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Abstract
The need for energy efficiency continues to grow for many
classes of processors, including those for which performance
remains vital. Not only is the data cache crucial for good per-
formance, but it also represents a significant portion of the
processor’s energy expenditure. We describe the implemen-
tation and use of a tagless access buffer (TAB) that greatly
improves data access energy efficiency while slightly im-
proving performance. The compiler recognizes memory ref-
erence patterns within loops and allocates these references to
a TAB. This combined hardware/software approach reduces
energy usage by (1) replacing many level-one data cache
(L1D) accesses with accesses to the smaller, more power-
efficient TAB; (2) removing the need to perform tag checks
or data translation lookaside buffer (DTLB) lookups for TAB
accesses; and (3) reducing DTLB lookups when transferring
data between the L1D and the TAB. Accesses to the TAB oc-
cur earlier in the pipeline, and data lines are prefetched from
lower memory levels, which result in a small performance
improvement. In addition, we can avoid many unnecessary
block transfers between other memory hierarchy levels by
characterizing how data in the TAB are used. With a com-
bined size equal to that of a conventional 32-entry register
file, a four-entry TAB eliminates 40% of L1D accesses and
42% of DTLB accesses, on average. This configuration re-
duces data-access related energy by 35% while simultane-
ously decreasing execution time by 3%.
Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Code generation
General Terms Hardware/Software co-design, Energy ef-
ficiency
Keywords energy, memory hierarchy, strided access
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1. Introduction
Energy efficiency has become a first-order design constraint
for everything from battery-powered, mobile devices that
execute digital signal processing applications or audio/video
codecs up to exascale systems that run large-data scientific
computing applications. Multicore scaling has been used
to improve energy efficiency, but a recent study estimates
that multicore scaling will soon be power-limited [7]. We
therefore need other ways to address energy efficiency.

A significant portion of a processor’s power is dissipated
in the data caches. The level-one data cache (L1D) uses up
to 25% of the total power of a processor [6, 9]. The proces-
sor’s overall power is increased by inefficiencies in the data
memory hierarchy such as unnecessary cache line transfers
and stall cycles caused by cache misses. Even the way the
data cache is accessed can cause many stall cycles, resulting
in decreased performance and increased power. Finally, the
cost of accessing data includes the power to access the data
translation lookaside buffer (DTLB) for converting virtual
addresses to physical addresses.

In order to reduce the power dissipation of data caches
and DTLBs without degrading execution time, we propose
an approach that requires few and simple enhancements to
conventional processor architectures and exposes control of
these enhancements to the compiler. The compiler recog-
nizes memory references accessed with constant strides or
loop-invariant addresses and explicitly redirects these ac-
cesses to a small, power-efficient memory structure called
a tagless access buffer (TAB).

This paper makes the following contributions. (1) We sig-
nificantly reduce L1D energy by capturing many data mem-
ory references in the TAB. Furthermore, the compiler’s ex-
plicit allocation of data accesses to the TAB obviates the
need for tag checks or DTLB accesses. (2) We slightly im-
prove performance by prefetching cache lines into the TAB,
partially offsetting the L1D miss penalty, and by accessing
the TAB earlier in the pipeline, avoiding load hazards. (3)
We exploit amenable access patterns of the TAB-allocated
memory references to eliminate unnecessary data transfers
between memory hierarchy levels. We are able to make these



contributions with small instruction set architecture (ISA)
changes that exploit a structure the size of a conventional
32-entry register file.

2. The TAB Approach
Fig. 1 shows the TAB’s position in the memory hierarchy.
Load and store instructions transfer conventional data access
sizes between the L1D or the TAB and the register file,
while entire cache lines are transferred between the L1D
and the TAB. For each line transferred to the TAB, multiple
L1D references are replaced with references to the more
energy-efficient TAB. Data cache lines stored in the TAB are
inclusive to the L1D, which simplifies writeback operations
and TAB integration in a cache-coherent system.

Figure 1. Memory hierarchy organization with TAB

L1:

r[2]=M[r[7]]; 

r[3]=r[3]+r[2];

r[7]=r[7]+4;

PC=r[7]<r[6],L1;

rtabs 1

(c) Instructions after using TAB

# load A[i] value

# add value to sum

# calc addr of A[i+1]

# goto L1 if < &A[n]

(b) Instructions before using TAB

L1:

r[2]=M[r[7]]; 

r[3]=r[3]+r[2];

r[7]=r[7]+4;

PC=r[7]<r[6],L1;

gtab 1, initaddr r[7], stride 4

# tab 1 load, prefetch

int a[1000];

for (i=0; i<n; i++)

  sum += a[i];

(a) Loop

(d) Example TAB access
pattern within a line

1 3 42

prefetch

Figure 2. TAB allocation for a constant stride reference

Fig. 2 gives a high-level illustration of how a TAB is used.
When the compiler detects a reference with a constant stride
or an invariant address within a loop, it changes it to access
the value from the TAB instead of the L1D. Fig. 2(a) depicts
a loop that sums the elements of an array, and Fig. 2(b) de-
picts the instructions generated from that loop. Our compiler
detects that the memory reference (r[2] = M[r[7]];) is
accessed with a constant stride of four (r[7] = r[7] +
4;) and replaces the memory access with a TAB access. In
addition, the compiler explicitly allocates a TAB entry be-
fore the loop by inserting a “get TAB” (gtab) instruction.
This instruction prefetches the L1D cache line referenced by
the initial value of r[7] into the TAB. The compiler deal-
locates the TAB entry after the loop by inserting a “release
TABs” (rtabs) instruction. The resulting code is depicted in
Fig. 2(c). Fig. 2(d) shows an example access pattern for a
cache line residing in the TAB. The initial address does not
need to be aligned to the line boundary. During the TAB ac-
cess, the hardware checks whether the next access crosses

the cache line boundary. After the fourth access a prefetch is
initiated, the next L1D line is loaded into the TAB, and the
next TAB reference accesses the next sequential line of data.
If dirty, the current line is written back before the new line
is prefetched. A writeback also happens when a TAB entry
containing a dirty line is released by the rtabs instruction.

