handlers in a table,
and uses the switch variable as an index to quickly locate the
corresponding handler. On x86-64, various patterns of jump
tables can be used [17] as shown in Figure 2. They all have
a base address, an index register, and a scale. An entry in
the jump table can be addressed by (base + index ∗ scale).
For example, the bases of case A, B, and C are constant
0x480000, register rax, and register r9, respectively, and
the indexes are in the rax, rcx, and rbp respectively (in
case C, rbp is used as a general-purpose register, not the
stack frame base pointer.) Interestingly, while case A and
B store the actual handler addresses in the table since they
directly jump to the selected entry, case C stores the offsets
between the table base and the handlers. Each offset is only
four bytes (a pointer is 8 bytes on the x86-64 architecture.)
To calculate the handler address, the code reads the offset
into register rcx and adds it to the table base in register r9.

Handlers for a switch/case statement are some basic blocks
of the enclosing function. Remix thus has to update them
after reordering basic blocks. The first two cases are rather
straightforward to handle: jump tables are typically placed
in the .rodata section. We search this section looking for

at least 3 consecutive addresses pointing to the code sec-
tion. If these addresses are close enough to each other (e.g.,
no more than 1MB apart) and all point to a valid instruc-
tion, Remix updates them accordingly. Even though false
positives are possible, we did not find it to be a problem
during our experiments. This approach does not work on
the third case whose jump table consists of offsets, not in-
struction addresses. A simple solution is to export some
meta data (e.g., the table base and length) from the com-
piler for Remix to patch the table at the run-time. Remix
then can locate each handler and adjust its offset by the dis-
placement between the old handler address and the new one.
Our prototype uses this approach. Another viable solution
is to use pattern matching to locate the code similar to case
C (registers might be different) and use an intra-procedural,
backward program slicing [2, 56] to locate the table base and
length. For example, the index (register rbp in case C) is of-
ten compared to the table’s upper and lower limits to make
sure that it is within the table’s boundary. This gives us
the valid range of the index and hence the table length. As
for the table base, the compiler generates case C mostly for
position-independent code (e.g, shared libraries). The ta-
ble base is calculated at the run-time using the PC-relative
addressing mode, which has its own patterns (Section 2.2).
As such, the table base can be calculated using the program
counter and an offset. This approach is more complicated
but it is the only choice if the source code is not available.

Exception tables can be similarly patched. Each excep-
tion table entry consists of a code range and a handler. If
an exception happens in that range, it should be handled
by the associated handler. However, Remix might move a
faulting instruction out of the range and cause no handler or
a wrong handler to be called. To address that, we can either
revert the faulting instruction to its original location or avoid
moving basic blocks into and out of the range. Our proto-
type has yet to implement this feature. Nevertheless, we can
complete our experiments (including the Apache server and
a kernel file system) without any problem. Even though ex-
ception handling is exploited by malware or DRM software
to obfuscate control flows, regular applications do not use it
that way (i.e., they use it for exceptions, not regular control
flows.) since exception handling is relatively slow.

2.4 Live Randomization of Kernel Modules
Live randomization of the kernel code faces many of the

same challenges as that of user applications. For exam-
ple, the kernel can be compiled to use jump tables for tight
switch/case statements. The kernel may also use exception
tables – the kernel often needs to access the user memory. To
protect itself from untrusted applications, the kernel must
verify every user address it accesses, an expensive opera-
tion that requires traversing the process’ paging structures.
Moreover, the vast majority of user addresses are benign and
safe to access. To avoid unnecessary verification, the kernel
accesses the user memory without a prior verification. In-
stead, it registers a page fault handler that will be called by
the kernel if the memory access fails. These cases can be
similarly handled as in the user-space.

Nevertheless, there are some differences between the ker-
nel and user applications. For example, the kernel often
embeds manual assembly code, which may not follow the
paradigms of the compiled code. That code has to be han-
dled case-by-case (for once). The return address conversion
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is more complicated than the user space because the changed
return addresses could exist in any of the active kernel stacks
(if a process is running in the user-space, its kernel stack is
empty.) All these stacks need to be updated at once. In ad-
dition, a hardware interrupt can interrupt any instruction
in the kernel or the user space. The interrupted address is
saved on the kernel stack. If the interrupted instruction is in
the kernel and has been moved, we can directly update the
saved interrupt context. However, if the interrupted instruc-
tion is in the user space, Remix cannot update the kernel
interrupt context, which is protected from the user space.
Consequently, in the user space, Remix should not move
an instruction that may be interrupted, i.e., the instruction
that is currently executing. In our prototype, we stop the
whole process (to guarantee consistency) and use a small
agent to reorder basic blocks. The agent does not random-
ize itself. Even though it is possible to randomize the whole
kernel, our prototype currently supports live randomization
of kernel modules (e.g., the ReiserFS file system).

