Exhaustive Optimization Phase
Order Space Exploration

Prasad A. Kulkarni
David B. Whalley
Gary S. Tyson
Jack W. Davidson

=
p)
-
O
2
-
D
)
o)
©
o)
p
©
[®)
-
O
LL

Symposium on Code Generation and Optimization - 2006

Optimization Phase Ordering

Optimizing compilers apply several
optimization phases to improve the
performance of applications.

Optimization phases interact with each other.

Determining the best order of applying
optimization phases has been a long standing
problem In compilers.

=
p)
-
O
2
-
D
)
o)
©
o)
p
©
[®)
-
O
LL

Symposium on Code Generation and Optimization - 2006

Exhaustive Phase Order
Enumeration... i1s it Feasible ?

A obvious approach to address the phase
ordering problem is to exhaustively evaluate
all combinations of optimization phases.

Exhaustive enumeration is difficult

compilers typically contain many different
optimization phases

optimizations may be successful multiple times
for each function / program

=
p)
-
O
2
-
D
)
o)
©
o)
p
©
[®)
-
O
LL

Symposium on Code Generation and Optimization - 2006

Optimization Space Properties

Phase ordering problem can be made more
manageable by exploiting certain properties
of the optimization search space

optimization phases might not apply any
transformations

many optimization phases are independent

Thus, many different orderings of
optimization phases produce the same code.

=
p)
-
O
2
-
D
)
o)
©
o)
p
©
[®)
-
O
LL

Symposium on Code Generation and Optimization - 2006 4

Re-stating the Phase Ordering
Problem

Rather than considering all attempted phase
sequences, the phase ordering problem can
be addressed by enumerating all distinct
function instances that can be produced by
combination of optimization phases.

We were able to exhaustively enumerate
109 out of 111 functions, in a few minutes
for most.

=
p)
-
O
2
-
D
)
o)
©
o)
p
©
[®)
-
O
LL

Symposium on Code Generation and Optimization - 2006

Outline

Experimental framework

Algorithm for exhaustive enumeration of
the phase order space

Search space enumeration results
Optimization phase interaction analysis
Making conventional compilation faster
Future work and conclusions

=
p)
-
O
2
-
D
)
o)
©
o)
p
©
[®)
-
O
LL

Symposium on Code Generation and Optimization - 2006

Experimental Framework

We used the VPO compilation system

established compiler framework, started development
In 1988

comparable performance to gcc —02

VPO performs all transformations on a single
representation (RTLS), so it Is possible to perform
most phases In an arbitrary order.

Experiments use all the 15 available optimization
phases in VPO.

Target architecture was the StrongARM SA-100
processor.

=
p)
-
O
2
-
D
)
o)
©
o)
p
©
[®)
-
O
LL

Symposium on Code Generation and Optimization - 2006

=
p)
-
O
2
-
D
)
o)
©
o)
p
©
[®)
-
O
LL

VPO Optimization Phases

Optimization Phase

Optimization Phase

branch chaining

loop transformations

common subexpr. elim.

code abstraction

remv. unreachable code

eval. order determin.

loop unrolling

strength reduction

dead assignment elim.

reverse branches

D
b
C
d
9
h

block reordering

Instruction selection

J

minimize loop jumps

remv. useless jumps

K

register allocation

Symposium on Code Generation and Optimization - 2006

Disclaimers

Did not include optimization phases normally
assoclated with compiler front ends

no memory hierarchy optimizations
no Inlining or other interprocedural optimizations

Did not vary how phases are applied.

DiId not include optimizations that require
orofile data.

=
p)
-
O
2
-
D
)
o)
©
o)
p
©
[®)
-
O
LL

Symposium on Code Generation and Optimization - 2006

=
p)
-
O
2
-
D
)
o)
©
o)
p
©
[®)
-
O
LL

Benchmarks

Used one program from each of the six
MiBench categories.

Total of 111 functions.