3. Compiler Analysis
Performing compiler analysis to allocate memory references
to the TAB is relatively straightforward, as there is no need
for interprocedural analysis or additional code transforma-
tions. The compiler needs to know the minimum number of
TAB line buffers supported by an architecture family to limit
the allocation of TAB entries within a loop nest. Apart from
that, the compiler needs to know the minimum L1D line size
to ensure the correctness of TAB operations when multiple
distinct references are associated with a single TAB entry.

The compiler detects memory references with a constant
stride or a loop-invariant address and allocates a distinct
TAB entry for each such reference by inserting a gtab in-
struction in the loop preheader. It deallocates all TAB en-
tries for the loop by inserting a single rtabs instruction in the
loop postheader. The compiler creates preheader and post-
header blocks for the loop associated with a TAB if they do
not already exist, and it inserts additional instructions to cal-
culate the memory address of the first TAB access before
the gtab instruction, if needed. Since these instructions are
only added before and after the loop, they have little impact
on the execution time. Load/store instructions to locations
allocated to the TAB are annotated to reference a specific
TAB entry and to indicate whether or not accesses should
prefetch the next line. Fig. 3 gives a high-level description
of the compiler analysis algorithm to allocate TAB entries.

FOR each loop in function in order of innermost first DO

FOR each TAB in the function DO

FOR each loop in the function DO

FOR each load and store in the loop DO

IF reference has a constant stride OR

reference is an loop−invariant address THEN

IF reference has offset so that it can be added

to an existing TAB for the loop THEN

ELSE

IF too many TABs THEN

Select the TABs with the most estimated references;

Generate a gtab inst in the loop preheader for the TAB;

Annotate each load or store associated with the TAB;

IF TABs are associated with the loop THEN

Generate a rtabs inst in the loop postheader;

Put the reference in a new TAB;

Merge the reference with the existing TAB;

Figure 3. Compiler analysis algorithm for TAB allocation



3.1 References with Constant Strides
Most compilers perform loop strength reduction, which con-
verts memory references to the form M[reg], where reg is a
register holding a basic induction variable that is only up-
dated by assignments of the form reg = reg ± constant.
Note that sometimes a memory reference could be of the
form M[reg+disp], where disp represents a displacement
from reg. Detecting a memory reference with a constant
stride should thus be straightforward, since the compiler
only needs to detect that the register used in a memory refer-
ence is a basic induction variable. There is one small compli-
cation, as loop strength reduction requires allocating a reg-
ister, and too few registers may be available to perform this
transformation on every strided reference. Nonetheless, our
compiler still performs analysis to detect that the reference
address changes by a constant value on each iteration so that
the memory reference can be allocated to the TAB.

The requirements for the compiler to allocate a single
strided reference to the TAB are as follows. (1) Each refer-
ence must be within a loop and must have a constant stride.
(2) Each reference must be in a basic block that is executed
exactly once per iteration (due to the prefetches initiated by
TAB references). (3) The stride must be smaller than the
TAB line buffer so that multiple references are accessed be-
fore another L1D line is prefetched (this is important for
energy-efficiency). Strides can be positive (increasing ad-
dresses) or negative (decreasing addresses).

A single TAB entry can also be used by a group of strided
references having more than one distinct address. This al-
lows the compiler to allocate more memory references that
are accessed through the TAB, even though the number of
distinct TAB entries is limited. The basic requirements for
allocating a group of references to a single TAB entry are as
follows. (1) All references in the group must be in the same
loop. (2) Each reference must have the same constant stride
within that loop. (3) The reference causing the prefetch must
be executed exactly once per loop iteration. (4) The absolute
value of the stride should be no larger than the L1D line size.
(5) The maximum distance between the addresses of any two
distinct references must be less than the L1D line size. If the
multiple references to a particular strided access pattern can
span two consecutive L1D cache lines from memory, we al-
locate an extra TAB line buffer. The compiler recognizes this
situation and appropriately allocates two TAB line buffers.
The TAB then prefetches two lines from the L1D upon exe-
cuting the associated gtab instruction.

Sometimes multiple memory references with distinct ad-
dresses can be allocated to the TAB without requiring an
extra line buffer. If the references are accessed in order with
respect to the direction of the stride, the distance between
each reference is the same, and the distance between the last
reference in one loop iteration and the first reference in the
next is the same, then we can use a single TAB line buffer.
Fig. 4 illustrates an example of multiple memory references

accessed with a single TAB line buffer. Fig. 4(a) depicts code
that sums the elements of array A. Fig. 4(b) depicts the loop
after it has been unrolled to improve performance. Fig. 4(c)
shows the instructions generated. In this example, the align-
ment of array A is unknown, so each TAB access checks if a
prefetch operation is required.

for(i=0; i < n; i++)

sum+=A[i];

int A[n];

(a) Original loop

sum+=A[i];

sum+=A[i+1];

sum+=A[i+2];

sum+=A[i+3];

for(i=0; i < n; i++){

}

int A[n];

(b) Loop after unrolling

r[2]=M[r[6]−12];

r[2]=M[r[6]−8];

r[2]=M[r[6]−4];

r[2]=M[r[6]];

r[7]=r[7]+r[2];

r[7]=r[7]+r[3];

r[7]=r[7]+r[4];

r[7]=r[7]+r[5];

r[6]=r[6]+16;