2.5 Performance Optimization
In this section, we present our strategies to improve the

run-time performance of protected processes and to reduce
the randomization latency.

2.5.1 Probabilistic Loop Bundling
Compilers make an effort to optimize the layout of the

generated code for better performance. For example, gcc
has an option to align loops to a power-of-two boundary (-
falign-loops). If enabled, gcc inserts a number of NOPs
before the loops to properly align them in the cache. If the
loops are executed many times, the performance gain from
the alignment outweighs the time wasted in executing NOPs.
Remix, as well as other basic block randomization systems,
disrupts this careful layout of the code. Because Remix ran-
domly rearranges basic blocks, its final performance impact
is somewhat unpredictable due to the complex interactions
between the program and the cache hierarchy. For example,
our early experiments find that Remix incurs low overhead
for most SPEC CPU2006 benchmarks, but there are a cou-
ple of outliers with more than 15% overhead. To address
that, we propose probabilistic loop bundling.

Loops are critical to the overall performance. A process
often spends most of its execution time in loops. Changing
the layout of loops might incur the largest impact to the
performance. Accordingly, Remix focuses its optimization
on the loops. It can probabilistically bundle the basic blocks
of loops. A bundled loop has the same internal layout of
basic blocks as the original, non-randomized loop. Within
the boundary of a function, we consider the destination of
a backward jump as the beginning of a loop and the jump
as its end (even though this loop detection is quite rough, it
is sufficient for our purpose.) We also control the size of a
bundled loop by limiting the number of the jump and return
instructions it contains. This avoids bundling large loops
– for some functions, their bodies consist of a single large
loop. Before the first randomization, Remix detects loops
in the original code and records the layout of their basic
blocks. During the live randomization, Remix flips a coin
with certain probability to decide whether or not to bundle
a loop. If a loop is bundled, its basic blocks are restored to
the original, compiler-generated layout. The whole bundle
is then treated as a single basic block and takes part in the

Software glibc httpd nginx lighttpd OpenSSL
NOP Space 42.9 19.3 26.2 22.1 19.9

Table 1: Average NOP Space per Function

randomization. In other words, a bundled loop is still moved
around but its internal basic blocks remain relatively static.
If possible, we make bundled loops to be 16-byte aligned.
Our prototype bundles loops with a probability of 1

3
. i.e.,

about 2
3

of the loops are randomized. Finally, we want to
emphasize that each live randomization individually selects
which loops to bundle. No loops will always be bundled.

2.5.2 Meta-data Maintenance
Remix reorders basic blocks from time to time to make

the code layout unpredictable. This is a time consuming
process especially for large programs. In addition, Remix
has to stop the whole process during randomization to en-
sure consistency. Otherwise, a multi-threaded process might
have unsuspecting threads executing partially randomized
functions. To this end, Remix maintains some meta-data to
facilitate live randomization. For example, it builds an in-
dex for basic blocks and some important instructions (e.g.,
call instructions and jump tables). The meta-data is built
from the ground up in the first run and kept updated af-
terwards. With the meta-data, Remix can significantly re-
duce the randomization latency. To protect the meta-data
from being leaked, we allocate its memory at a random lo-
cation. Even though the meta-data is stored in the process’
address space, it is isolated from the process itself because
no pointers to the meta-data exist in the process (our pro-
totype stores the base address for the meta-data out of the
process. See Section 3.) Information leak vulnerabilities
in the process cannot disclose the meta-data location or its
content. To be more cautious, we could move the meta-data
to random locations at undetermined intervals.

2.6 Binary-only Program Support
If the source code is available, Remix uses a (slightly) cus-

tomized compiler to reserve enough space for extra jumps
necessary to connect reordered basic blocks (Section 2.1).
However, the source code is not always available, especially
for commercial or legacy programs. Remix has a compatibil-
ity mode to support binary-only programs by leveraging the
existing NOP padding in the code. As previously mentioned,
compilers often insert NOP instructions to align functions
and loops to a power-of-two boundary. As such, there are
NOPs between and inside functions. Table 1 shows the av-
erage NOP space per function (in bytes) for several popular
software packages. Remix can use the NOP space for its pur-
pose. We treat small and large functions differently: small
functions naturally contain less NOP instructions, but short
jumps (2 bytes each, one byte for the opcode and the other
byte for the displacement) are often enough to chain basic
blocks; Large functions have more NOP space available, but
basic blocks might be moved far apart from each other. To
chain two basic blocks, we use short jumps whenever pos-
sible and long jumps otherwise. If the space runs short,
we bundle some basic blocks together to reduce the extra
jumps needed (similar to the loop bundling). During each
live randomization, Remix picks different sets of basic blocks
to bundle together. This ensures that a different code layout
is generated each time.
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3. IMPLEMENTATION
We have implemented a prototype of Remix for the Linux