Category

Program

Description

auto

bitcount

test processor bit manipulation abilities

network

dijkstra

Dijkstra’s shortest path algorithm

telecomm

fft

fast fourier transform

consumer

Jpeg

Image compression / decompression

security

sha

secure hash algorithm

office

stringsearch

searches for given words in phrases

Symposium on Code Generation and Optimization - 2006

Outline

Experimental framework

Exhaustive enumeration of the phase order
space.

Search space enumeration results
Optimization phase interaction analysis
Making conventional compilation faster
Future work and conclusions

=
p)
-
O
2
-
D
)
o)
©
o)
p
©
[®)
-
O
LL

Symposium on Code Generation and Optimization - 2006

Nalve Optimization Phase Order
Space Exploration

All combinations of optimization phase
sequences are attempted.

=
p)
-
O
2
-
D
)
o)
©
o)
p
©
[®)
-
O
LL

Symposium on Code Generation and Optimization - 2006

Eliminating Consecutively
Applied Phases

A phase just applied in our compiler cannot
be immediately active again.

=
p)
-
O
2
-
D
)
o)
©
o)
p
©
[®)
-
O
LL

Symposium on Code Generation and Optimization - 2006

Eliminating Dormant Phases

Get feedback from the compiler indicating
If any transformations were successfully
applied in a phase.

=
p)
-
O
2
-
D
)
o)
©
o)
p
©
[®)
-
O
LL

Symposium on Code Generation and Optimization - 2006

=
p)
-
O
2
-
D
)
o)
©
o)
p
©
[®)
-
O
LL

Detecting Identical Function
Instances

Some optimization phases are independent
example: branch chaining & register allocation

Different phase sequences can produce the

same code

2] =1, 2] =1,
(3] = r[4] + rf2]; (3] = r[4] + r[2];

=instruction selection =constant propagation
r[3] = r[4] + 1; 2] =1;
3] = r[4] + 1,

=dead assignment elimination
r[3] = r[4] + 1;

Symposium on Code Generation and Optimization - 2006

=
p)
-
O
2
-
D
)
o)
©
o)
p
©
[®)
-
O
LL

Detecting Equivalent Function

Instances

sum = 0;
for (1 = 0; 1 < 1000; 1++)

sum +=a [1];

Source Code

r [9]=4000+

r[81=MLr[1]1];

= +r[8l;
ril]=r[1]+4;
IC=r[1]?r[9];
PC=1C<0, ;

Register Allocation
before Code Motion

r{11]=0;
r{10]=HI[a];
r(10]=r[10]+LO[a];
r[1]=r[10];
r[9]=4000+r[10];

r81=MLr[111;
rill]=r[11]+r[8];
ril]=r[1]+4;
IC=r[1]?r[9];
PC=1C<0,L5;

Code Motion before
Register Allocation

r[34] .
r[35]=4000+

r[36]=M[r[34]];
= +r[36];
r[34]=r[34]+4;
1IC=r[34]?r[35];
PC=1C<0,

After Mapping
Registers

Symposium on Code Generation and Optimization - 2006

Resulting Search Space

Merging equivalent function instances
transforms the tree to a DAG.

N
\Cd ;

Symposium on Code Generation and Optimization - 2006

=
p)
-
O
2
-
D
)
o)
©
o)
p
©
[®)
-
O
LL

Efficient Detection of Unique
Function Instances

Even after pruning there may be tens or
hundreds of thousands of unigue Instances.

Use a CRC (cyclic redundancy check)
checksum on the bytes of the RTLs
representing the instructions.

Used a hash table to check If an equivalent
function instance already exists in the DAG.

=
p)
-
O
2
-
D
)
o)
©
o)
p
©
[®)
-
O
LL

Symposium on Code Generation and Optimization - 2006

Technigues to Make Searches
Faster

Kept a copy of the program representation of the
unoptimized function instance in memory to avoid
repeated disk accesses.