PC=r[6]<r[8],L1;

rtabs 1

#tab 1 load, prefetch

#tab 1 load, prefetch

#tab 1 load, prefetch

#tab 1 load, prefetch

L1:

gtab 1, initaddr r[6]−12, stride 4

(c) Instructions after using TAB

Figure 4. Grouping references into a single TAB line buffer

3.2 References with Loop-Invariant Addresses
Memory references with an invariant address are also good
candidates for accessing via the TAB. Although they are not
as frequent as strided accesses, the benefit of accessing them
in the TAB is high, as they require at most one prefetch from
the L1D before the loop and one writeback after the loop.
Fig. 5 illustrates an example of allocating a memory ref-
erence with a loop-invariant address to the TAB. Fig. 5(a)
shows a loop in which a global variable sum cannot be allo-
cated to a register due to the scanf() function call. Fig. 5(b)
shows the corresponding loop in which the memory opera-
tions for sum become TAB references. The reference to the
variable n is not allocated to the TAB because its address
is passed to another function. To improve performance, the
compiler attempts to minimize the number of such regular
load/store operations that interfere with TAB references.

# tab 1 store

# tab 1 load

# tab 1 store

gtab 1, initaddr r[14], stride 0,

r[14]=sum;

while (scanf("%d", &n))

   sum += n;

sum = 0;

/* sum is a global variable */

            writefirst

M[r[14]]=0;

L2:

PC=L4;

r[3]=M[r[29]+n];

r[5]=M[r[14]];

r[5]=r[5]+r[3];

M[r[14]]=r[5];

L4: ...

PC=r[2]!=r[0],L2;

ST=scanf;

rtabs 1

r[5]=r[29]+n;

(a) Original loop

(b) Instructions after using TAB

Figure 5. TAB usage with a loop-invariant memory address

3.3 Minimizing Interferences with Loads and Stores
Very few regular load/store operations are redirected to the
TAB. However, sometimes false interferences occur due to a



variable sharing the same cache line with a different variable
assigned to the TAB. In order to minimize the frequency of
false interferences, the compiler detects when the range of
memory references allocated to a TAB cannot possibly be
accessed by regular loads/stores in the same loop. When the
compiler can guarantee that the TAB accesses are distinct
from regular memory references, or both the TAB accesses
and the regular memory references are loads, then the gtab
instruction is annotated to indicate that the TAB entry is
guaranteed not to interfere with regular memory references.

3.4 TAB Allocation Heuristics
The compiler initially detects all the possible memory ref-
erences within a loop that can be allocated to the TAB. For
many loop nests, the number of TAB entries that could po-
tentially be allocated exceeds the number of physical TAB
entries. In these situations the compiler must determine
which TAB entries are the most profitable to retain. This
calculation is performed by estimating the average num-
ber of L1D accesses that will be avoided on each iteration
rather than for the entire loop, as the number of loop itera-
tions is often unknown at compile time. Initially each TAB
reference is assigned a reference value of one. If the TAB
reference is in conditionally executed code, then the com-
piler divides the number of references by two. If the TAB
reference occurs within an inner loop, then its value is in-
creased to reflect that it will be accessed multiple times for
each iteration of the current loop. The compiler then sums
the estimated number of references for all memory accesses
associated with each TAB entry and subtracts the fraction of
times that the reference will cause an L1D access due to a
prefetch or a write back (determined by dividing the stride
by the L1D line size). The compiler also divides the result
by two if an extra TAB line buffer needs to be allocated.

Fig. 6 illustrates how the compiler selects which poten-
tial TAB entries to retain. The code in Fig. 6(a) has differ-
ent types of arrays, and the base type affects the size of the
stride between elements. Fig. 6(b) shows how the number of
avoided L1D accesses per loop iteration is calculated. As-
sume for this example that the L1D line size is 32 bytes. The
variable d is referenced twice in each loop iteration. The es-
timated number of references per loop iteration for the vari-
able a is 1.5, since the second reference to a is in condition-
ally executed code. The number of TAB line buffers required
for a is two because the last reference is in conditionally ex-
ecuted code and prefetches have to be associated with refer-
ences that are executed on every loop iteration. The stride for
g is zero because the scalar is accessed with a loop-invariant
address. Note that the value of the global variable g could
not be moved out of the loop due to the call to f(). Since
there is no prefetching of g, there are no L1D accesses for g
during loop execution. The variable s requires no L1D loads
since it is only written. Avoiding unnecessary L1D loads is
described later in the paper. The variable b requires no L1D

writebacks because it is never updated. The number of saved
L1D accesses per iteration can thus be calculated as:

(est refs− (L1D loads + L1D writes))/#TAB lines (1)

If there are only four TAB line buffers available, then the
compiler will not allocate a TAB entry for variable a, since
it avoids the fewest L1D accesses per loop iteration.

/* global declaration */
double g;
...

/* local declarations */
char s[100];
short b[100];
int a[100], i, sum, t;
double d[100];
...

for (i=0; i < n; i++) {
   s[i] = 0;
   sum += b[i];
   if ((t = a[i]) < 0)
      a[i] = −t;
   d[i] = d[i] + g;
   f();
}

/* loop referencing vars */

(a) Code

TAB estim # TAB L1D L1D
var refs lines loads writesstride avoided L1D accesses

d 2.0 1 8 8/32 8/32 1.5 = (2.0-(0.25+0.25))/1
g 1.0 1 0 0  0 1.0 = (1.0-(0+0))/1
s 1.0 1 1 0 1/32 0.96875 = (1.0-(0+0.03125))/1
b 1.0 1 2 2/32 0 0.9375 = (1.0-(0.0625+0))/1
a 1.5 2 4 4/32 4/32 0.625 = (1.5-(0.125+0.125))/2

(b) Calculation of avoided L1D accesses

Figure 6. Example of estimating saved L1D accesses

4. Hardware Support for TAB Operations
This section describes the necessary hardware and proposed
ISA changes to support TAB operations.