applications and the FreeBSD kernel modules on the x86-
64 architecture. The FreeBSD kernel is chosen because it
has better support for the LLVM/Clang compiler. In this
section, we describe our prototype in detail.

We slightly modify the LLVM/Clang compiler to insert
a 5-byte NOP instruction (nopl 8(%rax, %rax)) after each
basic block. To achieve that, we add one line to the Emit-

BasicBlockEnd function in LLVM. These 5-byte NOPs also
serve as delimiters for basic blocks because LLVM itself does
not use this type of NOP (it does use other formats of NOPs,
such as xchg %ax,%ax.) This makes basic block identifica-
tion straightforward for Remix. To ensure that LLVM only
generates long jumps (Section 2.2), we pass -mc-relax-all

to the LLVM backend. However, it unnecessarily relaxes
other instructions, such as add and sub, to full displacements
as well. With more invasive changes to LLVM (likely in the
fixupNeedsRelaxation function), we could make LLVM re-
lax only branch instructions. We use Capstone, a cross-
platform multi-architecture disassembly framework, to dis-
assemble instructions in the memory. Linux enforces w ⊕ x
for user applications, in which a block of memory is ei-
ther writable or executable, but not both simultaneously.
As such, we use the mprotect() system call to temporarily
make the .text and .rodata sections writable. After live
randomization, we set their permissions back.

A major implementation challenge is to guarantee the con-
sistency of the process, especially for a multi-threaded pro-
cess. All the threads should enter a consistent state before
live randomization, and have their data updated before the
execution is resumed. A viable solution is to use a kernel
module and pause all the threads at the system call bound-
ary. In our prototype, we use the ptrace interface to stop
the whole process (for single-threaded processes, a timer sig-
nal can also serve this purpose.) Similarly, we need to put
the kernel in a quiescent state and update all the affected
kernel stacks consistently.

Ptrace is an interface for process tracing and debugging.
It allows one process to inspect and control the execution of
another process. We start the target program under the con-
trol of a small utility program, which is responsible for ini-
tiating live randomization at random intervals (for brevity,
we call it the initiator.) When it is time for live random-
ization, the initiator sends a SIGSTOP signal to the target
process and waits for it to stop. For each stopped thread,
the initiator has full access to its execution context, includ-
ing the registers and the program counter. Even though
we could randomize the code with ptrace, the ptrace inter-
face is too slow for this task – each access to the target
process’ memory must be conducted through an expensive
system call. Instead, we pre-load a small agent in the target
process and use ptrace to activate the agent. The agent per-
forms the live randomization and returns the control back
to the initiator when it finishes. The initiator can subse-
quently restores the process’ state and resumes its execution
at the interrupted instructions. However, these instructions
might have been moved to different positions. To fix that,
the initiator requests the agent to translate the interrupted
program counters to their new values. To avoid interfering
with the target process’ heap and stacks, the agent uses the
mmap system call to allocate new memory for its own heap
and stack. The agent makes system calls directly instead of

Software Apache nginx lighttpd
Average Basic Block # 15.3 18.8 14.4
Average NOP Space 19.3 26.2 22.1

Table 2: Statistics of Three Web Servers

using the equivalent libc functions because it might be libc
that Remix is currently randomizing (if so, libc is in an in-
consistent state.) To prevent the agent from being exploited
by code reuse attacks, the initiator relocates the agent from
time to time. Moving the agent is much simpler than the
live randomization of regular processes because the agent is
small, position-independent, and self-contained (i.e., it does
not rely on other libraries.)

In the FreeBSD kernel, live randomization is triggered by a
timer. When the timer expires, we call the smp_rendezvous

function to put all the CPUs in a consistent, quiescent state.
Smp_rendezvous sends inter-processor interrupts to signal
all the CPU cores. They rendezvous and execute the same
set of functions. In our prototype, one core performs live
randomization while others wait for it to finish. That core
reorders the basic blocks of the target kernel module and
searches the kernel stacks and other data structures for the
affected basic block pointers. After randomization, all the
cores are resumed and continue the interrupted execution.