Also kept the program representation after each
active phase in memory to reduce the number of
phases applied for each sequence.

Reduced search time by at least a factor of 5 to 10.

Out of 111 functions in our benchmark suite we
were able to completely enumerate all instances for
109 functions.

=
p)
-
O
2
-
D
)
o)
©
o)
p
©
[®)
-
O
LL

Symposium on Code Generation and Optimization - 2006

Outline

Experimental framework

Exhaustive enumeration of the phase order
space.

Search space enumeration results
Optimization phase interaction analysis
Making conventional compilation faster
Future work and conclusions

=
p)
-
O
2
-
D
)
o)
©
o)
p
©
[®)
-
O
LL

Symposium on Code Generation and Optimization - 2006

Iversl

-
D
)
o)
©
o)
p
©
[®)
-
O
LL

Search Space Statistics

Function

Insts

Blk

—
@]
@)

=]

Instances

IERES

Len

start_inp...(J)
parse_swi...(j)
start_inp...(J)
start_inp...(J)
start_inp...(J)
fft_float(f)
main(f)
sha_trans...(h)
read_scan...(j)
LZWRea...())
main(j)
dijkstra(d)

1,371
1,228
1,009
971
795
680
624
541
480
472
465
354

88
198
72
82
63
45
50
33
59
44
40
30

WkFRLrMNMNMNNMNOORRFRPEPEPEDN

74,950
200,397
39,152
64,571
7,018
N/A

N/A
343,162
34,270
49,412
33,620
86,370

1,153,279
2,990,221
597,147
999,814
106,793
N/A

N/A
5,119,947
511,093
772,864
515,749
1,361,960

20
18
16
18
15

average

25,362.6

381,857.7

Symposium on Code Generation and Optimization - 2006

Outline

Experimental framework

Exhaustive enumeration of the phase order
space.

Search space enumeration results
Optimization phase interaction analysis
Making conventional compilation faster
Future work and conclusions

=
p)
-
O
2
-
D
)
o)
©
o)
p
©
[®)
-
O
LL

Symposium on Code Generation and Optimization - 2006

Welighted Function Instance DAG

Each node Is weighted by the number of
paths to a leaf node.

[abc]

=
p)
-
O
2
-
D
)
o)
©
o)
p
©
[®)
-
O
LL

Symposium on Code Generation and Optimization - 2006

Enabling Interaction Between
Phases

b enables a along the path a-b-a.

[abc]

=
p)
-
O
2
-
D
)
o)
©
o)
p
©
[®)
-
O
LL

Symposium on Code Generation and Optimization - 2006

St

Iversl

C b
=
()] 9
o h
© i
57 J
N ‘
M |
U n
= o
O q
LL s

Symposium on Code Generation and Optimization - 2006

Disabling Interaction Between
Phases

b disables a along the path b-c-d.

[abc]

=
p)
-
O
2
-
D
)
o)
©
o)
p
©
[®)
-
O
LL

Symposium on Code Generation and Optimization - 2006

Iversl

- b
DO I
(b g
e h
© i
=]
2 ’
(-5 I
O n
= 0
O q
L s

Symposium on Code Generation and Optimization - 2006

Iversl

- b
DO I
(b g
e h
© i
=]
2 ’
(-5 I
O n
= 0
O q
L s

Symposium on Code Generation and Optimization - 2006

Outline

Experimental framework

Exhaustive enumeration of the phase order
space.