4.1 TAB Organization
The TAB itself consists of a TAB top pointer, an index array,
line buffers, and metadata, as illustrated in Fig. 7. Each line
buffer holds the data of a TAB entry and is the same size
as an L1D line. The metadata of a TAB entry is associated
either with the TAB index or with the TAB line buffer.

The metadata associated with the index includes the
stride, a few bits of type info, and extra line and TAB valid
bits. The stride determines if a prefetch needs to be per-
formed after a TAB load/store operation. The type info con-
trols how data are transferred to and from the TAB and is
described in Sec. 6.1. The extra line bit indicates if the TAB
entry is associated with two line buffers instead of one. If
set, then the least significant bit of the L1D set index field
within the data address is used to select which of the two
line buffers to access. If the TAB valid bit for a correspond-
ing TAB entry is clear, then the TAB access is treated as a
conventional load/store instruction accessing the L1D.



stride

TAB related metadata

TAB
valid

extra
line

type
info fetched

line
valid

line buffer related metadata

way mask
write

dirtynumber
line

PPN

TAB top

offset

1

0

...
n−1

index buffer
line

Figure 7. TAB organization.

The metadata associated with the line buffer includes
fetched, line valid, and dirty bits; a line number; the L1D
way; the physical page number (PPN); and a write mask.
The fetched bit indicates whether or not the cache line has
been transferred from the L1D. Since an L1D line can be-
come invalid due to an eviction, the line valid bit indicates if
valid data still reside in the TAB line buffer. The line number
is used to calculate the next prefetch address. The line num-
ber combined with the way information indicate the exact
position of the TAB line buffer’s contents inside the L1D so
that the TAB can intercept regular load/store operations to
this data. This position information is also used during TAB
writebacks to the L1D, allowing the operation to occur with-
out checking the L1D tags and reducing writeback energy
overhead. The PPN is concatenated with the next sequential
line number when prefetching a line from the L1D. A DTLB
access is only needed when the TAB entry is acquired (for
the initial L1D line prefetch) and when prefetches cross a
page boundary, which infrequently occurs. The write mask
makes it possible to transfer only the dirty bytes of the line
back to the L1D. The dirty bit is set whenever one or more
of the write mask bits is set.

4.2 ISA Modifications
Fig. 8 illustrates instruction formats on a MIPS-like 32-bit
instruction set. Fig. 8(a) shows the original format of MIPS
load/store instructions, and Fig. 8(b) shows the proposed
modifications to the immediate field in order to support TAB
accesses. The bit fields used to control TAB accesses replace
the most significant bits of the immediate field of the modi-
fied instructions, which limits the maximum positive and the
minimum negative immediate values that can be represented.
As a result, the compiler must insert additional instructions
to use very high positive or very low negative address offset,
but such values rarely occur. An advantage of this encoding
is that a TAB operation can be forwarded to the L1D as a
regular load/store instruction when the TAB is marked as in-
valid. The T bit identifies whether the instruction is a TAB
operation or a regular load/store operation. The P bit indi-
cates if the TAB access can trigger a prefetch operation. The
TAB offset is subtracted from the TAB top to indicate which
index is associated with a particular TAB access.

Fig. 8(c) and Fig. 8(d) show the instruction formats used
to acquire and release TAB entries, respectively. Fig. 8(c)
shows the proposed get TAB (gtab) instruction to allocate
a TAB index and prefetch the first L1D line. The initial ad-

5

opcode rs rt

5 16

immediate

6

6

opcode number of TABs to release

14

shift

6

opcode

5

rs stride size

2

immediate
type

info

2

E

16 5 5

rtrsopcode
TAB

offsetP

m1

T

14−m

immediate

12

(a) Original  format for MIPS loads/stores

(b) Revised format for loads/stores

(c) Proposed format for gtab instruction

(d) Proposed format for rtabs instruction

Figure 8. ISA modifications to support TAB accesses

dress is calculated similar to regular load/store operations
by adding the contents of the register rs and the immedi-
ate offset. The stride is encoded by two separate fields, the
base of the stride (a signed integer) and the shift size. The
actual stride is calculated as stride << shift size. This en-
coding enables more strides to be represented, that is, those
that are an integer multiple of the data access size. The E bit
indicates that an extra line buffer is to be allocated because
that TAB data is being accessed by multiple references with
distinct addresses. The type info bits are used to avoid un-
necessary data transfers between memory hierarchy levels
and to avoid false interferences with regular load/store op-
erations. Fig. 8(d) shows the proposed release TABs (rtabs)
instruction, which indicates the number of TAB entries to be
released.

5. TAB Operations
This section describes the main TAB operations: allocation,
deallocation, and prefetching. In addition, the operation to
keep the coherency between L1D and TAB is explained.

5.1 TAB Allocation and Deallocation
The TAB top pointer initially points to the first TAB en-
try. TAB entries are allocated and deallocated in LIFO or-
der. Each gtab operation increments the TAB top pointer by
one or two — depending on whether the E (extra line) bit is
set — and allocates the corresponding line buffer(s). During
load/store operations from the TAB, the TAB offset (shown
in Fig. 8(b)) is subtracted from the TAB top, and the result-
ing index value is used to access the correct line buffer. If
the number of allocated TAB entries exceeds the total num-



ber available, then some entries will be overwritten. Each
TAB entry is marked invalid when deallocated. With this ap-
proach, the compiler need not keep track of TAB allocations
between function calls, which eliminates the need for inter-
procedural analysis. If a TAB entry is overwritten (or marked
invalid due to a context switch), then the entry will be invalid
when it is next referenced. As a result, subsequent accesses
to this TAB entry access the L1D instead.