4. EVALUATION
In this section, we first analyze the security guarantee

of Remix and then measure its performance overhead with
standard benchmarks.

4.1 Security
Remix randomly reorders basic blocks within their respec-

tive functions to increase entropy. It complements the exist-
ing ASLR support in commodity operating systems. ASLR
randomly places the executable in the address space. It
only provides a coarse-grained protection against code reuse
attacks. The leak of a single code pointer, such as a func-
tion pointer or a return address, is often sufficient to de-
randomize the whole executable. The attacker often lever-
ages an information leak vulnerability to de-randomize the
victim process before full-on attacks [51]. Remix can signifi-
cantly improve ASLR’s resilience to this type of information
leak. It reorders the basic blocks of each function at ran-
dom intervals. The actual code layout is unpredictable and
keeps changing from time to time. Even if two systems run
the exactly same programs, their run-time code layouts are
different. Table 2 shows the average number of basic blocks
per function for three popular web servers, Apache, nginx,
and lighttpd. They all have about 16 basic blocks per func-
tion on average. Therefore, Remix adds about four bits of
entropy to each instruction of these programs. This leads
to about 20% to 25% boost in the entropy for 32-bit sys-
tems [46]. More importantly, Remix introduces the time as
a variable to address space layout, making it a moving tar-
get. The compiler often spontaneously inserts NOP instruc-
tions to the generated programs to align functions or loops.
Table 2 also shows the average NOP space per function (in
bytes) for those programs. The NOP space can be leveraged
to further increase the entropy by randomly placing NOPs
between basic blocks. For short functions with less than 4
basic blocks, we also insert some additional NOP space to
improve the entropy.
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Figure 3: SPEC CPU2006 Performance Overhead
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Figure 4: SPEC CPU2006 Size Increase

  0.0%

  0.5%

  1.0%

  1.5%

  2.0%

  2.5%

  3.0%

1s 5s 10s 60s

R
e
la

ti
v

e
 P

e
rf

o
rm

a
n

c
e
 O

v
e
rh

e
a
d

Figure 5: Apache Web Server Performance Overhead
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Figure 6: ReiserFS Performance Overhead

Recently, researchers have proposed a few novel attacks
against fine-grained code randomization. For example, JIT-
ROP (Just-in-time ROP [47]) repeatedly exploits a memory
leak vulnerability to recursively map out the victim pro-
cess’ address space, and synthesizes code reuse attacks on
demand. JIT-ROP is particularly detrimental to code ran-
domization techniques that randomize the process only once
at the compile or load time [49]. Remix’s live randomiza-
tion could potentially disrupt the JIT-ROP attack (if the
code happens to be randomized by Remix during the at-
tack), but it is not always effective. A sure defense against
JIT-ROP is execute-only memory, in which the code can
only be executed but not read. Fortunately, execute-only
memory is being adopted by major CPU architectures [4,
19, 31] and can be emulated in the software [6, 26]. Remix
should incorporate the execute-only memory as a defense-
in-depth solution. For performance reasons, our prototype
implants an agent and its meta-data into the target process.
However, it is unlikely that JIT-ROP could find these arti-
facts. Even though they exist in the process’ address space,
they are isolated from the process itself because the process
has no pointers to them. In addition, we could move them
to random locations from time to time. JIT-ROP carefully
maps the victim process’ address space to avoid accessing
invalid memory. Blindly probing the Remix memory most
certainly will trigger a general protection exception and be
foiled. BROP [10] is another attack against fine-grained code
randomization, which exploits a victim process many times
to essentially brute-force it in order to locate useful gad-
gets (it assumes the process would be restarted upon crash.)
During this long process, Remix likely has randomized the
process a few times, making the probed gadgets useless.

4.2 Performance
The performance impact of Remix mostly comes from

the following two aspects: first, live randomization has to
stop the whole process or the kernel to ensure consistency.
This introduces some latency to the whole process. Second,
Remix rearranges the code layout. Modern computer archi-
tectures rely heavily on the cache for performance. Chang-
ing the process’ code layout can affect its cache profile and
by extension the performance. We measure both aspects
with standard benchmarks (SPEC CPU2006) and a number
of popular applications. All the experiments are performed
on a third-generation Intel Core i7 machine with 16 GB of
memory. The operating system is the 64-bit Ubuntu 14.04.2
LTS. LLVM version 3.6 is used as the base compiler.