Search space enumeration results
Optimization phase interaction analysis
Making conventional compilation faster
Future work and conclusions

=
p)
-
O
2
-
D
)
o)
©
o)
p
©
©
-
O
LL

Symposium on Code Generation and Optimization - 2006

=
p)
-
O
2
-
D
)
o)
©
o)
p
©
[®)
-
O
LL

Faster Conventional Compller

We modified the VPO compiler to use enabling and
disabling probabilities to decrease compilation time.

p[i] - current probability of phase i being active
e[i][j] - probability of phase | enabling phase |
d[i][j] - probability of phase | disabling phase |

For each phase i do
p[i] = efi][st];
While (any p[i] > 0) do
Select j as the current phase with highest probability of being active
Apply phase |
If phase | was active then
For each phase i, where i !=j do
pli] += ((1-p[i]) * e[i]0]) - (P01 * d[i0])
pi] =0

Symposium on Code Generation and Optimization - 2006

Iversl

-
D
)
o)
©
o)
p
©
[®)
-
O
LL

Probabllistic Compilation Results

Function

Old Compilation

Prob. Com

ilation

Prob. / Old

Attempted | Active

Attempted

Active

Size | Speed

start_inp...(J)
parse\ swi...(J)
start_inp...(J)
start_inp...(J)
start_inp...(J)
fft_float(f)
main(f)
sha_trans...(h)
read_scan...(j)
LZWReadByte())
main(j)
dijkstra(d)

233 16
233 14
270 15
233 14
231 11
463 28
284 20
284 17
233 13
268 12
270 12
231 9

55
53
55
49
53
99
73
67
43
45
57
43

14
12
14
13
12
25
18
16
10
11
14
9

1.014 N/A
1.016 0.972
1.010 N/A
1.003 N/A
1.004 1.000
1.012 0.974
1.007 1.000
0.965 0.953
1.018 N/A
1.014 N/A
1.007 1.000
1.010 1.000

average

230.3 8.9

47.7

9.6

0.297

1.015

Symposium on Code Generation and Optimization - 2006

Outline

Experimental framework

Exhaustive enumeration of the phase order
space.

Search space enumeration results
Optimization phase interaction analysis
Making conventional compilation faster
Future work and conclusions

=
p)
-
O
2
-
D
)
o)
©
o)
p
©
©
-
O
LL

Symposium on Code Generation and Optimization - 2006

Future Work

Study methods to find more equivalent performing
function instances to further reduce the
optimization phase order space.

Evaluate approaches to find the dynamically
optimal function instance.

Improve non-exhaustive searches of the phase
order space.

Study additional methods to improve conventional
compilers.

=
p)
-
O
2
-
D
)
o)
©
o)
p
©
[®)
-
O
LL

Symposium on Code Generation and Optimization - 2006

Conclusions

First work to show that the optimization phase
order space can often be completely enumerated
(at least for the phases in our compiler).

First analysis of the entire phase order space to
capture various phase probabilities.

Used phase interaction information to achieve a
much faster compiler that still generates
comparable code.

=
p)
-
O
2
-
D
)
o)
©
o)
p
©
[®)
-
O
LL

Symposium on Code Generation and Optimization - 2006

Optimization Phase Independence

a-c and c-a are independent.

[abc]

=
p)
-
O
2
-
D
)
o)
©
o)
p
©
[®)
-
O
LL

Symposium on Code Generation and Optimization - 2006

Optimization Phase Independence

and are not independent.

5 |[abc]

[c]

=
p)
-
O
2
-
D
)
o)
©
o)
p
©
[®)
-
O
LL

Symposium on Code Generation and Optimization - 2006

N
—
D Ph
>

- b
O I
(b g
b h
4] i
e]
) ’
m I
O n
" : o)
O q
L :

Symposium on Code Generation and Optimization - 2006

N
—
D Ph
>

- b
O I
(b g
b h
4] i
e]
) ’
m I
O n
" : o)
O q
L :

Symposium on Code Generation and Optimization - 2006

VPO Optimization Phases (cont...)

Register assignment (assigning pseudo registers to
hardware registers) Is implicitly performed before
the first phase that requires It.

Some phases are applied after the sequence

fixing the entry and exit of the function to manage the
run-time stack

exploiting predication on the ARM
performing instruction scheduling

=
p)
-
O
2
-
D
)
o)
©
o)
p
©
[®)
-
O
LL

Symposium on Code Generation and Optimization - 2006