Fig. 9 gives an example of TAB allocation and dealloca-
tion. Assume that there are four physical TAB entries. Be-
fore entering the loop in func1, two TAB entries (a,b) are
allocated. The first reference is to TAB a, and then func2 is
called. Before entering the loop in this function, three TAB
entries (c,d,e) are allocated. The allocation of TAB e over-
writes TAB a. If the line buffer associated with TAB a is
dirty, then the dirty bytes are written back before the new line
is fetched for TAB e. After exiting the loop, the three TAB
entries (c,d,e) are deallocated. After returning from func2,
the TAB b reference is still valid, but the TAB a reference is
invalid, as the TAB valid bit was cleared when TAB e was
released. Subsequent references to TAB a for the remaining
loop iterations instead access the L1D. This example also il-
lustrates why invalid TAB misses should occur infrequently.
The loop inside func1 repeats m times, and the loop inside
func2 repeats m*n times. All the references inside the func2
loop will access the TAB, and only m-1 references of TAB a
will access the L1D.

TAB top−1 (a) reference

release 2 TABs (a+b)

TAB top−0 (b) reference

call func2

...

...

...

...

Loop label:

...

TAB top−2 (c) reference

release 3 TABs (c+d+e)

TAB top−0 (e) reference

...

...

...

...

Loop label:

...

TAB top−1 (d) reference

m times

iterates

loop

n times

iterates

loop

func1: func2:

acquire 2 TABs (a,b) acquire 3 TABs (c,d,e)

Figure 9. Example of using LIFO TAB allocation

5.2 Prefetching into the TAB
The first prefetch for a TAB occurs when a gtab instruc-
tion allocates a TAB entry. When the prefetch bit of a TAB
load/store instruction is set, a prefetch operation is initiated
whenever there is a carry out from the sum of the stride and
the line offset of the memory address (indicating that the
next TAB reference will cross the line boundary). If dirty,
the current line is written back to L1D, and the next line is
prefetched by adding or subtracting one from the line num-
ber, depending on the sign of the stride. The PPN returned
from the DTLB is set during this initial prefetch. DTLB ac-
cesses are unneeded during prefetches as long as the line to
be fetched does not cross a page boundary. If a TAB entry
uses two line buffers (extra line), the prefetch operation is
initiated for the line not currently being accessed.

5.3 Intercepting Regular Loads and Stores
Sometimes regular load/store instructions access an L1D
line that resides in the TAB. For example, a global variable
that is accessed through the TAB in a loop may also be ac-
cessed as a regular load/store operation by another function
called within that loop. In order to keep the TAB and L1D
coherent, regular load/store instructions referencing such a
line must be redirected to the TAB (because updates in the
TAB line buffers are not reflected in the L1D until the line
buffer is released). We therefore add an intercept (I) bit to
each L1D line, and we set this bit when the line is loaded
into the TAB. If this bit is found to be set during the L1D
tag check of a regular load/store then the data is read from
that TAB line buffer on the next cycle. To prevent false in-
terferences, the compiler detects when the I bit need not be
set.

Apart from maintaining consistency between the TAB
and L1D, the inclusion property must be enforced during
L1D line evictions. Since the I bit may be clear to avoid
false interferences, we add a T bit to each L1D line that is
always set when the line resides in the TAB. Consistency
must also be maintained across TABs in a multicore system.
Invalidation requests from other cores access the TAB only
when a block is present in the L1D and the T bit is set. The
TAB is small, and so it is feasible to check all line numbers
and ways of the TAB entries with manageable overhead
during L1D evictions or invalidation requests.

6. Avoiding Unnecessary Data Transfers
A conventional data memory hierarchy will always transfer
a block of data from the next lower level on a miss, yet
many of these transfers are actually unnecessary. Sometimes
each byte of a cache line is written before ever being read.
Since the TAB gives the compiler some level of explicit
control over the memory hierarchy, these specific conditions
can often be recognized and exploited. Unnecessary memory
traffic can be reduced between the TAB, the L1D, and the
next level in the memory hierarchy.

Fig. 10 shows potential data transfer scenarios in the data
memory hierarchy using the TAB. Fig. 10(a) and Fig. 10(b)
show conventional usage of the TAB with a dirty bit that ap-
plies to any memory hierarchy level with a writeback policy.
Fig. 10(c), and Fig. 10(d) illustrate the memory hierarchy
optimizations that the TAB enables. These optimizations are
explained in more detail in the following sections.

6.1 Write-First and Write-First Contiguous
A compiler can detect memory access sequences in which
a variable is written before it is read. In Fig. 11(a), for the
given loop constraints, every second element of array A is
written. In Fig. 11(b), all elements of array A are written.
For both examples, when a line containing part of array A
is associated with the TAB, the L1D line need not be read,
as the TAB references are guaranteed not to interfere with



Figure 10. Exploiting the TAB to avoid L1D and L2 ac-
cesses

regular loads or stores, and the memory locations referenced
through the TAB accesses will be written first. Avoiding
reading an entire line from L1D and writing it to the TAB
improves energy efficiency.

for (i=0; i < n; i += 2)

   A[i] = B[i];

(a) Loop Copying Even Elements

(b) Instructions Copying Even Elements

L2:

r[3]=M[r[6]];

M[r[7]]=r[3];

r[6]=r[6]+8;

r[7]=r[7]+8;

PC=r[6]!=r[8],L2;

rtabs 1,2

# tab 1 load

# tab 2 store

gtab 1, initaddr r[6], stride 4

for (i=0; i < n; i++)

   A[i] = B[i];