To measure the execution overhead, we randomize the
SPEC CPU2006 benchmarks once (with a probability of 1

3
for loop bundling) and compare their performance to the
baseline built with the unmodified LLVM compiler. All the
experiments are repeated 20 times. The standard deviation
of the experiments is negligible. Figure 3 shows the perfor-
mance overhead caused by Remix (C++ benchmarks with
exceptions currently are not supported yet.) The overhead
for most benchmarks are less than 5% with an average of
2.8%. To reserve space for reordering basic blocks, Remix
inserts a 5-byte NOP instruction after every basic block.
It also relaxes various instructions to use larger constants
(e.g., jmp and call). This could substantially increase the
program binary size. Figure 4 shows the size increase of
SPEC CPU2006. The average increase in size is 14.8%.
We use ApacheBench to measure the performance impact
of live randomization intervals. We run the Apache server
and ApacheBench on two directly connected machines. We
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use ApacheBench to send 5 ∗ 106 requests to the server with
a concurrency of 10. We set Remix to periodically random-
ize the server with an interval of 1, 5, 10, and 60 seconds,
respectively. As expected, one-second interval incurs the
highest overhead (2.9%). The overhead gradually decreases
as the time interval increases. At the ten-second interval,
the overhead is only 0.44%.

Remix not only supports user-space applications but also
kernel modules. Our experiments are based on the FreeBSD
kernel as it has better support for the LLVM/Clang com-
piler. We use Remix to live randomize the ReiserFS kernel
driver [44]. IOZone, a user-space file system benchmark [40],
is used to measure the performance of ReiserFS under dif-
ferent randomization intervals. We test the stride read of
a large file in the automatic mode with a record size from
4KB to 512MB. The performance overhead of Remix is neg-
ligible even with a randomization interval of 0.01 seconds
(Figure 6). This is expected as the performance bottleneck
is in the disk I/O. We also test the read/re-read operations
and get very similar results.

5. DISCUSSION
In this section, we discuss some possible improvements to

Remix. First, Remix reorders basic blocks within their re-
spective functions. The entropy increase by Remix is thus
limited by the number of basic blocks in the function. Smaller
functions have fewer basic blocks and thus benefit less from
Remix. In our prototype, we insert extra NOP space in small
functions to increase the entropy. Furthermore, we could in-
corporate fine-grained code randomization [30] specifically
for these small functions. One of the key benefit of re-
ordering basic blocks within functions is that function en-
try points remain at their intended location. Consequently,
there is no need to migrate stale function pointers, which
in general is an unsolvable problem. However, this does not
necessarily require that basic blocks remain within function
boundaries. We could randomly place basic blocks in the
whole address space, and use a long jump at each function
entry point to jump to its first basic block. This system
has the benefits of binary stirring’s higher entropy gain and
Remix’s simpler live randomization. However, its spatial lo-
cality of the randomized code is even more fragmented than
our current design. It is necessary to carefully study the op-
timal basic block layout for better performance and security.
Meanwhile, Remix does not lively move functions to avoid
the complex runtime fixing of stale function pointers. Func-
tions are nevertheless randomized at least once during the
program startup by ASLR. Remix is a highly composable
technique. It can be naturally integrated with systems that
lively randomize functions [27] or with other techniques.

Second, some programs contain code that cannot be au-
tomatically randomized by Remix, such as inline assembly
code, which sometimes does not follow the (relatively) clean
paradigm as the compiled code. For example, kernels often
use inline assembly in trampolines for interrupt handlers.
A trampoline prepares the kernel stack to handle pending
interrupts. The addresses of these trampolines are stored
in the interrupt vector table. When an interrupt is trig-
gered, the CPU indexes into this table and dispatches the
corresponding handler. If these trampolines are reordered,
we need to update the interrupt vector table. In addition,
some programs have code that cannot be cleanly disassem-
bled (e.g., the obfuscated code), and programs like just-in-

time compiler can dynamically generate binary code. There
does not seem to have a universal solution to these diverse
problems. We instead have to handle them case-by-case.
For example, we could incorporate the design of Remix into
the JIT compiler so that dynamically generated code can
also be randomized.