(c) Loop Copying All Elements

            writefirst contiguous

L2:

r[3]=M[r[6]];

M[r[7]]=r[3];

r[6]=r[6]+4;

r[7]=r[7]+4;

PC=r[6]!=r[8],L2;

rtabs 1,2

# tab 1 load

# tab 2 store

(d) Instructions Copying All Elements

            writefirst

gtab 1, initaddr r[6], stride 8 

gtab 2, initaddr r[7], stride 4,gtab 2, initaddr r[7], stride 8

Figure 11. Examples where an array is written first

When all bytes in the TAB line buffer are not overwritten
(see array A in Fig. 11(a)), the cache line is prefetched
into the L1D if not already present; upon release, the line
buffer’s write mask will be used to merge the TAB data with
the remaining bytes in the line (shown in Fig. 10(c)). The
overhead of keeping this mask for each line is negligible,
and we save power during writebacks by only transferring
the dirty bytes.

When all bytes of a line are written, which can occur for
array A in Fig. 11(b), not only do we avoid prefetching the
L1D line to the TAB, but we need not load the L1D line
from the next level of the memory hierarchy if it is not
already present, as shown in Fig. 10(d). Only a tag allocation
is required in the L1D since the entire cache line will be
overwritten by TAB stores. This reduces the number of data
transfers from the next memory hierarchy level and further
improves energy efficiency and performance by avoiding
L1D misses. Note that when a write-first contiguous line in
the TAB is only partially overwritten, then when released by
an rtabs instruction that line must first be loaded into the

L1D from the next memory hierarchy level so that its data
are merged in the TAB writeback.

Sometimes a loop-invariant address can also be deter-
mined to be write-first. Consider again the example in
Fig. 5(b). By performing the gtab before the store preceding
the loop, the compiler guarantees that sum is write-first in
the TAB, which allows us to avoid transferring the L1D line
containing sum.

7. Evaluation Framework
We evaluate the proposed TAB approach using 20 bench-
marks spanning six categories from the MiBench benchmark
suite [8], as shown in Table 1. We use the large dataset in-
puts and compile the applications with the VPO compiler [4]
to generate MIPS/PISA target code. The compiler automati-
cally performs all analysis and transformations on the origi-
nal application code. The simulation environment consists of
the SimpleScalar simulator [2] with Wattch extensions [5]
for power estimation based on CACTI [16]. We model a
100-nm technology node, the most recent one in Wattch for
which the technology parameters are defined explicitly. We
assume a low standby power (LSTP) design.

We modify SimpleScalar to model a time-accurate, five-
stage, in-order pipeline. Table 2 shows the processor con-
figuration. The pipeline blocks during L1D misses caused
by load operations and is lock-free during one outstanding
miss caused by a store or a prefetch from the TAB. Ta-
ble 3 presents the energy for each access to the units in the
data memory. We estimate the TAB energy values by using
CACTI to provide only the data array cache power for an
8-line cache. We scale the 4-entry and 2-entry values by ex-
amining the ratio between 16-entry and 8-entry caches (due
to the lack of information for the smaller cache sizes). Our
evaluations include the energy usage during L1D misses.

Table 1. MiBench benchmarks
Category Applications
Automotive Basicmath, Bitcount, Qsort, Susan
Consumer JPEG, Lame, TIFF
Network Dijkstra, Patricia
Office Ispell, Rsynth, Stringsearch
Security Blowfish, Rijndael, SHA, PGP
Telecomm ADPCM, CRC32, FFT, GSM

Table 2. Processor configuration
BPB, BTB Bimodal, 128 entries
Branch Penalty 2 cycles
Integer&FP ALUs, 1
MUL/DIV
Fetch, Decode, 1
Issue Width
L1D & L1I 16 kB, 4-way, 32B line, 1 cycle hit
L2U 64 kB, 8-way, 32B line, 8 cycle hit
DTLB & ITLB 32-entry fully assoc, 1 cycle hit
Memory Latency 120 cycles
TAB (when present) 128 B, 32 B line, 4 lines



Table 3. Energy values estimated in Wattch
Access Type Energy
L1D (word) / (line) 903 pJ / 2,260 pJ
DTLB 100 pJ
2-TAB (word) / (line) 20.52 pJ / 51.3 pJ
4-TAB (word) / (line) 34.2 pJ / 85.5 pJ
8-TAB (word) / (line) 57 pJ / 142 pJ

8. Results
We first analyze the impact of the total number of TAB en-
tries on energy efficiency. Fewer entries require less power
per TAB access, but they avoid fewer L1D and DTLB ac-
cesses. Fig. 12(a) shows the average ratio of the data mem-
ory references captured by the TAB for all benchmarks in
Table 1. We can access 43.3% of the memory references
through the TAB when using only four TAB entries. Using
more TAB entries only slightly increases the number of ac-
cesses captured by the TAB. Fig. 12(b) shows the energy
breakdown of the L1D/DTLB/TAB normalized to the total
L1D/DTLB energy without the TAB. Total data-access en-
ergy usage is reduced by 34.7% with four TAB entries. In
addition, using only four TAB line buffers makes the inte-
gration of the structure in the execute stage of the pipeline
easier due to a faster access time. The four-entry TAB con-
figuration reduces energy in the L1D and DTLB by 35.4%
and 41.9%, respectively.

To evaluate the energy overhead of the additional instruc-
tions to acquire and release TABs, we use an L1 instruction
cache (L1I) and an instruction TLB (ITLB) equal to the sizes
of the L1D and DTLB, respectively. The overhead is only
2.2% of the total L1D/DTLB energy without the TAB.