Third, Remix performs live randomization of the target
process at an undetermined interval. The choice of this
interval is a trade-off between randomization latency and
security. As mentioned earlier, Remix provides probabilis-
tic protection against information-leak based attacks such
as JIT-ROP [47] (Section 4.1). That is, the protection is in
effect if Remix happens to randomize the target process dur-
ing the attack. As such, an interesting criterion to decide the
live randomization interval is how likely Remix can disrupt
these attacks. Our prototype uses an interval of ten seconds
as a trade-off between randomization latency and security.
Like other code randomization systems, Remix is, after all,
a probabilistic defense. A more complete, defense-in-depth
system should combine Remix with specific defenses against
those attacks (e.g., execute-only memory to prevent JIT-
ROP).

Lastly, Remix inserts an extra NOP instruction after each
basic block to reserve space for reordering basic blocks. A
program built by Remix is still a valid one that can be ex-
ecuted standalone. It is just larger (14.8% average size in-
crease for SPEC CPU2006) and probably runs slower. Our
tests show that Remix-built programs run mostly as fast as
or only slightly slower than the original programs. This re-
sult is expected as modern processors have an efficient and
intelligent instruction prefetching system. However, there
are a few outliers that execute even faster than the baseline.
This is probably caused by the complex interaction between
the instruction alignment and the cache hierarchy. Native
client (NaCl) shows similar results [53]. NaCl is a software
fault isolation system that can safely execute native code
in the web browser. In NaCl, the untrusted code is divided
into equal-sized fragments, and no instructions can cross the
fragment boundary. NOP instructions are used to pad the
fragments if necessary.

6. RELATED WORK
In this section, we present the state-of-the-art in the re-

search of code reuse attacks and defenses.
ROP Defenses: the first category of related work is var-

ious defenses against return-oriented programming (ROP).
ROP exploits short snippets of the existing code, called gad-
gets, for malicious purposes [12, 45]. Gadgets of ROP end
with a return instruction. This allows the attacker to chain
a number of gadgets together using a crafted stack. ROP
has been demonstrated to be Turing-complete when given a
reasonably sized code base. Variations of ROP that do not
rely on return instructions have also been proposed [11, 15].
Code randomization and control-flow integrity are two sys-
tematic defenses against ROP (we will discuss them in this
section later.) Besides, there are a wide variety of diverse
ROP defenses. For example, G-free eliminates usable gad-
gets at the compile time by removing unaligned free-branch
instructions [41]. Return-less also leverages a customized
compiler to remove intended and unintended return instruc-
tions [36]. KBouncer [43] and ROPecker [16] detects ROP
attacks by checking whether the path to a sensitive system
call contains too many indirect branches to “short” gadgets.
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Recent work shows that this approach might not be effec-
tive [13] and the detection threshold is difficult to determine
[29].

Software Diversity: the second category of closely re-
lated work is software diversity, in which the program code
or data are diversified to foil attacks that depend on know-
ing particular program attributes [34]. For example, ROP
chains the gadgets together by arranging their addresses on
the stack. Each gadget ends with a return instruction, which
pops the next gadget address from the stack and executes
it. As such, ROP needs to know the gadget addresses. To
defeat ROP, code randomization aims at making gadget ad-
dresses unpredictable. Code randomization systems differ
in the randomization granularity. Address space layout ran-
domization (ASLR) is a popular coarse-grained code ran-
domization system. It places the program binary as a whole
at a random base address [48]. Consequently, ASLR has
limited entropy on the 32-bit architectures [46]. Because the
program internal layout is not changed, ASLR is especially
vulnerable to information leak attacks. A single leaked code
pointer can de-randomize the whole process. ASLP works
at a finer granularity than ASLR [33]. It permutes functions
and static data objects in addition to randomizing the sec-
tion bases. In comparison, Remix works on the basic blocks
and also supports live randomization of running processes.
Binary stirring is one of the fine-grained code randomization
systems. It also works at the basic block level. However, it
stirs basic block globally for once at the load time. Remix
instead reorders basic blocks within their respective func-
tions. This localizes the changes required to compensate
the moved basic blocks. It allows a relatively simple imple-
mentation of live randomization. Giuffrida et al. proposes
a live randomization system that relies on heavy compiler
customization to output meta-data for the pointer conver-
sion [27]. In particular, it needs to migrate function pointers
which may involve unsolvable ambiguity and require manual
efforts. Remix confines the changes (mostly) to functions,
and thus are easier to implement. At an even finer granu-
larity, some systems randomize the instruction set through
encoding or encryption to defeat code injection and code
reuse attacks [8, 32]. ILR randomizes the location of every
instruction [30]. It uses a process virtual machine (Strata)
to execute the scattered code. IPR rewrites instruction se-
quences with equivalent same-length instructions [42]. It
can eliminate about 10% useful gadgets and probabilistically
break 80% of them. It supports various concrete transfor-
mations, such as atomic instruction substitution, instruction
reordering, and register reassignment. Data randomization
has also been proposed to prevent data-based attacks [9, 18].