We now present a more detailed evaluation using the
most energy-efficient TAB configuration with four entries.
On average, the ratio of the load/store operations captured in
the TAB is 43.3% (Fig. 13), with the percentage for each
benchmark falling between 10% and 96%. Only 0.5% of
the TAB load/store instructions miss in the TAB due to
overwritten elements in the index buffer, which shows that
using LIFO circular buffer allocation works well with very
low overhead.

Strided accesses constitute 67.8% of the TAB accesses,
and loop-invariant address references constitute the remain-
der. Several applications have a high percentage of loop-
invariant address references. For instance, the source code
of dijkstra uses all global variables. Its kernel loop includes
a function call, which prevents our compiler from detecting
strided references because it assumes that counter variables
could be updated in the called function. Nonetheless, it can
detect that these counters have loop-invariant addresses, and
counter updates comprise a large fraction of the memory ref-
erences. The kernel loop of crc also contains pointers having
loop-invariant addresses that are repeatedly dereferenced. A
function call in this loop prevents the compiler from assum-
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Figure 12. TAB utilization and energy breakdown of data
accesses for different numbers of TAB entries

a
d
p
c
m

b
a
s
ic

m
a
th

b
it
c
o
u
n
t

b
lo

w
fi
s
h

c
rc

d
ijk

s
tr

a ff
t

g
s
m

is
p
e
ll

jp
e
g

la
m

e

p
a
tr

ic
ia

p
g
p

q
s
o
rt

ri
jn

d
a
e
l

rs
y
n
th

s
h
a

s
tr

in
g
s
e
a
rc

h

s
u
s
a
n

ti
ff

a
v
e
ra

g
e

m
e
m

o
ry

 r
e
fs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TAB hits (strided)/total mem refs TAB hits (invariant)/total mem refs

Figure 13. TAB utilization for different benchmarks

ing the dereferenced pointer values are loop-invariant, hence
it cannot apply loop-invariant code motion.

Fig. 14 shows the breakdown of the L1D accesses with
and without TAB accesses. The L1D accesses are reduced
by 40.1%, on average. With compiler-controlled allocation
and deallocation of the line buffers, the numbers of L1D
prefetches and writebacks are only 2.4% and 0.9%, respec-
tively, of the total number of loads and stores without a TAB.
The write-first optimization reduces TAB prefetches from
the L1D by 20.6%, on average.

Fig. 15 shows the reduction in DTLB accesses. The
number of TAB-related DTLB accesses is very small, and
these accesses are mainly caused by gtab instructions (ini-
tial prefetches). On average DTLB accesses are reduced by
41.9% using the TAB.

The TAB eliminates, on average, 12.1% of data accesses
to the L2 cache. This benefit comes mainly from write-first
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Figure 15. DTLB statistics with the TAB

and contiguous TAB entries for which all data are overwrit-
ten before being read. Apart from providing performance
benefits, decreasing access counts to the next memory hi-
erarchy level further improves energy efficiency. Note that
for some applications the number of next-level accesses in-
creases very slightly. Depending on the variable’s alignment,
the last TAB prefetch initiated inside a loop may be unneces-
sary if it occurs just before the loop exit, and such prefetches
can trigger additional cache misses compared to an architec-
ture with no TAB. As this situation only occurs just before
TAB entries are released, the impact is negligible.

Fig. 16 shows how the execution time is affected by us-
ing the TAB. The execution time is improved on average by

3.1%. Much of this is due to avoiding load hazards by ac-
cessing the TAB in the execute stage of the pipeline (which
delivers a 3.3% performance improvement). Avoiding some
L1D miss stalls by prefetching L1D lines into the TAB and
avoiding unnecessary data transfers between memory hier-
archy levels deliver an additional execution time benefit of
0.2%. The gtab and rtabs instructions cause extra execu-
tion cycles, as do instructions to calculate the initial TAB
access address in the loop preamble. These extra cycles de-
grade performance by 0.4%. Likewise, intercepting regular
load/store instructions in the TAB incurs some execution
time overhead. On average, 0.4% of the regular load/store
references are intercepted in the TAB. Our false-interference
optimizations reduce this interception count by 73.1% on av-
erage. These slight instruction overheads are offset by the
TAB’s execution time benefits.
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Figure 16. Impact of using the TAB on execution time

To better understand the costs of using a TAB, we exam-
ine ispell, the application with the highest overhead. Much
of its increased execution time is due to executing extra in-
structions to acquire and release TABs before and after loops
with few iterations (processing characters in words). ispell
also often requires additional instructions to calculate the
initial address for the gtab instruction because the compiler
does not have the required registers available to perform loop
strength reduction.

9. Related Work
Witchel et al. propose a hardware-software design for data
caches called direct address caches (DAR) [17]. The DAR
eliminates L1D tag checks for memory references when the
cache line to be accessed can be identified by the compiler
as being known. The compiler annotates a memory refer-
ence that sets a register identifying the accessed L1D line
and subsequent memory references that are guaranteed to
access the same line reference that register to avoid the tag



check. The compiler uses some of the immediate bits of the
load/store operations for control purposes in a manner simi-
lar to the TAB approach. The DAR reduces energy usage by
avoiding accesses to the tag array and by activating only a
single way of the L1D data array for the memory references
that are guaranteed to access a specified L1D line. The TAB
approach also avoids tag checks, but, in contrast, it accesses
a much smaller and more power-efficient TAB structure, as
opposed to a much larger single way of the L1D data ar-
ray. In addition, the DAR approach requires code transfor-
mations, such as loop unrolling, to make alignment guaran-
tees for strided accesses. Many loops cannot be unrolled, as
the number of loop iterations must be known at the point the
original loop is entered. When the alignment of a variable
cannot be identified statically, a pre-loop is inserted to guar-
antee alignment in the loop body, which can be complex to
align references to multiple variables. These transformations
can also result in code size increases. The TAB approach
does not require such extensive code transformations.

Kadayif et al. propose a compiler-directed physical ad-
dress generation scheme to avoid DTLB accesses [10]. Sev-
eral translation registers (TRs) are used to hold PPNs. The
compiler determines the variables that reside on the same
virtual page, and a special load instruction stores the trans-
lated PPN in one of the TRs. Subsequent memory references
that access this page avoid the DTLB, getting the PPN from
the specified TR register. The compiler uses some of the
most significant bits of the 64-bit virtual address to iden-
tify whether the access must get the physical address from
a particular TR. If the virtual address cannot be determined
statically, additional runtime instructions modify the virtual
address dynamically. Several code transformations, includ-
ing loop strip mining, are used to avoid additional DTLB
accesses, but these transformations increase code size. This
approach reduces the number of DTLB accesses and thus
DTLB energy usage, but L1D accesses occur as normal.
Zhou et al. proposes a heterogenous tagged cache scheme,
where the DTLB accesses for private data can be elimi-
nated [18]. It requires to add some logic to the most sig-
nificant bits of the calculated memory address which will
go through the critical path of the DTLB. In both of these
schemes, only DTLB accesses are avoided, while the TAB
approach avoids both DTLB and L1D accesses, which saves
more data access energy.

Other small structures have been suggested to reduce
L1D energy. A line buffer can be used to hold the last line
accessed in the L1D [15]. The buffer must be checked be-
fore accessing the L1D, placing it on the critical path. Our
evaluations with the 20 Mibench benchmarks showed that
the miss rate for a 32 byte last line buffer used for the data
cache is 73.8%, which will increase the L1D energy usage
instead of reducing due to continuously fetching full lines
from the L1D cache memory. Small filter caches sitting be-
tween the processor and the L1D have been proposed to

reduce the power dissipation of the data cache [13]. How-
ever, filter caches save energy at the expense of a significant
performance penalty due to their high miss rate. This per-
formance penalty can mitigate some of the energy benefits
of using the filter cache. In any case, line buffers and filter
caches are complementary to the TAB approach.

Nicolaescu et al. propose a power saving scheme for
associative data caches [14]. The way information of the
last N cache accesses are saved in a table, and each access
makes a tag search on this table. If there is a match the way
information is used to activate only the corresponding way.
It would be possible to use this and similar techniques in
combination with the TAB to reduce L1D access power for
loads and stores that are not captured by the TAB.

There has also been some research on using scratchpads
in which variables are explicitly allocated or copied [3, 11,
12]. Scratchpads can save energy since they are typically
small structures, and there is no tag check or virtual-to-
physical address translation. While much smaller than main
memory, scratchpads are typically much larger than the TAB
structure. Furthermore, unlike the TAB, scratchpads are ex-
clusive of the rest of the memory hierarchy and require extra
code to copy data to and from the main memory system,
which is a challenge for the compiler writer or the applica-
tion developer. Since data must be explicitly copied to/from
scratchpads, they cannot be used to reduce the energy used
for strided accesses that are not repeatedly referenced.

The POWER family instruction set uses a data cache line
set to zero (dclz) instruction [1] that works much like write-
first contiguous tab accesses. If the line resides in the cache,
all the elements are set to zero. If it is not resident, then a
tag allocation occurs, and all line elements are set to zero,
but the data line is not fetched from the next level in the
hierarchy. In contrast, a write-first contiguous access in TAB
is not limited to just setting a line to zero.

10. Future Work
Enhanced compiler analysis and code transformations can
be applied to increase the percentage of memory references
accessed through the TAB. Analysis can determine the lo-
cations of globals so that multiple global scalar variables
accessed with loop-invariant addresses can be allocated to
a single TAB line buffer. Likewise, the sizes of activation
records could be changed to always be an integer multiple of
the L1D line size, which would allow multiple local scalars
to be accessed in a single TAB line buffer. In both of these
cases, the scalars could be located to require fewer TAB line
buffers. In addition, write-first arrays could be aligned on
L1D line boundaries to avoid additional line transfers be-
tween memory levels.

Another area to explore is how the TAB can reduce en-
ergy usage in an out-of-order processor. However, some in-
teresting challenges must then be addressed. First, the mem-
ory references in a loop associated with a specific TAB entry



cannot be reordered, as the TAB relies on preserving the or-
der of the strided memory references detected statically by
the compiler. The load/store queue can enforce in-order pro-
cessing of each TAB entry’s references when selecting the
next memory reference to perform, since the TAB entry is
known after instruction decode. Alternatively, in-order pro-
cessing of all memory references could be enforced when-
ever there are one or more TABs in use. This can be detected
by gtab/rtabs instructions or TAB valid bits, which elimi-
nates the need to use memory-fence instructions. Likewise,
prefetching an L1D line into the TAB along a misspeculated
path can cause problems because there is no tag check for
TAB accesses. One simple solution would be to invalidate
all TAB line buffers after each branch misprediction, as such
events infrequently occur.

11. Conclusions
In this paper we describe an approach to access a large per-
centage of the data references in a more energy-efficient
manner. We can replace a significant percentage of L1D ac-
cesses with references to a much smaller and more power-
efficient TAB, which requires no tag checks or DTLB ac-
cesses because TAB entries are explicitly allocated. Further-
more, we provide small performance improvements by ac-
cessing values earlier in the pipeline and by avoiding some
L1D miss stall cycles by prefetching data into the TAB. In
addition, we avoid a number of unnecessary data transfers
between memory hierarchy levels by classifying the access
patterns of the memory references allocated to the TAB.
We are able to make these enhancements with small ISA
changes, relatively simple compiler transformations, and a
TAB as small as a conventional 32-entry register file.
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