Code randomization systems are often vulnerable to infor-
mation leak attacks. For example, the coarse-grained ASLR
could be de-randomized by even one leaked code pointer.
Fine-grained code randomization systems like binary stir-
ring are more resilient to leaked code pointers, but are still
vulnerable to the leak of memory contents. For example,
JIT-ROP repeatedly exploits a memory leak vulnerability
to map the victim process’ code in order to launch an on-
demand ROP attack [47]. A few systems have been proposed
to enhance fine-grained code randomization to withstand
JIT-ROP attacks [6, 19, 26]. They all utilize the execute-
only memory in which the code can only be executed but not
read. Remix only provides probabilistic defense against JIT-
ROP attacks (Section 4.1). Remix should integrate execute-

only memory when it is available in the commodity hard-
ware. Such a combination would significantly raise the bar
of code reuse attacks.

Control-Flow Integrity: Control-flow integrity is an-
other effective defense against code reuse attacks [1]. It in-
serts in-line monitors to confine the run-time control flow
to the program’s (static) control-flow graph. CFI systems
vary in the protection granularity. Fine-grained CFI pro-
vides a strong protection against most control-flow hijack-
ing attacks, but often has high performance overhead. It
also requires a precise control-flow graph that still is not
readily available in the commodity compilers. Recent re-
search effort focuses on reducing CFI performance overhead
for commodity programs [54, 55]. They trade the protection
granularity for performance, leading to potential vulnera-
bilities [23, 28]. Opaque CFI uses coarse-grained control-
flow integrity to strengthen fine-grained code randomiza-
tion against certain types of information leak attacks [38].
Instead of validating the exact target address, OCFI en-
sures that the target is within a certain randomized bound.
RockJIT leverages modular CFI to protect the JIT compiler
and the dynamically generated code [39]. It builds a fine-
grained CFG from the source code of the JIT compiler, and
keeps the control-flow policy updated with the new gener-
ated code. Even though most CFI systems are implemented
in the software, hardware architectural support for CFI has
been proposed that can substantially simplify and speed up
CFI systems [25].

In addition to control-flow integrity, researchers have pro-
posed other security properties that can prevent code reuse
attacks. For example, data-flow integrity (DFI) enforces
that run-time data flow must follow the data-flow graph [14].
DFI can prevent many memory vulnerabilities from being
exploited. Code-pointer integrity (CPI) separates sensitive
data, such as code pointers and pointers leading to code
pointers, from regular data to protect them from unautho-
rized modification.

7. SUMMARY
We have presented the design and implementation of Remix,

a live randomization system for user-space applications and
kernel modules. Remix randomly reorders basic blocks within
their respective functions at undetermined time intervals. it
can substantially increase the entropy of ASLR, one of our
most important defenses against code reuse attacks. By ran-
domizing the code layout, Remix can significantly enhance
ASLR’s defense against certain types of information leak
vulnerabilities. Remix is a flexible and composable defense
technique due to its unique design and efficiency. It brings to
the composed systems extra entropy that changes with the
time. Our experiments with both standard and application
benchmarks show that Remix only incurs a small perfor-
mance overhead.
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Developerś Manual, 2014.

[32] G. S. Kc, A. D. Keromytis, and V. Prevelakis.
Countering Code-injection Attacks with

11

http://movies.apple.com/media/us/osx/2012/docs/OSX_MountainLion_Core_Technologies_Overview.pdf
http://movies.apple.com/media/us/osx/2012/docs/OSX_MountainLion_Core_Technologies_Overview.pdf
http://lwn.net/Articles/569635/
http://technet.microsoft.com/en-us/library/bb457155.aspx
http://technet.microsoft.com/en-us/library/bb457155.aspx
http://lwn.net/Articles/87814/
http://en.wikipedia.org/wiki/Data_Execution_Prevention
http://en.wikipedia.org/wiki/Data_Execution_Prevention


Instruction-set Randomization. In Proceedings of the
10th ACM Conference on Computer and
Communications Security, 2003.

[33] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning.
Address Space Layout Permutation (ASLP): Towards
Fine-Grained Randomization of Commodity Software.
In Proceedings of the 22nd Annual Computer Security
Applications Conference, 2006.

[34] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz.
Sok: Automated Software Diversity. In Proceedings of
the 35th IEEE Symposium on Security and Privacy,
2014.

[35] J. R. Levine. Linkers and Loaders. Morgan Kaufmann,
1999.

[36] J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram.
Defeating Return-Oriented Rootkits with
“Return-less” Kernels. In Proceedings of the 5th ACM
SIGOPS EuroSys Conference, 2010.

[37] A. I. Mark Russinovich, David Solomon. Windows
Internals, 6th Edition. Microsoft Press, 2012.

[38] V. Mohan, P. Larsen, S. Brunthaler, K. Hamlen, and
M. Franz. Opaque Control-Flow Integrity. In
Proceedings of the 22nd Network and Distributed
Systems Security Symposium, 2015.

[39] B. Niu and G. Tan. RockJIT: Securing Just-in-time
Compilation Using Modular Control-flow Integrity. In
Proceedings of the 21st ACM Conference on Computer
and Communications Security, 2014.

[40] W. D. Norcott and D. Capps. Iozone Filesystem
Benchmark. URL: www.iozone.org, 2003.

[41] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and
E. Kirda. G-Free: Defeating Return-oriented
Programming Through Gadget-less Binaries. In
Proceedings of the 26th Annual Computer Security
Applications Conference, 2010.

[42] V. Pappas, M. Polychronakis, and A. D. Keromytis.
Smashing the Gadgets: Hindering Return-Oriented
Programming Using In-place Code Randomization. In
Proceedings of the 33rd IEEE Symposium on Security
and Privacy, 2012.

[43] V. Pappas, M. Polychronakis, and A. D. Keromytis.
Transparent ROP Exploit Mitigation Using Indirect
Branch Tracing. In Proceedings of the 22nd USENIX
Conference on Security, 2013.

[44] H. Reiser. ReiserFS, 2004.

[45] H. Shacham. The Geometry of Innocent Flesh on the
Bone: Return-Into-Libc without Function Calls (on
the x86). In Proceedings of the 14th ACM Conference
on Computer and Communications Security, October
2007.

[46] H. Shacham, M. Page, B. Pfaff, E.-J. Goh,
N. Modadugu, and D. Boneh. On the Effectiveness of
Address-space Randomization. In Proceedings of the
11th ACM Conference on Computer and
Communications Security, 2004.

[47] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko,
C. Liebchen, and A.-R. Sadeghi. Just-in-time Code
Reuse: On the Effectiveness of Fine-grained Address
Space Layout Randomization. In Proceedings of the
34th IEEE Symposium on Security and Privacy, 2013.

[48] P. Team. PaX Address Space Layout Randomization

(ASLR), 2003.

[49] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin.
Binary Stirring: Self-randomizing Instruction
Addresses of Legacy x86 Binary Code. In Proceedings
of the 19th ACM Conference on Computer and
Communications Security, 2012.

[50] Wikipedia. Basic Block.
http://en.wikipedia.org/wiki/Basic block.

[51] Wikipedia. Pwn2Own.
http://en.wikipedia.org/wiki/Pwn2Own.

[52] Wikipedia. Tail Call.
http://en.wikipedia.org/wiki/Tail call.

[53] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth,
T. Orm, S. Okasaka, N. Narula, N. Fullagar, and
G. Inc. Native Client: A Sandbox for Portable,
Untrusted x86 Native Code. In Proceedings of the 30th
IEEE Symposium on Security and Privacy, 2009.

[54] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres,
S. McCamant, D. Song, and W. Zou. Practical
Control Flow Integrity and Randomization for Binary
Executables. In Proceedings of the 34th IEEE
Symposium on Security and Privacy, 2013.

[55] M. Zhang and R. Sekar. Control Flow Integrity for
COTS Binaries. In Proceedings of the 22nd USENIX
Security Symposium, 2013.

[56] X. Zhang, R. Gupta, and Y. Zhang. Precise Dynamic
Slicing Algorithms. In Proceedings of the 25th
International Conference on Software Engineering,
2003.

12

http://en.wikipedia.org/wiki/Basic_block
http://en.wikipedia.org/wiki/Pwn2Own
http://en.wikipedia.org/wiki/Tail_call

	Introduction
	Design
	Overview
	Basic Block Reordering
	Basic Block Pointer Conversion
	Return Address Conversion
	Indirect Jump Related Conversion

	Live Randomization of Kernel Modules
	Performance Optimization
	Probabilistic Loop Bundling
	Meta-data Maintenance

	Binary-only Program Support

	Implementation
	Evaluation
	Security
	Performance

	Discussion
	Related Work
	Summary
	Acknowledgments
	References

